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Abstract

Given a graph H, a graph is H-free if it does not contain H as a subgraph. We
continue to study the topic of “extremal” planar graphs initiated by Dowden [J.
Graph Theory 83 (2016) 213–230], that is, how many edges can an H-free planar
graph on n vertices have? We define exP (n,H) to be the maximum number of
edges in an H-free planar graph on n vertices. We first obtain several sufficient
conditions on H which yield exP (n,H) = 3n − 6 for all n > |V (H)|. We discover
that the chromatic number of H does not play a role, as in the celebrated Erdős-
Stone Theorem. We then completely determine exP (n,H) when H is a wheel or a
star. Finally, we examine the case when H is a (t, r)-fan, that is, H is isomorphic to
K1 + tKr−1, where t > 2 and r > 3 are integers. However, determining exP (n,H),
when H is a planar subcubic graph, remains wide open.
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1 Introduction

All graphs considered in this paper are finite and simple. We use Kt, Ct and Pt to denote

the complete graph, cycle, and path on t vertices, respectively. Given a graph G, we will

use V (G) to denote the vertex set, E(G) the edge set, |G| the number of vertices, e(G)

the number of edges, δ(G) the minimum degree, ∆(G) the maximum degree. For a vertex

v ∈ V (G), we will use NG(v) to denote the set of vertices in G which are adjacent to v. Let

dG(v) = |NG(v)| denote the degree of the vertex v in G and NG[v] = NG(v)∪{v}. A vertex

is a k-vertex in G if it has degree k. We use n
k
(G) to denote the number of k-vertices in G.

For any set S ⊂ V (G), the subgraph of G induced on S, denoted G[S], is the graph with

vertex set S and edge set {xy ∈ E(G) : x, y ∈ S}. We denote by G \S the subgraph of G

induced on V (G) \S. If S = {v}, then we simple write G \ v. For any two disjoint sets A

and B of V (G), we use eG(A,B) to denote the number of edges between A and B in G.

The join G+H (resp. union G ∪H) of two vertex-disjoint graphs G and H is the graph

having vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy |x ∈ V (G), y ∈ V (H)}
(resp. E(G)∪E(H)). For a positive integer t, we use tG to denote disjoint union of t copies

of a graph G. Given two isomorphic graphs G and H, we may (with a slight but common

abuse of notation) write G = H. For any positive integer k, let [k] := {1, 2, . . . , k}.

Given a graph H, a graph is H-free if it does not contain H as a subgraph. One of

the best known results in extremal graph theory is Turán’s Theorem [15], which gives the

maximum number of edges that a Kt-free graph on n vertices can have. The celebrated

Erdős-Stone Theorem [7] then extends this to the case when Kt is replaced by an arbitrary

graph H with at least one edge, showing that the maximum number of edges possible is

(1+o(1))
(
n
2

) (χ(H)−2
χ(H)−1

)
, where χ(H) denotes the chromatic number of H. This latter result

has been called the “fundamental theorem of extremal graph theory” [1]. Turán-type

problems when host graphs are hypergraphs are notoriously difficult. A large quantity of

work in this area has been carried out in determining the maximum number of edges in a

k-uniform hypergraph on n vertices without containing k-uniform linear paths and cycles

(see, for example, [9, 10, 12]). Surveys on Turán-type problems of graphs and hypergraphs

can be found in [8, 11].

In this paper, we continue to study the topic of “extremal” planar graphs, that is,

how many edges can an H-free planar graph on n vertices have? We define exP (n,H) to

be the maximum number of edges in an H-free planar graph on n vertices. Dowden [3]

initiated the study of exP (n,H) and proved the following results, where each bound is

tight.

Theorem 1 ([3]). Let n be a positive integer.

(a) exP (n,C4) 6 15(n− 2)/7 for all n > 4.

(b) exP (n,C5) 6 (12n− 33)/5 for all n > 11.
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Let Θ4 and Θ5 be obtained from C4 and C5, respectively, by adding an additional edge

joining two non-consecutive vertices. The present authors [13] studied exP (n,H) when

H ∈ {Θ4,Θ5, C6} and when H is a path on at most 9 vertices. Results from [13] are

summarized below.

Theorem 2 ([13]). Let n be a positive integer.

(a) exP (n,Θ4) 6 12(n− 2)/5 for all n > 4, with equality when n ≡ 12(mod 20).

(b) exP (n,Θ5) 6 5(n− 2)/2 for all n > 5, with equality when n ≡ 50(mod 120).

(c) exP (n,C6) 6 18(n− 2)/7 for all n > 6.

(d) exP (n, P9) 6 max{9n/4, (5n− 8)/2}.

It seems quite non-trivial to determine exP (n,Ct) for all t > 7. In this paper, we

first investigate planar graphs H satisfying exP (n,H) = 3n − 6 for all n > |H|. This

partially answers a question of Dowden [3]. As observed in [3], for all n > 6, the planar

triangulation 2K1 + Cn−2 is K4-free. Hence, exP (n,H) = 3n − 6 for all graphs H which

contains K4 as a subgraph and n > max{|H|, 6}. In particular, exP (n,K−5 ) = 3n − 6

for all n > 6, where K−p denotes the graph obtained from Kp by deleting one edge.

Proposition 3 below describes several sufficient conditions on K4-free planar graphs H

such that exP (n,H) = 3n− 6 for all n > |H|.

Proposition 3. Let H be a K4-free planar graph and let n > |H| be an integer. Then

exP (n,H) = 3n− 6 if one of the following holds.

(a) χ(H) = 4 and n > |H|+ 2.

(b) ∆(H) > 7.

(c) ∆(H) = 6 and either n6(H) + n5(H) > 2 or n6(H) + n5(H) = 1 and n4(H) > 5.

(d) ∆(H) = 5 and either H has at least three 5-vertices or H has exactly two adjacent

5-vertices.

(e) ∆(H) = 4 and n4(H) > 7.

(f) H is 3-regular with |H| > 9 or H has at least three vertex-disjoint cycles or H has

exactly one vertex u of degree ∆(H) ∈ {4, 5, 6} such that ∆(H[N(u)]) > 3.

(g) δ(H) > 4 or H has exactly one vertex of degree at most 3.

Proposition 3 implies that exP (n,H) = 3n− 6 for all H with n > |H| + 2 and either

χ(H) = 4 or χ(H) = 3 and ∆(H) > 7. Note that Θ4 = K−4 , and both K−4 and K1 + 2K2

have chromatic number 3. Theorem 2(a) and Theorem 5 (see below) then demonstrate

that the chromatic number of H does not play a role, as in the Erdős-Stone Theorem.

By Proposition 3, exP (n,H) remains unknown for K4-free planar graphs H with

∆(H) = 6, n6(H) + n5(H) = 1 and n4(H) 6 4; or ∆(H) = 5 and n5(H) 6 2 (and

the electronic journal of combinatorics 25 (2018), #P00 3



the two 5-vertices are not adjacent when n5(H) = 2); or ∆(H) = 4 and n4(H) 6 6; or

∆(H) 6 3. In particular, by Proposition 3(f), exP (n,H) remains unknown for K4-free

planar graphs H with exactly one vertex, say u, of degree ∆(H) 6 6 and ∆(H[N(u)]) 6 2.

It seems non-trivial to determine exP (n,H) for all such H. We next study exP (n,Wk),

where Wk := K1 +Ck is a wheel on k+1 > 5 vertices. Unlike the classic Turán number of

Wk (see [4, 5] for more information), the planar Turán number of Wk can be completely

determined. We establish this in Theorem 4.

Theorem 4. Let n, k be integers with n > k + 1 > 5. Then

exP (n,Wk) =


3n− 6 if k > 6, or k = 5 and n 6= 7, or k = 4 and n > 12

3n− 7 if k = 4 and n ∈ {5, 6}, or k = 5 and n = 7

3n− 8 if k = 4 and 7 6 n 6 11.

A graph is a (t, r)-fan if it is isomorphic to K1 + tKr−1, where t > 2 and r > 2 are

integers. The classical Turán number of (t, r)-fan, namely, ex(n,K1 + tKr−1), has also

been studied when n is sufficiently large (see [2, 6] for more information). We next study

exP (n,H) when H is a K4-free (t, r)-fan, in particular, when H ∈ {K1 + 2K2, K1,t, K1 +

3K2}. Theorem 5 below establishes a sharp upper bound for exP (n,K1 + 2K2), and

Theorem 6 completely determines the value of exP (n,K1,t) for all t > 3. However, the

upper bound for exP (n,K1 + 3K2) when n > 15 in Theorem 7 is not tight.

Theorem 5. Let n > 5 be an integer. Then

2n− 3 6 exP (n,K1 + 2K2) 6
19n

8
− 4.

Furthermore, exP (n,K1 + 2K2) = 19n
8
− 4 if and only if n is divisible by 8.

Theorem 6. Let n, t be integers with n > t+ 1 > 4. Then

exP (n,K1,t) =



3n− 6 if t > 7, or t = 6 and n ∈ {7, 8, 9, 10, 12}

3n− 7 if t = 6 and n = 11

3n− 8 if t = 6 and n ∈ {13, 14}, or t = 5 and n = 7⌊
(t−1)n

2

⌋
if t ∈ {3, 4}, or t = 5 and n 6= 7, or t = 6 and n > 15.

Theorem 7. Let n > 7 be an integer. Then⌊
5n

2

⌋
6 exP (n,K1 + 3K2) <

17n

6
− 4
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for all n > 15 and

exP (n,K1 + 3K2) =


3n− 6 if n ∈ {7, 8, 9, 10, 12}

3n− 7 if n = 11

3n− 8 if n ∈ {13, 14}.

We need to introduce more notation. Given a plane graph G and an integer i > 3, an

i-face in G is a face of order i. Let fi denote the number of i-faces in G. Let Tn denote

a plane triangulation on n > 3 vertices, and let T−n be obtained from Tn with one edge

removed. For every integer n > 5, let On denote the unique outerplane graph with 2n− 3

edges, maximum degree 4, and the outer face of order n; let O′n be a different drawing of

On with one unique inner face of order n; and finally, let O∗n be the planar triangulation

obtained from On and O′n by identifying the outer face of On with the unique n-face of

O′n in such a way that O∗n is a simple graph. The proof of Proposition 3 relies heavily on

the fact that O∗n, K1 +On−1 and 2K1 + Cn−2 are planar triangulations.

Finally, we shall make use of the following lemma in the proof of Theorem 6 and

Theorem 7.

Lemma 8 ([14]). There does not exist a 4-regular planar graph on 7 vertices, or a 5-regular

planar graph on 14 vertices, or a planar graph on n ∈ {11, 13} vertices with exactly one

vertex of degree 4 and n− 1 vertices of degree 5.

2 Proof of Proposition 3

Let H and n be given as in the statement. To prove (a), assume χ(H) = 4 and n > |H|+2.

Since the planar triangulation 2K1+Cn−2 has no subgraph on |H| vertices with chromatic

number 4, we see that 2K1 +Cn−2 is H-free. Hence, exP (n,H) = 3n− 6 when χ(H) = 4

and n > |H|+ 2.

To prove (b), assume that ∆(H) > 7. Then n > |H| > 8, and the planar triangulation

O∗n is H-free because ∆(O∗n) = 6. Hence, exP (n,H) = 3n− 6 for all n > |H|.

To prove (c), assume ∆(H) = 6. Then n > |H| > 7. Assume first n6(H) +n5(H) > 2.

Let x, y ∈ V (H) be such that dH(x) = 6 and dH(y) > 5. Then the planar triangulation

K1 + On−1 is H-free when xy /∈ E(H), and the planar triangulation 2K1 + Cn−2 is H-

free when xy ∈ E(H). Hence, exP (n,H) = 3n − 6 when n6(H) + n5(H) > 2. Next

assume that n6(H) + n5(H) = 1 and n4(H) > 5. Then n5(H) = 0. Note that the

planar triangulation 2K1 +Cn−2 is H-free when n4(H) > 6. We may further assume that

n4(H) = 5. Let u, v1, . . . , v5 ∈ V (H) with dH(u) = 6 and dH(vi) = 4 for all i ∈ [5]. Let

M := H[{u, v1, . . . , v5}]. We may assume that uv1 /∈ E(M) when dM(u) = 4. Then the
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planar triangulation 2K1 + Cn−2 is H-free when dM(u) = 5, or dM(u) 6 3, or dM(u) = 4

and dM(v1) 6 3; and the planar triangulation O∗n is H-free when NM(u) = NM(v1) =

{v2, v3, v4, v5}. It follows that exP (n,H) = 3n− 6 for all n > |H|. This proves (c).

To prove (d), assume ∆(H) = 5 and n5(H) > 2. Then n > |H| > 6. Let u, v be two

distinct 5-vertices in H. Then either n5(H) > 3 or n5(H) = 2 with uv ∈ E(H). Note

that the planar triangulation 2K1 +Cn−2 has exactly two non-adjacent vertices of degree

at least 5 when n > 7 and has maximum degree 4 when n = 6. Hence, 2K1 + Cn−2 is

H-free, and so exP (n,H) = 3n− 6 for all n > |H|. This proves (d).

To prove (e) and (f). Assume ∆(H) = 4 and n4(H) > 7, or H is 3-regular with

|H| > 9, or H has at least three vertex-disjoint cycles, or H has exactly one vertex u

of degree ∆(H) ∈ {4, 5, 6} such that ∆(H[N(u)]) > 3. Then the planar triangulation

2K1 + Cn−2 is H-free. Hence, exP (n,H) = 3n− 6 for all n > |H|.

It remains to prove (g). Assume δ(H) > 4 or H has exactly one vertex of degree at

most 3. Then n > |H| > 5. Note that the planar triangulation K1 +On−1 is 3-degenerate

and every subgraph of K1 + On−1 has at least two vertices of degree at most 3, because

every subgraph of On−1 has at least two vertices of degree at most 2. Hence, K1 + On−1

is H-free, and so exP (n,H) = 3n − 6 for all n > |H|. This completes the proof of

Proposition 3.

3 Proof of Theorem 4

Let n, k be given as in the statement. Assume k > 7. By Proposition 3(b), exP (n,Wk) =

3n−6 for all n > k+1. Assume next k ∈ {5, 6}. Since the planar triangulation 2K1+Cn−2
is Wk-free when n > k+3 or n = k+1, we see that exP (n,Wk) = 3n−6 when n > k+3 or

n = k+1. We next determine exP (n,Wk) when n = k+2. For k = 6 and n = 8, the plane

triangulation on 8 vertices depicted in Figure 1(a) is W6-free and so exP (n,W6) = 3n− 6

when n = 8. For k = 5 and n = 7, note that the plane graph with 7 vertices and 14 edges

Figure 1: Wk-free plane graphs with n = k + 2 vertices and 3n − 12 + k edges, where
k ∈ {5, 6}.

given in Figure 1(b) is W5-free. Thus, exP (7,W5) > 3 · 7 − 6 − 1 = 14. On the other
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hand, all plane triangulations on seven vertices1 are depicted in Figure 2, each containing

a copy of W5. Hence, exP (n,W5) = 3n− 7 when n = 7.

Figure 2: All plane triangulations on 7 vertices. Furthermore, each T7 has a copy of W4

and W5, and each T−7 has a copy of W4.

It remains to consider the case when k = 4. To show exP (n,W4) = 3n−6 for all n > 12,

assume first that n = 5t + 2 for some integer t > 2. Let Lt be a plane triangulation on

n = 5t+ 2 vertices constructed as follows: for each i ∈ [t], let Ci be a cycle with vertices

ui,1, ui,2, . . . , ui,5 in order. Let Lt be the plane triangulation obtained from disjoint union

of C1, . . . , Ct by adding edges ui,jui+1,j and ui,jui+1,j+1 for all i ∈ [t−1] and j ∈ [5], where

all arithmetic on the index j + 1 here is done modulo 5, and finally adding two new non-

adjacent vertices u and v such that u is adjacent to all vertices of C1 and v is adjacent to

all vertices of Ct. The graph Lt when t = 3 is depicted in Figure 3. It is worth noting that

Lt is K4-free, dLt(u) = dLt(v) = 5, dLt(u1, j) = dLt(ut, j) = 5, dLt(ui, j) = 6 for 2 6 i 6 t−1

and j ∈ [5]. Furthermore, the subgraph induced by the neighborhood of each vertex in Lt
is isomorphic to either C5 or C6. Hence, Lt is W4-free and so exP (n,W4) = 3n− 6 when

n = 5t+ 2 for some integer t > 2.

Next assume that n = 5t + 2 + i for some i ∈ [4], where t > 2 is an integer. Note

that the plane triangulation Lt on 5t+ 2 vertices constructed above contains at least four

pairwise vertex-disjoint faces. Let F1, . . . , Fi be any i pairwise vertex-disjoint faces of Lt,

and let Lit be the plane triangulation obtained from Lt by adding one vertex, say xj, of

degree 3 to each Fj for all j ∈ [i]. Clearly, Lit is a plane triangulation on n = 5t + 2 + i

vertices. By the choice of F1, . . . , Fi, we see that x1, . . . , xi are pairwise non-adjacent in

Lit, and no two of x1, . . . , xi have common neighbors in Lit. We next show that Lit is

W4-free for all i ∈ [4]. Suppose that Lit contains a copy of W4 for some i ∈ [4]. Let

1To find all plane triangulations on 7 vertices, let H be a plane triangulation on 7 vertices. Then
e(H) = 15 and H must be 3-connected with maximum degree 5 or 6. Let u ∈ V (H) be a vertex of
maximum degree. If d(u) = 6, then H has at most two vertices of degree 6 and H −u has neither K4 nor
K2,3 minor. Thus H−u must be outer planar and so H is isomorphic to one of the plane triangulations in
Figure 2(a,b,e). If d(u) = 5, then the degree sequence of H is either (5, 5, 5, 4, 4, 4, 3) or (5, 5, 4, 4, 4, 4, 4).
Since H has no K3,3 minor, one can then check that H is isomorphic to one of the plane triangulations
in Figure 2(c,d).
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Figure 3: The plane triangulation Lt when t = 3, where C1, C2, C3 are in red, blue and
green.

H be a W4 in Lit. Then H must contain exactly one, say x1, of x1, . . . , xi, because Lt
is W4-free, and no two of x1, . . . , xi are adjacent or have common neighbors in Lit. Let

y, z ∈ V (H) be the two neighbors of x1 such that yz /∈ E(H). By the choice of x1, we see

that yz ∈ E(Lt). But then Lt[V (H \ x1)] = K4 and so Lt contains K4 as a subgraph, a

contradiction. Therefore, exP (n,W4) = 3n− 6 for all n > 12.

Figure 4: All plane triangulations on 5 and 6 vertices.

We next show that exP (n,W4) = 3n − 7 when n ∈ {5, 6}. Note that all plane tri-

angulations on n ∈ {5, 6} vertices are depicted in Figure 4, each containing a copy of

W4. Thus, exP (n,W4) 6 3n− 7. On the other hand, for all n ∈ {5, 6}, the planar graph

K2 + (K2 ∪ Kn−4) has 3n − 7 edges and is W4-free. Hence, exP (n,W4) = 3n − 7 when

n ∈ {5, 6}.

Finally, we show that exP (n,W4) = 3n−8 for all n ∈ {7, 8, 9, 10, 11}. The plane graph
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J , given in Figure 5, is W4-free with n = 11 vertices and 3n−8 edges. Let B be the set of

Figure 5: Graph J .

all vertices of degree 3 in J . Then |B| = 5. For each n ∈ {7, 8, 9, 10}, let Jn be the plane

graph obtained from J by deleting 11−n vertices in B. Then Jn is an induced subgraph of

J . Clearly, Jn is W4-free with n vertices and 3n−8 edges. Hence, exP (n,W4) > 3n−8 for

all n ∈ {7, 8, 9, 10, 11}. We next show that exP (n,W4) 6 3n−8 for all n ∈ {7, 8, 9, 10, 11}.
Suppose this is not true. Let G be a W4-free planar graph on n ∈ {7, 8, 9, 10, 11} vertices

with e(G) > 3n − 7. We choose such a G with n minimum. Then G = Tn or G = T−n .

Since each T7, depicted in Figure 2, contains a copy of W4, and each T−7 also contains a

copy of W4, it follows that n ∈ {8, 9, 10, 11}. Let u ∈ V (G) with dG(u) = δ(G). Then

δ(G) 6 4, else e(G) > 5n
2
> 3n − 6 because n 6 11, a contradiction. Next, if δ(G) 6 3,

then e(G \ u) 6 3(n − 1) − 8 by minimality of n and the fact that exP (n,W4) 6 3n − 8

when n = 7. Thus, e(G) = e(G \ u) + dG(u) 6 3(n− 1)− 8 + 3 = 3n− 8, a contradiction.

This proves that δ(G) = 4. Since NG[u] does not contain a copy of W4 in G, we see that

G 6= Tn. Thus G = T−n . We may assume that G is a plane drawing of T−n such that the

outer face is a 3-face. Let x1, y1 ∈ V (G) be such that G+x1y1 = Tn. Then x1 and y1 must

lie on the boundary of the unique 4-face, say F , in G. Let x1, x2, y1, y2 be the vertices on

the boundary of F in order. Then dG(v) > 5 for all v ∈ V (G) \ {x1, x2, y1, y2}, because

G = T−n and NG[u] does not contain a copy of W4 in G for any u ∈ V (G) with dG(u) = 4.

Thus 2(3n−7) = 2e(G) > 4 ·4+5 · (n−4), which implies that n ∈ {10, 11}. Suppose each

vertex in {x1, x2, y1, y2} has degree 4 in G. Since G = T−n , there must exist four distinct

vertices z1, z2, z3, z4 ∈ V (G) \ {x1, x2, y1, y2} such that G[A] is isomorphic to the graph

given in Figure 6(a), where A = {x1, x2, y1, y2, z1, z2, z3, z4}. But then G contains K3,3 as

a minor, because n ∈ {10, 11} and dG(v) > 5 for any v ∈ V (G)\A. Thus, we may assume

that dG(x2) > 5. Then 2(3n− 7) = 2e(G) > 4 · 3 + 5 · (n− 3), which implies that n = 11,

dG(v) = 4 for all v ∈ {x1, y1, y2} and ∆(G) = 5. Thus there exist five distinct vertices

z1, z2, z3, z4, z5 ∈ V (G) \ {x1, x2, y1, y2} such that G[A] is isomorphic to the graph given

in Figure 6(b), where A = {x1, x2, y1, y2, z1, z2, z3, z4, z5}. But then e
G

(A, V (G) \ A) = 6,
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Figure 6: The graph G[A].

contrary to e
G

(V (G) \ A,A) > 8 because n = 11 and dG(v) = 5 for any v ∈ V (G) \ A.

This completes the proof of Theorem 4.

4 Proof of Theorem 5

To establish the desired lower bound, note that the planar graph K2 + (n − 2)K1 is

(K1 + 2K2)-free for all n > 5. Hence, exP (n,K1 + 2K2) > 2n − 3 for all n > 5. In

particular, exP (5, K1 + 2K2) > 7. We next show that every (K1 + 2K2)-free planar graph

on n > 5 vertices has at most 19n/8− 4 edges. We proceed the proof by induction on n.

Assume first n = 5. Then exP (5, K1 + 2K2) = 7, because the only plane triangulation on

five vertices, given in Figure 4(a), is not (K1 + 2K2)-free, and any T−5 is not (K1 + 2K2)-

free. Hence, exP (n,K1 + 2K2) = 7 < 19n/8 − 4 when n = 5. So we may assume that

n > 6. Let G be a (K1 + 2K2)-free plane graph on n > 6 vertices. Assume there exists a

vertex u ∈ V (G) with dG(u) 6 2. By the induction hypothesis, e(G\u) 6 19(n−1)/8−4

and so e(G) = e(G \ u) + dG(u) 6 19(n − 1)/8 − 4 + 2 < 19n/8 − 4, as desired. So

we may assume that δ(G) > 3. Next, assume G is disconnected. Then each component

of G either is isomorphic to K4 or has at least six vertices because δ(G) > 3. Let

G1, . . . , Gp, Gp+1, . . . , Gp+q be all components of G such that |G1| = · · · = |Gp| = 4 and

6 6 |Gp+1| 6 · · · 6 |Gp+q|, where p > 0 and q > 0 are integers with p + q > 2 and

|Gp+1| + · · · + |Gp+q| = n− 4p. Then e(Gi) = 6 for all i ∈ [p], and e(Gj) 6
19|Gj |

8
− 4 for

all j ∈ {p+ 1, . . . , p+ q} by the induction hypothesis. Therefore,

e(G) 6 6p+
19(|Gp+1|+ · · ·+ |Gp+q|)

8
− 4q

=
19n

8
− 7p

2
− 4q

6
19n

8
− 7(p+ q)

2
<

19n

8
− 4,
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as desired. So we may further assume that G is connected. Then G has no faces of size

at most two. Hence,

2e(G) = 3f3 +
∑
i>4

ifi > 3f3 + 4(f − f3) = 4f − f3,

which implies that

f 6 e(G)/2 + f3/4. (1)

Note that each 3-vertex is incident with at most three distinct 3-faces in G. Furthermore,

since G is (K1 +2K2)-free, we see that for all j > 4, each j-vertex is incident with at most

two distinct 3-faces in G. Let U ⊆ V (G) denote the set of 3-vertices each incident with

exactly three distinct 3-faces in G. Then U must be an independent set in G because G

is connected. Furthermore, no two vertices in U have a common neighbor in G, because

G is (K1 + 2K2)-free. Thus, 4|U | 6 n and so |U | 6 n/4. It follows that

3f3 6 3|U |+ 2(n− |U |) = 2n+ |U | 6 9n/4, (2)

which implies that f3 6 3n/4. This, together with (1), further implies that f 6 e(G)/2 +

3n/16. By Euler’s formula, n−2 = e(G)−f > e(G)/2−3n/16. Hence, e(G) 6 19n/8−4,

as desired.

Figure 7: The construction of Fk.

From the proof above, we see that equality in e(G) 6 19n/8 − 4 is achieved for n

if and only if equalities hold in both (1) and (2), and in 4|U | 6 n. This implies that

e(G) = 19n/8 − 4 for n if and only if G is a connected, (K1 + 2K2)-free plane graph

on n vertices satisfying: δ(G) > 3; each 3-vertex in G is incident with exactly three

distinct 3-faces; each vertex of degree at least 4 in G is incident with exactly two distinct

3-faces; each face is either a 3-face or a 4-face. We next construct such an extremal plane

graph for n and K1 + 2K2. Let n = 8(k + 1) for some integer k > 0. Let F0 be the

graph depicted in Figure 7(a), we then construct Fk of order n recursively for all k > 1
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via the illustration given in Figure 7(b): the entire graph Fk−1 is placed into the center

quadrangle of Figure 7(b) (in such a way that the center bold quadrangle of Figure 7(b)

is identified with the outer quadrangle of Fk−1). One can check that Fk is (K1 +2K2)-free

with n = 8(k + 1) vertices and 19n/8− 4 edges for all k > 0.

5 Proof of Theorem 6

By Proposition 3(b), exP (n,K1,t) = 3n − 6 for all n > t + 1 > 8. So we may assume

that t 6 6. We next show that exP (n,K1,6) = 3n − 6 for all n ∈ {7, 8, 9, 10, 12}. Let

Ja, Jb, Jc be the plane graphs given in Figure 8. Let J ′a be the plane triangulation obtained

from Ja by adding a new vertex adjacent to x1, x2, x3, J
′
b be the plane triangulation

obtained from Jb by first deleting the edge x1x3 and then adding a new vertex adjacent

to x1, x2, x3, x4, and J ′c be the plane triangulation obtained from Jc by first deleting the

edge x1x3 and then adding one new vertex adjacent to x1, x2, x3, x4, x5. Then the plane

triangulations Ja, J
′
a, Jb, J

′
b and J ′c are K1,6-free because each of them has maximum

degree 5. Hence, exP (n,K1,6) = 3n − 6 for all n ∈ {7, 8, 9, 10, 12}. By Lemma 8, no

Figure 8: The graphs Ja, Jb, Jc and Jd.

plane triangulation on 11 vertices has maximum degree at most 5. Hence, every plane

triangulation on n ∈ {11, 13, 14} vertices has maximum degree at least 6. This implies

that exP (n,K1,6) 6 3n−7 for all n ∈ {11, 13, 14}. Since Jc given in Figure 8 is a K1,6-free

plane graph with n = 11 vertices and 3n− 7 edges, we have exP (n,K1,6) = 3n− 7 when

n = 11. By Lemma 8, there does not exist any planar graphs on n ∈ {13, 14} vertices

with 3n− 7 edges and maximum degree at most 5. It follows that exP (n,K1,6) 6 3n− 8

when n ∈ {13, 14}. Let J ′′c be the plane graph obtained from Jc by first deleting the edge

x1x3 and then adding two new adjacent vertices y1, y2 such that y1 is adjacent to x1, x2, x3
and y2 is adjacent to x4, x5. Then J ′′c and the graph Jd given in Figure 8 are K1,6-free

plane graph with n ∈ {13, 14} vertices and 3n − 8 edges. Hence, exP (n,K1,6) = 3n − 8

when n ∈ {13, 14}.
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It is easy to see that exP (n,K1,3) = n for all n > 4, because every K1,3-free planar

graph has maximum degree at most 2 and the planar graph Cn is K1,3-free with n edges.

We next show that exP (n,K1,4) = b3n/2c for all n > 5. Clearly, exP (n,K1,4) 6 b3n/2c
for all n > 5, because every K1,4-free planar graph has maximum degree at most 3.

Next, for all n > 5, the planar graph obtained from Cn by adding a matching of size

bn/2c is K1,4-free with b3n/2c edges. Hence, exP (n,K1,4) = b3n/2c for all n > 5. To

determine exP (n,K1,5) for all n > 6, since every K1,5-free planar graph on n > 6 vertices

has maximum degree at most 4, we have exP (n,K1,5) 6 2n for all n > 6. Let J ′′a be the

plane triangulation obtained from Ja by deleting the unique 3-vertex. Since J ′′a is K1,5-free

plane graph on n = 6 vertices with 2n edges, we have exP (n,K1,5) = 2n when n = 6. By

Lemma 8, no planar graph with n = 7 vertices and 2n edges has maximum degree at most

4. Hence, exP (n,K1,5) 6 2n − 1 when n = 7. Let J ′′′a be the plane graph obtained from

J ′′a by first deleting the edge x1x2 and then adding a new vertex adjacent to x1, x2 only.

Note that J ′′′a is a K1,5-free plane graph on n = 7 vertices with 2n− 1 edges, we see that

exP (n,K1,5) = 2n−1 when n = 7. Next, for all n > 8, let C be a cycle on 2bn/2c vertices

with vertices u1, . . . , ubn
2
c, wbn

2
c, . . . , w1 in order. Let H be the plane graph obtained from

C by adding the path with vertices w1, u2, w2, u3, . . . , wbn
2
c−1, ubn

2
c in order. When n is

even, the planar graph H +u1ubn
2
c+u1wbn

2
c+w1wbn

2
c is K1,5-free with 2n edges. When n

is odd, let H ′ be obtained from H by first deleting the edge u2u3 and then adding a new

vertex u adjacent to u2 and u3. Then the planar graph H ′+uu1+uubn
2
c+w1wbn

2
c+u1wbn

2
c

is K1,5-free with 2n edges. Hence, exP (n,K1,5) = 2n for all n > 8.

It remains to show that exP (n,K1,6) = b5n/2c for all n > 15. Clearly, exP (n,K1,6) 6
b5n/2c for all n > 15, because every K1,6-free planar graph on n > 15 vertices has

maximum degree at most 5. We next show that exP (n,K1,6) > b5n/2c for all n > 15.

Let n := 4q + r > 15, where q > 3 and r ∈ {0, 1, 2, 3}. Let p ∈ {q, q + 1}. Let C1

and C2 be two vertex-disjoint cycles with vertices x1, x2, . . . xq in order and y1, y2, . . . yp
in order, respectively. Let C3 be a cycle of length q+ p with vertices b1, a1, b2, a2, . . . bq, aq
in order when p = q, and b1, a1, b2, a2, . . . bq, aq, bq+1 in order when p = q + 1. Let Rp be

the plane graph on 2q + 2p vertices obtained from disjoint copies of C1, C2 and C3 by

making xi adjacent to {ai, bi, bi+1}, and yj adjacent to {bj, aj−1, aj} for all 1 6 i 6 q and

1 6 j 6 p, where all arithmetic on the indices i + 1 and j − 1 here are done modulo

p. Then Rp is K1,6-free planar graph with 10q edges when p = q and 10q + 3 edges

when p = q + 1. The construction of Rp on 4q vertices when q = 4 is depicted in

Figure 9(a). When n = 4q for q > 4, the planar graph Rp with p = q is K1,6-free with

10q edges and so exP (n,K1,6) = 10q = 5n/2. When n = 4q + 1 for q > 4, let R1 be

obtained from Rp − y2y3 − y1yp with p = q by adding a new vertex u adjacent to y2
and y3. Then the planar graph R1 + uy1 + uyp is K1,6-free with 10q + 2 edges. Hence,

exP (n,K1,6) = 10q + 2 = b5n/2c when n = 4q + 1 for q > 4. When n = 4q + 2 for q > 4,

let R2 be obtained from Rp − y2y3 − y1yp − x2x3 − x1xp − b1ap with p = q by adding
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Figure 9: Almost 5-regular plane graphs on 4q + r vertices when q = 4 and r ∈ {0, 3}.

two new vertices u adjacent to y2 and y3 and v adjacent to x2 and x3. Then the planar

graph R2 + uy1 + uyp + uaq + vx1 + vxq + vb1 is K1,6-free with 10q + 5 edges. Hence,

exP (n,K1,6) = 10q + 5 = 5n/2 when n = 4q + 2 for q > 4. When n = 4q + 3 for n > 3,

the planar graph obtained from Rp with p = q + 1 by adding a new vertex u adjacent

to y1, b1, yp, bp, given in Figure 9(b) when q = 4, is K1,6-free with 10q + 7 edges. Hence,

exP (n,K1,6) = 10q + 7 = b5n/2c when n = 4q + 3 for q > 3.

6 Proof of Theorem 7

Since the plane triangulations Ja, J
′
a, Jb and J ′b constructed in the proof of Theorem 6

is (K1 + 3K2)-free, we see that exP (n,K1 + 3K2) = 3n − 6 for all n ∈ {7, 8, 9, 10}. To

determine exP (11, K1 + 3K2), note that the plane graph Jc given in Figure 8 with n = 11

vertices and 3n − 7 edges is (K1 + 3K2)-free. Thus exP (n,K1 + 3K2) > 3n − 7 when

n = 11. By Lemma 8, no plane triangulation on 11 vertices has maximum degree at most

5. Hence, every plane triangulation on 11 vertices must contain a vertex of degree at least

6 (and so contains a copy of K1 + 3K2), which implies that exP (n,K1 + 3K2) = 3n − 7

when n = 11. Since every K1,6-free graph is certainly (K1 + 3K2)-free, by Theorem 6,

exP (n,K1+3K2) = exP (n,K1,6) = 3n−6 when n = 12, exP (n,K1+3K2) > exP (n,K1,6) =

3n− 8 when n ∈ {13, 14}, and exP (n,K1 + 3K2) > exP (n,K1,6) = b5n/2c when n > 15.

Since every plane triangulation on n ∈ {13, 14} vertices has maximum degree at least 6,

we see that exP (n,K1 + 3K2) 6 3n− 7 when n ∈ {13, 14}. By Lemma 8, every T−n with

n ∈ {13, 14} has maximum degree at least 6 and so contains a copy of K1 + 3K2. It

follows that exP (n,K1 + 3K2) = 3n− 8 < 17n/6− 4 when n ∈ {13, 14}.
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We next show that every (K1 + 3K2)-free planar graph G on n > 13 vertices has

at most 17n/6 − 4 edges. We proceed the proof by induction on n. This is trivially

true when n ∈ {13, 14}. So we may assume that n > 15. Assume there exists a vertex

u ∈ V (G) with dG(u) 6 2. By the induction hypothesis, e(G\u) 6 17(n−1)/6−4 and so

e(G) = e(G\u)+dG(u) 6 17(n−1)/6−4+2 < 17n/6−4, as desired. So we may assume

that δ(G) > 3. Assume next that G is disconnected. Let G1, . . . , Gp, Gp+1, . . . , Gp+q be

all components of G such that |G1| 6 · · · 6 |Gp| 6 12 and 13 6 |Gp+1| 6 · · · 6 |Gp+q|,
where p > 0 and q > 0 are integers with p + q > 2 and |G1| + · · · + |Gp+q| = n. Then

e(Gi) 6 3|Gi| − 6 for all i ∈ [p], and e(Gj) 6 17|Gj|/6− 4 for all j ∈ {p+ 1, . . . , p+ q} by

the induction hypothesis. Therefore,

e(G) 6 3(|G1|+ · · ·+ |Gp|)− 6p+
17(|Gp+1|+ · · ·+ |Gp+q|)

6
− 4q

=
17n

6
− (6p+ 4q) +

|G1|+ · · ·+ |Gp|
6

6
17n

6
− (6p+ 4q) + 2p =

17n

6
− 4(p+ q) <

17n

6
− 4,

as desired. So we may further assume that G is connected. Then G has no faces of size

at most two. Hence,

2e(G) = 3f3 +
∑
i>4

ifi > 3f3 + 4(f − f3) = 4f − f3,

which implies that f 6 e(G)/2 + f3/4. Note that n3(G) > 0 and n5(G) < n; and for

all i ∈ {3, 4, 5}, each i-vertex is incident with at most i 3-faces. Furthermore, for all

j > 6, each j-vertex is incident with at most four 3-faces because G is (K1 + 3K2)-free

and n > 15. It follows that

3f3 6 3n3(G) + 4n4(G) + 5n5(G) + 4(n− n3(G)− n4(G)− n5(G)) = 4n− n3(G) + n5(G) < 5n,

which implies that f3 < 5n/3. This, together with the fact that f 6 e(G)/2+f3/4, further

implies that f < e(G)/2+5n/12. By Euler’s formula, n−2 = e(G)−f > e(G)/2−5n/12.

Hence, e(G) < 17n/6− 4.

7 Concluding remarks

The lower bound in Theorem 7 can be further improved when n is divisible by 24. To

see this, let n = 24(k + 1) for some integer k > 0. Let R5 be the 5-regular plane graph

on twelve vertices given in Figure 10(a), and let G0 be the plane graph obtained from

two disjoint copies of R5 by adding three independent edges between their outer faces,

as depicted in Figure 10(b). We construct Gk of order n recursively for all k > 1 via

the illustration given in Figure 10(c): the entire graph Gk−1 is placed into the center
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quadrangle of Figure 10(c) (in such a way that the center bold quadrangle of Figure 10(c)

is identified with the outer quadrangle of Gk−1). One can check that Gk is (K1+3K2)-free

with n = 24(k + 1) vertices and 67n/24− 4 edges for all k > 0.

Figure 10: The construction of Gk.

As mentioned earlier, it seems non-trivial to determine exP (n,H) for all K4-free planar

graphs H with exactly one vertex, say u, satisfying dH(u) = ∆(H) 6 6 and ∆(H[N(u)]) 6
2. We conclude this section by giving an upper bound (but not tight) for exP (n,K1 +H),

where H is a disjoint union of paths.

Theorem 9. Let 4 6 t 6 6 be an integer and let H be a graph on t vertices such that H

is a disjoint union of paths. Then exP (n,K1 +H) 6 13(t−1)n
4t−2 − 12(t−1)

2t−1 for all n > t+ 1.

Proof. Let t and H be given as in the statement. Since H is a subgraph of K1 + Pt,

it suffices to show that exP (n,K1 + Pt) 6 13(t−1)n
4t−2 − 12(t−1)

2t−1 for all n > t + 1. Let G

be a (K1 + Pt)-free planar graph on n > t + 1 vertices. We next show that e(G) 6
13(t−1)n

4t−2 −
12(t−1)
2t−1 by induction on n. This is trivially true when n = t+ 1 because e(G) 6

3(t+1)−6 6 13(t−1)(t+1)
4t−2 − 12(t−1)

2t−1 for 5 6 t 6 6 and e(G) 6 3(t+1)−7 6 13(t−1)(t+1)
4t−2 − 12(t−1)

2t−1
for t = 4 . So we may assume that n > t+ 2. We may further assume that δ(G) > 3 and

G is connected. Hence,

2e(G) = 3f3 +
∑
i>4

ifi > 3f3 + 4(f − f3) = 4f − f3,

which implies that f 6 e(G)/2 + f3/4. Note that for all 3 6 i 6 t − 1, each i-vertex is

incident with at most i many 3-faces, and for all j > t, each j-vertex is incident with at
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most (t− 2)b j
t−1c many 3-faces, because G is (K1 + Pt)-free. It follows that

3f3 6
t−1∑
i=3

i · ni(G) +
∑
j>t

(t− 2)

⌊
j

t− 1

⌋
· nj(G)

6
t−1∑
i=3

(
i · ni(G)

t− 1
+

(t− 2)i · ni(G)

t− 1

)
+
t− 2

t− 1

∑
j>t

j · nj(G)

=
t−1∑
i=3

i · ni(G)

t− 1
+
t− 2

t− 1

∑
`>3

` · n`(G)

=
t−1∑
i=3

i · ni(G)

t− 1
+

(
t− 2

t− 1
· 2e(G)

)

=
t−1∑
i=3

ni(G)−
t−1∑
i=3

(t− 1− i) · ni(G)

t− 1
+

(
t− 2

t− 1
· 2e(G)

)
< n+

t− 2

t− 1
· 2e(G),

which implies that f3 < n
3

+ 2(t−2)
3(t−1) · e(G). This, together with the fact that f 6

e(G)/2 + f3/4, further implies that f 6 e(G)
2

+ n
12

+ (t−2)
6(t−1) · e(G) = (4t−5)

6(t−1) · e(G) + n
12

.

By Euler’s formula, n−2 = e(G)−f > (2t−1)
6(t−1) · e(G)− n

12
. Hence, e(G) 6 13(t−1)n

4t−2 −
12(t−1)
2t−1 .
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