A Note on Graph Minors and Strong Products *

Zefang Wu¹, Xu Yang^{1†}and Qinglin Yu²

1. Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China

2. Department of Mathematics and Statistics Thompson Rivers University, Kamloops, BC, Canada

Abstract

Abstract. Let $G \boxtimes H$ and $G \square H$ denote the strong and Cartesian products of graphs G and H, respectively. In this note, we investigate the graph minor in product of graphs. In particular, we show that, for any simple connected graph G, the graph $G \boxtimes K_2$ is a minor of the graph $G \square Q_r$ by a construction method, where Q_r is an r-cube and $r = \chi(G)$. This generalizes an earlier result by Kotlov [2].

Keywords. strong product, Cartesian product, graph minor, partition. **AMS Classification:** 05C83

1 Introduction

Graphs considered in this note are finite, undirected, simple and connected. We use [1] for terminologies and notations not defined here. The strong product $G_1 \boxtimes G_2$ of two graphs G_1 and G_2 has vertex set $V(G_1) \times V(G_2)$ and two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if (1) u_1 is adjacent to u_2 and $v_1 = v_2$ (we call it *horizontal edge*); or (2) $u_1 = u_2$ and v_1 is adjacent to v_2 (we call it vertical edge); or (3) u_1 is adjacent to u_2 and v_1 is adjacent to v_2 (referred as type (3) edges). For example, $K_2 \boxtimes K_2 = K_4$. The Cartesian product $G_1 \square G_2$ of two graphs G_1 and G_2 is obtained from $G_1 \boxtimes G_2$ by deleting the 'type (3)' edges. For example, $K_2 \square K_2 = C_4$. The well-known n-dimensional cube or n-cube Q_n can be viewed as the Cartesian product of n copies of $Q_1 = K_2$.

^{*}This work is supported by The Discovery Grant (144073) of Natural Sciences and Engineering Research Council of Canada.

[†]Corresponding email: yangxu54@hotmail.com (X. Yang)

A graph H on vertex-set $\{1, \ldots, n\}$ is a *minor* of a graph G, denoted by $H \leq G$, if there are disjoint subsets V_1, \ldots, V_n of V(G) such that: (1) every V_i induces a connected subgraph of G; and (2) whenever ij is an edge in H, there is an edge between V_i and V_j in G.

Kotlov [2] initiated the study of minor in product of graphs and proved the following result.

Theorem 1.1 (Kotlov [2]) For every bipartite graph G, the strong product $G \boxtimes K_2$ is a minor of $G \square C_4$.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of graphs. Later, Wood [4] and Chandran, Kostochka, Raju [5] continued the study of clique minors in Cartesian product of graphs. In particular, Wood [4] showed that the lexicographic product $G \circ H$ is a minor of $G \Box H \Box H$ for every bipartite graph G and every connected graph H. In this note, we continue the study of strong product minor in Cartesian product started by Kotlov [2] and obtain several results in this direction.

2 Main Results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The proof techniques are mainly constructive. As usual, χ denotes the chromatic number of G.

Theorem 2.1 Let G be a connected graph with chromatic number χ . Then $G \boxtimes K_2 \preceq G \square Q_{\chi}$.

Denote Hamming graph $K_{k_1} \Box K_{k_2} \Box \cdots \Box K_{k_d}$ with $k_1 = k_2 = \cdots = k_d = n$ by K_n^d . With a similar construction, we can obtain the following theorem.

Theorem 2.2 Let G be a connected graph with chromatic number χ . Then $G \boxtimes K_n \preceq G \square K_n^{\chi}$.

Theorem 2.3 Let G be a connected graph. Then $G \boxtimes K_2 \preceq G \square K_a$, where a is an integer satisfying $\binom{a-1}{\lceil \frac{a}{2} \rceil} \ge \chi(G)$.

Remark 1. If we choose a as small as possible (i.e., $a = \min\{m : \binom{m-1}{\lceil \frac{m}{2} \rceil} \ge \chi(G)\}$), the result is sharp when χ is small and G is sufficiently dense. For example, for any

bipartite graph G which is sufficiently dense, $G \boxtimes K_2 \not\preceq G \square K_3$ (see [2]). If $G = K_3$, then we have $K_3 \boxtimes K_2 \not\preceq K_3 \square K_3$, ¹ but $K_3 \boxtimes K_2 \preceq K_3 \square K_4$.

The next one is an immediate corollary of the above.

Corollary 2.4 For every 3-colorable graph G, the graph $G \boxtimes K_2$ is a minor of $G \square K_4$.

Hadwiger [6] linked the chromatic number of a graph G to the maximum size of its clique minor. He conjectured that every k-chromatic graph has a K_k -minor. It is one of the most intriguing conjectures in today's graph theory. The Hadwiger number $\eta(G)$ of a graph G is the maximum n such that K_n is a minor of G. A lot of research have been done for determining the Hadwiger number in special classes of graphs (see [3], [4], [5]).

Setting $G = K_{\chi}$ in Theorem 2.3, we readily obtain the following result on the Hadwiger number of a Hamming graph.

Corollary 2.5 $\eta(K_{\chi} \Box K_a) \ge 2\chi$, if $\binom{a-1}{\left\lceil \frac{a}{2} \right\rceil} \ge \chi$.

Remark 2. In [4], Wood proved that $\eta(K_n \Box K_m) \ge n\sqrt{\frac{m}{2}} - \mathcal{O}(n + \sqrt{m})$. It is not hard to verify that when $\chi \leq 35^2$, Corollary 2.5 is an improvement of Wood's result.

Proofs of The Main Results 3

Before giving the proofs of main results, a few definitions and a lemma are required. They play important roles in the proofs of theorems. Let us call two partitions P, P'of the same set A crossing, if every block of P intersects every block of P'. A partition containing k blocks is called a k-partition.

Lemma 3.1 Let G, H be two graphs and $\chi = \chi(G)$. If there exist χ pairwise crossing *n*-partitions of V(H), so that

- (P1) every block of each partition induces a connected subgraph of V(H);
- (P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices in both blocks),

then $G \boxtimes K_n$ is a minor of $G \square H$.

¹Suppose that $K_6 \leq K_3 \square K_3$. Then $V(K_3 \square K_3)$ has branch sets X_1, \ldots, X_6 , each of which are connected by at least one edge. If there exists X_i , say X_1 , such that $|X_1| = 1$, since $\Delta(K_3 \Box K_3) = 4$, contradicting with the fact that X_1 is adjacent to X_i for all $2 \leq i \leq 6$. Thus, $|X_i| \geq 2$ and
$$\begin{split} \sum_{i=1}^{6} |X_i| \geqslant 12 > 9 = |V(K_3 \Box K_3)|, \text{ a contradiction.} \\ ^2 \text{If } a \leqslant 8, \text{ then } \chi \leqslant 35 \text{ and } 2\chi \geqslant \chi \sqrt{\frac{m}{2}}. \end{split}$$

Proof. Since G is χ -chromatic, there exists a χ -coloring c of V(G) such that c(v) = iwhen $v \in V(G)$ is colored i for all $1 \leq i \leq \chi$. Clearly, $\{v \in V(G) : c(v) = i\}$ induces an independent set in G for all $1 \leq i \leq \chi$. Suppose that $\{A_{i,1}, A_{i,2}, \ldots, A_{i,n}\}$, $1 \leq i \leq \chi$ are χ pairwise crossing n-partitions of V(H) satisfying properties (P1) and (P2).

For each vertex $v \in V(G)$ and each $1 \leq j \leq n$, let

$$V_j(v) = \{(v, u) : u \in A_{c(v), j}\}.$$

Since for each i, $\bigcup_{j=1}^{n} A_{i,j} = V(H)$, so $\bigcup_{j=1}^{n} V_j(v)$ is an *H*-layer of $G \Box H$. And it is not difficult to show that the collection of sets $\{V_j(v) : 1 \leq j \leq n, v \in V(G)\}$ is a partition of $V(G \Box H)$. Now, we check that $G \boxtimes K_n \preceq G \Box H$ by definition.

For each $v \in V(G)$ and each $1 \leq j \leq n$, it follows from (P1) that $\{u : u \in A_{c(v),j}\}$ induces a connected subgraph in H, and hence $V_j(v)$ induces a connected subgraph in $G \Box H$ by the definition of Cartesian product.

Consider an edge $e = (v_1, k)(v_2, l) \in E(G \boxtimes K_n)$. If e is of type (1) (a horizontal edge) or of type (3), then $v_1v_2 \in E(G)$. Clearly, $c(v_1) \neq c(v_2)$. Thus, $A_{c(v_1),k} \cap A_{c(v_2),l} \neq \emptyset$ by the assumption that these χ *n*-partitions are pairwise crossing. Assume $u_0 \in A_{c(v_1),k} \cap A_{c(v_2),l}$. Then $(v_1, u_0) \in V_k(v_1)$ is adjacent to $(v_2, u_0) \in V_l(v_2)$ in $G \Box H$. If e is of type (2) (a vertical edge), $v_1 = v_2, k \neq l$, it follows from (P2) that there is an edge $u_1u_2 \in V(H)$, where $u_1 \in A_{c(v_1),k}$ and $u_2 \in A_{c(v_2),l}$. So, $(v_1, u_1) \in V_k(v_1)$ is adjacent to $(v_2, u_2) \in V_l(v_2)$ in $G \Box H$. Hence, there is an edge connecting $V_k(v_1)$ and $V_l(v_2)$.

Therefore, there is a correspondence $G \boxtimes K_n \ni (v, j) \leftrightarrow V_j(v) \subseteq V(G \square H)$. So, $G \boxtimes K_n$ is a minor of $G \square H$.

Now we are ready to prove the main theorems.

Proof of Theorem 2.1. By Lemma 3.1, we only need to find χ pairwise crossing bi-partitions of $V(Q_{\chi})$ satisfying properties (P1) and (P2).

For $1 \leq i \leq \chi$, define

$$A_{i,0} = \{(j_1, j_2, \dots, j_{\chi}) : j_i = 0 \text{ and } j_{i'} = 0 \text{ or } 1, i' \neq i\}$$

and

$$A_{i,1} = \{(j_1, j_2, \dots, j_{\chi}) : j_i = 1 \text{ and } j_{i'} = 0 \text{ or } 1, i' \neq i\}.$$

Clearly, $\{A_{i,0}, A_{i,1}\}$, $1 \leq i \leq \chi$, are χ bi-partitions of $V(Q_{\chi})$. Both $A_{i,0}$ and $A_{i,1}$ induce a graph isomorphic to $Q_{\chi-1}$. So, (P1) is true. Moreover, (P2) is obvious. Arbitrarily choose these two blocks from two different bi-partitions, say $A_{i_1,k}$ and $A_{i_2,l}$, where k, l are 0 or 1. Then

$$(0,\ldots,0,i_1=k,0,\ldots,i_2=l,0,\ldots,0) \in A_{i_1,k} \cap A_{i_2,l}$$

Hence these χ partitions are pairwise crossing. This completes the proof.

Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find χ pairwise *n*-partitions of $V(K_n^{\chi})$. Suppose $V(K_n) = \{1, 2, ..., n\}$. For every $1 \leq i \leq \chi$ and every $1 \leq j \leq n$, define

$$A_{i,j} = \{ (l_1, \dots, l_{i-1}, j, l_{i+1}, \dots, l_n) : 1 \leq l_{i'} \leq n, i' \neq i \}.$$

It is easy to show $\{A_{i,1}, A_{i,2}, \ldots, A_{i,n}\}, 1 \leq i \leq \chi$, are χ pairwise crossing *n*-partitions of $V(K_n^{\chi})$ satisfying properties (P1) and (P2).

We proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, let $\{1, \ldots, a\}$ be the vertex set of K_a , where a is defined as in the assertion. Since $\binom{a-1}{\lceil \frac{a}{2} \rceil} \ge \chi$, we have at least $\chi = \chi(G)$ different bi-partitions $\{A_{1,1}, A_{1,2}\}, \ldots, \{A_{\chi,1}, A_{\chi,2}\}$ such that $1 \in A_{i,1}$ and $|A_{i,1}| = \lfloor \frac{a}{2} \rfloor$ for all $i, 1 \le i \le a$.

Next, we prove these χ bi-partitions are pairwise crossing and satisfy (P1) and (P2). Since K_a is a complete graph, it is obvious that (P1) and (P2) hold. Arbitrarily choose two blocks, say $A_{i,k}, A_{j,l}$, where k, l are 1 or 2, from different bi-partitions. We would like to show that $A_{i,k} \cap A_{j,l} \neq \emptyset$. Since $|A_{i,1} \cup A_{i,2}| = |A_{j,1} \cup A_{j,2}| = a$, $|A_{i,1}| = |A_{j,1}| = \lfloor \frac{a}{2} \rfloor$ and $1 \in A_{i,1} \cap A_{j,1}$, then $A_{i,1} \cap A_{j,1} \neq \emptyset$, so $A_{i,2} \cap A_{j,2} \neq \emptyset$ and $A_{i,1} \cap A_{j,2} \neq \emptyset$. Then we have $A_{i,k} \cap A_{j,l} \neq \emptyset$. This completes the proof.

We include one more result of the same style as a conclusion of this note.

Proposition 3.2 If G is a graph with chromatic number 4, then $G \boxtimes K_3 \preceq G \square K_9$.

Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions of $V(K_9) = \{1, 2, ..., 9\}$ with properties (P1) and (P2). Since K_9 is a complete graph, (P1) and (P2) always hold for any tri-partition. On the other hand, we can always define a family $\{A_{i,j} : 1 \leq i \leq 4, 1 \leq j \leq 3\}$ of 3-elements subsets of $\{1, ..., 9\}$ such that

$$|A_{i,j} \cap A_{i',j'}| = \begin{cases} 1 & \text{if } i \neq i'; \\ 0 & \text{if } i = i', j \neq j', \end{cases}$$

as 3 is a prime (see, e.g., [5], [7] for details). Then $\{A_{i,1}, A_{i,2}, A_{i,3}\}, 1 \leq i \leq 4$, are four pairwise crossing partitions.

Remark 3. In fact, Proposition 3.2 is better than the special case (n = 3) of Theorem 2.2. Moreover, when G is sufficiently dense, say $G = K_4$, we have $K_4 \boxtimes K_3 \preceq K_4 \square K_9$. It is a special case of $K_{p+1} \boxtimes K_p \preceq K_{p+1} \square K_{p^2}$, where p is a prime. This result is widely known (see e.g., [7]).

Acknowledgments

The authors gratefully acknowledge the anonymous referees for their constructive suggestions.

References

- R. Diestel, *Graph Theory*, Third Edition, Springer-Verlag Heidelberg, New York, 2005.
- [2] A. Kotlov, Minors and strong products, European Journal of Combinatorics, 22 (2001), 511-512.
- [3] L.S. Chandran, N. Sivadasan, On the Hadwiger's conjecture for graph product, Discrete Mathematics, 307 (2007), 266-273.
- [4] D. Wood, Clique minors in Cartesian products of graphs, (manuscript) 2007 (see http://arxiv. org/abs/math/07111189v2).
- [5] L.S. Chandran, A. Kostochka, J.K. Raju, Hadwiger number and the Cartesian product of graphs, *Graphs and Combinatorics*, 24 (2008), 291-301.
- [6] H. Hadwiger, Über eine Klassfikation der streckenkomplexe, Vierkel-jajrsschrift der Naturf. Gesellschaft in Zürich, 88 (1943), 133-142.
- [7] H.J. Ryser, *Combinatorial Mathematics*, The Carus Mathematical Monographs, Wiley, New York, 14 (1963).