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Abstract

Computer or communication networks are so designed that they

don’t easily get disrupted under external attack and, moreover, these

are easily reconstructed when they do get disrupted. These desirable

properties of networks can be measured by various parameters such as

connectivity, toughness, tenacity and rupture degree. Among these pa-

rameters, tenacity and rupture degree are comparatively better param-

eters to measure the stability of networks. In this paper, the authors

give the exact values for the tenacity and rupture degree of permuta-

tion graphs of complete bipartite graphs.
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1. Introduction

Throughout this paper, a graph G = (V, E) always means a simple con-
nected graph with vertex set V and edge set E. We use Bondy and Murty
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[1] for terminology and notations not defined here. A set of vertices S of G

is called a vertex cut set if G − S is disconnected.
Measures of the vulnerability of graphs are currently of growing interest

among graph theorists and network designers. Among vulnerability param-
eters, much have been done recently on the toughness, binding number of
different classes of graphs since these parameters are more sensitive to the
structure of the graph than is the connectivity of the graph. In [4], Guichard
et al. given the integrity, toughness, and binding number for permutation
graphs of complete and complete bipartite graphs.

In the following two definitions, m(G − S), and ω(G − S), respectively,
denotes the order of the largest component and number of components in
G − S.

The tenacity of a graph G, T (G), which is defined by Cozzens in [3], is
defined as

T (G) = min{
|S| + m(G − S)

ω(G − S)
: S ⊆ V (G) is a vertex cut set of G}.

The rupture degree of a noncomplete graph G, r(G), introduced by Li,
Zhang and Li in [6], is defined as

r(G) = max{ω(G−S)−|S|−m(G−S) : S ⊆ V (G) is a vertex cut set of G}.

In particular, the tenacity and rupture degree of a complete graph Kn

is defined to be n and 1 − n respectively.

Clearly, of all the above parameters, tenacity and rupture degree are
comparatively appropriate for measuring the vulnerability of networks. Sim-
ilarly to the relation between the toughness and scattering number, the rup-
ture degree and tenacity also differ in showing the vulnerability of networks.
This can be shown as follows. Consider the graphs G1 and G2 in Figure 1,
It is not difficult to check that T (G1) = T (G2) = 1

2
, but r(G1) = 3 and

r(G2) = 4. Clearly r(G1) 6= r(G2). On the other hand, we consider graphs
G3 = K1 + (Kn−b−1 ∪Eb) and G4 = K2 + (Kn−b−3 ∪Eb+1), it is obvious that
r(G3) = r(G4), but T (G3) 6= T (G4) unless n = 2b + 1, where b is an integer.
Hence rupture degree is a better parameter for distinguishing the vulnera-
bility of these two graphs G1 and G2, but the tenacity is a better parameter
for distinguishing the vulnerability of these two graphs G3 and G4.

It is easy to see that the higher the tenacity (the less the rupture degree)
of a network the more stable it is considered to be.

In [2], the authors introduced permutation graphs and proceeded to char-
acterize those which are planar.
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G1 G2

Figure 1.

For a graph G with n vertices labelled 1, 2, · · · , n, n ≥ 4, and a per-
mutation α ∈ Sn, the symetric group on the n symbols {1, 2, · · · , n}, the
α-permutation graph of G, Pα(G) consists of two disjoint copies of G, Gx

and Gy, along with the n edges obtained by join xi in Gx with yα(i) in Gy,
i = 1, 2, · · · , n.

It is well known that permutation graphs have high connectivity prop-
erties, as is shown in [8] and [9]. As special graphs, some vulnerability
parameters of permutation graphs of complete bipartite graphs have been
determined in [4]. In [5], we give the following decision problem.

Problem 2.1 Not r-Rupture

Instance: An incomplete connected graph G, and an integer r.

Question: Does there exist an X ⊂ V (G) with ω(G − X) ≥ 2 such that
ω(G − X) > |X| + m(G − X) + r ?

And by this decision problem, we proved that computing the rupture degree
of a graph is NP-hard in general and so is the problem of determining the
tenacity of a graph [7], so it is an interesting problem to determine these two
parameters for some special graphs.

In this paper, Formulas for computing the rupture degree and tenacity
for permutation graphs of complete bipartite graphs are determined.

2. Tenacity and rupture degree of the permu-

tation Graphs of complete bipartite graphs

In this section, we fix our attention on permutation graph of complete
bipartite graph, Pα(Km,n). Assume that m ≤ n and that M and N are the
sets of the partitions of size m and n respectively. Furthermore, assume that
the vertices of M are labelled 1, 2, · · · , m and that vertices of N are labelled
m + 1, m + 2, · · · , m + n. For the permutation graph Pα(Km,n), let Mx and
My denote the partitions of the first copy of Km,n, Nx and Ny denote the
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partitions of the second copy of Km,n, and let q denote the number of ver-
tices in Mx that are joined by permutation edges to vertices in My. It is well
known that the connectivity, toughness, integrity and the binding number
of Pα(Km,n) can be expressed in terms of the parameters m, n, and/or q as
follows.

Theorem 2.1([4]) For α in Sm+n, and m ≤ n

t(Pα(Km,n)) =

{

2m
m+n−q

if q < n2+m2

n+3m
n+m
n+q

if q ≥ n2+m2

n+3m
.

Theorem 2.2([4]) For α in Sm+n, and m ≤ n

I(Pα(Km,n)) =

{

2m + 1 if m = n and q ∈ {0, m}

2m + 2 otherwise.

Theorem 2.3 ([2]) For α in Sm+n, and m ≤ n

b(Pα(Km,n)) =











n+q

q
if q < nm

2m+n−1
2m+2n−1
m+2n−1

if nm
2n+m−1

≤ q < m2+3mn−2m
4n+2m−2

3m+n−2q

n+m
if m2+3mn−2m

4n+2m−2
≤ q.

Theorem 2.4([8]) For α in Sm+n, and m ≤ n, κ(Pα(Km,n) = m + 1.

In the following, we determine the rupture degree and tenacity of the
permutation graph of complete bipartite graphs in terms of the parameters
m, n and/or q.

In the proofs of the remaining theorems we will use the following defini-
tions and observations. Let M ′

x be the set of vertices in Mx that are joined
by permutation edges to vertices in My and let M ′

y be these vertices in My.
So |M ′

y| = |M ′
x| = q. Let M ′′

x = Mx − M ′
x and M ′′

y = My − M ′
y and thus

|M ′′
y | = |M ′′

x | = m− q. Now the vertices in M ′′
x are adjacent to vertices in Ny

by permutation edges, we call this vertex set N ′′
y . Similarly define N ′′

x to be
the set of vertices in Nx adjacent to the vertices in M ′′

y by permutation edges.
Thus |N ′′

x | = |N ′′
y | = m − q. Finally let N ′

x = Nx − N ′′
x and N ′

y = Ny − N ′′
y ,

so |N ′
x| = |N ′

y| = n − m + q. Note that since 0 ≤ q ≤ m, some of these sets
may be empty. Let K = {M ′

x, M
′′
x , M ′

y, M
′′
y , N ′

x, N
′′
x , N ′

y, N
′′
y }. The relation-

ship among these sets in K is shown in Figure 2.
Remark: It is easy to see that, when m = n = 1, whether q = 1 or q = 0,
the two graphs are isomorphic. So under this condition, we assume that
q = 0.

To prove our main result we first give a lemma.
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Figure 2. Relationship among the sets in K

Lemma 2.1 For α in Sm+n and m ≤ n, there exists a vertex cut set S of

graph Pα(Km,n) with T (Pα(Km,n)) = |S|+m(Pα(Km,n)−S)
ω(Pα(Km,n)−S)

, such that for all Z in

K, if Z ∩ S is not empty, then Z ⊂ S.

Proof. By the symmetry of the permutation graph of complete bipartite
graph, We do the case when Z = M ′

x. Let S ′ be the minimum vertex cut set

of Pα(Km,n) with T (Pα(Km,n)) = |S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
and let Ax = S ′ ∩ M ′

x

and Bx = M ′
x −Ax. We let Ay be the neighborhood of Ax in M ′

y, and By be
the neighborhood of Bx in M ′

y. Suppose that Ax and Bx are both nonempty,
i.e., m ≥ 2. We first note that T = Mx ∪My is a vertex cut set of Pα(Km,n).
So by the definition of tenacity, we have T (Pα(Km,n)) ≤ 2m+2

m+n−q
. The proof

proceeds in four cases.

Case 1. If Nx and Ny are both contained in S ′, let T = S ′ − Ax, then
|T | = |S ′| − |Ax|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S ′), m(Pα(Km,n)−T ) ≤

m(Pα(Km,n) − S ′) + 1. So, |T |+m(Pα(Km,n)−T )
ω(Pα(Km,n)−T )

≤ |S′|+m(Pα(Km,n)−S′)−(|Ax|−1)
ω(Pα(Km,n)−S′)

≤
|S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
. Thus, |T |+m(Pα(Km,n)−T )

ω(Pα(Km,n)−T )
= |S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
, which con-

tradicts the minimality of S ′.

Case 2. If Nx is contained in S ′ but Ny is not contained in S ′, then let xi be
an element of Ax and so yα(i) is in Ay. Let T = S ′−{xi}, then |T | = |S ′|−1.
If yα(i) is not contained in S ′, then ω(Pα(Km,n) − T ) = ω(Pα(Km,n) −

S ′), m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) − S ′) + 1. So, |T |+m(Pα(Km,n)−T )
ω(Pα(Km,n)−T )

≤
|S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
. Thus, |T |+m(Pα(Km,n)−T )

ω(Pα(Km,n)−T )
= |S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
, but T has

one less vertex than that of S ′, a contradiction. If yα(i) is contained in S ′, then
ω(Pα(Km,n)−T ) = ω(Pα(Km,n)−S ′)+1, m(Pα(Km,n)−T ) = m(Pα(Km,n)−

S ′). So, |T |+m(Pα(Km,n)−T )

ω(Pα(Km,n)−T )
= |S′|−1+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)+1
<

|S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
, again

a contradiction.
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Case 3. If Nx is not contained in S ′ but Ny is contained in S ′, then let
xi be in Ax and so yα(i) is in Ay. If yα(i) is in S ′, let T = S ′ − {xi}, then
|T | = |S ′| − 1, ω(Pα(Km,n) − T ) = ω(Pα(Km,n) − S ′), m(Pα(Km,n) − T ) =

m(Pα(Km,n) − S ′) + 1. So, |T |+m(Pα(Km,n)−T )
ω(Pα(Km,n)−T )

= |S′|+m(Pα(Km,n)−S′)
ω(Pα(Km,n)−S′)

, but T

has one less vertex than that of S ′, a contradiction. Hence Ay ∩ S ′ is
empty. Now let xi be in Bx, then yα(i) is contained in By. If yα(i) is in
S ′, then let T = S ′ − {yα(i)} ∪ {xi}. Thus, |T | = |S ′|, ω(Pα(Km,n) − T ) ≥
ω(Pα(Km,n) − S ′) + 1, m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) − S ′) − 1. So,
|T |+m(Pα(Km,n)−T )

ω(Pα(Km,n)−T )
<

|S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S
′ )

, a contradiction. So By ∩ S is empty.

Thus M ′
y∩S ′ is empty. Let T = S ′∪Bx, then |T | = |S ′|+ |Bx|, ω(Pα(Km,n)−

T ) ≥ ω(Pα(Km,n)−S ′)+ |Bx|, m(Pα(Km,n)−T ) ≤ m(Pα(Km,n)−S ′)−|Bx|.

So |T |+m(Pα(Km,n)−T )
ω(Pα(Km,n)−T )

≤ |S′|+m(Pα(Km,n)−S′)
ω(Pα(Km,n)−S′)+|Bx|

<
|S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
, this contra-

dicts the definition of Tenacity.

Case 4. If Nx and Ny are not contained in S ′, then consider My. If My

is contained in S ′, let T = S ′ ∪ Bx, then |T | = |S ′| + |Bx|, ω(Pα(Km,n) −
T ) ≥ ω(Pα(Km,n) − S ′), m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) − S ′) − |Bx|.

So, |T |+m(Pα(Km,n)−T )
ω(Pα(Km,n)−T )

≤ |S′|+m(Pα(Km,n)−S′)
ω(Pα(Km,n)−S′)

. Thus T is a vertex cut set with
|T |+m(Pα(Km,n)−T )

ω(Pα(Km,n)−T )
= |S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
, and M ′

x ⊆ T. If My is not contained

in S ′, then it is easy to see that all of the vertices in Nx − S ′ are in the same
component since Bx is nonempty, and all of the vertices in Ny −S ′ are in the
same component since My ∩S ′ is nonempty. Thus Pα(Km,n)−S ′ has exactly
two components, one in each copy of Km,n. If neither xi nor yα(i) is not in
S ′ then S ′ is not a cut set. Thus at least one of xi and yα(i) is in S ′ for all
i = 1, 2, · · · , n+m. Thus we know that |S ′| ≥ n+m, ω(Pα(Km,n)−S ′) = 2.
Let C be the component of Pα(Km,n)−S ′ containing Bx, then T (Pα(Km,n)) =
|S′|+m(Pα(Km,n)−S′)

ω(Pα(Km,n)−S′)
≥ |S′|+|V (C)|

ω(Pα(Km,n)−S′)
≥ |S′|+|Bx|+|Nx−S′|

ω(Pα(Km,n)−S′)
≥ n+m+2

2
≥ n+m+2

m+n−q
≥

2m+2
m+n−q

.

On the other hand, by the previous remark we know that T (Pα(Km,n)) ≤
2m+2

m+n−q
. Hence, in this case T (Pα(Km,n)) = 2m+2

m+n−q
. Let T = Mx∪My . Then T

is a vertex cut set with T (Pα(Km,n)) = |T |+m(Pα(Km,n)−T )

ω(Pα(Km,n)−T )
and M ′

x is contained

in T.

From above we know that the lemma is true if Z = M ′
x. The above proof

works for the other cases of Z ∈ K. The details are omitted.

By the above lemma we can obtain the tenacity of the permutation graph
of complete bipartite graph.

Theorem 2.4 For α in Sm+n and m ≤ n

(1) if 1 = m = n, T (Pα(Km,n)) = 3
2
.

(2) if 1 = m < n,

when q = 0, T (Pα(Km,n)) = 4
n+1

.

6



when q = 1,

T (Pα(Km,n)) =

{

n+2
n+1

if 2 ≤ n ≤ 3
4
n

if n > 3.

(3) if 2 ≤ m ≤ n,

when q = 0,

T (Pα(Km,n)) =

{

2m+1
m+n

if m = n
2m+2
m+n

if m < n.

when q = m,

T (Pα(Km,n)) =

{

2m+2
n

if m < m2+n2+m−n
3m+n+3

n+m+1
n+m

if m ≥ m2+n2+m−n
3m+n+3

.

when 1 ≤ q ≤ m − 1,

T (Pα(Km,n)) =

{

2m+2
m+n−q

if q < m2+2n+n2

3m+n+4
n+m+2

n+q
if q ≥ m2+2n+n2

3m+n+4
.

Proof. By Lemma 2.1 we know that the vertex set satisfying the condition
must be the union of the elements of K. It is easy to find 55 vertex cut sets
of this type. But most of these sets are trivial, all but 4 of these sets may
be discarded as giving too larger values for |S|+m(Pα(Km,n)−S)

ω(Pα(Km,n)−S)
. The remaining

sets are S1 = Mx∪M ′′
y , S2 = Mx∪My , S3 = Mx∪Ny , S4 = Mx∪N ′

y, and the

values for |S|+m(Pα(Km,n)−S)
ω(Pα(Km,n)−S)

given by these sets are v1 = m+2n+q

m−q+1
, v2 = 2m+2

n+m−q
,

v3 = m+n+2
q+n

if q 6= m or v3 = m+n+1
q+n

if q = m, v4 = 3m+n−q

n−m+q+1
. We distinguish

three cases.
Case 1. When m = n = 1, it is easy to see that
(a) if q = 0, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = 3

2
.

(b) if q = 1, T (Pα(Km,n)) = min{v1, · · · , v4} = v4 = 3
2
.

So under this condition T (Pα(Km,n)) = 3
2
.

Case 2. When 1 = m < n,

Subcase 2.1 if q = 0, then T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = 4
n+1

.

Subcase 2.2 if q = 1, then
(a) when 2 ≤ n ≤ 3, T (Pα(Km,n)) = min{v1, · · · , v4} = v4 = n+2

n+1
.

(b) when n > 3, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = 4
n
.

Case 3. When 2 ≤ m ≤ n,

Subcase 3.1 if q = 0,
(a) when m = n, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = m+n+1

m+n
.

(b) when m < n, T (Pα(Km,n)) = min{v1, · · · , v4} = v2 = m+n+2
m+n

.

Subcase 3.2 if 1 ≤ q ≤ m, for fixed m and n, when q increases, the following
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occur. The value v1 increases, so the minimum value of v1 is m+2n+1
m

. v4

decreases, so the minimum value of v4 is 2m+n
n+1

. When q 6= m increases, The

value v3 decreases, so the maximum value of v3 is m+n+2
n+1

. It is easy to check
that the minimum value of v1 is larger than the maximum value of v2, and
the minimum value of v4 is larger than the maximum value of v3. And it
is also easily checked that when q = m, the minimum value of v4 is larger
than the value of v3 = m+n+1

q+n
. So S1 and S4 should be discarded. Now the

value of v3 decreases as q increases, and the intersection point for v2 and v3

occurs where q = m2+2n+n2

3m+n+4
, when v3 = m+n+2

q+n
and where q = m2+n2+m−n

3m+n+3
,

when v3 = m+n+1
q+n

. Thus the theorem holds.

The following theorem gives us the rupture degree of permutation graph
of complete bipartite graphs. Note that T = Mx ∪ My is a vertex cut set of
Pα(Km,n), so by the definition of the rupture degree we have r(Pα(Km,n)) ≥
ω(Pα(Km,n)−T )−|T |−m(Pα(Km,n)−T )≥ n−m− q −2. In order to prove
this theorem we first introduce a lemma.

Lemma 2.2 For α in Sm+n and m ≤ n, there exists a vertex cut set S of
Pα(Km,n) with r(Pα(Km,n)) = ω(Pα(Km,n) − S) − |S| − m(Pα(Km,n) − S)
such that for all Z in K, if Z ∩ S is not empty, then Z ⊂ S.

Proof. By the symmetry of the permutation graph of complete bipartite
graph, We do the case when Z = M ′

x. Let S ′ be the minimum vertex cut set
of Pα(Km,n) with r(Pα(Km,n)) = ω(Pα(Km,n)−S ′)−|S ′|−m(Pα(Km,n)−S ′),
and let Ax = S ′ ∩M ′

x and Bx = M ′
x −Ax. Suppose that Ax and Bx are both

nonempty, i.e., m ≥ 2. We distinguish four cases.

Case 1. If Nx and Ny are both contained in S ′, let T = S ′ − Ax, then
|T | = |S

′

| − |Ax|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S ′), m(Pα(Km,n)−T ) ≤
m(Pα(Km,n) − S ′) + 1. So,

ω(Pα(Km,n) − T ) − |T | − m(Pα(Km,n) − T )

≥ ω(Pα(Km,n) − S ′) − |S ′| − m(Pα(Km,n) − S ′) + |Ax| − 1

≥ ω(Pα(Km,n) − S ′) − |S ′| − m(Pα(Km,n) − S ′),
a contradiction to the minimality of S ′.

Case 2. If Nx is contained in S ′ but Ny is not contained in S ′, let T =
S ′ − Ax, then |T | = |S ′| − |Ax|, ω(Pα(Km,n) − T ) ≥ ω(Pα(Km,n) − S ′),
m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) − S ′) + |Ax|. So,

ω(Pα(Km,n) − T ) − |T | − m(Pα(Km,n) − T )

≥ ω(Pα(Km,n) − S ′ − |S
′

| − m(Pα(Km,n) − S ′),
which contradicts the minimality of S ′.

Case 3. If Nx is not contained in S ′ but Ny is contained in S ′, then M ′
y ∩S ′

is empty, the proof is similar to that of Case 3 in Lemma 2.1. Let T =
S ′∪Bx. Thus |T | = |S ′|+ |Bx|, ω(Pα(Km,n)−T ) ≥ ω(Pα(Km,n)−S ′)+ |Bx|,
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m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) − S ′) − |Bx|. So,

ω(Pα(Km,n) − T ) − |T | − m(Pα(Km,n) − T )

≥ ω(Pα(Km,n) − S ′) − |S
′

| − m(Pα(Km,n) − S ′) + |Bx|

> ω(Pα(Km,n) − S ′) − |S ′| − m(Pα(Km,n) − S ′),
which contradicts the definition of rupture degree.

Case 4. If neither Nx nor Ny is contained in S
′

, then consider My. If My

is contained in S ′, let T = S ′ ∪ Bx, then |T | = |S ′| + |Bx|, ω(Pα(Km,n) −
T ) ≥ ω(Pα(Km,n) − S ′), m(Pα(Km,n) − T ) ≤ m(Pα(Km,n) − S ′) − |Bx|. So,
ω(Pα(Km,n) − T ) − |T | − m(Pα(Km,n) − T ) ≥ ω(Pα(Km,n) − S ′) − |S ′| −
m(Pα(Km,n)− S ′). Thus T is a vertex cut set with ω(Pα(Km,n)− T )− |T | −
m(Pα(Km,n)−T ) = ω(Pα(Km,n)−S ′)−|S ′|−m(Pα(Km,n)−S ′), and M ′

x ⊆ T.

If My is not contained in S ′, then it is easy to see that all of the vertices in
Nx − S ′ are in the same component since Bx is nonempty, and all of the
vertices in Ny − S ′ are in the same component since My ∩ S ′ is nonempty.
Thus Pα(Km,n) − S ′ has exactly two components, one in each copy of Km,n.
If neither xi nor yα(i) is not in S ′, then S ′ is not a cut set. Thus at least
one of xi and yα(i) is in S ′ for all i = 1, 2, · · · , n + m. Thus we know that
|S ′| ≥ n+m, ω(Pα(Km,n)−S ′) = 2. Let C be the component of Pα(Km,n)−S ′

containing Bx, then r(Pα(Km,n)) = ω(Pα(Km,n)−S ′)−|S ′| −m(Pα(Km,n)−
S ′)≤ ω(Pα(Km,n) − S ′) − |S ′| − |V (C)|≤ ω(Pα(Km,n) − S ′) − |S ′| − |Bx| −
|Nx − S ′|≤ 2 − n − m − 2 ≤ n − m − q − 2.

On the other hand, by the previous remark we know that r(Pα(Km,n)) ≥
n−m−q−2. Hence, in this case r(Pα(Km,n)) = n−m−q−2. Let T = Mx∪My .
Then T is a cut set with r(Pα(Km,n)) = ω(Pα(Km,n)−T )−|T |−m(Pα(Km,n)−
T ) and M ′

x ⊂ T.

From above we know that the lemma is true if Z = M ′
x. The above proof

works for the other cases of Z ∈ K. The details are omitted.

Theorem 2.5 For α in Sm+n and m ≤ n

(1) if m = n = 1, r(Pα(Km,n)) = −1.
(2) if 1 = m < n,

when q = 0, r(Pα(Km,n)) = n − 3.
when q = 1,

r(Pα(Km,n)) =

{

−1 if 2 ≤ n ≤ 3

n − 4 if n > 3.

(3) if 2 ≤ m ≤ n,

when q = 0,

r(Pα(Km,n)) =

{

n − m − 2 if n − m ≥ 2

−1 if n − m < 2.
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when q = m,

r(Pα(Km,n)) =

{

n − 2m − 2 if q ≤ n−1
2

−1 if q > n−1
2

.

when 1 ≤ q ≤ m − 1,

r(Pα(Km,n)) =

{

n − m − q − 2 if q ≤ n
2

q − m − 2 if q > n
2
.

Proof. By Lemma 2.2 we know that the vertex set satisfying the condition
must be the union of the elements of K. It is easy to find 55 vertex cut sets of
this type. But most of these sets are trivial, all but 5 of these sets may be dis-
carded as giving too less values for ω(Pα(Km,n)−S)−|S|−m(Pα(Km,n)−S).
The remaining sets are S1 = Mx ∪ My, S2 = Mx ∪ Ny, S3 = Mx ∪ My ∪ N ′

x,
S4 = Mx∪N ′

y, S5 = Mx∪M ′′
y ∪N ′

y and the values for ω(Pα(Km,n)−S)−|S|−
m(Pα(Km,n)−S) given by these sets are v1 = n−m−q−2, v2 = q−m−2 if
q 6= m or v2 = −1 if q = m, v3 = −2q−1, v4 = −4m+2q +1, v5 = −2m+1.
So we distinguish three cases.
Case 1. When m = n = 1, it is easy to see that
r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v5 = −1.
Case 2. When 1 = m < n,

Subcase 2.1 If q = 0, it is easy to see that
r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v1 = n − 3.
Subcase 2.2 If q = 1, it is easy to see that
(a) when n = 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v5 = −1.
(b) when n > 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v1 = n − 4.
Case 3. When 2 ≤ m ≤ n,

Subcase 3.1 If q = 0, it is easy to see that
(a) when n − m ≥ 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5}
= v1 = n − m − 2.
(b) when n − m < 2, then r(Pα(Km,n)) = max{v1, v2, · · · , v5} = v3 = −1.
Subcase 3.2 If q = m, then, when q ≤ n−1

2
, max{v1, v2, · · · , v5} = v1 =

n − 2m − 2; when q ≥ n−1
2

, max{v1, v2, · · · , v5} = v2 = −1.
Subcase 3.3 If 1 ≤ q ≤ m − 1, under this condition, for fixed m and n,
when q ≤ n

2
, then max{v1, v2, · · · , v5} = v1 = n − m − q − 2; when q ≥ n

2
,

max{v1, v2, · · · , v5} = v2 = q − m − 2.
The proof is thus completed.
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3. Conclusion

The rupture degree and tenacity of a graph, to some extent, represents a
trade-off between the amount of work done to damage the network and how
badly the network is damaged. Hence, the rupture degree and tenacity can
be used to measure the vulnerability of networks. So clearly, it is of prime
importance to determine this parameter for a graph. In this paper, we have
obtained the exact values for the rupture degree and tenacity of permutation
graphs of complete bipartite graphs. To make further progress in this direc-
tion, one could try to characterize the graphs with given rupture degree or
tenacity.
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