Determining the Conjugated Trees with the Third- through the Sixth-Minimal Energies

Bofeng Huo ${ }^{1,2}$, Xueliang Li ${ }^{1}$, Yongtang Shi ${ }^{1}$, Lusheng Wang ${ }^{3}$
${ }^{1}$ Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: huobofeng@mail.nankai.edu.cn; lxl@nankai.edu.cn; shi@nankai.edu.cn
${ }^{2}$ Department of Mathematics and Information Science
Qinghai Normal University, Xining 810008, China
${ }^{3}$ Department of Computer Science, City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong SAR, China
E-mail: cswangl@cityu.edu.hk

(Received January 27, 2010)

Abstract

For a simple graph G, the energy $E(G)$ is defined as the sum of the absolute values of all eigenvalues of its adjacency matrix. A conjugated tree is a tree that has a perfect matching. The conjugated trees F_{n} and B_{n} with the minimal and secondminimal energies were determined by Zhang and Li. They also figured out that the conjugated trees with the third- and fourth-minimal energies are L_{n} or M_{n}. However, they could not determine which is the third, and the other is the fourth. Recently, S. Li and N. Li further investigated the conjugated trees with the third-, through the sixth-minimal energies. As a result, they figured out that these trees must be among the trees L_{n}, M_{n}, I_{n} and $W_{\frac{n}{2}}^{*}$. They then showed that the energy of M_{n} is smaller than that of I_{n}, and the energy of L_{n} is smaller than that of $W_{\frac{n}{2}}^{*}$, but they could not give a total ordering of the 4 trees. For comparing of the energies, a common used method is to compare the number of k-matchings in each concerned tree, but it is often invalid for further comparing. This paper is aimed at solving the above unsolved problems by giving the energies of the 4 trees a total ordering, that is, completely determining the conjugated trees with the third-, forth-, fifth- and sixth-minimal energies. Our method uses the well-known Coulson integral formula.

1 Introduction

For a given simple graph G of order n, denote by $A(G)$ the adjacency matrix of G. The characteristic polynomial of $A(G)$

$$
\phi(G ; x)=\operatorname{det}(x I-A(G))=x^{n}+a_{1} x^{n-1}+\cdots+a_{n},
$$

is usually called the characteristic polynomial of G. It is well-known [4] that the characteristic polynomial of a bipartite graph G takes the form

$$
\phi(G ; x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} a_{2 k} x^{n-2 k}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} b_{2 k} x^{n-2 k},
$$

where $b_{2 k}=(-1)^{k} a_{2 k}$ and $b_{2 k} \geq 0$ for all $k=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, especially $b_{0}=a_{0}=1$. Furthermore, the characteristic polynomial of a tree T can be expressed as

$$
\phi(T ; x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} m(T, k) x^{n-2 k}
$$

where $m(T, k)$ denotes the number of k-matchings of T.
The energy is a graph parameter stemming from the Hückel moleculear orbital (HMO) approximation for the total π-electron energy, see [7] for details. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ denote the eigenvalues of the adjacency matrix $A(G)$, the energy of a graph G is then defined as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|
$$

For calculating the energy, Coulson [3] deduced the following formula

$$
\begin{equation*}
E(G)=\frac{1}{\pi} \int_{-\infty}^{+\infty}\left[n-\frac{i x \phi^{\prime}(G, i x)}{\phi(G, i x)}\right] \mathrm{d} x \tag{1}
\end{equation*}
$$

It was then derived into a handy formula [7, 9]

$$
E(G)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \log \left|x^{n} \phi(G ; i / x)\right| \mathrm{d} x .
$$

Moreover, Gutman and Polansky [9] converted Eq.(1) into an explicit formula as follows:

$$
E(G)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \log \left[\left(\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} a_{2 k} x^{2 k}\right)^{2}+\left(\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} a_{2 k+1} x^{2 k+1}\right)^{2}\right] \mathrm{d} x
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the coefficients of the characteristic polynomial of G. In particular, the energy of a bipartite graph G takes the form

$$
E(G)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \log \left[1+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor}(-1)^{k} a_{2 k} x^{2 k}\right] \mathrm{d} x
$$

and the energy of a tree T [9] can be expressed as

$$
E(T)=\frac{2}{\pi} \int_{0}^{+\infty} x^{-2} \log \left[1+\sum_{k=1}^{\left\lfloor\frac{n}{2}\right\rfloor} m(T, k) x^{2 k}\right] \mathrm{d} x
$$

where $m(G, k)$ is the number of k-matchings of T.
From the above one can see that if T_{1} and T_{2} are two trees with the same number of vertices, it is clear that $E\left(T_{1}\right) \leq E\left(T_{2}\right)$ if $m\left(T_{1}, k\right) \leq m\left(T_{2}, k\right)$ for all $k=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$. So there exists a partial ordering \preceq in the set of trees by comparing the number of k matchings in each concerned tree, that is, for two trees T_{1} and T_{2} with n vertices, if $m\left(T_{1}, k\right) \leq m\left(T_{2}, k\right)$ holds for all $k \geq 0$, then we define $T_{1} \preceq T_{2}$. Thus $T_{1} \preceq T_{2}$ implies $E\left(T_{1}\right) \leq E\left(T_{2}\right)[5,10,21]$. Similarly, a partial ordering can be defined for bipartite graphs [18] and unicyclic graphs [11]. These relations have been established for numerous pairs of graphs $[2,5,6,11-16,18,19,21-23]$. For two bipartite graphs G_{1} and G_{2}, we call $G_{1} \preceq G_{2}$ if $\left|a_{k}\left(G_{1}\right)\right| \leq\left|a_{k}\left(G_{2}\right)\right|$ for all $k \geq 0$, and $G_{1} \preceq G_{2}$ implies $E\left(G_{1}\right) \leq E\left(G_{2}\right)$. The above mentioned method is commonly used to compare the energies of two trees or bipartite graphs. However, for general graphs, it is hard to define such a partial ordering, since in this case, Coulson integral formula can not be used to determine whether $G_{1} \preceq G_{2}$ implies $E\left(G_{1}\right) \leq E\left(G_{2}\right)$. If, for two trees or bipartite graphs, the above quantities $m(T, k)$ or $\left|a_{k}(G)\right|$ can not be compared uniformly, then the common comparing method is invalid, and this happened very often. For examples, paper [13] could not determine the unicyclic bipartite graph with maximal energy; papers [15, 20] could not determine the tree with the fourth maximal energy; paper [17] could not determine the bicyclic graph with maximal energy; paper [16] could not determine the tree with two maximum degree vertices that has maximal energy; paper [22] could not determine the conjugated trees with the thirdand fourth-minimal energies; paper [14] could not determine the conjugated trees with the third- through the sixth-minimal energies, etc. In this paper, we will employ Coulson integral formula to solve the last two undetermined cases, i.e., to determine the conjugated trees with the third- , forth-, fifth- and sixth-minimal energies. For more results on graph energy, we refer to $[7,8]$, and for terminology and notation not defined here, we refer to Bondy and Murty [1].

The following lemma is a well-known result due to Gutman [7], which will be used in the sequel.

Lemma 1.1. If G_{1} and G_{2} are two graphs with the same number of vertices, then

$$
E\left(G_{1}\right)-E\left(G_{2}\right)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \log \frac{\phi\left(G_{1} ; i x\right)}{\phi\left(G_{2} ; i x\right)} \mathrm{d} x
$$

2 Main results

Denote by X_{n} the star $K_{1, n-1}, Y_{n}$ the tree obtained by attaching a pendant edge to a pendant vertex of the star $K_{1, n-2}, Z_{n}$ by attaching two pendant edges to a pendant vertex of $K_{1, n-3}$ and W_{n} by attaching a P_{3} to a pendant vertex of $K_{1, n-3}$. In [5], Gutman gave the following result.

Lemma 2.1. For any tree T of order n, if $T \neq X_{n}, Y_{n}, Z_{n}, W_{n}$, then $X_{n} \prec Y_{n} \prec Z_{n} \prec$ $W_{n} \prec T$.

Denoted by Φ_{n} the class of trees of order n that have perfect matchings. For the minimal energy tree in Φ_{n}, Gutman proposed two conjectures in [6]. Later, Zhang and Li [22] confirmed that both conjectures are true by using the partial ordering relation \preceq.

Lemma 2.2. [22] In the class $\Phi_{n}, E(T)$ is minimal for the tree F_{n}, and $E(T)=E\left(F_{n}\right)$ if and only if $T=F_{n}$, where F_{n} is obtained by attaching a pendant edge to each vertex of the star $K_{1, \frac{n}{2}-1}$, see Figure 1.

Figure 1: The trees F_{n} and B_{n}.
For the trees with the second-, third-, and forth-minimal energies in Φ_{n}, they obtained the following results.

Lemma 2.3. [22] In the class Φ_{n}, the tree attained the second-minimal energy is B_{n}, where B_{n} is the tree obtained from F_{n-2} by attaching a P_{3} to the 2-degree vertex of a pendant edge (see Figure 1), and $E(T)=E\left(B_{n}\right)$ if and only if $T=B_{n}$.

Lemma 2.4. [22] In the class Φ_{n}, the trees attained the third- and forth-minimal energies are among the trees L_{n} and M_{n}, where L_{n} is the tree obtained from F_{n-4} by attaching two P_{3} 's to the 2-degree vertex of a pendant edge, and M_{n} is obtained from F_{n-2} by attaching a P_{3} to a 1-degree vertex to form a path of length 6, see Figure 2. Furthermore, L_{n} and M_{n} are not comparable by the partial ordering relation \preceq.

Denote by I_{n} the tree obtained by attaching a P_{3} to a 1-degree vertex of $X_{\frac{n}{2}-1}$ and attaching a pendant edge to each other 1-degree vertex of $X_{\frac{n}{2}-1}$, and $W_{\frac{n}{2}}^{*}$ the tree obtained by attaching a pendant edge to each vertex of $W_{\frac{n}{2}}$, see Figure 2. Recently, S. Li and N. Li [14] proved the following result.

Lemma 2.5. In the class Φ_{n}, the trees with the third-, forth-, fifth- and sixth-minimal energies are among the trees L_{n}, M_{n}, I_{n} and $W_{\frac{n}{2}}^{*}$. Furthermore, $M_{n} \prec I_{n}$ and $L_{n} \prec W_{\frac{n}{2}}^{*}$, but I_{n} and L_{n} are not comparable.

Figure 2: The trees L_{n}, M_{n}, I_{n} and $W_{\frac{n}{2}}^{*}$.
Notice that the four trees have small diameters. Their characteristic polynomials can be easily obtained by using the recursion formula in [4] on trees:

$$
\begin{aligned}
& \phi\left(M_{n} ; x\right)=\left(x^{2}-1\right)^{\frac{n}{2}-4}\left(x^{8}-\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}-\left(\frac{n}{2}+4\right) x^{2}+1\right) \\
& \phi\left(I_{n} ; x\right)=\left(x^{2}-1\right)^{\frac{n}{2}-4}\left(x^{8}-\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}-(n+1) x^{2}+1\right) ; \\
& \phi\left(L_{n} ; x\right)=\left(x^{2}-1\right)^{\frac{n}{2}-4}\left(x^{8}-\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}-\left(\frac{n}{2}+3\right) x^{2}+1\right) \\
& \phi\left(W_{\frac{n}{2}}^{*} ; x\right)=\left(x^{2}-1\right)^{\frac{n}{2}-4}\left(x^{8}-\left(\frac{n}{2}+3\right) x^{6}+(2 n-3) x^{4}-\left(\frac{n}{2}+3\right) x^{2}+1\right) .
\end{aligned}
$$

Before giving our main result, we recall some knowledge on real analysis, for which we refer to [24].

Lemma 2.6. For any real number $X>-1$, we have

$$
\begin{equation*}
\frac{X}{1+X} \leq \log (1+X) \leq X \tag{2}
\end{equation*}
$$

Lemma 2.7. Let $f(x, n)$ be a real function sequence on real variable x and parameter $n \in \mathbb{N}$. If
(1) for any real number $A>a, f(x, n)$ is integrable in interval $a \leq x \leq A$, where a is fixed;
(2) for any interval $[a, A]$ as above, $f(x, n)$ is uniformly convergent to $\varphi(x)$ as $n \rightarrow \infty$; and
(3) the integration $g(n)=\int_{a}^{+\infty} f(x, n) \mathrm{d} x$ is uniformly convergent for $n \in \mathbb{N}$, then the limit function $\varphi(x)$ of the sequence $g(n)$ is integrable in $[a,+\infty]$, and $\lim _{n \rightarrow \infty} \int_{a}^{+\infty} f(x, n) \mathrm{d} x=\int_{a}^{+\infty} \varphi(x) \mathrm{d} x$.

The following lemma is useful in the sequel.
Lemma 2.8. Let A be a positive real number, B and C are non-negative. Then $X=$ $\frac{B-C}{A+C}>-1$.

Proof. From the conditions, we get $X=\frac{B}{A+C}-\frac{C}{A+C} \geq-\frac{C}{A+C}>-1$.
Now we give the main result of our paper.
Theorem 2.9. There exists a fixed positive integer N_{0}, such that for all $n>N_{0}$, the energy of I_{n} is smaller than that of L_{n}.

Proof. Clearly, the common comparing method is invalid for I_{n} and L_{n}, that is, neither $I_{n} \preceq L_{n}$ nor $L_{n} \preceq I_{n}$. We have to use Coulson integral formula to compare the energies of I_{n} and L_{n}. By Lemma 1.1 and the characteristic polynomials $\phi\left(I_{n} ; x\right)$ and $\phi\left(L_{n} ; x\right)$ given above, it is easy to get

$$
\begin{equation*}
E\left(I_{n}\right)-E\left(L_{n}\right)=\frac{2}{\pi} \int_{0}^{+\infty} \log \frac{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}+(n+1) x^{2}+1}{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1} \mathrm{~d} x . \tag{3}
\end{equation*}
$$

We want to use Lemma 2.7 to finish the proof. The following two steps are distinguished:
Step 1. Prove the uniform convergence of the sequence $g(n)=E\left(I_{n}\right)-E\left(L_{n}\right)$.
Denote by $f(x, n)$ the integrand in Eq.(3). By letting $A=x^{8}+\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+\right.$ 2) $x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1, B=\left(\frac{n}{2}-2\right) x^{2}$ and $C=\left(\frac{n}{2}-6\right) x^{4}$, we can express $f(x, n)$ as

$$
f(x, n)=\log \frac{A+B}{A+C}=\log \left(1+\frac{B-C}{A+C}\right)
$$

i.e.,

$$
f(x, n)=\log \left(1+\frac{\left(-\frac{n}{2}+6\right) x^{4}+\left(\frac{n}{2}-2\right) x^{2}}{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1}\right)
$$

Obviously, for $n \geq 12$ we have $A>0, B \geq 0$ and $C \geq 0$. Now let $X=\frac{B-C}{A+C}$. Then from Lemmas 2.8 and 2.6, we get that for all $x \in \mathbb{R}$ and any integer $n \geq 13$,

$$
f(x, n) \leq \frac{\left(-\frac{n}{2}+6\right) x^{4}+\left(\frac{n}{2}-2\right) x^{2}}{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1}
$$

and

$$
f(x, n) \geq \frac{\left(-\frac{n}{2}+6\right) x^{4}+\left(\frac{n}{2}-2\right) x^{2}}{\left(x^{8}+\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}+(n+1) x^{2}+1\right.} .
$$

It follows that

$$
|f(n, x)| \leq \frac{\left(-\frac{n}{2}+6\right) x^{4}+\left(\frac{n}{2}-2\right) x^{2}}{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1}, \text { if } \quad|x| \leq \sqrt{\frac{n-4}{n-12}}
$$

and

$$
|f(n, x)| \leq \frac{\left(\frac{n}{2}-6\right) x^{4}-\left(\frac{n}{2}-2\right) x^{2}}{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}+(n+1) x^{2}+1}, \text { if }|x| \geq \sqrt{\frac{n-4}{n-12}}
$$

Since for $n \geq 3$ and all x, there always have

$$
\left(\left(-\frac{n}{2}+6\right) x^{4}+\left(\frac{n}{2}-2\right) x^{2}\right)\left(x^{2}+1\right) \leq 2\left(x^{8}+\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1\right)
$$

and

$$
\left(\left(\frac{n}{2}-6\right) x^{4}-\left(\frac{n}{2}-2\right) x^{2}\right)\left(x^{2}+1\right) \leq 2\left(x^{8}+\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}+(n+1) x^{2}+1\right)
$$

So it is easy to see that for $n \geq 13$ and all x,

$$
|f(x, n)| \leq \frac{2}{x^{2}+1}
$$

while $\int_{0}^{+\infty} \frac{2}{x^{2}+1} \mathrm{~d} x=\pi$ is convergent. From the well-known Weierstrass's criterion (for example, see [24]), we can get that $g(n)=E\left(I_{n}\right)-E\left(L_{n}\right)=\frac{2}{\pi} \int_{0}^{\infty} f(x, n) \mathrm{d} x$ is uniformly convergent.

Notice that $f(x, n)$ is a pointwise convergent sequence, i.e., $\lim _{n \rightarrow+\infty} f(x, n)$ exists, and it is a piecewise continuous function:

$$
\varphi(x)= \begin{cases}\log \frac{x^{4}+3 x^{2}+2}{x^{4}+4 x^{2}+1} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Step 2: Prove that $f(n, x)$ uniformly converges to $\varphi(x)$ in an interval $I \subset(0,+\infty)$.
For $x \neq 0$, we have

$$
\begin{aligned}
& f(n, x)-\varphi(x) \\
= & \log \left[\frac{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+\left(\frac{3}{2} n+2\right) x^{4}+(n+1) x^{2}+1}{x^{8}+\left(\frac{n}{2}+3\right) x^{6}+(2 n-4) x^{4}+\left(\frac{n}{2}+3\right) x^{2}+1} \cdot \frac{x^{4}+4 x^{2}+1}{x^{4}+3 x^{2}+2}\right] \\
= & \log \left[\frac{x^{12}+\left(\frac{n}{2}+7\right) x^{10}+\left(\frac{7}{2} n+15\right) x^{8}+\left(\frac{15}{2} n+12\right) x^{6}+\left(\frac{11}{2} n+7\right) x^{4}+(n+5) x^{2}+1}{x^{12}+\left(\frac{n}{2}+6\right) x^{10}+\left(\frac{7}{2} n+7\right) x^{8}+\left(\frac{15}{2} n-3\right) x^{6}+\left(\frac{11}{2} n+2\right) x^{4}+(n+9) x^{2}+2}\right] .
\end{aligned}
$$

Similar to the above, by letting $A=x^{12}+\left(\frac{n}{2}+6\right) x^{10}+\left(\frac{7}{2} n+7\right) x^{8}+\left(\frac{15}{2} n-3\right) x^{6}+\left(\frac{11}{2} n+\right.$ 2) $x^{4}+(n+5) x^{2}+1, B=x^{10}+8 x^{8}+15 x^{6}+5 x^{4}$ and $C=4 x^{2}+1$, we can express the above $f(n, x)-\varphi(x)$ as

$$
f(n, x)-\varphi(x)=\log \frac{A+B}{A+C}=\log \left(1+\frac{B-C}{A+C}\right)
$$

i.e.,

$$
\begin{aligned}
& f(n, x)-\varphi(x) \\
= & \log \left[1+\frac{x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1}{x^{12}+\left(\frac{n}{2}+6\right) x^{10}+\left(\frac{7}{2} n+7\right) x^{8}+\left(\frac{15}{2} n-3\right) x^{6}+\left(\frac{11}{2} n+2\right) x^{4}+(n+9) x^{2}+2}\right] .
\end{aligned}
$$

It is easy to see that $A>0, B \geq 0$ and $C \geq 0$. From Lemmas 2.8 and 2.6, we get that for any $x \neq 0, x \in \mathbb{R}$ and any positive integer n, we have
$f(n, x)-\varphi(x) \leq \frac{x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1}{x^{12}+\left(\frac{n}{2}+6\right) x^{10}+\left(\frac{7}{2} n+7\right) x^{8}+\left(\frac{15}{2} n-3\right) x^{6}+\left(\frac{11}{2} n+2\right) x^{4}+(n+9) x^{2}+2}$
and
$f(n, x)-\varphi(x) \geq \frac{x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1}{x^{12}+\left(\frac{n}{2}+7\right) x^{10}+\left(\frac{7}{2} n+15\right) x^{8}+\left(\frac{15}{2} n+12\right) x^{6}+\left(\frac{11}{2} n+7\right) x^{4}+(n+5) x^{2}+1}$.
If $x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1 \geq 0$,
$|f(n, x)-\varphi(x)| \leq \frac{x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1}{x^{12}+\left(\frac{n}{2}+6\right) x^{10}+\left(\frac{7}{2} n+7\right) x^{8}+\left(\frac{15}{2} n-3\right) x^{6}+\left(\frac{11}{2} n+2\right) x^{4}+(n+9) x^{2}+2} ;$
and if $x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1 \leq 0$,
$|f(n, x)-\varphi(x)| \leq \frac{-\left(x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1\right)}{x^{12}+\left(\frac{n}{2}+7\right) x^{10}+\left(\frac{7}{2} n+15\right) x^{8}+\left(\frac{15}{2} n+12\right) x^{6}+\left(\frac{11}{2} n+7\right) x^{4}+(n+5) x^{2}+1}$.
It is not hard to verify that for $n \geq 3$ and any $x \in[\delta,+\infty), x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1 \geq$ 0 , and

$$
|f(n, x)-\varphi(x)| \leq \frac{4}{\sqrt{n}}
$$

where δ is the only positive root of the polynomial $x^{10}+8 x^{8}+15 x^{6}+5 x^{4}-4 x^{2}-1$ and $\delta \in(0.6750,0.6751)$, which proves that $f(x, n)$ uniformly converges to $\phi(x)$ in the interval $I=[\delta,+\infty)$.

Finally, we turn to showing the conclusion of the theorem.
Notice that from the above we know that for $x \in[0, \delta]$, we have

$$
f(n, x)-\varphi(x) \leq 0
$$

On the other hand, from Lemma 2.7 and the above two steps, we get that in the interval $[\delta,+\infty)$,

$$
\lim _{n \rightarrow+\infty} \int_{\delta}^{+\infty} f(x, n) \mathrm{d} x=\int_{\delta}^{+\infty} \lim _{n \rightarrow+\infty} f(x, n) \mathrm{d} x=\int_{\delta}^{+\infty} \varphi(x) \mathrm{d} x
$$

That is, for an arbitrarily small $\epsilon>0$, there exists a positive integer N, such that for any $n>N$,

$$
\int_{\delta}^{+\infty} \varphi(x) \mathrm{d} x-\epsilon<\int_{\delta}^{+\infty} f(x, n) \mathrm{d} x<\int_{\delta}^{+\infty} \varphi(x) \mathrm{d} x+\epsilon
$$

Consequently,

$$
\begin{aligned}
\int_{0}^{+\infty} f(x, n) \mathrm{d} x & =\int_{0}^{\delta} f(x, n) \mathrm{d} x+\int_{\delta}^{+\infty} f(x, n) \mathrm{d} x \\
& <\int_{0}^{\delta} \varphi(x) \mathrm{d} x+\int_{\delta}^{+\infty} \varphi(x) \mathrm{d} x+\epsilon=\int_{0}^{+\infty} \varphi(x) \mathrm{d} x+\epsilon
\end{aligned}
$$

It is not difficult to get that $\int_{0}^{+\infty} \varphi(x) \mathrm{d} x=\alpha \approx-0.110823$. If we take $\epsilon=|\alpha|$, there exists a positive integer N_{0}, such that for any $n>N_{0}$

$$
\int_{0}^{+\infty} f(x, n) \mathrm{d} x<\int_{0}^{+\infty} \varphi(x) \mathrm{d} x+\epsilon=0
$$

Thus $E\left(I_{n}\right)<E\left(L_{n}\right)$ for any $n>N_{0}$, which completes the proof.
The following is an easy consequence, which determines the conjugated trees with the third- through the sixth-minimal energies.

Theorem 2.10. There exists a fixed positive integer N_{0}, such that for all $n>N_{0}$, $E\left(M_{n}\right)<E\left(I_{n}\right)<E\left(L_{n}\right)<E\left(W_{\frac{n}{2}}^{*}\right)$.

Proof. It is known from [14] that $M_{n} \prec I_{n}$ and $L_{n} \prec W_{\frac{n}{2}}^{*}$, implying that $E\left(M_{n}\right)<E\left(I_{n}\right)$ and $E\left(L_{n}\right)<E\left(W_{\frac{n}{2}}^{*}\right)$. The conclusion then follows immediately from Theorem 2.9.

By running a computer with Maple programm, we get the following table:

Table. The difference between $E\left(I_{n}\right)$ and $E\left(L_{n}\right)$.

n	$\varepsilon\left(I_{n}\right)-\varepsilon\left(L_{n}\right)$	n	$\varepsilon\left(I_{n}\right)-\varepsilon\left(L_{n}\right)$
$n=8$	0.154368	$n=10$	0.133281
$n=12$	0.117005	$n=14$	0.103962
$n=16$	0.093213	$n=18$	0.084161
$n=20$	0.076404	$n=22$	0.069664
$n=24$	0.063737	$n=26$	0.058475
$n=28$	0.053762	$n=30$	0.049510
$n=32$	0.045649	$n=34$	0.042123
$n=36$	0.038887	$n=38$	0.035904
$n=40$	0.033143	$n=42$	0.030577
$n=44$	0.028185	$n=46$	0.025949
$n=48$	0.023852	$n=50$	0.021881
$n=52$	0.020023	$n=54$	0.018269
$n=56$	0.016609	$n=58$	0.015035
$n=60$	0.013541	$n=62$	0.012118
$n=64$	0.010763	$n=66$	0.009470
$n=68$	0.008235	$n=70$	0.007052
$n=72$	0.005920	$n=74$	0.004834
$n=76$	0.003791	$n=78$	0.002788
$n=80$	0.001824	$n=82$	0.000895
$n=84$	-0.6×10^{-8}	$n=86$	-0.000864
$n=88$	-0.001697	$n=90$	-0.002503
$n=92$	-0.003282	$n=94$	-0.004036
$n=96$	-0.004765	$n=98$	-0.005473
$n=100$	-0.006158	$n=102$	-0.006824

From the table one can see that for n even, $E\left(I_{n}\right)>E\left(L_{n}\right)$ for $n=8$ up to 82 , while $E\left(I_{n}\right)<E\left(L_{n}\right)$ for $n=84$ up to 102 . The table can be continued with $E\left(I_{n}\right)<E\left(L_{n}\right)$. Thus, we guess that $E\left(I_{n}\right)<E\left(L_{n}\right)$ holds for $n \geq 84$, i.e., the moment N_{0} could be taken as 82 . Yet, we have not found a proper way to show this.

Remark. The method employed in this paper might be extended to comparing the energies of the two graphs P_{n}^{6} and C_{n} (n even) candidated as the unicyclic bipartite graph with maximal energy in [13], of the two trees candidated as the tree with the fourthmaximal energy in [20], and of those candidated graphs mentioned in the end of the introduction.

Acknowledgement. The authors B. Huo, X. Li and Y. Shi are supported by NSFC No.10831001, PCSIRT and the " 973 " program. The author Lusheng Wang is fully sup-
ported by a grant from the Research Grants Council of the Hong Kong SAR [Project No. CityU 121207]. The authors are very grateful to Prof. Ivan Gutman for helpful comments and suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer-Verlag, Berlin, 2008.
[2] A. Chen, A. Chang, W.C. Shiu, Energy ordering of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 55(2006) 95-102.
[3] C.A. Coulson, On the calculation of the energy in unsaturated hydrocarbon molecules, Proc. Cambridge Phil. Soc. 36(1940) 201-203.
[4] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, Academic Press, New York, 1980.
[5] I. Gutman, Acylclic systems with extremal Hückel π-electron energy, Theor. Chim. Acta 45(1977) 79-87.
[6] I. Gutman, Acylclic conjugated molecules, trees and their energies, J. Math. Chem. 1(1987) 123-143.
[7] I. Gutman, The Energy of a Graph: Old and New Results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann (Eds.), Algebraic Combinatorics and Allications, SpringerVerlag, Berlin, 2001, pp. 196-211.
[8] I. Gutman, X. Li, J. Zhang, Graph Energy, in: M. Dehmer, F. Emmert-Streib (Eds.), Analysis of Complex Networks: From Biology to Linguistics, Wiley-VCH, Weinheim, 2009, pp. 145-174.
[9] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, SpringerVerlag, Berlin, 1986.
[10] I. Gutman, F. Zhang, On the ordering of graphs with respect to their matching numbers, Discr. Appl. Math. 15(1986) 25-33.
[11] Y. Hou, Unicyclic graphs with minimal energy, J. Math. Chem. 29(2001) 163-168.
[12] Y. Hou, On trees with the least energy and a given size of matching, J. Syst. Sci. Math. Sci. 23(2003) 491-494.
[13] Y. Hou, I. Gutman, C. Woo, Unicyclic graphs with maximal energy, Lin. Algebra Appl. 356(2002) 27-36.
[14] S. Li, N. Li, On minimal energies of acylclic conjugated molecules, MATCH Commun. Math. Comput. Chem. 61(2009) 341-349.
[15] S. Li, X. Li, The fourth maximal energy of acyclic graphs, MATCH Commun. Math. Comput. Chem. 61(2009) 383-394.
[16] X. Li, X. Yao, J. Zhang, I. Gutman, Maximum energy trees with two maximum degree vertices, J. Math. Chem. 45(2009) 962-973.
[17] X. Li, J. Zhang, On bicyclic graphs with maximal energy, Lin. Algebra Appl. 427(2007) 87-98.
[18] X. Li, J. Zhang, L. Wang, On bipartite graphs with minimal energy, Discr. Appl. Math. 157(2009) 869-873.
[19] W. Lin, X. Guo, H. Li, On the extremal energies of trees with a given maximum degree, MATCH Commun. Math. Comput. Chem. 54(2005) 363-378.
[20] H. Shan, J. Shao, S. Li, X. Li, On a conjecture on the tree with fourth greatest energy, MATCH Commun. Math. Comput. Chem. 64(2009) 181-188.
[21] F. Zhang, Z. Lai, Three theorems of comparison of trees by their energy, Science Exploration 3(1983) 12-19.
[22] F. Zhang, H. Li, On acylclic conjugated molecules with minimal energies, Discr. Appl. Math. 92(1999) 71-84.
[23] B. Zhou, F. Li, On minimal energies of trees of a prescribled diameter, J. Math. Chem. 39(2006) 465-473.
[24] V.A. Zorich, Mathematical Analysis I B II, Original Russian edition published by MCCME, Moscow, Russia, 2002. Springer 2004, XV, Hardcover.

