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Abstract

Abstract. Let G X H and GUH denote the strong and Cartesian products
of graphs G and H, respectively. In this note, we investigate the graph minor
in product of graphs. In particular, we show that, for any simple connected
graph G, the graph G X K5 is a minor of the graph GUQ, by a construction
method, where @), is an r-cube and r = x(G). This generalizes an earlier result
by Kotlov [2].
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1 Introduction

Graphs considered in this note are finite, undirected, simple and connected. We
use [1] for terminologies and notations not defined here. The strong product G; X G4
of two graphs G; and G, has vertex set V(G1) x V(G2) and two vertices (u1,v;) and
(ug,vy) are adjacent if and only if (1) u; is adjacent to us and v; = vy (we call it
horizontal edge); or (2) u; = up and vy is adjacent to vy (we call it vertical edge);
or (3) uy is adjacent to uy and vy is adjacent to vy (referred as type (3) edges). For
example, Ky X Ky = K4. The Cartesian product G1[JG5 of two graphs G and G is
obtained from G; X G5 by deleting the ‘type (3)’ edges. For example, KK, = Cy.
The well-known n-dimensional cube or n-cube (), can be viewed as the Cartesian
product of n copies of ()1 = Ks.
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A graph H on vertex-set {1,...,n} is a minor of a graph G, denoted by H < G,
if there are disjoint subsets Vi,...,V,, of V(G) such that: (1) every V; induces a
connected subgraph of G; and (2) whenever ij is an edge in H, there is an edge
between V; and V; in G.

Kotlov [2] initiated the study of minor in product of graphs and proved the fol-
lowing result.

Theorem 1.1 (Kotlov [2]) For every bipartite graph G, the strong product G ¥ Ko
1s @ minor of GLICY.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of
graphs. Later, Wood [4] and Chandran, Kostochka, Raju [5] continued the study of
clique minors in Cartesian product of graphs. In particular, Wood [4] showed that
the lexicographic product G o H is a minor of GLOHUH for every bipartite graph G
and every connected graph H. In this note, we continue the study of strong product
minor in Cartesian product started by Kotlov [2] and obtain several results in this
direction.

2 Main Results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The
proof techniques are mainly constructive. As usual, y denotes the chromatic number

of GG.

Theorem 2.1 Let G be a connected graph with chromatic number x. Then GR Ky <
GUQy, .

Denote Hamming graph K;, UK, O - UKy, with by = ks =--- =k =n by K4,
With a similar construction, we can obtain the following theorem.

Theorem 2.2 Let G be a connected graph with chromatic number x. Then GRK,, <
GUK).

Theorem 2.3 Let G be a connected graph. Then GNX K, X GUK,, where a is an
integer satisfying (‘F}l) > x(G).

a
2

Remark 1. If we choose a as small as possible (i.e., ¢ = min{m : (Tm_]l) > x(G)}),
2
the result is sharp when x is small and G is sufficiently dense. For example, for any



bipartite graph G which is sufficiently dense, G X Ky A GOKj3 (see [2]). If G = K,
then we have K3 X KQ ﬁ KgDKg, 1 but K3 X K2 j K3|:|K4.

The next one is an immediate corollary of the above.
Corollary 2.4 For every 3-colorable graph G, the graph GR K is a minor of GLKy.

Hadwiger [6] linked the chromatic number of a graph G to the maximum size of
its clique minor. He conjectured that every k-chromatic graph has a Kj-minor. It is
one of the most intriguing conjectures in today’s graph theory. The Hadwiger number
n(G) of a graph G is the maximum n such that K, is a minor of G. A lot of research
have been done for determining the Hadwiger number in special classes of graphs
(see [3], [4], [5])-

Setting G = K, in Theorem 2.3, we readily obtain the following result on the
Hadwiger number of a Hamming graph.

Corollary 2.5 n(K,0K,) > 2y, if (‘?;11) > y.
2

Remark 2. In [4], Wood proved that n(K,0K,,) > n\/Z — O(n+ /m). It is not
hard to verify that when y < 35 2, Corollary 2.5 is an improvement of Wood’s result.

3 Proofs of The Main Results

Before giving the proofs of main results, a few definitions and a lemma are required.
They play important roles in the proofs of theorems. Let us call two partitions P, P’
of the same set A crossing, if every block of P intersects every block of P’. A partition
containing k blocks is called a k-partition.

Lemma 3.1 Let G, H be two graphs and x = x(G). If there exist x pairwise crossing
n-partitions of V(H), so that

(P1) every block of each partition induces a connected subgraph of V(H);

(P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices

in both blocks),

then G X K,, is a minor of GLH.

!Suppose that Kg < K3[0K3. Then V(K30K3) has branch sets X1, ..., X, each of which are
connected by at least one edge. If there exists X;, say X7, such that |X;| = 1, since A(K3OK3) = 4,
contradicting with the fact that X; is adjacent to X; for all 2 < ¢ < 6. Thus, |X;| > 2 and
Zle |X;| > 12 > 9 = |V(K30K3)|, a contradiction.

°If a < 8, then x < 35 and 2x > x/%.




Proof. Since G is x-chromatic, there exists a y-coloring ¢ of V(G) such that c(v) =i
when v € V(G) is colored ¢ for all 1 < ¢ < x. Clearly, {v € V(G) : ¢(v) = i}
induces an independent set in G for all 1 < ¢ < x. Suppose that {A; 1, Ao, ..., Ain},
1 <@ < x are x pairwise crossing n-partitions of V' (H) satisfying properties (P1) and
(P2).

For each vertex v € V(G) and each 1 < j < n, let
Vi(v) = {(v,u) 1 u € Agw; }-

Since for each 4, Jj_, Aij = V/(H), so Uj_, Vj(v) is an H-layer of GOH. And it is
not difficult to show that the collection of sets {V;(v) : 1 < j < n,v € V(G)} is a
partition of V(GOH). Now, we check that G X K,, < GOH by definition.

For each v € V(G) and each 1 < j < n, it follows from (P1) that {u:u € Acw);}
induces a connected subgraph in H, and hence V;(v) induces a connected subgraph
in GUH by the definition of Cartesian product.

Consider an edge e = (v, k)(ve,l) € E(GX K,,). If e is of type (1) (a horizontal
edge) or of type (3), then viv, € E(G). Clearly, c(v1) # c(va). Thus, Ay N
Acv) 7 0 by the assumption that these y n-partitions are pairwise crossing. Assume
U € Actoy) e N Aoy Then (v, ug) € Vi(v1) is adjacent to (ve, ug) € Vi(ve) in GOH.
If e is of type (2) (a Vertlcal edge), v; = va, k # [, it follows from (P2) that there is
an edge ujuy € V(H), where u; € Ay, and ug € Agy). So, (vi,u1) € Vi(v1) is
adjacent to (vg,us) € Vj(v9) in GOH. Hence, there is an edge connecting Vi (v1) and
Vi(vg).

Therefore, there is a correspondence G X K, 3 (v,j) ¢ V;(v) € V(GOH). So,
G X K, is a minor of GOH. |

Now we are ready to prove the main theorems.

Proof of Theorem 2.1. By Lemma 3.1, we only need to find y pairwise crossing
bi-partitions of V(@) satistying properties (P1) and (P2).

For 1 <7 < x, define
Ai,O = {(jl,jg,...,jx) ]z = 0 and ji’ = O or 1,i, 7é l}
and
Ai,l = {(j17j27 Ce 7jX) jz =1 and ji’ = 0 or 1,24 7é Z}
Clearly, {A;0,Ai1}, 1 < i < x, are x bi-partitions of V(Q,). Both A;o and A;;
induce a graph isomorphic to Qy_1. So, (P1) is true. Moreover, (P2) is obvious.

Arbitrarily choose these two blocks from two different bi-partitions, say A;,  and
Ai, 1, where k, [ are 0 or 1. Then

(O,...,O,’il :k,O,...,iQ:l,O,...,O) EAil,kﬂAi%l.

Hence these x partitions are pairwise crossing. This completes the proof. 1
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Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find y pairwise n-
partitions of V(K)X). Suppose V(K,,) = {1,2,...,n}. For every 1 < i < x and every
1 < j < n, define

Ai,j = {(ll, .. .,lifl,j, li+17~ . ,ln) 01 < li/ S n,i' # Z}

It is easy to show {A4;1, A;2,..., Ain}, 1 <i < x, are x pairwise crossing n-partitions
of V(K)) satisfying properties (P1) and (P2). ]

We proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, let {1,...,a} be the vertex set of

K,, where a is defined as in the assertion. Since (‘F;]l) > x, we have at least x = x(G)
2

different bi-partitions {A1 1, A1}, ..., {Ay1, Ay} such that 1 € A;; and |4;] = [§]

foralli, 1 <i<a.

Next, we prove these x bi-partitions are pairwise crossing and satisfy (P1) and
(P2). Since K, is a complete graph, it is obvious that (P1) and (P2) hold. Arbitrarily
choose two blocks, say A; i, Aj;, where k, [ are 1 or 2, from different bi-partitions. We
would like to show that A@k N Aj,l 7é (Z) Since |Ai,1 U Ai,2| = |Aj71 U Aj’2| = a,
|Ai,1| = |Aj71| = L%J and 1 S Ai,l N Aj71, then Ai,l N Aj71 7é @, SO A@Q N Aj’g 7£ @ and
Ai1NAjs #0. Then we have A;, N A;; # (. This completes the proof. ]

We include one more result of the same style as a conclusion of this note.
Proposition 3.2 If G is a graph with chromatic number 4, then G X K3 < GUK,.

Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions
of V(Kg) = {1,2,...,9} with properties (P1) and (P2). Since Ky is a complete
graph, (P1) and (P2) always hold for any tri-partition. On the other hand, we can
always define a family {A4;; : 1 <17 < 4,1 < j < 3} of 3-elements subsets of {1,...,9}
such that

1 ifi#d

|Aij N A jr| = ey

O lf =1 7] 7é j )
as 3 is a prime (see, e.g., [5], [7] for details). Then {A;1, A2, Ais}, 1 < i < 4, are
four pairwise crossing partitions. |

Remark 3. In fact, Proposition 3.2 is better than the special case (n = 3) of Theorem
2.2. Moreover, when G is sufficiently dense, say G = K, we have K, X K3 < K4[1Kj.
It is a special case of Kp;1 M K, < K, LIK,2, where p is a prime. This result is
widely known (see e.g., [7]).
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