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Abstract

Abstract. Let 𝐺 ⊠ 𝐻 and 𝐺□𝐻 denote the strong and Cartesian products
of graphs 𝐺 and 𝐻, respectively. In this note, we investigate the graph minor
in product of graphs. In particular, we show that, for any simple connected
graph 𝐺, the graph 𝐺 ⊠ 𝐾2 is a minor of the graph 𝐺□𝑄𝑟 by a construction
method, where 𝑄𝑟 is an 𝑟-cube and 𝑟 = 𝜒(𝐺). This generalizes an earlier result
by Kotlov [2].
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1 Introduction

Graphs considered in this note are finite, undirected, simple and connected. We
use [1] for terminologies and notations not defined here. The strong product 𝐺1 ⊠𝐺2

of two graphs 𝐺1 and 𝐺2 has vertex set 𝑉 (𝐺1)× 𝑉 (𝐺2) and two vertices (𝑢1, 𝑣1) and
(𝑢2, 𝑣2) are adjacent if and only if (1) 𝑢1 is adjacent to 𝑢2 and 𝑣1 = 𝑣2 (we call it
horizontal edge); or (2) 𝑢1 = 𝑢2 and 𝑣1 is adjacent to 𝑣2 (we call it vertical edge);
or (3) 𝑢1 is adjacent to 𝑢2 and 𝑣1 is adjacent to 𝑣2 (referred as type (3) edges). For
example, 𝐾2 ⊠𝐾2 = 𝐾4. The Cartesian product 𝐺1□𝐺2 of two graphs 𝐺1 and 𝐺2 is
obtained from 𝐺1 ⊠𝐺2 by deleting the ‘type (3)’ edges. For example, 𝐾2□𝐾2 = 𝐶4.
The well-known 𝑛-dimensional cube or 𝑛-cube 𝑄𝑛 can be viewed as the Cartesian
product of 𝑛 copies of 𝑄1 = 𝐾2.
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A graph 𝐻 on vertex-set {1, . . . , 𝑛} is a minor of a graph 𝐺, denoted by 𝐻 ⪯ 𝐺,
if there are disjoint subsets 𝑉1, . . . , 𝑉𝑛 of 𝑉 (𝐺) such that: (1) every 𝑉𝑖 induces a
connected subgraph of 𝐺; and (2) whenever 𝑖𝑗 is an edge in 𝐻, there is an edge
between 𝑉𝑖 and 𝑉𝑗 in 𝐺.

Kotlov [2] initiated the study of minor in product of graphs and proved the fol-
lowing result.

Theorem 1.1 (Kotlov [2]) For every bipartite graph 𝐺, the strong product 𝐺 ⊠ 𝐾2

is a minor of 𝐺□𝐶4.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of
graphs. Later, Wood [4] and Chandran, Kostochka, Raju [5] continued the study of
clique minors in Cartesian product of graphs. In particular, Wood [4] showed that
the lexicographic product 𝐺 ∘𝐻 is a minor of 𝐺□𝐻□𝐻 for every bipartite graph 𝐺
and every connected graph 𝐻. In this note, we continue the study of strong product
minor in Cartesian product started by Kotlov [2] and obtain several results in this
direction.

2 Main Results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The
proof techniques are mainly constructive. As usual, 𝜒 denotes the chromatic number
of 𝐺.

Theorem 2.1 Let 𝐺 be a connected graph with chromatic number 𝜒. Then 𝐺⊠𝐾2 ⪯
𝐺□𝑄𝜒.

Denote Hamming graph 𝐾𝑘1□𝐾𝑘2□ ⋅ ⋅ ⋅□𝐾𝑘𝑑 with 𝑘1 = 𝑘2 = ⋅ ⋅ ⋅ = 𝑘𝑑 = 𝑛 by 𝐾𝑑
𝑛.

With a similar construction, we can obtain the following theorem.

Theorem 2.2 Let 𝐺 be a connected graph with chromatic number 𝜒. Then 𝐺⊠𝐾𝑛 ⪯
𝐺□𝐾𝜒

𝑛 .

Theorem 2.3 Let 𝐺 be a connected graph. Then 𝐺 ⊠ 𝐾2 ⪯ 𝐺□𝐾𝑎, where 𝑎 is an
integer satisfying

(
𝑎−1
⌈𝑎
2
⌉
)
⩾ 𝜒(𝐺).

Remark 1. If we choose 𝑎 as small as possible (i.e., 𝑎 = min{𝑚 :
(
𝑚−1
⌈𝑚

2
⌉
)
⩾ 𝜒(𝐺)}),

the result is sharp when 𝜒 is small and 𝐺 is sufficiently dense. For example, for any
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bipartite graph 𝐺 which is sufficiently dense, 𝐺⊠𝐾2 ⪯̸ 𝐺□𝐾3 (see [2]). If 𝐺 = 𝐾3,
then we have 𝐾3 ⊠𝐾2 ⪯̸ 𝐾3□𝐾3,

1 but 𝐾3 ⊠𝐾2 ⪯ 𝐾3□𝐾4.

The next one is an immediate corollary of the above.

Corollary 2.4 For every 3-colorable graph 𝐺, the graph 𝐺⊠𝐾2 is a minor of 𝐺□𝐾4.

Hadwiger [6] linked the chromatic number of a graph 𝐺 to the maximum size of
its clique minor. He conjectured that every 𝑘-chromatic graph has a 𝐾𝑘-minor. It is
one of the most intriguing conjectures in today’s graph theory. The Hadwiger number
𝜂(𝐺) of a graph 𝐺 is the maximum 𝑛 such that 𝐾𝑛 is a minor of 𝐺. A lot of research
have been done for determining the Hadwiger number in special classes of graphs
(see [3], [4], [5]).

Setting 𝐺 = 𝐾𝜒 in Theorem 2.3, we readily obtain the following result on the
Hadwiger number of a Hamming graph.

Corollary 2.5 𝜂(𝐾𝜒□𝐾𝑎) ⩾ 2𝜒, if
(
𝑎−1
⌈𝑎
2
⌉
)
⩾ 𝜒.

Remark 2. In [4], Wood proved that 𝜂(𝐾𝑛□𝐾𝑚) ⩾ 𝑛
√

𝑚
2
− 𝒪(𝑛 +

√
𝑚). It is not

hard to verify that when 𝜒 ⩽ 35 2, Corollary 2.5 is an improvement of Wood’s result.

3 Proofs of The Main Results

Before giving the proofs of main results, a few definitions and a lemma are required.
They play important roles in the proofs of theorems. Let us call two partitions 𝑃, 𝑃 ′

of the same set 𝐴 crossing, if every block of 𝑃 intersects every block of 𝑃 ′. A partition
containing 𝑘 blocks is called a 𝑘-partition.

Lemma 3.1 Let 𝐺,𝐻 be two graphs and 𝜒 = 𝜒(𝐺). If there exist 𝜒 pairwise crossing
𝑛-partitions of 𝑉 (𝐻), so that

(𝑃1) every block of each partition induces a connected subgraph of 𝑉 (𝐻);

(𝑃2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices
in both blocks),

then 𝐺⊠𝐾𝑛 is a minor of 𝐺□𝐻.

1Suppose that 𝐾6 ⪯ 𝐾3□𝐾3. Then 𝑉 (𝐾3□𝐾3) has branch sets 𝑋1, . . . , 𝑋6, each of which are
connected by at least one edge. If there exists 𝑋𝑖, say 𝑋1, such that ∣𝑋1∣ = 1, since Δ(𝐾3□𝐾3) = 4,
contradicting with the fact that 𝑋1 is adjacent to 𝑋𝑖 for all 2 ⩽ 𝑖 ⩽ 6. Thus, ∣𝑋𝑖∣ ⩾ 2 and∑6

𝑖=1 ∣𝑋𝑖∣ ⩾ 12 > 9 = ∣𝑉 (𝐾3□𝐾3)∣, a contradiction.
2If 𝑎 ⩽ 8, then 𝜒 ⩽ 35 and 2𝜒 ⩾ 𝜒

√
𝑚
2 .

3



Proof. Since 𝐺 is 𝜒-chromatic, there exists a 𝜒-coloring 𝑐 of 𝑉 (𝐺) such that 𝑐(𝑣) = 𝑖
when 𝑣 ∈ 𝑉 (𝐺) is colored 𝑖 for all 1 ⩽ 𝑖 ⩽ 𝜒. Clearly, {𝑣 ∈ 𝑉 (𝐺) : 𝑐(𝑣) = 𝑖}
induces an independent set in 𝐺 for all 1 ⩽ 𝑖 ⩽ 𝜒. Suppose that {𝐴𝑖,1, 𝐴𝑖,2, . . . , 𝐴𝑖,𝑛},
1 ⩽ 𝑖 ⩽ 𝜒 are 𝜒 pairwise crossing 𝑛-partitions of 𝑉 (𝐻) satisfying properties (𝑃1) and
(𝑃2).

For each vertex 𝑣 ∈ 𝑉 (𝐺) and each 1 ⩽ 𝑗 ⩽ 𝑛, let

𝑉𝑗(𝑣) = {(𝑣, 𝑢) : 𝑢 ∈ 𝐴𝑐(𝑣),𝑗}.
Since for each 𝑖,

∪𝑛
𝑗=1 𝐴𝑖,𝑗 = 𝑉 (𝐻), so

∪𝑛
𝑗=1 𝑉𝑗(𝑣) is an 𝐻-layer of 𝐺□𝐻. And it is

not difficult to show that the collection of sets {𝑉𝑗(𝑣) : 1 ⩽ 𝑗 ⩽ 𝑛, 𝑣 ∈ 𝑉 (𝐺)} is a
partition of 𝑉 (𝐺□𝐻). Now, we check that 𝐺⊠𝐾𝑛 ⪯ 𝐺□𝐻 by definition.

For each 𝑣 ∈ 𝑉 (𝐺) and each 1 ⩽ 𝑗 ⩽ 𝑛, it follows from (𝑃1) that {𝑢 : 𝑢 ∈ 𝐴𝑐(𝑣),𝑗}
induces a connected subgraph in 𝐻, and hence 𝑉𝑗(𝑣) induces a connected subgraph
in 𝐺□𝐻 by the definition of Cartesian product.

Consider an edge 𝑒 = (𝑣1, 𝑘)(𝑣2, 𝑙) ∈ 𝐸(𝐺 ⊠𝐾𝑛). If 𝑒 is of type (1) (a horizontal
edge) or of type (3), then 𝑣1𝑣2 ∈ 𝐸(𝐺). Clearly, 𝑐(𝑣1) ∕= 𝑐(𝑣2). Thus, 𝐴𝑐(𝑣1),𝑘 ∩
𝐴𝑐(𝑣2),𝑙 ∕= ∅ by the assumption that these 𝜒 𝑛-partitions are pairwise crossing. Assume
𝑢0 ∈ 𝐴𝑐(𝑣1),𝑘 ∩𝐴𝑐(𝑣2),𝑙. Then (𝑣1, 𝑢0) ∈ 𝑉𝑘(𝑣1) is adjacent to (𝑣2, 𝑢0) ∈ 𝑉𝑙(𝑣2) in 𝐺□𝐻.
If 𝑒 is of type (2) (a vertical edge), 𝑣1 = 𝑣2, 𝑘 ∕= 𝑙, it follows from (𝑃2) that there is
an edge 𝑢1𝑢2 ∈ 𝑉 (𝐻), where 𝑢1 ∈ 𝐴𝑐(𝑣1),𝑘 and 𝑢2 ∈ 𝐴𝑐(𝑣2),𝑙. So, (𝑣1, 𝑢1) ∈ 𝑉𝑘(𝑣1) is
adjacent to (𝑣2, 𝑢2) ∈ 𝑉𝑙(𝑣2) in 𝐺□𝐻. Hence, there is an edge connecting 𝑉𝑘(𝑣1) and
𝑉𝑙(𝑣2).

Therefore, there is a correspondence 𝐺 ⊠ 𝐾𝑛 ∋ (𝑣, 𝑗) ↔ 𝑉𝑗(𝑣) ⊆ 𝑉 (𝐺□𝐻). So,
𝐺⊠𝐾𝑛 is a minor of 𝐺□𝐻.

Now we are ready to prove the main theorems.

Proof of Theorem 2.1. By Lemma 3.1, we only need to find 𝜒 pairwise crossing
bi-partitions of 𝑉 (𝑄𝜒) satisfying properties (𝑃1) and (𝑃2).

For 1 ⩽ 𝑖 ⩽ 𝜒, define

𝐴𝑖,0 = {(𝑗1, 𝑗2, . . . , 𝑗𝜒) : 𝑗𝑖 = 0 and 𝑗𝑖′ = 0 or 1, 𝑖′ ∕= 𝑖}
and

𝐴𝑖,1 = {(𝑗1, 𝑗2, . . . , 𝑗𝜒) : 𝑗𝑖 = 1 and 𝑗𝑖′ = 0 or 1, 𝑖′ ∕= 𝑖}.
Clearly, {𝐴𝑖,0, 𝐴𝑖,1}, 1 ⩽ 𝑖 ⩽ 𝜒, are 𝜒 bi-partitions of 𝑉 (𝑄𝜒). Both 𝐴𝑖,0 and 𝐴𝑖,1

induce a graph isomorphic to 𝑄𝜒−1. So, (𝑃1) is true. Moreover, (𝑃2) is obvious.
Arbitrarily choose these two blocks from two different bi-partitions, say 𝐴𝑖1,𝑘 and
𝐴𝑖2,𝑙, where 𝑘, 𝑙 are 0 or 1. Then

(0, . . . , 0, 𝑖1 = 𝑘, 0, . . . , 𝑖2 = 𝑙, 0, . . . , 0) ∈ 𝐴𝑖1,𝑘 ∩ 𝐴𝑖2,𝑙.

Hence these 𝜒 partitions are pairwise crossing. This completes the proof.
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Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find 𝜒 pairwise 𝑛-
partitions of 𝑉 (𝐾𝜒

𝑛 ). Suppose 𝑉 (𝐾𝑛) = {1, 2, . . . , 𝑛}. For every 1 ⩽ 𝑖 ⩽ 𝜒 and every
1 ⩽ 𝑗 ⩽ 𝑛, define

𝐴𝑖,𝑗 = {(𝑙1, . . . , 𝑙𝑖−1, 𝑗, 𝑙𝑖+1, . . . , 𝑙𝑛) : 1 ⩽ 𝑙𝑖′ ⩽ 𝑛, 𝑖′ ∕= 𝑖}.
It is easy to show {𝐴𝑖,1, 𝐴𝑖,2, . . . , 𝐴𝑖,𝑛}, 1 ⩽ 𝑖 ⩽ 𝜒, are 𝜒 pairwise crossing 𝑛-partitions
of 𝑉 (𝐾𝜒

𝑛 ) satisfying properties (𝑃1) and (𝑃2).

We proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, let {1, . . . , 𝑎} be the vertex set of
𝐾𝑎, where 𝑎 is defined as in the assertion. Since

(
𝑎−1
⌈𝑎
2
⌉
)
⩾ 𝜒, we have at least 𝜒 = 𝜒(𝐺)

different bi-partitions {𝐴1,1, 𝐴1,2}, . . . , {𝐴𝜒,1, 𝐴𝜒,2} such that 1 ∈ 𝐴𝑖,1 and ∣𝐴𝑖,1∣ = ⌊𝑎
2
⌋

for all 𝑖, 1 ⩽ 𝑖 ⩽ 𝑎.

Next, we prove these 𝜒 bi-partitions are pairwise crossing and satisfy (𝑃1) and
(𝑃2). Since𝐾𝑎 is a complete graph, it is obvious that (𝑃1) and (𝑃2) hold. Arbitrarily
choose two blocks, say 𝐴𝑖,𝑘, 𝐴𝑗,𝑙, where 𝑘, 𝑙 are 1 or 2, from different bi-partitions. We
would like to show that 𝐴𝑖,𝑘 ∩ 𝐴𝑗,𝑙 ∕= ∅. Since ∣𝐴𝑖,1 ∪ 𝐴𝑖,2∣ = ∣𝐴𝑗,1 ∪ 𝐴𝑗,2∣ = 𝑎,
∣𝐴𝑖,1∣ = ∣𝐴𝑗,1∣ = ⌊𝑎

2
⌋ and 1 ∈ 𝐴𝑖,1 ∩ 𝐴𝑗,1, then 𝐴𝑖,1 ∩ 𝐴𝑗,1 ∕= ∅, so 𝐴𝑖,2 ∩ 𝐴𝑗,2 ∕= ∅ and

𝐴𝑖,1 ∩ 𝐴𝑗,2 ∕= ∅. Then we have 𝐴𝑖,𝑘 ∩ 𝐴𝑗,𝑙 ∕= ∅. This completes the proof.

We include one more result of the same style as a conclusion of this note.

Proposition 3.2 If 𝐺 is a graph with chromatic number 4, then 𝐺⊠𝐾3 ⪯ 𝐺□𝐾9.

Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions
of 𝑉 (𝐾9) = {1, 2, . . . , 9} with properties (𝑃1) and (𝑃2). Since 𝐾9 is a complete
graph, (𝑃1) and (𝑃2) always hold for any tri-partition. On the other hand, we can
always define a family {𝐴𝑖,𝑗 : 1 ⩽ 𝑖 ⩽ 4, 1 ⩽ 𝑗 ⩽ 3} of 3-elements subsets of {1, . . . , 9}
such that

∣𝐴𝑖,𝑗 ∩ 𝐴𝑖′,𝑗′∣ =
{
1 if 𝑖 ∕= 𝑖′;

0 if 𝑖 = 𝑖′, 𝑗 ∕= 𝑗′,

as 3 is a prime (see, e.g., [5], [7] for details). Then {𝐴𝑖,1, 𝐴𝑖,2, 𝐴𝑖,3}, 1 ⩽ 𝑖 ⩽ 4, are
four pairwise crossing partitions.

Remark 3. In fact, Proposition 3.2 is better than the special case (𝑛 = 3) of Theorem
2.2. Moreover, when 𝐺 is sufficiently dense, say 𝐺 = 𝐾4, we have 𝐾4⊠𝐾3 ⪯ 𝐾4□𝐾9.
It is a special case of 𝐾𝑝+1 ⊠ 𝐾𝑝 ⪯ 𝐾𝑝+1□𝐾𝑝2 , where 𝑝 is a prime. This result is
widely known (see e.g., [7]).
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[6] H. Hadwiger, Über eine Klassfikation der streckenkomplexe, Vierkel-jajrsschrift
der Naturf. Gesellschaft in Zürich, 88 (1943), 133-142.
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