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Abstract

The Randić index of a graph G, denoted by R(G), is defined as

the sum of 1/
√

d(u)d(v) over all edges uv of G, where d(u) denotes

the degree of a vertex u in G. Caporossi and Hansen proposed a

conjecture on the relation between the Randić index R(G) and the

chromatic number χ(G) of a graph G: for any connected graph G of

order n ≥ 2, R(G) ≥ χ(G)−2
2 + 1√

n−1

(

√

χ(G) − 1 + n − χ(G)
)

, and

furthermore the bound is sharp for all n and 2 ≤ χ(G) ≤ n. We prove

this conjecture.
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1 Introduction

The Randić index R(G) of a graph G was introduced by Milan Randić

[8] in 1975 as the sum of 1/
√

d(u)d(v) over all edges uv of G, where d(u)

denotes the degree of a vertex u in G. Recently many researches on the

extremal theory of Randić index have been reported (see [6]).

A vertex coloring of a graph G is proper if any two adjacent vertices are

assigned different colors. The chromatic number χ(G) of G is the minimum

∗Supported by NSFC No.10831001, PCSIRT and the “973” program.
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number of colors in a proper coloring of G. For terminology and notation

not given here, we refer to the book of Bondy and Murty [2].

Many papers [1, 3, 4, 7] have been written on the relation between the

Randić index and other graph invariants, such as the minimum degree, the

radius, the diameter, the average distance, etc. Caporossi and Hansen [3] pro-

posed the following conjecture on the relation between the chromatic number

and Randić index, which is also referred in [6].

Conjecture 1 [3] For any connected graph G of order n ≥ 2 with chromatic

number χ(G) and Randić index R(G),

R(G) ≥ χ(G) − 2

2
+

1√
n − 1

(

√

χ(G) − 1 + n − χ(G)
)

.

Moreover, the bound is sharp for all n and 2 ≤ χ(G) ≤ n.

This paper proves the conjecture.

2 Main results

First, we recall some lemmas that will be used in the sequel.

Lemma 1 [5] Let G be a simple graph with Randić index R(G), minimum

degree δ, and maximum degree ∆. If v is a vertex of G with minimum degree,

then

R(G) − R(G − v) ≥ 1

2

√

δ

∆
.

Lemma 2 [7] If G is a graph of order n with minimum degree δ(G) = k,

then

R(G) ≥







k(k−1)
2(n−1)

+ k(n−k)√
k(n−1)

if k ≤ n
2

(n−p)(n−p−1)
2(n−1)

+ p(p+k−n)
2k

+ p(n−p)√
k(n−1)

if k > n
2
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where

p =























































n
2

if n ≡ 0(mod 4)
⌊

n
2

⌋

or
⌈

n
2

⌉

if n ≡ 1(mod 4) and k is even
⌊

n
2

⌋

if n ≡ 1(mod 4) and k is odd
n−2

2
or n+2

2
if n ≡ 2(mod 4) and k is even

n
2

if n ≡ 2(mod 4) and k is odd
⌊

n
2

⌋

or
⌈

n
2

⌉

if n ≡ 3(mod 4) and k is even
⌈

n
2

⌉

if n ≡ 3(mod 4) and k is odd.

From Lemma 2, we know that p ∈ {n−2
2

, n−1
2

, n
2
, n+1

2
, n+2

2
}.

Lemma 3 Let g(n, k) = −n2

8k
+ n2

4
√

k(n−1)
− k−1

2
−

√
k+n−k−1√

n−1
. For n ≥ 5,

g(n, k) is a decreasing function in k with n
2

< k ≤ n − 1.

Proof. Note that

∂g(n, k)

∂k
=

n2

8k2
− n2

8k
√

k(n − 1)
+

1√
n − 1

− 1

2
√

k(n − 1)
− 1

2

=
8k2 + n2

√
n − 1 − 4k2

√
n − 1

8k2
√

n − 1
− n2 + 4k

8k
√

k(n − 1)

=
1

8k2
√

n − 1

(

8k2 + (n2 − 4k2)
√

n − 1 − (n2 + 4k)
√

k
)

.

Let h(n, k) = 8k2 + (n2 − 4k2)
√

n − 1 − (n2 + 4k)
√

k. We have ∂h(n,k)
∂k

=

16k − 8k
√

n − 1− 6
√

k − n2

2
√

k
and ∂2h(n,k)

∂k2 = 16− 8
√

n − 1− 3√
k

+ n2

4k
√

k
. For

n ≥ 6, ∂2h(n,k)
∂k2 < 16 − 8

√
n − 1 − 3√

n−1
+ n√

2n
< 0. It is easy to verify that

∂2h(n,k)
∂k2 ≤ 0 for n = 5 and 3 ≤ k ≤ 4. Thus, for n ≥ 5, we have

∂h(n, k)

∂k
< 8n − 4n

√
n − 1 − 3

√
2n − n2

√
2n

< 0.

We then have

h(n, k) < h(n,
n

2
) = 2n2 − (n2 + 2n)

√
2n

2
< 0.

Therefore, ∂g(n,k)
∂k

< 0 for n ≥ 5.
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Theorem 1 For any connected graph G of order n ≥ 2 with chromatic num-

ber χ(G) and Randić index R(G), we have R(G) ≥ f(χ(G)), where f is de-

fined by f(x) = x−2
2

+ 1√
n−1

(√
x − 1 + n − x

)

. Moreover, the bound is sharp

for all n and 2 ≤ χ(G) ≤ n.

Proof. Since we only consider connected graphs of order at least 2, we may

assume χ(G) ≥ 2 in the following.

If the claimed inequality fails, then let G be a graph with fewest vertices

such that R(G) < f(χ(G)). Let k = δ(G). We begin by proving the following

claim:

Claim. k ≥ χ(G) − 1.

Suppose to the contrary that k < χ(G) − 1. Let v be a vertex with min-

imum degree k. If χ(G− v) = χ(G), then by Lemma 1, R(G− v) < R(G) <

f(χ(G)) = f(χ(G− v)), which contradicts the choice of G. Now we suppose

χ(G − v) < χ(G). Hence G − v has a proper coloring with χ(G) − 1 colors.

Since d(v) = k < χ(G) − 1, there exists a vertex u such that the color of u

does not appeared on the neighbors of v. Thus v can be colored with that

color, which implies that G has a proper coloring with χ(G) − 1 colors, a

contradiction. The claim is thus proved.

Note that f(x) is increasing in x for x ≥ 2. Since f ′(x) = 1
2
+ 1

2
√

(n−1)(x−1)
−

1√
n−1

, f ′(x) > 0 for all x ≥ 2 when n ≥ 3. Thus for n ≥ 3, f(χ(G)) ≤ f(k+1).

If n = 2, then G ∼= K2, and it is easy to verify that f(χ(G)) = f(k +1) since

χ(K2) = 2 and δ(K2) = 1. Thus for n ≥ 2, we have

R(G) < f(χ(G)) ≤ f(k + 1) =
k − 1

2
+

√
k + n − k − 1√

n − 1
. (1)

Case 1. k ≤ n
2
.

By Lemma 2 and the Inequality (1), we have

k(k − 1)

2(n − 1)
+

k(n − k)
√

k(n − 1)
<

k − 1

2
+

√
k + n − k − 1√

n − 1
.
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However, since k ≤ n
2
, we have

√
k+1

2
√

n−1
≤

√
n/2+1

2
√

n−1
≤ 1. Now,

k(k − 1)

2(n − 1)
+

k(n − k)
√

k(n − 1)
− k − 1

2
−

√
k + n − k − 1√

n − 1

=
(n − k − 1)(k −

√
k)

√

k(n − 1)
− (k − 1)(n − k − 1)

2(n − 1)

=
(n − k − 1)(

√
k − 1)√

n − 1

(

1 −
√

k + 1

2
√

n − 1

)

≥ 0,

a contradiction.

Case 2. n
2

< k ≤ n − 1.

Let q(n, p) = (n−p)(n−p−1)
2(n−1)

+ p(p+k−n)
2k

+ p(n−p)√
k(n−1)

. By Lemma 2 and (1), we

have

q(n, p) <
k − 1

2
+

√
k + n − k − 1√

n − 1
. (2)

By some elementary calculations, we have

q(n,
n − 2

2
) =

n(n + 2)

8(n − 1)
+

(n − 2)(2k − n − 2)

8k
+

n2 − 4

4
√

k(n − 1)

q(n,
n − 1

2
) =

(n + 1)(n − 1)

8(n − 1)
+

(n − 1)(2k − n − 1)

8k
+

n2 − 1

4
√

k(n − 1)

q(n,
n

2
) =

n(n − 2)

8(n − 1)
+

n(2k − n)

8k
+

n2

4
√

k(n − 1)

q(n,
n + 1

2
) =

(n − 1)(n − 3)

8(n − 1)
+

(n + 1)(2k − n + 1)

8k
+

n2 − 1

4
√

k(n − 1)

q(n,
n + 2

2
) =

(n − 2)(n − 4)

8(n − 1)
+

(n + 2)(2k − n + 2)

8k
+

n2 − 4

4
√

k(n − 1)
.

Now, we have q(n, n−2
2

) − q(n, n+2
2

) = 0, q(n, n−1
2

) − q(n, n+1
2

) = 0, q(n, n
2
) −

q(n, n−2
2

) = 1√
k(n−1)

− 1
2k
− 1

2(n−1)
< 0 and q(n, n

2
)−q(n, n−1

2
) = 1

4
√

k(n−1)
− 1

8k
−

1
8(n−1)

< 0 since 1√
x(n−1)

− 1
2x

is an increasing function in x for x ∈ (n
2
, n−1).

Therefore, q(n, n
2
) is minimum among all the above five values. Thus, we

only need to prove q(n, n
2
) ≥ k−1

2
+

√
k+n−k−1√

n−1
, which contradicts (2). By
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some elementary calculations, we obtain that q(n, n
2
) − k−1

2
−

√
k+n−k−1√

n−1
≥ 0

for 2 ≤ n ≤ 4 and n
2

< k ≤ n − 1. In the following, we assume that n ≥ 5

and then

q(n,
n

2
) − k − 1

2
−

√
k + n − k − 1√

n − 1

=
n(n − 2)

8(n − 1)
+

n(2k − n)

8k
+

n2

4
√

k(n − 1)
− k − 1

2
−

√
k + n − k − 1√

n − 1

=
n(n − 2)

8(n − 1)
+

n

4
+ g(n, k)

≥ n(n − 2)

8(n − 1)
+

n

4
+ g(n, n − 1)

=
n(n − 2)

8(n − 1)
+

n

4
− n2

8(n − 1)
+

n2

4(n − 1)
− n − 2

2
− 1 = 0,

where the inequality holds by Lemma 3 and g(n, k) is defined in Lemma 3.

Thus we have the require inequality R(G) ≥ f(χ(G)).

Note that the bound is sharp for all n and 2 ≤ χ(G) ≤ n. For ex-

ample, if G is the complete graph Kn on n vertices, then χ(G) = n and

R(G) = f(χ(G)) = n
2
.

Remark. Although the complete graph Kn is a graph such that equality

holds in Theorem 1, more effort is needed to determine all the graphs for

which the equality holds.
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