A Note on the Maximal Estrada Index of Trees with a Given Bipartition

Jing Li
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: sdlijing@mail.nankai.edu.cn

(Received November 8, 2010)

Abstract

Let G be a simple graph with n vertices and let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of its adjacency matrix. The Estrada index $E E$ of G is the sum of the terms $e^{\lambda_{i}}$. Let $\mathcal{T}(p, q)$ denote the set of all trees with a given (p, q)-bipartition, where $q \geq p \geq 2$. And $D(p, q)$ denotes the double star which is obtained by joining the centers of two stars S_{p} and S_{q} by an edge. In this note, we will show that $D(p, q)$ has the maximal Estrada index in $\mathcal{T}(p, q)$.

1 Introduction

Let G be a simple graph with n vertices, the spectrum of G is the spectrum of its adjacency matrix [1], and consists of the (real) numbers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. The Estrada index is defined as

$$
E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}
$$

In our proof, we will use a relation between $E E$ and the spectral moments of a graph. For $k \geq 0$, we denote by M_{k} the k-th spectral moment of $G, M_{k}(G)=\sum_{i=1}^{n} \lambda_{i}^{k}$. We know from [1] that M_{k} is equal to the number of closed walks of length k in the graph G.

By the Taylor expansion of e^{x}, we have the following important relation between the Estrada index and the spectral moments of G :

$$
E E(G)=\sum_{k=0}^{\infty} \frac{M_{k}}{k!}
$$

Thus, if for two graphs G and H we have $M_{k}(G) \geq M_{k}(H)$ for all $k \geq 0$, then $E E(G) \geq$ $E E(H)$. Moreover, if the strict inequality $M_{k}(G)>M_{k}(H)$ holds for at least one value of k, then $E E(G)>E E(H)$.

Recently, Deng in [2] showed that the path P_{n} and the star S_{n} have the minimal and the maximal Estrada indices among n-vertex trees. In 2010, J. Li et al. [3] obtained the trees with minimal Estrada index among trees of order n with exactly two vertices of maximum degree. Let $\mathcal{T}(p, q)$ denote the set of all trees with a given (p, q)-bipartition, where $q \geq p \geq 2$. And $D(p, q)$ denotes the double star which is obtained by joining the centers of two stars S_{p} and S_{q} by an edge. In this note, we will show that $D(p, q)$ has the maximal Estrada index in $\mathcal{T}(p, q)$.

2 The maximal Estrada index of trees with a given bipartition

The coalescence $G(u) \cdot H(v)$ of rooted graphs G and H is the graph obtained from G and H by identifying the root u of G with the root v of H. Let $W_{k}(G)$ be the set of closed walks of length k in $G, W_{k}(G, u)$ denote the set of closed walks of length k starting at u in G, and $M_{k}(G)=\left|W_{k}(G)\right|, M_{k}(G, u)=\left|W_{k}(G, u)\right|$.

Lemma 2.1 [4] If G_{1} and G_{2} are the bipartite graphs satisfying $M_{2 k}\left(G_{1}\right) \geq M_{2 k}\left(G_{2}\right)$ and $M_{2 k}\left(G_{1}, w\right) \geq M_{2 k}\left(G_{2}, u\right)$ for any positive integer k, then $M_{2 k}(G) \geq M_{2 k}\left(G^{\prime}\right)$ for any positive integer k, where $G \cong G_{1}(w) \cdot G_{3}(a)$ and $G^{\prime} \cong G_{2}(u) \cdot G_{3}(a)$ (see Fig. 2.1). Furthermore, if $M_{2 k}\left(G_{1}, w\right)>M_{2 k}\left(G_{2}, u\right)$ for some positive integer k, then there must exist a positive integer l such that $M_{2 l}(G)>M_{2 l}\left(G^{\prime}\right)$.

Figure 2.1 The graphs considered in Lemma 2.1.

Now we are ready to prove our main result:

Theorem 2.2 If $T \in \mathcal{T}(p, q), q \geq p \geq 2$, and $T \not \equiv D(p, q)$, then $E E(T)<E E(D(p, q))$.

Proof. Let s denote the number of pendent vertices of T, we prove the theorem by induction on s.

Let $p+q=n$. If $s=n-1$, then the tree must be the star S_{n}, a contradiction.

If $s=n-2$, then the longest path in T must be P_{4}, and other edges are pendent edges on the second or the third vertices of the path. Since it has a given (p, q)-bipartition, the tree can only be $D(p, q)$.

Let $2 \leq l \leq n-3$, and suppose that the result holds for $s>l$. Now we consider $s=l$. Letting $P=v_{1} v_{2} \cdots v_{t}$ be an arbitrary path in T, then T can be repainted as T^{\prime} in Fig.2.2, where T_{i} is the tree planting at $v_{i}, 1 \leq i \leq t$, and $T_{1} \neq K_{1} . T^{\prime \prime}$ is the tree from T^{\prime} by exchanging the position of T_{1} from v_{1} to v_{3}, so the pendent edges of $T^{\prime \prime}$ is $l+1$. Now we prove that $E E\left(T^{\prime}\right)<E E\left(T^{\prime \prime}\right)$. By Lemma 2.1, we only need to prove that $M_{2 k}\left(T^{\prime}, v_{1}\right) \leq M_{2 k}\left(T^{\prime \prime}, v_{3}\right)$.

For any closed walk $w^{\prime} \in W_{2 k}\left(T^{\prime}, v_{1}\right)$, it contains the first segments w_{1}^{\prime} which is the edge $v_{1} v_{2}$, the second segment w_{2}^{\prime} from the first v_{2} to the last v_{2}, and the third segment w_{3}^{\prime} which is the last edge $v_{2} v_{1}$. Then, define another walk $w^{\prime \prime}$ in $W_{2 k}\left(T^{\prime \prime}, v_{3}\right)$, where the first segments $w_{1}^{\prime \prime}$ is the edge $v_{3} v_{2}$, the second segment $w_{2}^{\prime \prime}$ is exactly w_{2}^{\prime}, and the third segment $w_{3}^{\prime \prime}$ is the last edge $v_{2} v_{3}$.

Now, for any closed walk $w^{\prime} \in W_{2 k}\left(T^{\prime}, v_{1}\right)$, there is a unique walk $w^{\prime \prime} \in W_{2 k}\left(T^{\prime \prime}, v_{3}\right)$ corresponding to it. Clearly the correspondence is injective, but not surjective. Thus we have $M_{2 k}\left(T^{\prime}, v_{1}\right) \leq M_{2 k}\left(T^{\prime \prime}, v_{3}\right)$.

Figure 2.2 The trees in the proof of Theorem 2.2

Let V_{1}, V_{2} be the bipartition of vertex set of T^{\prime}, with $\left|V_{1}\right|=p$ and $\left|V_{2}\right|=q$. We can see that the bipartition is all the same in $T^{\prime \prime}$ as in T^{\prime}.

By the induction hypothesis $E E\left(T^{\prime \prime}\right)<E E(D(p, q))$, therefore we have $E E(T)<$ $E E(D(p, q))$.

References

[1] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, 1995.
[2] H. Deng, A proof of a conjecture on the Estrada index, MATCH Commun. Math. Comput. Chem. 62 (2009) 599-606.
[3] J. Li, X. L. Li, L. S. Wang, The Minimal Estrada Index of Trees with Two Maximum Degree Vertices, MATCH Commun. Math. Comput. Chem. 64 (2010) 799-810.
[4] J. B. Zhang, B. Zhou, J. P. Li, On Estrada index of trees, Linear Algebra Appl. 434 (2011) 215-223.

