ONE-PARAMETER GENERALIZATIONS OF ROGERS-RAMANUJAN TYPE
IDENTITIES

NANCY S. S. GUT AND HELMUT PRODINGER”

ABSTRACT. Using the recursions satisfied by the polynomials which converge to the right hand sides
of the Rogers-Ramanujan type identities given by Sills [17] and a determinant method presented
in [9], we obtain many new one-parameter generalizations of the Rogers-Ramanujan type identities,
such as a generalization of the analytic versions of the first and second Gollnitz-Gordon partition
identities, and generalizations of the first, second, and third Rogers-Selberg identities.

1. INTRODUCTION

In [7], by evaluating an integral involving g-Hermite polynomials in two different ways and equating
the results, Garrett et al. found a generalization of the celebrated Rogers-Ramanujan identities:
Z gt _1)mq_(7;)Em—2 (_1)mq_(7;)Dm—2
n=0

_ , 1.1
4q (4,0* ¢°) o (.43 ¢°) (11)

where the Schur polynomials D,, and E,, are defined by
Dp,=Dp14+q" Do, Dy=1, D; =1+gq,
Epn=FEn1+q"En_2, Ey=1, By =1,
and Schur [15] gave the limit
1 1

D :77 = =
X (4,44 ¢%) (6% 6% %)

It is obvious that we can get the following two Rogers-Ramanujan identities by letting m = 0 and
m =11in (1.1), respectively.

oo n 1

z:: o (@050 (12)
o n 24n 1
Z:: o (@%6%¢%)0 (13)

Later, Andrews et al. [3] provided an alternative proof of (1.1) by using the extended Engel expan-
sion. In [9], Ismail et al. used the theory of associated orthogonal polynomials to explain determinants
that Schur introduced in 1917, and showed that Equation (1.1) can be obtained from the Rogers-
Ramanujan identities (1.2) and (1.3). Furthermore, Andrews et al. [4] discussed Al-Salam/Ismail and
Santos polynomials in the context of identities of (1.1) type.

The main purpose of this paper is to apply the determinant method which was presented in [9]
to generalize the Rogers-Ramanujan type identities. In [17], Sills mainly focused on a method which
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was developed by Andrews [2, §9.2, p. 88] for discovering finite analogs of Rogers-Ramanujan type
identities via g-difference equations. In the paper, he presented at least one finitization for each
of the 130 identities in Slater’s list [18], along with recursions satisfied by the polynomials which
converge to the right hand sides of the Rogers-Ramanujan type identities. Explicit formulas (as sums
of ¢-binomials and g¢-trinomials) for the polynomials defined by the recurrences and initial conditions
are given in Section 3 of [17]. Furthermore the polynomial generalizations of Slater and the Slater
identities themselves are easily cross-referenced, e.g., the polynomial generalization of Slater’s A.16
appears in [17] as Identity 3.16. Resorting to these recursions and the determinant method, we
obtain many new parameterized generalizations of the Rogers-Ramanujan type identities, such as a
generalization of the analytic versions of the first and second Gollnitz-Gordon partition identities,
and generalizations of the first, second, and third Rogers-Selberg identities. In Section 2, we mainly
discuss the three-term recursions. In Section 3, we focus on four-term recursions. Moreover, in [6,12],
the authors also found some new Rogers-Ramanujan type identities which are the partners to those
in Slater’s list. By using the determinant method, we can give the initial conditions of the recursions
for these new identities, and then find the generalizations of these identities.

In the appendix to [17], Sills gave an annotated and cross-referenced version of Slater’s list of
identities from [18]. When we refer to Slater’s list in this paper, we are referring to Sill’s version.

As usual, we follow the notation and terminology in [8]. For |¢| < 1, the g-shifted factorial is
defined by

oo

(a5 9)oo
(:0)0 = | |1 = ag®) and (a;¢), = ——2—, forn € C.
kl;[@ (ag™; @)oo

For convenience, we shall adopt the following notation for multiple ¢-shifted factorials:

(ar,a2,...,am;@)n = (a1;)n(a2;@)n - - - (@m; On,

where 7 is an integer or infinity.

The main results in this paper are summarized in Table 1.

2. GENERALIZATIONS OF IDENTITIES WITH THREE-TERM RECURSIONS

In this section, we generalize the Rogers-Ramanujan type identities in Slater’s list [18] by using the
determinant method presented in [9]. Start with the three-term recursions of the polynomials which
converge to the right hand sides of the identities in [17]. First, we construct a function F(z) which is
expressed by an infinite determinant. By expanding the determinant and comparing the coefficients,
we get a summation expression of F'(z). Then, we expand D, (z), a finite determinant of F(z), to
get a recursion which has appeared in Sills’ list [17, Sec. 3.2]. Assume that the polynomials P, and
Q@ satisfy this recursion with different initial conditions, then D, (z) can be expressed by a linear
combination of these two polynomials. By means of the initial conditions of D, (z), we get the limit
of D, (z) which is another expression of F(z). Finally, equating the two different expressions of F(z),
we obtain a new generalization.

In the following, for convenience, the recursions given by Sills [17] are directly presented below the
identities in Slater’s list.

Theorem 2.1. We have

i (—q; q)ng"2m—1/2
o (4 Dn

. ) . _m 4
— (—1)mq(2)Qm1% —(~1)q (2)Rm71(q_# (2.1)

where

Qm = (1 + qm_l)mel + qm_lQ’m*27 Q*l = 17 QO = 07 Ql = 15
Ry =(0+¢" DRmn1+¢" 'Ryu2  Rai=-1, Ry=1, R =1
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Identities in Slater’s list and some new ones Generalizations
Identity A.8 (Gauss-Lebesgue [11]) Theorem 2.1
Identity A.13 (Slater [18])

Identity A.16 (Rogers [13]) Theorem 2.2
Identity A.20 (Rogers [13])

Identity A.29 (Slater [18]) Theorem 2.3
Identity A.50 (Slater [18]) (1) (2)
Identity A.34 (Slater [18]): The analytic version of the second

Gollnitz-Gordon partition identity. Theorem 2.4
Identity A.36 (Slater [18]): The analytic version of the first

Gollnitz-Gordon partition identity.

Identity A.38 (Slater [18]) Theorem 2.5
Identity A.39 (Jackson [10]) (1) (2)
Identity A.79 (Rogers [13]) Theorem 2.6
Identity A.96 (Rogers [13]) (1) (2)
Identity A.94 (Rogers [13]) Theorem 2.7
Identity A.99 (Rogers [13]) (1) (2)
Identity A.25 (Slater [18]) Theorem 2.8
An identity (McLaughlin et al. [12, Eq. (2.7)])

Identity A.31 (Rogers [14] and Selberg [16])

The third Rogers-Selberg identity

Identity A.32 (Rogers [13] and Selberg [16]) Theorem 3.1
The second Rogers-Selberg identity (1) (2)
Identity A.33 (Rogers [13] and Selberg [16])

The first Rogers-Selberg identity

Identity A.59 (Rogers [14])

Identity A.60 (Rogers [14]) Theorem 3.2
Identity A.61 (Rogers [13]) (1) (2)
Identity A.80 (Rogers [14])

Identity A.81 (Rogers [14]) Theorem 3.3
Identity A.82 (Rogers [14]) (1) (2)
Identity A.117 (Slater [18])

Identity A.118 (Slater [18]) Theorem 3.4
Identity A.119 (Slater [18]) (1) (2)
Identity A.21 (Slater [18])

An identity (McLaughlin et al. [12, Eq. (2.5)]) Theorem 3.5
An identity (Bowman et al. [6, Thm. 2.7]) (1) (2)

TABLE 1. One-parameter generalizations of Rogers-Ramanujan type identities
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Proof. The identities A.8 and A.13 in Slater’s list are stated as follows.

Identity A.8 (Gauss-Lebesgue [11]):

i (=@ @)ng" "2 _ (g0 2.2)
= (¢ D (¢:2)oo
Sills [17] gave the following recursion for P, which converge to the right hand side of (2.2).
Pn:(l—i-qn)Pn,l—i-ann,Q, P,lz(), P():l, P1:1—|—q (23)

Identity A.13 (Slater [18]):

(= 0)a"" V" (¢ | (6P
Z - D) ) (24)
= (¢ Dn (@D (6%

Po=01+¢"YP, 1 +¢"'P, o, P,=0 P=1, P =2 (2.5)

First, we need to shift the index n in (2.3) to let the two recursions coincide with each other.
Letting @Q,, = P,—1 in (2.3), we get

Qn=01+¢"Qn1+¢"'Qu2, Q-1=1 Q=0 Q=1 (2.6)
Thus, P, in (2.5) and @, in (2.6) satisfy the same recursion with different initial conditions, and

converge to the right hand sides of (2.4) and (2.2), respectively. In the following, we use P, in (2.5)
and @, in (2.6) to prove this theorem.

Then consider the following determinant:

142 zq
-1 1+2zq 2¢°
F(z) = -1 14z2¢*> 2¢°

Expanding the determinant with respect to the first column, we get
F(z) = (14 2)F(2q) + 2qF(2¢?).
Setting

F(z)= i anz",
n=0

by comparing coefficients, we have

an = q"an +q" tan—1+ ¢ tan_1,
(1+q¢")q"! (—q; Qng™ " V/?
— ] = e = ao.
" 1—g» ! (4 90)n 0

Since ag = F(0) = 1, iteration leads to
X (. n(n—1)/2
= (¢ @)n

and thus the left hand side of (2.1) can be expressed by F(¢™).

On the other hand, F(z) is the limit of the finite determinant

142 zq
-1 1+zq z¢*

-1 1+ z¢? 2q3

-1 1+ zq"‘2 zq"‘l
-1 14 z¢g"*
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Expanding this determinant with respect to the last row, we get
Dp(2) = (14 2¢" ) Dp1(2) + 2¢" ' Dn-a(2), Do(z) =1, Di(2) =1+ 2.
Then we have
Dinm(q™) = (144" ) Dp—m—1(4") +¢" ' Dp—m—2(q™)- (2.7)
According to (2.5), (2.6), and (2.7), we notice that the sequences (Dy_m(¢™))n, (Pn)n, and (Qn)n
satisfy the same recursion. Set
Dyp—mn(q™) = AP + pim Q.
We can determine the parameters A, and g, using the initial conditions Dy(¢™) = 1, D1(¢™) =
1+ ¢™, and the recursions (2.5) and (2.6), which leads to the evaluations

A — mel
" PQO—l _Pm—lQm7
Pm—l
Hm =

melQm - PQO,1 '
Indeed, we have

PQO,1 - melQm = (_1)mq(7§),
which can be proved by induction on m.

Therefore, we have simpler forms for A, and p,, as follows:
"y

)\m = (_1)mq7( )mela U, = —(—1)mq7(7§)Pm71
Notice that the above analysis has led to
anm(qm) = (_1)mq7(7;)Qm71Pn - (_1)mq7(7;)melQn-
Letting n — oo, we have
F(qm) = (_1)mq7(7g)Qm71Poo - (_1)mq7(7;)Pm71Qoo;
which is equivalent to the following identity

i (=4 D)

o (4 Dn

qn(n+2m71)/2

~ o O CEL=g, -y D= p, g,
Finally, set R;,—1 = Pp—1 — Qm—1. According to (2.5) and (2.6), we have
Rn=004¢""YRm_1+¢" 'R, o, R.1=-1 Ry=1, R, =1.
Therefore, we obtain (2.1) as desired. O
Setting m =1 and m = 0 in (2.1), we get the identities (2.2) and (2.4), respectively.
Theorem 2.2. We have

o) qn2+2mn - Am N Bm (2 8)
(@50 (0,¢5°)(-% ) (6,6%0°)sc(—016%) s’ '

where
Am = _q2m_3Am—1 + Am—27 AO =1, Al =0,
B, = _q2m73Bm71 + Bm727 By = 07 By =1.

Proof. We state the identities A.16 and A.20 in Slater’s list with the recursions given by Sills [17] as
follows.

Identity A.16 (Rogers [13]):
s qn2+2n 1

— : 2.9
(@% a4 (6% ¢°)oo(—02% %) o (2.9

n=0
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Po=(1—-¢+¢""Pi1+¢Pra,  Pi=1 P =1 P=1+¢

Identity A.20 (Rogers [13]):

o] an B 1
D7 =

(da)n (004 6%)se(—0% ) o0
Po=(0-+¢" " )Pi1+¢Pia, Poi=1 P =1 P =1+gq

For the recursion (2.10), letting Q,, = P,—1, we get
Qn=01-¢+¢""")Qn1+¢Qun-o, Qi=1-¢ ' Q=1 Q=1

(2.10)

(2.11)

(2.12)

(2.13)

Therefore, P, in (2.12) and @Q,, in (2.13) satisfy the same recursion with different initial conditions

and converge to the right hand sides of (2.11) and (2.9), respectively.

Consider the following determinant:

1—¢*+2zq ¢
-1 1 —q2 +zq3 q2
F(z):= 1 1—g 4245 ¢

Expanding the determinant with respect to the first column, we get
F(z) = (1 = ¢ + 2q)F(2¢°) + ¢* F(2¢").
Setting

o0
F(z) = Z anz",
n=0
we obtain, upon comparing coefficients,
an = ¢*"an — ¥ Pan + ¢ an 1 + ¢ ay,
— 2

Q2nl a 1= = qn (1+q2) ap
=)0+ @)™ (a1 + @)™
In the following, we show some details for the calculation of ag.

Ap =

F(z) is the limit of the finite determinant

1-¢° +2q 7
1 1—q®+2¢° ¢
1 1— ¢+ 2¢° 2
Dy (z) :=
-1 1— q2 + Zq27L73 q2
-1 1— q2 _|_Zq2n71

Expanding this determinant with respect to the last row, we get

D,(z)=(1- @+ zqzn*l)Dn_l(z) + qun_g(z), Do(z) =1, Di(z2)=1-— ¢+ 2q.

Since ag = F(0) = lim D, (0), according to the recursion (2.14), we have
Dy(0) = (1 = ¢*)Dn-1(0) + ¢°Dn—2(0),  Do(0) =1, D;(0) =1—¢".
Thus, we get the following recursion

Dn(o) - Dn—l(o) = _q2(Dn—1(O) - Dn—2(0))

|
|
—
~—
3
|
1
=)
[\%)
3
[\)
—~
>
=
o
~—
|
5
—~~
(en)
N—
N—

(2.14)
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Then we have -
n_on 1+ (=1)"¢g*"
D(0) = Dy 1(0) + (—1)g2 = ... = LD

1+ ¢?
Finally, letting n — oo in D,,(0), we get
. 1
ap = nh_)rrgo D,(0) = T
Therefore, we have
[e%e] n2
q
F(z)= z",
( ) HZZO (q4,q4)n(1 + q2n+2)

and the left hand side of (2.8) can be expressed by F(¢*™) + ¢*>F(¢*>™*2).
Due to (2.14), we have
Dn—m(qzm) =(1- 7+ qznil)Dn—m—l(QQm) + q2Dn—m—2(q2m)' (2.15)

According to (2.12), (2.13), and (2.15), we notice that the sequences (Dy,—m (¢*™))n, (Pn)n, and (Qn)n
satisfy the same recursion. Set

Dy (™) = A\ P + 11 Q.- (2.16)
We can determine the parameters \,, and g, using the initial conditions Do(¢*™) = 1, D1(¢*™) =
1 —¢* + ¢*™ "1, and the recursions (2.12) and (2.13), which leads to the evaluations

A, = Qm—l
" PQO,1 _})77171627717
Pm—l
Hm =

- melQm - QO,1 '
Indeed, we have
PQO—l - Pm—lQm = (_1)m71q2m717
which can be proved by induction on m. Then we have simpler forms for A, and pu,, as follows:

A = (=1)" ¢ " Q1 i S B (2.17)
Now setting m — m + 1 in (2.16), we get
Dn—m—l(q2m+2) = )\m-l-lpn + Mm-}-lQn'

Thus, we have
P (@®™) + ¢ F(¢*™*?)
= (g% q")n
= (A + P As1) Poo + (b + ¢ Hm+1) Qoo
According to (2.17), we get
A+ @At = (=1)"q 72" (Qm — Qm—1),
pin + @ pimrr = (=1)" g T (P — Pra).

Setting A, = (=1)"¢" 2™ (Qmm — Qm_1), due to (2.13), we have
Ap =2An 1+ yAm—2
=2(=1)"'¢ Qo1 — Qm—2) + y(=1)"¢" " (Qm—2 — Qm—3)
=[(=D"7 1 =Mz + (1) Y Qo + (-1)" T (@ + ) Qs
and

Am = (_1>mq1_2m(Qm - mel)

(=D)™(@ ™ + ¢* 3 = M) Qm—2 + (=1)™(¢* — ¢" ™) Q3.
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Therefore, we get

{ (D)™ M1 = @M + (1) My = (1) ("7 + 7~ ),
(=) (@ +y) = (1) (¢ — 7).
Then

which means that
A = —¢*" 3 A0 1+ Ao, Ag=1, A1 =0.
Similarly, setting B,, = (—1)""1¢*=?™(P,, — P,,_1), we obtain
Bm=—¢""Bpn-1+Bpn2,  By=0, Bi=1.
Thus the above analysis has led to (2.8).
Setting m = 1 and m = 0 in (2.8), we get the identities (2.9) and (2.11), respectively.

Theorem 2.3. We have

(1)
2 _
i (g a*)ng™ ™" ' 7"(¢% 0 00 P)
. - ) . m—1
—= (G2 (45 4*)m—1(¢; @)oo
3 ql’m(—tf,—q4,q6;q6)oo(—q;q2)ooQ 1
m—1»
(45 ¢*)m-1(¢%¢%)
where
Pr=004q+¢" VPu1+(* > =q)Pna  Po=1 Pi=1+gq,
Qm = (1 +q+ qzmil)mel + (q2m72 - Q)meb QO = 0, Ql =1
(2)
2
i (6 a)ng" 2™ (0% =04 0% ") (=07 (654",
(QQ)Q - ( 2 (2. 2) m ( 2) ( ) ms
n=0 b n q7q mqu oo q7q mq7QOo
where

(1 + q + qQM*Q)Am71 + (q2m72 - q)A’m*Qa AO = 15 Al - 17
(14 q+ ¢ ) By_1 + (¢*" 2 — q)By_a, By =0, By =2q.

Am
By,

Proof. The identities A.29 and A.50 in Slater’s list are stated as follows.
Identity A.29 (Slater [18]):

2
i (=¢:¢*)ng" (=4 —4*, 4% ¢%) o0 (—4; ¢*)

= (@92 (4% 4%) oo ’
P'n, - (1+q+q2n71)Pn71 +(q2n72_Q)Pn727 Pfl = _]E—qa PO = 1; Pl = 1+q
Identity A.50 (Slater [18]):
0 n?42n
3 (=@ a*)ng" " _ (6%4"% 4% ¢
n—0 (Q7 Q)2n+1 (Q7 q)oo ’

Po=1+q+¢"")Po1+ (¢ — q)Pn_s, P1=0,P=1 P =14+q+¢"
For the recursion (2.23), letting Q,, = P,_1, we get the recursion

~ L 1
Qn=>014+q+¢"HQn-1+ (> 2 - q)Qn_2, Q-1 = . Qo=0, Q=1

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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The polynomials P, in (2.21) and Q,, in (2.24) satisfy the same recursion with different initial condi-
tions, and converge to the right hand sides of (2.20) and (2.22), respectively.

Consider the following determinant:

l+q+z2g  2q°—q
-1 14+ g+ 24 2q*t —q
F(z) = -1 14+q+2¢° 2¢5—¢q

Expanding the determinant with respect to the first column, we get
F(z) = (L+q+2q)F(2¢%) + (2¢* — ) F(2¢").
Setting

F(z)= i anz",
n=0

we get, upon comparing coefficients,

an = q2nan 4 q2n+lan 4 q2n—lan_1 4 q4n—2an_1 _ q4n+1an7
N G | (=4:))ng™ (1 —9,
(=1 gt (4 @)2n+1
Resorting to the same technique for ag in the proof of Theorem 2.2, we have ag = ﬁ. Thus, we have
X (2 n?
Fiz) =% (—4:4%)nd™ .
n=0 (¢ @)2nt1

We observe that the left hand sides of (2.18) and (2.19) can be expressed by F(¢?™) and F(¢*™) —
qF (¢*™*?), respectively.
On the other hand, F(z) is the limit of the finite determinant

l+q+2q 2¢°—q
-1 1—|—q+zq3 zq4—q
—1 1—|—q-¢-zq5 zq6—q

1 14 q+ 2g?"3 2?2 g
-1 14 q+ 2¢*"~
Expanding this determinant with respect to the last row, we get
Dn(2) = (1 +q+2¢"" ") Dn-1(2) + (2¢*" > = q) Dn—2(2),
Do(z) =1, Di(z) =14 q+ zq.

1

Then we have

Dn—m(q2m) =(1+q+ q2n71)Dn—m—1(q2m) + (q2n72 - Q)Dn—m—2(q2m)' (2.25)
According to (2.21), (2.24), and (2.25), we notice that the sequences (Dy,—m (¢*™))n, (Pn)n, and (Qn)n
satisfy the same recursion. Set

Do (™) = A Py + pm Qi

We can determine the parameters \,, and g, using the initial conditions Dg(¢*™) = 1, D1(¢*™) =
1+ ¢+ ¢**1, and the recursions (2.21) and (2.24), which leads to the evaluations
_ mel
B PQO—l - Pm—lQm7
— P
pim = melQm - QOfl'

Am

Notice that
PQO—l - Pm—lQm = —qm_l((J; q2)m—17
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which can be proved by induction on m. Then we have simpler forms for \,, and u,, as follows:
1-m 1-m

q
Qm—1, =
" Him (Q;q2)m—l

L S
(¢ 4*)m—1
Therefore, we obtain Equation (2.18).

Am = — Po_1. (2.26)

Meanwhile, we have

i (=4 ¢*)nq

= (¢ @)2n

n? +2mn

= F(¢*") — qF (¢*""?)

= ()‘m - q/\erl)Poo + (/Lm - q,Uerl)Qoo-

According to (2.26), we get

1-m

(4:4*)m

1-m

Am — qQAmi1 = [Qm — (1= " Q1]

pom = Qi1 = = [P — (1= ¢ 1) Pyl

G 4%)m
Setting A, = ¢ [Qm — (1 — ®™ HQm-1] and By, = ¢* [Py, — (1 — ¢ 1) P,_1], we get
Equation (2.19) as desired. O
The identities (2.20) and (2.22) are the special cases of (2.19) and (2.18), respectively.
Theorem 2.4. We have

o0 n2+2mn m,m—m? m . m—m?>
3 (=¢:@*)ng” 2™ (=)™ Qo1 (=1)™g 1 (2.27)
(a% %)  (4,4%47¢%) (@%,¢% 0% %) '

n=0

where
Pp=04+¢"YP, 14 ¢ 2P, o, P1=0, Ph=1, P=1+g,
Qm=01+¢""Qm-1+ " *Qm-2, Q-1=1 Qo=0, Q=1

Proof. We use the identities A.34 and A.36 in Slater’s list to prove the theorem.

Identity A.34 (Slater [18]): The analytic version of the second Gollnitz-Gordon par-
tition identity.

i a2 ! (2.28)
= (@) (@*,¢*, 6% ¢*)’
P,=04+¢"™NP, 1 +¢*"P,_,, P,=0,P=1 P =1+¢" (2.29)

Identity A.36 (Slater [18]): The analytic version of the first G6llnitz-Gordon partition
identity.

> 2 n?
—¢: %) 1
Z( q;q)zq = 4 7.8 (2.30)
= (%) (¢,0% 4" ¢%)c
Po=0+¢"YHYP, 1 +¢" %P, s, P,=0 P=1 P =1+gq. (2.31)
For the recursion (2.29), letting Q,, = P,_1, we get the recursion
Qn=01+¢"Qn1+¢"?Qu2, Q1=1,Q =0, Q=1 (2.32)

Therefore, P, in (2.31) and @, in (2.32) converge to the right hand sides of (2.30) and (2.28),
respectively. In the following, they are used to prove this theorem.

*There is a typo in the recursion of Identity A.34 given by Sills [17]. In [4], Andrews et al. pointed out this recursion
by considering a special case of the Al-Salam/Ismail polynomials [1].
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Consider the following determinant:

1+ zq 2q?
-1 1+ 2¢3 z2q*

F(z) = -1 142¢° 248

Expanding the determinant with respect to the first column, we get
F(2) = (1 +2q)F(2¢%) + 2¢° F(2¢").
Setting
F(z)= i anz",
n=0

we get, upon comparing coefficients,

a, = q2nan + q2n—lani1 + q4n—2an71,
_ _ 2
_ (1+q2n l)q2n la R (_q;q2)nqn o
" 1—g™ " (4% ¢*)n

Since ag = 1, iteration leads to
= (=4 42)ng”
F(Z) = Zn7
HZ:O (% ¢%)n
and thus the left hand side of (2.27) can be expressed by F(¢*™).
On the other hand, F(z) is the limit of the finite determinant

14 2q 2q>
—1 1+ z¢® zq*

-1 14 z¢° 2q®
Dy (z) := .
-1 1 4 Zq2n73 Zq2n72
-1 1+Zq2n71
Expanding this determinant with respect to the last row, we get

Dp(2) = (14 2¢>" 1) Dy 1(2) + 2¢*" 2D,y 5(2), Do(z) =1, Di(z) =1+ 2q.
Then we have
Dn—m(q2m) =(1+ q2n_1)Dn—m—l(q2m) + q2n_2Dn—m—2(q2m)'
Therefore, we set
Dy (6®™) = AP + 1m Q.-
Using the initial conditions Dy(¢*™) =1 and D;(¢*™) = 1 + ¢*™+1, we get
h — mel
" PQO—l _Pm—lQm7
_ P
Him = Pm—lQm - PQO—l '

Indeed, we have
2
PQO,1 - melQm = (_1)mqm 7m7
which can be proved by induction on m. Then we have simpler forms for \,, and u,, as follows:
—777,2 m m—m2
Am = (_1)mqm Qm—lu MHm = _(_1) q m—1-:
Equation (2.27) is proved.
The identities (2.28) and (2.30) are the special cases of Equation (2.27).
Theorem 2.5. We have
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2
o g2 2mn ¢ ¢ 0567 (6400 ),
§ : - .2 . m—1
= (¢4)2n+1 (45 4*)m—1(¢; @)oo

(4,47, 4% %) (0%, 0" ¢1%) o
- Qm 1,

(456 m-1(¢; @)oo

where

Pp=01+4q)Pu1+ (" ?=q)Pna  P=1 P =1,

Qm = (1 + Q)Qm—l + (q2m_2 - Q)Qm—27 QO = 07 Ql =1.

(2)
2@ (47 6% 4%) oo (65,05 ¢10) oo (¢*,4°, 4% ¢*)oo(d®, 4" ¢
Z - 2 Am — 2
— (€02 (45 0*)m (@3 D)o (45 @*)m (@3 @)oo
where
A = ( + q)A’mfl + (q2m_2 - q)AfTL*Qv AO - 1; Al - 15
Bpn=(14q)Bn-1+ (""" *=q)Bm—2, By=0, Bi=q.

Proof. We use the following identities A.38 and A.39 in Slater’s list to prove the theorem.

Identity A.38 (Slater [18]):

P (856508 (@ 0 )
; D2nt1 (¢ @)oo 7
Pyo=1+q)Pu1+(¢* —q)Pna, P.1=0, P=1 P=1+gq.
Identity A.39 (Jackson [10])'
i (0:4", 4% ¢%) (4", 4" ¢"%) 0
— (¢;9)2n (45 9)oo ’
Po=0+4q)Py 1+ ("% —q)Py o,  P,= _1%1’ Po=1, P =1

For the recursion (2.36), letting Q,, = P,_1, we get the recursion

Qn=(14q)Qn-1+ ("> = q)Qn2, Q1= 71— T Qo=0, Q=1

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

Therefore, P, in (2.38) and Q,, in (2.39) satisfy the same recursion with different initial conditions,

and converge to the right hand sides of (2.37) and (2.35), respectively.
Consider the following determinant:

1+q z2¢*—¢
-1 1+q¢ z¢*—g¢q
F(z) = -1 1+q 2¢°—¢

Expanding the determinant with respect to the first column, we get
F(z) = (L +q)F(2¢%) + (2¢° = @) F (2q").
Setting

oo
= E anz",
n=0
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we get, upon comparing coefficients,

an = q2nan + q2n+lan + L]47z—2(;’J7171 _ q4n+1a

noy
_ 2
q4n 2 q2n (1 _ q)

p1 ="+ = ———>qyp.
(1—g?)(1—g>t)"" (@ @)2n+1
Since ag = 1%(1, iteration leads to

Qp =

e 2n?

F(z) = Z qiz”,

n=0 (¢ @)2n+1

13

and thus the left hand sides of (2.33) and (2.34) can be expressed by F(¢*™) and F(¢*™)—qF(¢*™*2),

respectively.

On the other hand, F(z) is the limit of the finite determinant
l+q 2¢°—q
-1 1+q z2"—q
-1 1+q 2¢°—q

-1 1+q Zq2n72 —q

-1 1+¢q
Expanding this determinant with respect to the last row, we get

Dp(2) = (1 +q)Dp_1(2) + (2¢*" % = ) Dy _2(2), Do(z) =1, Di(z) =1+gq.

Then we have

anm(q2m) = (1 + Q)anmfl(q%n) + (q%iz - Q)anmfZ(‘fm)-
Therefore, we set
anm(q2m) =Py + ,Uan-

We can determine the parameters \,, and g, using the initial conditions Do(¢*™) = 1, D1(¢*™) =

1+ ¢, and the recursions (2.38) and (2.39), which leads to the evaluations
N Quo
PQOfl - melQm7
_ P
o P 1Qum — PuQu1’

We get
PrQm-1—Pn1Qm = —qm_l((J; q2)m—17
which can be proved by induction on m. Then we have

1-m 1-m
q

mela HUm = 7( d mel-

Am = —
" 442 )m—1

(¢:4*)m—1
Therefore, Equation (2.33) is proved.

Furthermore, we have

o 2n2+2mn

q

:F 2my F 2m—+2
2 G (™) = qF(g™"")

= ()‘m - q)‘m-i-l)POO + (Mm - qlum-i-l)Qoo-

According to (2.40), we get

1-m

Am — q)\m-i-l = (q

_ _ 2m-1
) [Qm —(1—¢ )Qm—1],

q m—
Hm — qfim+1 = —r[Pm - (1 - q2 1)Pm—1]-

(2.40)
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Setting Am = ql_m[Qm - (1 - q2m_1)Qm—1] and Bm = ql_m[Pm - (1 - q2m_1)Pm—l]u we obtain

Equation (2.34).
The identities (2.35) and (2.37) are the special cases of (2.33) and (2.34), respectively.

Theorem 2.6. We have

(1)

00 qn2+2mn B q17771(q47 qﬁ7 qIO; qlo)oo(q27 qIS; qQO)OOP )
m—

(Q; Q)2n+1 ((L q)oo
B ql"”(q87q12,q20;q2o)oo(—q;q2)ooQ 1
(4% 6%) oo "

n=0

where
Pp=0+4q+¢" )P 1—qPna  Pi=1 B=1 P =1+g,
Qm=04q+ " NQm-1— qQm-—2, Q-1=-q¢"' Q=0 Q=1

(2)
2
=g 2 (68,012,6%% %) oo (— 45 %) o (¢*,4% ¢" 4" (¢, 4% ¢*%) e
- 2. 2 Am = Bm,
= (@92 (4% ¢*)oo CHAES
where

Ap =1+ q+ " ) Apor —qAn—2,  Ao=1, A =1,
Bpn=(1+q¢+¢"" ) Bn-1-qBm-2,  Bo=0, Bi=g¢.
Proof. The identities A.79 and A.96 are stated as follows.

Identity A.79 (Rogers [13]):

2
i " (%4 %) (-4 ¢%)
= (@:9)2n (4% ¢%)oo ’

Po=Q04q+¢" )Pi1—qPy2, Py=1 P=1 P =1+gq.
Identity A.96 (Rogers [13]):

2
i 7 (6%,4% 0% ") (62,42 ¢%) o
(

4 qQ)2n+1 (45 9)o

)

n=0
Po=1+q+¢"™P,_1 —qPyo, P1=0,P=1 P =1+q+¢.

For the recursion (2.46), letting Q,, = P,_1, we get the recursion

Qn=010+q¢+¢" NQn-1—-9Qn—2  Q1=—q"' Q=0, Q=1

O

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

The polynomials P, in (2.44) and @, in (2.47) satisfy the same recursion with different initial condi-

tions, and converge to the right hand sides of (2.43) and (2.45), respectively.

Consider the following determinant:

1+qg+2q —q
-1 1+q+2¢3 —q

F(z) = -1 1+q+2¢° —q

Expanding the determinant with respect to the first column, we get

F(z) = (14 q+ 2q)F(2q°) — qF (2q").
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Setting

F(z)= i anz",
n=0

we get, upon comparing coefficients,

an = q2nan + q2n+1an + q2n71an71 _ q4n+1an7
_ 2
o — ¢! PR Gl Gl Y
n — n—1 = = .
(I—¢*)(1 =gt (4 @)2n+1

Since ag = 1%(1, we have
[e%e] n?

F(z)= Z qiz”,

n=0 (¢ @)2nt1

15

and thus the left hand sides of (2.41) and (2.42) can be expressed by F(¢*™) and F(¢*™)—qF(¢*™*2),

respectively.

On the other hand, F(z) is the limit of the finite determinant

14+qg+2q —q
-1 14+q+2¢° —q
-1 14+q+ 2¢° —q
Dy (z) = . .
-1 1+q+zq2n73 —q
1 1+q+zq2n71

Expanding this determinant with respect to the last row, we get

D,(z)=(1+q+ zq2"_l)Dn,1(z) —qDy—2(2), Dy(z) =1, Di(2) =1+ q+ 2q.

Then we have

Dim(@®™) = (14 q+ ¢ ") Din-1(¢*") = aDn—m—2(¢*").
Therefore, we set

Dy (*™) = M P + 11 Q.

According to the initial conditions Dg(¢*™) =1 and D1(¢*™) =1+ q + ¢*™*!, we have
_ Qm—l
B PQO—l - Pm—lQm7
_ P
Him = melQm - PQOfl '

Am

Indeed, we have
PQO,1 - melQm = _qul,
which can be proved by induction on m. Then we have
)\m - _qliQOfla Hm = qlimpmfl-
Therefore, we obtain Equation (2.41).

Furthermore, we have

s qn2+2mn ) 2
——— =F(@") —qF (™"
= (69)2n @) ( )

= ()‘m - q)‘m-i-l)Poo + (Mm - qlum-i-l)Qoo'

According to (2.48), we get
Am — q>\m+1 = qlim(Qm - mel)v
fom = Qpm+1 = —q" " (P — Pr—1).-

(2.48)

Setting A, = 17" (Qm — Qm—1) and By, = ¢'~"(P,, — Pm—1), we obtain Equation (2.42). 0O
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The identities (2.43) and (2.45) are the special cases of (2.42) and (2.41), respectively.

Theorem 2.7. We have

(1)
0 p? m n —m
v B S Ut Y it LU R W SO P
= (@ q)2nt1 (¢ 0)oo "
—m 9 ~10. ,10 8 12. 20
R Y T R P U T )oopmil, (2.49)
(4:9) 0
where
Prn=0+4q+¢")Pn1—qPn2  P1=0,P=1, P=1+q+d,
Qm=047+¢"")Qm-1—qQm—2,  Q1=1 Q=1 Q=1+
(2)
g D (.6, 0" ¢ ) e (65,642 0o (.47 "% ") se (¢, 4"% ¢*")
= A — B, (2.50)
= (Gq)2n (45 0)oo (¢ 4)os
where
An=0+q+¢@" A1 —qAm 2,  Ag=1, A1 =1+gq
Bm=00+q+¢" ")Bn-1—qBm—2,  Bo=0, Bi=gq.
Proof. We state the identities A.94 and A.99 in Slater’s list as follows.
Identity A.94 (Rogers [13]):
oo n?4n 3 7 .10. .10 4 16. .20
Z q :(Q7Q7q yq )oo(Qaq 7 q )oo’ (251)
= (6 @)2n+1 (¢ 0)oc
Po=(04q+¢")Poo1 =P, Po1=0, =1, PL=1+q+¢". (2.52)
Identity A.99 (Rogers [13]):
®©  niin 9 _10. ,10 8 12. .20
34 _ (000750 )07 077547 oo (2.53)
= (¢:9)2n (¢ 4)oc
Qn=04¢+¢")Qn1—qQn2  Q1=1, Q=1 Q1=1+¢" (2.54)

Consider the following determinant:

1+ g+ 2¢? —q
-1 1+q+2¢* —q
F(z) = -1 1+q+2¢° —q

Expanding the determinant with respect to the first column, we get
F(z) = (L +q+ 2¢°)F(2¢%) — qF (2q").
Setting

F(z)= i anz",
n=0

we get, upon comparing coefficients,

2n+1 4n+1 an

an = ¢"an + " Man + ¢*an—1 — q

)

2
" " (1 —q)

a]n71 = e e e — 7a0'
(1—¢?")(1 — g2 t1) (¢ 9@)2n+1

Ay =
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Since ag = 1q we have
oo n’+n
q

Flz)= ,;) (¢ D2nsr

2n+1

n

and thus the left hand sides of (2.49) and (2.50) can be expressed by F(¢*™) and F(¢*™)—qF(¢*™"2),
respectively.

On the other hand, F(z) is the limit of the finite determinant

1+q+ 2¢° —q
-1 14 q+ 2¢* —q
-1 14 q+ 2¢° —q
-1 1+q+zq2n72 —q
-1 14 g+ z¢™

Expanding this determinant with respect to the last row, we get
Dp(2) = (14 q+ 2¢*")Dy—1(2) — ¢Dn—o(2), Do(z) =1, Di(z) =14 q+ 2¢*.
Then we have
anm(q%n) =(1+qg+ q2n)anmfl(q2m) - an7m72(q2m)-
Set
Dy (*™) = M P + 11 Q.

Using the initial conditions Dg(¢*™) =1 and D1 (¢*™) = 1 + ¢ + ¢*™2, we get

Qm-1
PQOfl - melQm7
_ P
fom = Pp1Qm — PnQm-1

Am =

Indeed, we have
PQO—l - Pm—lQm = qm
which can be proved by induction on m. Then we have simpler forms for \,, and u,, as follows:
Am = ¢ "Qm-1, pm = —q " Pp1. (2.55)
Therefore, we obtain Equation (2.49).

Furthermore, we have
X n +(2m+1)n

S = F(@®) - aF (")

n—0 q q 2n
= (/\m - q/\erl)Poo + (/Lm - q,Uerl)Qoo-

According to (2.55), we get
Am = @QAmy1 = —¢ " (Qm — Qm—1),
fm = Qpny1 = ¢ " (P = Pr1).
Setting A, = ¢ ™(Pm, — P—1) and By, = ¢ ™(Qm — Qm—1), we get Equation (2.50). O
The identities (2.51) and (2.53) are the special cases of (2.49) and (2.50), respectively.
Theorem 2.8. We have

(=g ¢})ng™ T2 (qﬁ;qﬁ)
nz:% (@5a)n (a5 a)m-1(0% 0% (3, ¢%; ¢ )ooAm
_(%,6%,d%d%) ( 1 4%)oo
(=% ¢*)m-1(0*¢%) 0 Bom, (2:36)
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where
Am = _q2m73Am—1 + (1 + q2m74)Am—27 AO = 07 Al = 17
B,, =

_ i 1
—®" 3B 1+ (1 4+ ™ YBy s,  By= —5 Bi=

Proof. The identity A.25 in Slater’s list is stated as follows:
Identity A.25 (Slater [18]):

(a*;q*)n B (%:¢%)

Sills [17] gave the following recursion for (2.57).

2
i(—q;qz’)nq” (6%, 4% %) oo (—0: %) o

n=0

2

Po=(-@F+¢@" HP 1+ (P +¢*" )Py o, P_,= T PB=1 P=1+q

1+ g2’
Recently, McLaughlin et al. [12] found a partner to Equation (2.57).
An identity (McLaughlin et al. [12, Eq. (2.7)]):
i (=4:)ng™ 2" _ (4% ¢%) o

(7% ¢*)n (@ 0" oo (@, 0% ')

n=0

For this identity, we also have

Qn = (1 - q2 + q2n_1)Qn—1 + (q2 + q2n_2)Qn—27

(2.57)

(2.58)

(2.59)

(2.60)

where P, and @, converge to the right hand sides of (2.57) and (2.59), respecitively. The initial

conditions for @, is given in the following analysis.
Consider the following determinant:
1—¢*+2¢ ¢ +2¢°
-1 1—¢+z2¢* ¢ +z¢*
F(z):= 1 1— @424 @+2¢°

Expanding the determinant with respect to the first column, we get
F(z) = (1= ¢* + 2q)F(2¢%) + (¢° + 2¢°) F (2¢").
Setting

F(z)= i anz",
n=0

we get, upon comparing coefficients,

an = q2nan _ q2n+2an + q2n71an_1 + q4n+2an + q4n72an—17

" (IL+¢ et (—4:¢*)nd” (1 + ¢%) "
= 1= = 0-
n (1= @) (1 + 2" 2) n (% qV)n (1 + ¢27F2)
Since ag = ﬁ, iteration leads to
oo 2 n?
—4,9°)nq
F z) = Zn7
( ) nzzo (q4; 4)71(1 + q2n+2)

and thus the left hand side of (2.56) can be expressed by F(¢*™) + ¢*>F(¢*™+2).
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On the other hand, F(z) is the limit of the finite determinant

1—¢+z2q ¢ +2¢
_1 1_q2+zq3 q2+zq4
-1 1_q2+zq5 q2+zq6
Dn(z) := : . .
-1 1_q2+zq2n73 q2+zq2n7
1 1— %+ 2g>" 1

Expanding this determinant with respect to the last row, we get
Dn(2) = (1= ¢* +2¢*" ") Dp—1(2) + (¢° + 2¢°" ") Dn—2(2),
Do(z) =1, Di(2) =1—¢° + zq.

Then we have

2

anm(QQm =(1- q2 + q2n71)anmfl(q2m) + (q2 + q2n72)Dn7m72(q2m)-

) =(
Noticing that Q is F(¢?) + ¢*F(¢*), we have
Qn = Dn-1(¢") + ¢*Dn—2(g").
then we get the initial conditions for @,: Qo =1/2 and @1 = 1.

Since the sequences (D, (q?

anm(q2m) =Py + ,Uan-

According to the initial conditions Do(¢*™) = 1 and D;(¢*™) = 1 — ¢* + ¢*™*!, we have

A — mel
" PQO—l _Pm—lQm7
Pm—l
Hm =

B melQm - QO,1 '
Indeed, we have

PQO,1 - melQm = (_1)mq2m72(1 - Q)(_qQa qz)m727
which can be proved by induction on m.

Therefore, we have simpler forms for A, and p,, as follows:

"™V, (Pn)n, and (Qn)n satisfy the same recursion, we set

—1)m 2—2m —1)m 2—2m
)\m: ( ) q2 D) Qm—lu Hm = — ( ) q2 2 Pm—l-
(1= a)(—=4%*¢*)m—2 (1= a)(—¢%q*)m—2
Moreover, we observe that
St L2 n2+2mn
—4q;49" )nq m m
> ( (q4)'q4) = F(¢°™) + ¢*F(¢*™?)

n=0

= (/\m + qz/\erl)Poo + (/Lm + q2ﬂm+l)Qoo-

According to (2.61), we get

(_l)mq272m

(1= )(=4%¢*)m—1
(_l)mq272m

1 —q)(—¢%¢*)m-1

/\m + q2/\m+1 = - [Qm - (1 + quiz)mel]v

Mom, + qz,uerl = ( [Pm - (1 + q2m72)Pm71]'
Setting
2_2m[Pm -1+ q2m_2)Pm—1]/(1 —-q),

= -1y
- 272m[Qm -1+ q2m72)Qm—1]/(1 -q),

Am q
B =(=1)"q
we get Equation (2.56).

The identities (2.57) and (2.59) are the special cases of (2.56), respectively.

19

(2.61)
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In [19], Warnaar constructed some extensions of multisum Rogers-Ramanujan identities. Notice
that Equation (2.34), Equation (2.42), and Equation (2.50) are the special cases of the second displayed
equation’ on page 389 in [19]. By setting 0 =1,k =2,and i’ =1 (6 =0, k=2, and ' =2 or o = 0,
k =2, and i = 1) in Warnaar’s equation, and resorting to some manipulations, we can get closed
form expressions for the polynomials A4,, and B,, in Equation (2.34) (Equation (2.42) or Equation
(2.50)).

3. GENERALIZATIONS OF IDENTITIES WITH FOUR-TERM RECURSIONS

In this section, we apply the determinant method to the Rogers-Ramanujan type identities with
the four-term recursions of the polynomials which converge to the right hand sides of the identities
in [17]. Moreover, we generalize some new identities in recent papers [6,12]. During the calculation,
some properties of determinants are used to simplify the identities.

Three identities are used to prove each theorem. For convenience, we give the same recursions for
the polynomials P,, @, and R,, by shifting the index of the recursions given by Sills in [17], like the
way we have done in the previous section, where P,, Q,, and R,, converge to the right hand sides of
the identities in Slater’s list .

Theorem 3.1. We have
(1)

2
i g?n F2mn _"M@0,6% 450 , N ¢ "M% 050 )
= (0% 4% n (=4 @)2n+1 (4% 4%)oo " (4% q?) "
-m(,3 4 7.7
"¢, q"q"5q )OOCW (3.1)

(4% 4%) o

where

Am = _(1 + q2m74)Am—1 + q2Am—2 + qum—37 AO = —q, Al =4q, A2 = —q,
B =—1+¢"*"Bym-1+¢Bm-2+ ¢*Bm-_3, By=0, By =0, By =q,

Cm = _(1 + q2m_4)cm—l + q2cm—2 + QQCm—3, CO = 1, Cl = 0, Cg =0.

(2)
> 2n>+2mn 6 ,7.,7 2 5 4T 7 3 4 7.7
P _ (q,qéq(;q Jop 4 10,734 Joo p (4 LRUEL Jo (3.2)
= (@ P In(—G @)2n (0% ¢*) oo (4% ¢*) oo (0% ¢%) o
where
Em=—(q+¢" )En-1+ Em 2+ qEn_3, Ey=0, E1 =0, E» =g,
Fm:_(q+q2m_3)Fm—l+F —2+qu—37 F0:07 Flzlu F2:_q7
Gm ==+ " °)Gm-1+GCGm—2+qGm_3, Go=1, G1 =0, G2 =1.
Proof. The identities A.31, A.32, and A.33 in Slater’s list are stated as follows.
Identity A.31 (Rogers [14] and Selberg [16]): The third Rogers-Selberg identity.
> n242n
> ¢t _ (9.¢% 44N (33)
(00 (— ¢ @) 2nt (6*6%)oc

Po=(1-qg—-)Pr1+ (@ -+ +q)Pr2+¢*Py_s,

In this equation, “odd” should be replaced by “even” and the first g*% on the right hand side should not be there.
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2 4

Identity A.32 (Rogers [13] and Selberg [16]): The second Rogers-Selberg identity.

i q2n2+2n (q2 q5 q7'q7) (

— 9 9 b OO, 3'5
= (%) (=4 q)2n (4% ¢*)oo )
Qn=01-¢-)Qu-1+ (" -+ +q)Qn-2+ ¢ Qn_s,

Qozlu lelu Q2:1+q4 (36)

Identity A.33 (Rogers [13] and Selberg [16]): The first Rogers-Selberg identity.

00 2
3 " _ (@.¢" 40 ) (3.7)
= () (=4 q)2n (@*¢*)

Ry=01-q¢-¢)Ru1+(¢*" — > +¢" + Q) Ru—2 + ¢’ Ry,
Ro=1,Ri=1+¢* Ro=1+¢—¢> (3.8)
The polynomials P,,, @, and R,, converge to the right hand sides of (3.3), (3.5), and (3.7), respectively.

Consider the following determinant:

1-q-¢ 2 - +d*+q ¢
-1 1-q—¢ 2" — ¢ +d*+¢ ¢

F(z) = -1 l—q—¢ -+ +q ¢

Expanding the determinant with respect to the first column, we get
F(2) = (1—q—¢")F(2¢*) + (26> = ¢’ + ¢° + @) F(24") + ¢° F(2¢°).
Setting

F(z) = i anz",
n=0

we get, upon comparing coefficients,

an = q2nan _ q2n+1an _ q2n+2an 4 q4n72an71 _ q4n+3an 4 q4n+2an 4 q4n+1an 4 q6”+3an,
_ 2
" ¢'"? U Sl o (G
B e I e [C e I (@ a*)n (=4 @)2n+2
Since ag = WM, we have
o q2n2
F(z)= 2"
HZ:O (*; @%)n (=4 D)2nt2
Thus we get
St q2n2+2mn ) ) 2
=F@")+aF(@™), (3.9)
,;J (4% ¢*)n (=4 @)2nt1
> g 2 2 2 2m+2 3/ 2m+4
=F(@™)+ @+ )F(@™ ) + ¢ F(g™). (3.10)
nz:% (4% @*)n (=43 @)2n
On the other hand, F(z) is the limit of the finite determinant
1-g—¢ 2 —*+¢°+¢ ¢
-1 l—g—g° 2" —®+ % +q @
Dn(z) = . . -
-1 1_q_q2 Zq2n72_q3+q2+q

-1 l—q—¢?
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Expanding this determinant with respect to the last row, we get
Dy(2) = (1= ¢~ ¢*)Dno1(2) + (207" = ¢ + ¢* + @) Dy—2(2) + ¢* Dy—3(2),
Do(z) =1, Di(z) =1—q—¢°, Da(2) =1—q+ ¢’ +q" +2¢°.

Then we have

Dy (@) = (1 = ¢ = @) Dnm(@®™) + (¢*" = ¢* + ¢ + ) Drem1(*™) + ¢’ Dmm—2(4*™).
Since (Dy—m+1(¢*™))ns (Pu)n, (Qn)n, and (R,), satisfy the same recursion, we set
Dy mi1(@®™) = An P + i Qun + v Ry
Using the initial conditions Do(¢*™) = 1, D1(¢*™) = 1—q—¢?, and Do (¢*") = 1 —q+¢*+¢* +¢*™ 12,

we have
1 Qm—l Rm—l
l—q—¢ Qm  Rnm
N RS P+ + P Qmir R
" mel mel Rmfl ’
Pry1 Qmy1 Ryt
mel 1 Rmfl
Pm 1- q— q2 Rm
Puii 1—=q+@+¢"+¢" Ry
Hm = )
Pm—l Qm—l Rm—l
Pm+1 Qerl Rm+1
Pm—l Qm—l 1
Pn  Qm l—qg—¢°
Pryi Qmir 1—q+ ¢ +¢* + "2
VU =
mel mel Rmfl
Pm+1 Qerl Rm+1
Indeed, we have
Pm—l Qm—l Rm—l
Pn Qun R, |=-¢"" (3.11)
Pm+1 Qerl Rm+1

The proof of (3.11) is by induction on m. The case m = 0 is trivial.

P Qo Ro
P Q1 R |=-¢".
P, Q2 R

The recursions (3.4), (3.6), (3.8), and some properties of determinants are used in the following

induction step.

P, Qm R
Ppnii Qmtr Rmta
Pm+2 Qm+2 Rm+2
P, Qm R,
= ‘ Prga Qm+1 Rpt1
(1-¢—¢)Pnt1 (1-=¢=¢)Qm+1 (1—q—¢")Rms1
P, Qm R
+ Py Qm+1 Rpia
@ =@+ P+ )P (P HC+)Qm (P = + ¢+ Q)R
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P Qm R

+ Pm+1 Qm+1 Rm+1
qSP'mfl qSmel qSRmfl
mel mel Rmfl
= q3 P Qm Rm
Pm+1 Qerl Rm+1

Therefore, we have simpler forms for A, tm,, and v, as follows:

1 mel Rmfl
l—qg—¢° Qm  Rnm
1—q+ @ +¢"+¢*""? Qni1 Rn
o 4+4q +gq q3m+2 Qm+1 1| (3.12)
q
mel 1 Rmfl
P l1-q—¢° R
Ppy1 1—q+@E+¢*+¢ Ry
Hm = — q3m+2 ?
Pm—l Qm—l 1
Pn  Qm 1—qg—¢°
| Pt Qi 1—q+ ¢+t + 7T
Vm = — Fmre
According to (3.9) and (3.10), by setting
Am = qm()\m + q2)‘m+1)7 Em - )\m + (q + q2))\m+1 + q3)\m+27
B = q™ (m + ¢ pm11), and Fo = pim + (0 + @) pims1 + P lim2,
Cm = qm(ym + q2Vm+1); Gm = Vm + (q + qz)Verl + q3Vm+2;

we have

St 2n2+2mn

=q¢ "ApPs+ ¢ " BnQoo + ¢ "Ciy R,

q
(q2; q2)n(—Q; Q)2n+1

n=0
2n2+2mn

4
nz:: (% ¢*)n(=4; @)2n

In the following, we only present the calculation for A,, = ¢™ (A + ¢*Amt1). Others are similar.
According to (3.12), using the same technique in the proof of (3.11), we have
Ay = qm()‘m + q2)\m+1)

1 mel Rmfl
1- q Qm Rm
1=+ @+ ¢ Qmir Rmpa
= 22

0 Qm72 Rm72
1 mel Rmfl
1- q Qm Rm
q2m71

Then we calculate A,,—1, A2, and A,,_3. Letting the last two columns in the determinants of
Ap—1, Apm—o, and A,,_3 be the same as those of A,,, we set A, = xAp—1+YyAm_o+ 2zA;_3. Solve
the equation, we get

Ap =14+ MNA 1 + P Ao+ P A, 3.
Using (3.12) and the initial conditions of P,, @, and R,,, we have Ag = —¢, A1 = ¢q, and Ay = —q.
Following the same way, we calculate the recursions of B,,, Cy,, En,, Fy,, and G, in turn. Then we
obtain (3.1) and (3.2). O
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Notice that (3.3) is a special case of (3.1), and (3.5) and (3.7) are the special cases of (3.2).

Theorem 3.2. We have

(1)
i gt (q2,q12,q14;q14)oo/\ (¢* ", ¢ ¢") o
(0% ) n+1(0 O (45 @)oo (¢ 4)oc
6 8 14. 14
n (@°,¢°, 9% q )ooym’ (3.13)
(43 9)oo
where
A= 1+ 1 +¢ N2 — ¢ Ans, M=¢g A\ =0 \=1,
i =1+ ¢" D ptm-1+ ¢ -2 — 0 pm—z, o =0, g =1, pp =0,
Um =0+ ¢" 1+ ¢ W2 — ¢ s, =1, 11 =0, vy =0.
(2)
s n +mn 2 12 14. 14 4 10 ,14. .14 6 .8 14. 14
Z :(Q7q ,q4 54 )OOEm-i-(q,q 47754 )OOFm+(Q7Q7q 5 q )oon’ (314)
— ( @ @)n (45 @)oo (45 @)oo (¢; @)oo
where

Em - (1 + qmil)Emfl + qu72 - qufb’a EO = 07 El = —q, E2 = —q— q27
Foo=0+¢" " )Fn1+qFn2—qFns, =0, F1=0 F,=-
Gm=14+¢"""Gm-1+qGm-2— qGpn_3, Go=1 G1=1, Go=1+g¢.

Proof. The identities A.59, A.60, and A.61 in Slater’s list are stated as follows.
Identity A.59 (Rogers [14]):

oo n2+2n

2 12 14,14
Z 2(1 _ (q yq 7,49 754 )007 (315)
(G P2 (G O (¢ 9)o
Pn: n,1+(q+qn)Pn,2—an,3, POZO, P1:1, P2:1 (316)
Identity A.60 (Rogers [14]):
o0 n%+4n 4 10 14. 14
Z 2q — (q yqd 4 754 )OO, (317)
(4 ¢*)n+1(4 Dn (4 9)oo
Qn=Qn-1+(q+¢")Qn-2—qQn—3, Q=1 Q1=1, Q=1+q+¢" (3.18)
Identity A.61 (Rogers [13]):
oo n? 6 8 14. 14
Z 2(1 :(Q=Q7q 14 )oo, (3.19)
= (@)l 0)n CHES
Ry=Rno 1+ (q+q")Rn2—qRo3  Ro=1, Ri=1+¢, Ro=1+q+¢" (3-20)

The polynomials P,, Q,, and R,, converge to the right hand sides of (3.15), (3.17), and (3.19),
respectively.

Consider the following determinant:

1 qg+=z¢q —q
-1 1 q+z2q? —q
F(z) = -1 1 q+z2¢> —q
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Expanding the determinant with respect to the first column, we get
F(z) = F(2q) + (¢ + 2q) F(2¢°) — ¢F (2¢°).
Setting

F(z)= i anz",
n=0

we get, upon comparing coefficients,

apn = qnan 4 q2n+1an 4 q2n—1an_1 _ q3n+1a

mnH

2
¢t " (1—-q)

a]n71 T e e e — —ao'
(1 =gt )1 —qm) (45 ¢*)n+1(¢; On

an =

Since ag = 1%(1, we have

F(z) = ZO Wz"

n+l(Q; Q)n
Thus we get
e qn2+mn

—— = F(¢™), 3.21
,;) (45 4*)n+1(g5 @)n (@) (3-21)

oo qn2+mn
— L —F(¢™) —qF(¢™"?). 3.22
HZ:O (436*)n(a; @)n @) @) (3.22)

On the other hand, F(z) is the limit of the finite determinant
1 qg+=2¢q —q
-1 1 q+z2¢> —q

Dp(z) =] : . . .

-1 1 g+ z¢g™ !
-1 1

Expanding this determinant with respect to the last row, we get

Dy (2) = Dp—1(2) + (¢ + anil)anQ(z) —qDn—3(2),

Do(z) =1, Di(z) =1, Da(z) =1+ q+ 2q.
Then we have
Dp—m41(¢™) = Dn—m(q™) + (¢ + ¢") Dn—m—-1(¢"") = ¢Dp—m—-2(¢").
Since (Dp—m+1(4™))ns (Prdns {Qn)n, and (R, ), satisfy the same recursion, we set
Dpmi1(q™) = A Pr + pim@n + Vi Ry

Using the initial conditions Dg(¢™) = 1, D1(¢™) = 1, and D2(¢™) = 1+ ¢ + ¢™*!, we have

1 Qm—l Rm—l Pm—l 1 Rm—l
\ 1+q¢+q™" Qmir Rmn Pryi 1+q+¢™" Ry
m = > Hm = )
Pm—l Qm—l Rm—l Pm—l Qm—l Rm—l
P, Qm Ry, P Qm Ry,
Perl Qm+1 Rerl Perl Qerl Rerl
Pm—l Qm—l 1
P, Qm 1

Pot1 Qmi1 1+gq+qmt
mel mel Rmfl
Pry1 Qmi1 Rmgr
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where
Pm—l Qm—l Rm—l
-1
Pm Qm Rm = (_1)m qmv
Pry1 Qmyr Rnmpr

which can be proved by induction on m. Therefore, we have simpler forms for A,,, tm, and v, as
follows:

0 Qm72 Rm72 Pm72 0 Rm 2
)\m = ( mzl 1 Qm—l Rm—l ) MHm = ( mzl Pm_l 1 Rm 1 R
1 1 @m R, q P, 1 m

Pm—2 Qm—2 0

—1)m
Um = ( ) mel mel 1
Py, Qm 1

According to (3.21) and (3.22), by setting

Em - )\m - q/\m+27
Fin = tm — qptm+2,
Gm = Vm — QVm+2,

we have
St n 24tmn
n:O q;9q n+1 q7 Q)
s n2+mn

= (6% @)n

Letting the last two columns in the determinants of A,;,—1, Ap—2, Am—3 be the same as those of \,,,
we find a linear equation

Am = (1 + qm73))\m71 + qil)\m72 - qilAmfb’-
Using the initial conditions of P,, @,, and R,, we have
/\ozq, )\1:0, )\2:1.

Proceeding in the same way, we get the recursions of i, Vm, Em, Fi, and G,,. Therefore, we obtain
(3.13) and (3.14). O

The identities (3.15) and (3.17) are the special cases of (3.13), and the identity (3.19) is a special
case of (3.14).

Theorem 3.3. We have

(1)
- q” rtzm 2 (6% 6% 67 0o (@ 0 0o (-4 D)oo
= (44%)n+1(0: O (¢ 4)oc
a"(4,4%,07 0 ) oo (0% 4" oo (=45 @)
+ B,
(45 0)o
-m(,3 4 7.7 13. 14 .
L4 (4% 40" ) 004,675 0" ) oo ( q,q)oocm (3.23)
(45 9)o
where

Am = qu,1 + (q + qmil)Am72 - qQAm73a AO = 17 Al = 0; A2 =4q,
Bm =qBm-1+(q+¢" " )Bm-2—¢’Bm-3, By=0, By =0, By =—
Con = qCrm-1+ (¢ +¢" 1 Cm-2 — ¢*Cp_s, Co=0, Ci =¢q, Co=0.
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(2)
i "R (%6470 (@ 4! 0o (=43 D)oo 1,
@6 (¢ @)n (9 )oo
N (4,4%,4":4") o0 (0, 4% ™) (=4 D f,
(45 @)oo
N (@%,4% 470 )00 (2, "5 ¢") o (=49,
(45 9)0 ’
where

Em =Fbm1+ (q + qmil)Em72 - qu73a EO = 0; El = 07 E2 = —
Fm: m71+(q+qm71)Fm72_quf3v F0:17 Flzl, F2:1+Qa
Gm = Gmfl + (q + qm_l)Gm72 - qu73a GO = 0; Gl = —q, GQ == —

Proof. The identities A.80, A.81, and A.82 are stated as follows.

Identity A.80 (Rogers [14]):
i "tV (6 dTd) e (6?0 0o (-0 O
= (6% nt1(a: On CHES

Po=(1+¢")Py1+qPy2—qPu3, Po=1 P =1+4q Po=1+2¢+¢>+¢".

Identity A.81 (Rogers [14]):

0 qn(n+1)/2 5 .9

> _ (@.4°.4"4N) (0%, 6% 4" (-0 O
= (6:0%)n( @)n (43 @)oo ’

Qn=010+4¢")Qn-1+qQn—2—qQn-3 Q=1 Qi =1+¢q Q2=1+q+¢ +¢>

Identity A.82 (Rogers [14]):

> n(n+3)/2

(450 ) e (0,456 ) oo (— 45 @) o

q (
,;3 (@ Pns1 (G @)n (¢;9) oo

R, = (1 + qn)Rnfl + an72 - an73a Ry = 0; R = 1, Ry =1+ q2-

27

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

The polynomials P,, Q,, and R,, converge to the right hand sides of (3.25), (3.27), and (3.29),

respectively.

Consider the following determinant:

14 2¢q q —q
-1 1+ z¢? q —q
F(Z) = -1 1+2q3 q —q

Expanding the determinant with respect to the first column, we get
F(2) = (1+2q)F(2q) + ¢F(2q°) — ¢F (2¢°).

Setting
o0
=2 ",
n=0

we get, upon comparing coefficients,

an = q"an + q"an-1 + " a, — ¢*"ay,,
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Gy, = a Upq1 == —q(n2+n)/2(1 —4) ag
A=t (1 —gr) " (4:4*)nt1(q5 On

Since ag = 1%(1, we have

s (n +n)/2
D
— n+1 q Q)
Thus we get
OO qn(n+2m+1)/2
—— = F(¢"™), 3.31
= (@6 n1(a:On (@) (3:51)
o n (n+2m+1)/2 )
Z = F(q™) — qF (g™ "?). (3.32)

Q>n

On the other hand, F(z) is the limit of the finite determinant

14 2q q —q

-1 1+2¢%2 ¢ —q
Dn(2) =] .. .. :
-1 1+ zq"‘l q

—1 14 zq"
Expanding this determinant with respect to the last row, we get
Dn(z) = (1 +2¢")Dp-1(2) + ¢Dn—2(2) — ¢Dn—3(2),
Do(z) =1, Di(2) =14 2z2q, Da(2) =1+ q+2q+2¢° + 2°¢°

Then we have
Dyem(q™) = (14 ¢")Dn-m-1(¢") + ¢Dn-m-2(¢") = ¢Dn-m-3(¢").
Since (Dp—m (4™ ) n, (Pn)n, (Qn)n, and (R, ), satisfy the same recursion, we set
Dy (@) = APy + pimQn + Vi R

Using the initial conditions Do(¢™) = 1, D1(¢™) = 1+¢™*!, and Do (¢™) = 1+q+q™ 1 +qm 2 4¢>m+3,
we have

0 Qm—l Rm—l Pm—l 0 Rm—l
1 Qm  Rm P, 1 Ry
)\ 1 + qurl Qerl Rerl Perl 1 + qurl Rerl
m = > Hm = s
mel mel Rmfl mel mel Rmfl
Pm Qm Rm Pm Qm Rm
Pri1 Qmi1 Rmia Pri1 Qmi1 Rmia
mel mel 0
Py, Qm 1

Pny1 Qmyr 14¢™!

mel mel Rmfl
Pni1 Qmi1 Rmia

where
Pn1 Qm-1 Rn
Py, Qm Ry, = (_1)m71qm7
Prt1 Qm+1 Rmtr
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which can be proved by induction on m. Therefore, we have simpler forms for A\,,, tm, and v, as
follows:

0 Qm72 Rm72 mez 0 Rm,Q
—1)™ —1)m
)\m = ( mzl 0 Qm—l Rm—l ; Hm = ( mf)l Pm—l 0 Rm—l s
I 1 Qu Rm d P. 1 Ry
Pm—2 Qm 2 0
—_1)ym
Um = ( mzl P Qm 1 0
I Py Qm 1
According to (3.31) and (3.32), by setting
Am = qm)\mu Em = )\m - q)\m+27
B = q" i, and Frm = tim — qpbm+2,
Cm = ¢V, Gm = Vm — @Umy2,
we have
0 qn(n+2m+1)/2
> = AP + ¢ " BuQoc + ¢ " Cr R,
=436 )n+1(0 Dn
0 qn(n+2m+1)/2
=E,Px + Fono +GmBRoo
(@ P)n(g: )
Since

0 Qm72 Rm72
Am = (_1)m 0 Qm—l Rm—l ’
¢ Qm Rn

by letting the last two columns in the determinants of A,,_1, A;—2, and A,,_3 be the same as those
of A,,, we find a linear equation

A = qAm—1 + (@ +¢" ) An—2 — * A3
Using the initial conditions of P,, @,, and R,, we have
A():l, A1:0, A2:q.

Proceeding in the same way, we get the recursions of B,,, Cy,, En, Fi,, and G,,,. Therefore, we obtain
(3.23) and (3.24). O

The identities (3.25) and (3.29) are the special cases of (3.23), and (3.27) is a special case of (3.24).
Theorem 3.4. We have

(1)
i +1q" BRI B UASY It /i) P U il P G L P
= *)ant1 (4% ¢%)oo
™4, 4", 6" 0" oo (012, 1% 6% oo (=4 ¢%) o
(¢%:q )
14 2
e (@5, ¢, 4" ") oo (¢* 7*%) oo q’Q)ow, (3.33)
(¢%:q )oo
where

Am = Amfl + (q2 + q2m74)Am72 - q2Am73a AO = 1; Al = 07 A2 = 07
By = Byt + (6> +¢*" ") Bu—2 —¢°Bu—3,  Bo=0, B =0, By =~
Cm =Cm-—1 + (q2 + q2m_4)Cm—2 - q2Cm—3u CO =, C'1 =, C2 =4q.
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(2)
2
i (6 a)ng" 2™ (¢%0" 0" 0" oo(0%, 07 ) (-0 P)oe
(q' q2)2 - ( 2. 2) m
~ 1 q2)2n 0% %)
N (q,ql?’,q”;q“)oo(q”’,qm;qQS)oo(—q;qz)ooF
(0%:¢%) "
(@°,4%, 0™ 4" oo (0%, 4** 6%®) o0 (— 45 ¢*)
+ - Gm,
(4%:¢%)
where

Ep=qFEn1+(1+¢" Ep_2—qEn_3, Ey=1, Ey=0, B, =1,
Fn=qFn 1+ (0 +¢" YFn2—qFns,  Fo=0, =1, F; =0,
G =qGm_1+ 14+ NG o — qGp_s, Go=0, G1 =0, G2 = —q.

Proof. We give the identities A.117, A.118, and A.119 as follows.
Identity A.117 (Slater [18]):

(@®0%)2n (42:4%) o

)

2
i(—q;(f)nq" (@, 4", 4" 4" oo (6%, %% %) oo (=43 4%) oo

n=0

Po=(1+q-+¢@" NP1+ (*+¢*—q)Pr2—¢*Py_3,
Po=1, Pi=1+¢q, Po=1+q+¢*+¢"

Identity A.118 (Slater [18]):

2
i (—g:a)ng" " (0,400 (0", 4% %) o (=01 ¢°)
"0 (4% ¢%)2n (4% 4% 7

Q=04+ N0+ (P + = )Qn2—Qn_3,
Q=1 Q=1 Q=1+¢

Identity A.119 (Slater [18]):

2
i (= @) nn1d" " (@°0° 0" 0o (0! 4 ) oo (4 6%)
= (?¢%)2mm1 (4% ¢%) ’
Rn = (1 + q— q2 + q2n71)Rn71 + (q3 + q2 - q)Rn72 - qunfiiv

Ro=0, Ri=1, Ro=14q+¢>

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

The polynomials P,, @, and R,, converge to the right hand sides of (3.35), (3.37), and (3.39),

respectively.

Consider the following determinant:

l4g—¢*+2¢ ¢@+¢—q —¢*
-1 l+q—*+2¢*  ¢F+¢*—q —¢*

F(z) = -1 l+q—+2¢° ¢+ —q —¢

Expanding the determinant with respect to the first column, we get

F(z)=(14q—¢ +20)F(2¢°) + (¢* + ¢* — ) F(2¢") — ¢’ F (2¢°).
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Setting

o0
z) = g anz",
n=0

we get, upon comparing coefficients,

— n2
" ¢! 4y == ¢" (1-q)(1+4¢*) o
(I=¢*")(1—g*"+1)(1+¢*"+?) (4% ¢*)n (6 ¢*)nt1(=% ¢*)nta
Since ag = W, using some calculations of the g-shifted factorial, we have
i n+1q o
- 2)ont1(1 +¢*"12)
Thus we get
- n+1qn *+2mn 2 2 2m+2
Z =F(¢°") + ¢ F(¢"™ "), (3.41)
n—0 2n+1
s —q:q 2)71 n2+2mn
Z ’ @0 = F(¢®™) + (¢ — ) F(@®™?) = P F (™). (3.42)

On the other hand, F(z) is the limit of the finite determinant

2 h
@ +q°—q

@ +4d—q
1+q—q*+2¢°

14+q—q¢°+2q
-1

D, (z) :=

@ +q*—q
14q—g°+2g2""

1 +q7 q2 +zq27173
-1

-1

Expanding this determinant with respect to the last row, we get

Dy(2) = (1+q—¢*+2¢*" ") Dn1(2) + (¢ + ¢* = 9) Dy—2(2) — ¢’ Dn—3(2),
Do(z) =1, Di(z) =14 q—¢* + 2q,
Dy(2) =14 q— ¢ +q* + 2q+ 2¢° + 2¢* — 2¢° + 2°¢*
Then we have
Doem(q®™) = (149 ="+ ¢ ) Du—m-1(¢"") + (@° + ¢° = Q) Dn—m—2(¢"") — ¢’ Dn——3(¢"").
Since (Dy—m (@™ )n, (Pn)n, (Qu)n, and (R,,), satisfy the same recursion, we set
Dy (6®™) = AP + pm Qn + Vi Rin.

Using the initial conditions D_1(¢?*™) = 0, Do(¢*™) = 1, and D1(¢*™) = 1+ q— ¢* + ¢*™ ", we have

0 Qm—l Rm—l Pm—l 0 Rm—l
1 Qm  Bm P, 1 R,
\ 1+q—=¢+¢*™*" Qmi1 Rt Pop1 14+q=¢"+ """ Ry
m = > Hm = )
mel mel Rmfl mel mel Rmfl
P, Qm Ry, P Qm R,
Perl Qerl Rerl Perl Qerl Rerl
Pm—l Qm—l 0
Pn  Qm 1
Poi1 Qmir 1+q—q” +¢7m!
VUm = )
mel mel Rmfl
Pm Qm Rm
Pm+1 Qerl Rm+1
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where
mel mel Rmfl
P, Qm R, = (_1)mq3m7
Pm+1 Qerl Rm+1
which can be proved by induction on m. Therefore, we have simpler forms for A\,,, tm, and v, as
follows:

110 @Qm_2 Rn_2 1| Pn—2 0 Rm—
_1)m 1 —1)m 1
Am = % 0 Qm—l Ry, 1|, Hm = % Pn1 0 Ry |,
a 1 Qn  Ru I P, 1 Ry

1| Pn—2 Qm-2 0

_1 m—1 m—2 m
( ) mel mel 0
1

VUm =

3m—3
1 Pn  Qm
According to (3.41) and (3.42), by setting
A = qm()\m + qz/\erl)a En=An+ ( 2 - )/\erl - q )\m+27
B = q"™ (ptm + q2ﬂm+l)u and Fon = i + (¢ = Q)ptms1 — q [im+2,
Cn=gq (Vm +4q Vm-i-l) Gm =Vm + (q2 Q)Vm-i-l - q VUm+2,
we have
0 e 2 n2+2mn
Z ( ¢4 )n;lq = qimAmPoo + qimBono + qimOmRooa
n=0 (¢;4%)2n+1
0 e n2+2mn
= ()
Since

(_1)771—1 -1 QQm—Q qu—2
Am = W 0 Qm—l Rm—l s
1 Qm Ry,
by letting the last two columns in the determinants of A,,_1, Amn—o, and A,,_3 be the same as those
of A,,, we find a linear equation

Am - Am—l + (q2 + q2m_4)Am—2 - q2Am—3-
Using the initial conditions of P,, @,, and R,, we have
Ag=1, A, =0, A, =0.

Proceeding in the same way, we get the recursions of B,,, Cy,, En, Fi,, and G,,. Therefore, we obtain
(3.33) and (3.34). O

The identity (3.39) is a special case of (3.33), and (3.35) and (3.37) are the special cases of (3.34).
Theorem 3.5. We have

(1)
i VY N G Y B G e WU T P U ) PO
—~ n+1(q ¢*)n (0% ¢%) o "
L ED™a™(@% 0700 (@ 4o
(@:0%) o0 (@100 (0% 4Y) e
D"g" (=4, =", 4% 67)oo (45 °) o
L D™ (=g (q '22)(1 )o@ 4700 (3.43)
where

Ap =1+ NA 1+ (P + P A2 — P A3, Ap=1, A, =0, Ay =0,
By =04+ YBp1+ (@ +¢" )Bm-o2—¢*Bn-3,  By=—q, Bi=—q, By=—
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2m—4 2, 9m—4 2
Co =1 +¢"" )01+ (" + ¢ ) Crz — ¢°Crn—s, Co=0,C1 =0, Cy =gq.

(2)
o0 2
> (DM@ a)na™ 2" (0% %0700 (@07 pp L (0%0")o(@®0%)o
= (%)t q")n (4% ¢%) oo (4:6%)0 (%3 ¢*°) 0 (0% ¢*) oo
(=4, —4% ¢°:¢°) oo (¢; ¢*)
+ Gm, 3.44
(4% ¢%) o (3-44)
where
Em==(q+¢" ) Emn14+1+¢" NEn 2+ qEn-3,  Ey=1 E =0, E2=1,
Fp=—q+¢" )+ 1+ YFpo+Fns,  F=0,F =0, F=2q,
Epm=—(q+ ¢ *)Gm1+ 0+ G2+ qGpm_s3, Go=0, Gi =1, Gy =—q.

Proof. The identity A.21 in Slater’s list is stated as follows.
Identity A.21 (Slater [18]):

i (D"(@:¢*)ng" _ (0% ~¢* 0% 0" oo (6 0o (3.45)
(=P )n(d*54")n (4% 4%) oo

Po=(01-qg=¢" =" P+ g+ - ¢+ ¢ )Prz+ ¢’ Prs,
Po=1, P=1—q Po=1—q+2¢+q" (3.46)

Recently, McLaughlin et al. and Bowman et al. found two new Rogers-Ramanujan type identities
in [12] and [6], respectively.

An identity (McLaughlin et al. [12, Eq. (2.5)]):

oo n n24+2n
3 (=1)™(q;¢*)ng™ 2 (0" 4") 00 (*°:¢°%) o

= . 3.47
(= P)nt1(a% 40 (66%)(0°6%0) (0 0%)so (3.47)
An identity (Bowman et al. [6, Thm. 2.7]):

(D)™ ¢)ng™ " (=444 073670 (547 ox 58
D R L) PR 27 ' 349

n=0 ) n ’ n ) oo

We can see that (3.47) and (3.48) are partners to (3.45). Therefore, we have
Qn=0-q-¢"=¢""NQu-1+ @+ — ¢+ ") Qn-2+ ¢’ Qu-s,

Qo=0,Q =1 Q=1-q-¢, (3.49)

Ry=(1-q¢—¢"=¢" YRu1+(a+¢* =@’ + ¢ )Ry + ¢’Ry—s,
Ro=1, Ri =1, Ro=1-¢>, (3.50)
where P,,, Q,, and R, converge to the right hand sides of (3.45), (3.47), and (3.48), respectively. The
initial conditions for @),, and R,, are obtained in the following analysis.

Now we consider the following determinant:

1-qg—q?>—2q q+q¢>—q+2¢ 7
-1 1-qg—¢>-2¢ q+¢®> - +2¢* o
F(z):= —1 1-qg-¢>—-2¢®° q+* - +2¢5 &

Expanding the determinant with respect to the first column, we get

F(z)=(1=-q—¢ —20)F(2¢*) + (¢ + > — ¢* + 2¢*)F(2¢") + ¢* F (2¢°).
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Setting
oo
Y
n=0

we get, upon comparing coefficients,

o —(1—-g¢*" Hg* ! PP G (¢ g (1 +q)(1 + qQ)ao
n (1 _ q2n)(1 + q2n+1)(1 + q2n+2) n— (_q; q2)n+l(q4; q4)n(1 + q2n+2)
Since ag = Wllﬂf)’ we have
i D)™ (q;6*)ng"™ n
n—O n+1 q47 q4)n(1 + q2n+2)
Thus we get
i GO oy 4 (g (351)
— (—aq n+1(q a*)n ’
o nqn 242mn
Z Nrevo F(@®™) + (¢ + QF (@) + ¢ F(g#™ ). (3.52)
n=0

On the other hand, F(z) is the limit of the finite determinant

1—-qg—¢>—2q q+q°—q¢ +2¢° 3

q
-1 1—g—q¢®> -2 q+¢®—q*+z2¢* q

-1 1_q_q2_zq27173 q+q2_q3+zq2n72

-1 1—q—q° — 2> !
Expanding this determinant with respect to the last row, we get
Dn(2) = (1=q—=¢* = 24" )Dyp-1(2) + (4 +¢* = ¢° + 2¢*" ") D—a(2) + ¢* Du—3(2),
D_1(2) =0, Do(2) =1, Di(2)=1—q—¢* - 2q.
Then we have
Dp-m(@®™)=(1=q=¢" =" )Dn-m-1("") + (a+¢* = ¢* + " *)Dn—m—2(¢"") + > Drn—m—3(¢°™).

Now we calculate the initial conditions of @, and R, in (3.49) and (3.50). According to (3.51) and
(3.52), we have

Qe = F(¢*) + *F(q"),
R = F(¢*) + (¢* + )F(¢*) + ¢*F (¢°).

Due to lim D, _,,,(¢*™) = F(¢*™), we have

n—oo

Qn =Dn_1(¢*) + ¢*Dy—2(q"),
Ry = Dyn_1(¢%) + (¢* + @) Dn—2(¢") + ¢* Dy—3(¢°).

Therefore, we get

Q=0 Q=1 Q=1-q—¢"%
Rozl, R1=1, Rgzl—qg.

Since (Dy—m (@®™))n, (Pn)n, (Qn)n, and (R,), satisfy the same recursion, we set

Dn—m(q2m) = APy + Man + v Ry
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Using the initial conditions D_1(¢?™) = 0, Do(¢*™) = 1, and D1(¢*™) =1 —q — ¢*> — ¢®™*!, we have

0 mel Rmfl mel 0 Rmfl

1 Qm  Bm P, 1 R,
\ o1 174-¢ ¢ Quir Rmn o Pot1i 1-q¢—=¢"=¢"""" Ry

" Pm—l Qm—l Rm—l ’ " Pm—l Qm—l Rm—l ’
P, Qm Ry, P, Qm Ry,
Perl Qerl Rerl Perl Qerl Rerl
mel mel
P, Qm 1
Lo Punt Quin 1-g—¢* ="

" Pm—l Qm—l Rm—l ,

Pm+1 Qerl Rm+1

where
mel mel Rmfl
P, Qm Ry, = _qgmil(l + Q)a

Prt1 Qmt1 Rmir
which can be proved by induction on m. Therefore, we have simpler forms for \,,, tm, and v, as

follows:
0 Qm-2 Rn2 Po_o 0 Rp_s
0 mel Rmfl mel 0 Rm,1
N1l G@m Ba 7 P, 1 Rn
m = Fmil+q T S 1+q
Pm72 Qm72 0
Pm—l Qm—l 0
| Pe Qu 1
T )

According to (3.41) and (3.42), by setting
Em - )\m + (q2 + q))\m-i-l + q3)\m+27

Ay = (_1)mqm()\m + q2)\m+1)7
By = (=1)"¢" (m + ¢°ftm+1),  and Fon = pim + (6 + @) tms1 + ¢ pmy2,
Cm = (_1)mqm(ym + q2Vm+1)7 Gm = Vm + (q2 + q)Verl + q3Vm+2;
we have
e n24+2mn
44" )n+14 m, —m m_—m m,_ —m
s Cadns ()P AP+ (<) B Qe + (1) R
0 (¢ 4%)2n+1
X L2 n?+2mn
Z( a9 )n2q — By P + FrnQoo + Gy Roc.
= (@)
Since
(_1)m—1 1 qu—2 qu—2
Am =0 Qm—l Rm—l )
2m—3
q (1 + Q) 1 Qum R,,

we can find a linear equation
Am = (1 + q2m74)Am—1 + (q2 + q2m74)Am—2 - q2Am—3-

Using the initial conditions of P,, @,, and R,, we have
Ap=1, A, =0, A, =0.



36

N. S. S. GU AND H. PRODINGER

Proceeding in the same way, we get the recursions of B,,, Cy,, Emn, Fi,, and G,,. Therefore, we obtain
(3.43) and (3.44). |

The identity (3.47) is a special case of (3.43), and the identities (3.45) and (3.48) are the special

cases of (3.44).
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