A Note on Graph Minors and Strong Products *

Zefang Wu^{1}, Xu Yang ${ }^{1 \dagger}$ and Qinglin Yu^{2}
1. Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China
2. Department of Mathematics and Statistics
Thompson Rivers University, Kamloops, BC, Canada

Abstract

Abstract. Let $G \boxtimes H$ and $G \square H$ denote the strong and Cartesian products of graphs G and H, respectively. In this note, we investigate the graph minor in product of graphs. In particular, we show that, for any simple connected graph G, the graph $G \boxtimes K_{2}$ is a minor of the graph $G \square Q_{r}$ by a construction method, where Q_{r} is an r-cube and $r=\chi(G)$. This generalizes an earlier result by Kotlov [2].

Keywords. strong product, Cartesian product, graph minor, partition.
AMS Classification: 05 C 83

1 Introduction

Graphs considered in this note are finite, undirected, simple and connected. We use [1] for terminologies and notations not defined here. The strong product $G_{1} \boxtimes G_{2}$ of two graphs G_{1} and G_{2} has vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if (1) u_{1} is adjacent to u_{2} and $v_{1}=v_{2}$ (we call it horizontal edge); or (2) $u_{1}=u_{2}$ and v_{1} is adjacent to v_{2} (we call it vertical edge); or (3) u_{1} is adjacent to u_{2} and v_{1} is adjacent to v_{2} (referred as type (3) edges). For example, $K_{2} \boxtimes K_{2}=K_{4}$. The Cartesian product $G_{1} \square G_{2}$ of two graphs G_{1} and G_{2} is obtained from $G_{1} \boxtimes G_{2}$ by deleting the 'type (3)' edges. For example, $K_{2} \square K_{2}=C_{4}$. The well-known n-dimensional cube or n-cube Q_{n} can be viewed as the Cartesian product of n copies of $Q_{1}=K_{2}$.

[^0]A graph H on vertex-set $\{1, \ldots, n\}$ is a minor of a graph G, denoted by $H \preceq G$, if there are disjoint subsets V_{1}, \ldots, V_{n} of $V(G)$ such that: (1) every V_{i} induces a connected subgraph of G; and (2) whenever $i j$ is an edge in H, there is an edge between V_{i} and V_{j} in G.

Kotlov [2] initiated the study of minor in product of graphs and proved the following result.

Theorem 1.1 (Kotlov [2]) For every bipartite graph G, the strong product $G \boxtimes K_{2}$ is a minor of $G \square C_{4}$.

Chandran and Sivadasan [3] studied clique minors in the Cartesian product of graphs. Later, Wood [4] and Chandran, Kostochka, Raju [5] continued the study of clique minors in Cartesian product of graphs. In particular, Wood [4] showed that the lexicographic product $G \circ H$ is a minor of $G \square H \square H$ for every bipartite graph G and every connected graph H. In this note, we continue the study of strong product minor in Cartesian product started by Kotlov [2] and obtain several results in this direction.

2 Main Results

Motivated by Theorem 1.1, we study minors in Cartesian products of graphs. The proof techniques are mainly constructive. As usual, χ denotes the chromatic number of G.

Theorem 2.1 Let G be a connected graph with chromatic number χ. Then $G \boxtimes K_{2} \preceq$ $G \square Q_{\chi}$.

Denote Hamming graph $K_{k_{1}} \square K_{k_{2}} \square \cdots \square K_{k_{d}}$ with $k_{1}=k_{2}=\cdots=k_{d}=n$ by K_{n}^{d}. With a similar construction, we can obtain the following theorem.

Theorem 2.2 Let G be a connected graph with chromatic number χ. Then $G \boxtimes K_{n} \preceq$ $G \square K_{n}^{\chi}$.

Theorem 2.3 Let G be a connected graph. Then $G \boxtimes K_{2} \preceq G \square K_{a}$, where a is an integer satisfying $\binom{a-1}{\left[\frac{a}{2}\right\rceil} \geqslant \chi(G)$.

Remark 1. If we choose a as small as possible (i.e., $\left.a=\min \left\{m:\binom{m-1}{\left[\frac{m}{2}\right\rceil} \geqslant \chi(G)\right\}\right)$, the result is sharp when χ is small and G is sufficiently dense. For example, for any
bipartite graph G which is sufficiently dense, $G \boxtimes K_{2} \npreceq G \square K_{3}$ (see [2]). If $G=K_{3}$, then we have $K_{3} \boxtimes K_{2} \npreceq K_{3} \square K_{3},{ }^{1}$ but $K_{3} \boxtimes K_{2} \preceq K_{3} \square K_{4}$.

The next one is an immediate corollary of the above.
Corollary 2.4 For every 3-colorable graph G, the graph $G \boxtimes K_{2}$ is a minor of $G \square K_{4}$.
Hadwiger [6] linked the chromatic number of a graph G to the maximum size of its clique minor. He conjectured that every k-chromatic graph has a K_{k}-minor. It is one of the most intriguing conjectures in today's graph theory. The Hadwiger number $\eta(G)$ of a graph G is the maximum n such that K_{n} is a minor of G. A lot of research have been done for determining the Hadwiger number in special classes of graphs (see [3], [4], [5]).

Setting $G=K_{\chi}$ in Theorem 2.3, we readily obtain the following result on the Hadwiger number of a Hamming graph.

Corollary $2.5 \eta\left(K_{\chi} \square K_{a}\right) \geqslant 2 \chi$, if $\binom{a-1}{\left[\frac{a}{2}\right\rceil} \geqslant \chi$.
Remark 2. In [4], Wood proved that $\eta\left(K_{n} \square K_{m}\right) \geqslant n \sqrt{\frac{m}{2}}-\mathcal{O}(n+\sqrt{m})$. It is not hard to verify that when $\chi \leqslant 35^{2}$, Corollary 2.5 is an improvement of Wood's result.

3 Proofs of The Main Results

Before giving the proofs of main results, a few definitions and a lemma are required. They play important roles in the proofs of theorems. Let us call two partitions P, P^{\prime} of the same set A crossing, if every block of P intersects every block of P^{\prime}. A partition containing k blocks is called a k-partition.

Lemma 3.1 Let G, H be two graphs and $\chi=\chi(G)$. If there exist χ pairwise crossing n-partitions of $V(H)$, so that
(P1) every block of each partition induces a connected subgraph of $V(H)$;
(P2) every pair of blocks in a partition are adjacent (induce an edge with end-vertices in both blocks),
then $G \boxtimes K_{n}$ is a minor of $G \square H$.

[^1]Proof. Since G is χ-chromatic, there exists a χ-coloring c of $V(G)$ such that $c(v)=i$ when $v \in V(G)$ is colored i for all $1 \leqslant i \leqslant \chi$. Clearly, $\{v \in V(G): c(v)=i\}$ induces an independent set in G for all $1 \leqslant i \leqslant \chi$. Suppose that $\left\{A_{i, 1}, A_{i, 2}, \ldots, A_{i, n}\right\}$, $1 \leqslant i \leqslant \chi$ are χ pairwise crossing n-partitions of $V(H)$ satisfying properties ($P 1$) and ($P 2$).

For each vertex $v \in V(G)$ and each $1 \leqslant j \leqslant n$, let

$$
V_{j}(v)=\left\{(v, u): u \in A_{c(v), j}\right\} .
$$

Since for each $i, \bigcup_{j=1}^{n} A_{i, j}=V(H)$, so $\bigcup_{j=1}^{n} V_{j}(v)$ is an H-layer of $G \square H$. And it is not difficult to show that the collection of sets $\left\{V_{j}(v): 1 \leqslant j \leqslant n, v \in V(G)\right\}$ is a partition of $V(G \square H)$. Now, we check that $G \boxtimes K_{n} \preceq G \square H$ by definition.

For each $v \in V(G)$ and each $1 \leqslant j \leqslant n$, it follows from $(P 1)$ that $\left\{u: u \in A_{c(v), j}\right\}$ induces a connected subgraph in H, and hence $V_{j}(v)$ induces a connected subgraph in $G \square H$ by the definition of Cartesian product.

Consider an edge $e=\left(v_{1}, k\right)\left(v_{2}, l\right) \in E\left(G \boxtimes K_{n}\right)$. If e is of type (1) (a horizontal edge) or of type (3), then $v_{1} v_{2} \in E(G)$. Clearly, $c\left(v_{1}\right) \neq c\left(v_{2}\right)$. Thus, $A_{c\left(v_{1}\right), k} \cap$ $A_{c\left(v_{2}\right), l} \neq \emptyset$ by the assumption that these χn-partitions are pairwise crossing. Assume $u_{0} \in A_{c\left(v_{1}\right), k} \cap A_{c\left(v_{2}\right), l}$. Then $\left(v_{1}, u_{0}\right) \in V_{k}\left(v_{1}\right)$ is adjacent to $\left(v_{2}, u_{0}\right) \in V_{l}\left(v_{2}\right)$ in $G \square H$. If e is of type (2) (a vertical edge), $v_{1}=v_{2}, k \neq l$, it follows from ($P 2$) that there is an edge $u_{1} u_{2} \in V(H)$, where $u_{1} \in A_{c\left(v_{1}\right), k}$ and $u_{2} \in A_{c\left(v_{2}\right), l}$. So, $\left(v_{1}, u_{1}\right) \in V_{k}\left(v_{1}\right)$ is adjacent to $\left(v_{2}, u_{2}\right) \in V_{l}\left(v_{2}\right)$ in $G \square H$. Hence, there is an edge connecting $V_{k}\left(v_{1}\right)$ and $V_{l}\left(v_{2}\right)$.

Therefore, there is a correspondence $G \boxtimes K_{n} \ni(v, j) \leftrightarrow V_{j}(v) \subseteq V(G \square H)$. So, $G \boxtimes K_{n}$ is a minor of $G \square H$.

Now we are ready to prove the main theorems.
Proof of Theorem 2.1. By Lemma 3.1, we only need to find χ pairwise crossing bi-partitions of $V\left(Q_{\chi}\right)$ satisfying properties ($P 1$) and ($P 2$).

For $1 \leqslant i \leqslant \chi$, define

$$
A_{i, 0}=\left\{\left(j_{1}, j_{2}, \ldots, j_{\chi}\right): j_{i}=0 \text { and } j_{i^{\prime}}=0 \text { or } 1, i^{\prime} \neq i\right\}
$$

and

$$
A_{i, 1}=\left\{\left(j_{1}, j_{2}, \ldots, j_{\chi}\right): j_{i}=1 \text { and } j_{i^{\prime}}=0 \text { or } 1, i^{\prime} \neq i\right\} .
$$

Clearly, $\left\{A_{i, 0}, A_{i, 1}\right\}, 1 \leqslant i \leqslant \chi$, are χ bi-partitions of $V\left(Q_{\chi}\right)$. Both $A_{i, 0}$ and $A_{i, 1}$ induce a graph isomorphic to $Q_{\chi-1}$. So, $(P 1)$ is true. Moreover, $(P 2)$ is obvious. Arbitrarily choose these two blocks from two different bi-partitions, say $A_{i_{1}, k}$ and $A_{i_{2}, l}$, where k, l are 0 or 1 . Then

$$
\left(0, \ldots, 0, i_{1}=k, 0, \ldots, i_{2}=l, 0, \ldots, 0\right) \in A_{i_{1}, k} \cap A_{i_{2}, l} .
$$

Hence these χ partitions are pairwise crossing. This completes the proof.

Proof of Theorem 2.2. Again by Lemma 3.1, we only need to find χ pairwise n partitions of $V\left(K_{n}^{\chi}\right)$. Suppose $V\left(K_{n}\right)=\{1,2, \ldots, n\}$. For every $1 \leqslant i \leqslant \chi$ and every $1 \leqslant j \leqslant n$, define

$$
A_{i, j}=\left\{\left(l_{1}, \ldots, l_{i-1}, j, l_{i+1}, \ldots, l_{n}\right): 1 \leqslant l_{i^{\prime}} \leqslant n, i^{\prime} \neq i\right\} .
$$

It is easy to show $\left\{A_{i, 1}, A_{i, 2}, \ldots, A_{i, n}\right\}, 1 \leqslant i \leqslant \chi$, are χ pairwise crossing n-partitions of $V\left(K_{n}^{\chi}\right)$ satisfying properties ($P 1$) and ($P 2$).

We proceed to the proof of Theorem 2.3.

Proof of Theorem 2.3. Without loss of generality, let $\{1, \ldots, a\}$ be the vertex set of K_{a}, where a is defined as in the assertion. Since $\binom{a-1}{\left\lceil\frac{a}{2}\right\rceil} \geqslant \chi$, we have at least $\chi=\chi(G)$ different bi-partitions $\left\{A_{1,1}, A_{1,2}\right\}, \ldots,\left\{A_{\chi, 1}, A_{\chi, 2}\right\}$ such that $1 \in A_{i, 1}$ and $\left|A_{i, 1}\right|=\left\lfloor\frac{a}{2}\right\rfloor$ for all $i, 1 \leqslant i \leqslant a$.

Next, we prove these χ bi-partitions are pairwise crossing and satisfy (P1) and $(P 2)$. Since K_{a} is a complete graph, it is obvious that $(P 1)$ and ($P 2$) hold. Arbitrarily choose two blocks, say $A_{i, k}, A_{j, l}$, where k, l are 1 or 2 , from different bi-partitions. We would like to show that $A_{i, k} \cap A_{j, l} \neq \emptyset$. Since $\left|A_{i, 1} \cup A_{i, 2}\right|=\left|A_{j, 1} \cup A_{j, 2}\right|=a$, $\left|A_{i, 1}\right|=\left|A_{j, 1}\right|=\left\lfloor\frac{a}{2}\right\rfloor$ and $1 \in A_{i, 1} \cap A_{j, 1}$, then $A_{i, 1} \cap A_{j, 1} \neq \emptyset$, so $A_{i, 2} \cap A_{j, 2} \neq \emptyset$ and $A_{i, 1} \cap A_{j, 2} \neq \emptyset$. Then we have $A_{i, k} \cap A_{j, l} \neq \emptyset$. This completes the proof.

We include one more result of the same style as a conclusion of this note.
Proposition 3.2 If G is a graph with chromatic number 4 , then $G \boxtimes K_{3} \preceq G \square K_{9}$.
Proof. By Lemma 3.1 again, it is sufficient to find four pairwise crossing tri-partitions of $V\left(K_{9}\right)=\{1,2, \ldots, 9\}$ with properties $(P 1)$ and $(P 2)$. Since K_{9} is a complete graph, $(P 1)$ and $(P 2)$ always hold for any tri-partition. On the other hand, we can always define a family $\left\{A_{i, j}: 1 \leqslant i \leqslant 4,1 \leqslant j \leqslant 3\right\}$ of 3 -elements subsets of $\{1, \ldots, 9\}$ such that

$$
\left|A_{i, j} \cap A_{i^{\prime}, j^{\prime}}\right|= \begin{cases}1 & \text { if } i \neq i^{\prime} \\ 0 & \text { if } i=i^{\prime}, j \neq j^{\prime}\end{cases}
$$

as 3 is a prime (see, e.g., [5], [7] for details). Then $\left\{A_{i, 1}, A_{i, 2}, A_{i, 3}\right\}, 1 \leqslant i \leqslant 4$, are four pairwise crossing partitions.

Remark 3. In fact, Proposition 3.2 is better than the special case $(n=3)$ of Theorem 2.2. Moreover, when G is sufficiently dense, say $G=K_{4}$, we have $K_{4} \boxtimes K_{3} \preceq K_{4} \square K_{9}$. It is a special case of $K_{p+1} \boxtimes K_{p} \preceq K_{p+1} \square K_{p^{2}}$, where p is a prime. This result is widely known (see e.g., [7]).

Acknowledgments

The authors gratefully acknowledge the anonymous referees for their constructive suggestions.

References

[1] R. Diestel, Graph Theory, Third Edition, Springer-Verlag Heidelberg, New York, 2005.
[2] A. Kotlov, Minors and strong products, European Journal of Combinatorics, 22 (2001), 511-512.
[3] L.S. Chandran, N. Sivadasan, On the Hadwiger's conjecture for graph product, Discrete Mathematics, 307 (2007), 266-273.
[4] D. Wood, Clique minors in Cartesian products of graphs, (manuscript) 2007 (see http://arxiv. org/abs/math/07111189v2).
[5] L.S. Chandran, A. Kostochka, J.K. Raju, Hadwiger number and the Cartesian product of graphs, Graphs and Combinatorics, 24 (2008), 291-301.
[6] H. Hadwiger, Über eine Klassfikation der streckenkomplexe, Vierkel-jajrsschrift der Naturf. Gesellschaft in Zürich, 88 (1943), 133-142.
[7] H.J. Ryser, Combinatorial Mathematics, The Carus Mathematical Monographs, Wiley, New York, 14 (1963).

[^0]: *This work is supported by The Discovery Grant (144073) of Natural Sciences and Engineering Research Council of Canada.
 ${ }^{\dagger}$ Corresponding email: yangxu54@hotmail.com (X. Yang)

[^1]: ${ }^{1}$ Suppose that $K_{6} \preceq K_{3} \square K_{3}$. Then $V\left(K_{3} \square K_{3}\right)$ has branch sets X_{1}, \ldots, X_{6}, each of which are connected by at least one edge. If there exists X_{i}, say X_{1}, such that $\left|X_{1}\right|=1$, since $\Delta\left(K_{3} \square K_{3}\right)=4$, contradicting with the fact that X_{1} is adjacent to X_{i} for all $2 \leqslant i \leqslant 6$. Thus, $\left|X_{i}\right| \geqslant 2$ and $\sum_{i=1}^{6}\left|X_{i}\right| \geqslant 12>9=\left|V\left(K_{3} \square K_{3}\right)\right|$, a contradiction.
 ${ }^{2}$ If $a \leqslant 8$, then $\chi \leqslant 35$ and $2 \chi \geqslant \chi \sqrt{\frac{m}{2}}$.

