Extremal \boldsymbol{H}-free planar graphs

Yongxin Lan* Yongtang Shi*
Center for Combinatorics and LPMC Nankai University
Tianjin, China
yxlan0@126.com shi@nankai.edu.cn
Zi-Xia Song ${ }^{\dagger}$
Department of Mathematics University of Central Florida
Orlando, USA
Zixia.Song@ucf.edu

Submitted: Oct 20, 2018; Accepted: Mar 28, 2019; Published: TBD
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given a graph H, a graph is H-free if it does not contain H as a subgraph. We continue to study the topic of "extremal" planar graphs initiated by Dowden [J. Graph Theory 83 (2016) 213-230], that is, how many edges can an H-free planar graph on n vertices have? We define $e x_{\mathcal{p}}(n, H)$ to be the maximum number of edges in an H-free planar graph on n vertices. We first obtain several sufficient conditions on H which yield $e x_{\mathcal{P}}(n, H)=3 n-6$ for all $n \geqslant|V(H)|$. We discover that the chromatic number of H does not play a role, as in the celebrated ErdősStone Theorem. We then completely determine $e x_{\mathcal{p}}(n, H)$ when H is a wheel or a star. Finally, we examine the case when H is a (t, r)-fan, that is, H is isomorphic to $K_{1}+t K_{r-1}$, where $t \geqslant 2$ and $r \geqslant 3$ are integers. However, determining $e x_{\mathcal{p}}(n, H)$, when H is a planar subcubic graph, remains wide open.

Mathematics Subject Classifications: 05C10, 05C35
Key words. Turán number, extremal planar graph, planar triangulation

[^0]
1 Introduction

All graphs considered in this paper are finite and simple. We use K_{t}, C_{t} and P_{t} to denote the complete graph, cycle, and path on t vertices, respectively. Given a graph G, we will use $V(G)$ to denote the vertex set, $E(G)$ the edge set, $|G|$ the number of vertices, $e(G)$ the number of edges, $\delta(G)$ the minimum degree, $\Delta(G)$ the maximum degree. For a vertex $v \in V(G)$, we will use $N_{G}(v)$ to denote the set of vertices in G which are adjacent to v. Let $d_{G}(v)=\left|N_{G}(v)\right|$ denote the degree of the vertex v in G and $N_{G}[v]=N_{G}(v) \cup\{v\}$. A vertex is a k-vertex in G if it has degree k. We use $n_{k}(G)$ to denote the number of k-vertices in G. For any set $S \subset V(G)$, the subgraph of G induced on S, denoted $G[S]$, is the graph with vertex set S and edge set $\{x y \in E(G): x, y \in S\}$. We denote by $G \backslash S$ the subgraph of G induced on $V(G) \backslash S$. If $S=\{v\}$, then we simple write $G \backslash v$. For any two disjoint sets A and B of $V(G)$, we use $e_{G}(A, B)$ to denote the number of edges between A and B in G. The join $G+H$ (resp. union $G \cup H$) of two vertex-disjoint graphs G and H is the graph having vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H) \cup\{x y \mid x \in V(G), y \in V(H)\}$ (resp. $E(G) \cup E(H)$). For a positive integer t, we use $t G$ to denote disjoint union of t copies of a graph G. Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write $G=H$. For any positive integer k, let $[k]:=\{1,2, \ldots, k\}$.

Given a graph H, a graph is H-free if it does not contain H as a subgraph. One of the best known results in extremal graph theory is Turán's Theorem [15], which gives the maximum number of edges that a K_{t}-free graph on n vertices can have. The celebrated Erdős-Stone Theorem [7] then extends this to the case when K_{t} is replaced by an arbitrary graph H with at least one edge, showing that the maximum number of edges possible is $(1+o(1))\binom{n}{2}\binom{\chi(H)-2}{\chi(H)-1}$, where $\chi(H)$ denotes the chromatic number of H. This latter result has been called the "fundamental theorem of extremal graph theory" [1]. Turán-type problems when host graphs are hypergraphs are notoriously difficult. A large quantity of work in this area has been carried out in determining the maximum number of edges in a k-uniform hypergraph on n vertices without containing k-uniform linear paths and cycles (see, for example, $[9,10,12]$). Surveys on Turán-type problems of graphs and hypergraphs can be found in $[8,11]$.

In this paper, we continue to study the topic of "extremal" planar graphs, that is, how many edges can an H-free planar graph on n vertices have? We define $e x_{\mathcal{p}}(n, H)$ to be the maximum number of edges in an H-free planar graph on n vertices. Dowden [3] initiated the study of $e x_{\mathcal{p}}(n, H)$ and proved the following results, where each bound is tight.

Theorem 1 ([3]). Let n be a positive integer.
(a) $e x_{\mathcal{p}}\left(n, C_{4}\right) \leqslant 15(n-2) / 7$ for all $n \geqslant 4$.
(b) ex $x_{p}\left(n, C_{5}\right) \leqslant(12 n-33) / 5$ for all $n \geqslant 11$.

Let Θ_{4} and Θ_{5} be obtained from C_{4} and C_{5}, respectively, by adding an additional edge joining two non-consecutive vertices. The present authors [13] studied $e x_{\mathcal{p}}(n, H)$ when $H \in\left\{\Theta_{4}, \Theta_{5}, C_{6}\right\}$ and when H is a path on at most 9 vertices. Results from [13] are summarized below.

Theorem 2 ([13]). Let n be a positive integer.
(a) $e x_{p}\left(n, \Theta_{4}\right) \leqslant 12(n-2) / 5$ for all $n \geqslant 4$, with equality when $n \equiv 12(\bmod 20)$.
(b) ex $x_{p}\left(n, \Theta_{5}\right) \leqslant 5(n-2) / 2$ for all $n \geqslant 5$, with equality when $n \equiv 50(\bmod 120)$.
(c) $e x_{\mathcal{p}}\left(n, C_{6}\right) \leqslant 18(n-2) / 7$ for all $n \geqslant 6$.
(d) $e x_{\mathcal{p}}\left(n, P_{9}\right) \leqslant \max \{9 n / 4,(5 n-8) / 2\}$.

It seems quite non-trivial to determine $e x_{\mathcal{P}}\left(n, C_{t}\right)$ for all $t \geqslant 7$. In this paper, we first investigate planar graphs H satisfying $e x_{\mathcal{p}}(n, H)=3 n-6$ for all $n \geqslant|H|$. This partially answers a question of Dowden [3]. As observed in [3], for all $n \geqslant 6$, the planar triangulation $2 K_{1}+C_{n-2}$ is K_{4}-free. Hence, $e x_{\mathcal{P}}(n, H)=3 n-6$ for all graphs H which contains K_{4} as a subgraph and $n \geqslant \max \{|H|, 6\}$. In particular, $e x_{\mathcal{p}}\left(n, K_{5}^{-}\right)=3 n-6$ for all $n \geqslant 6$, where K_{p}^{-}denotes the graph obtained from K_{p} by deleting one edge. Proposition 3 below describes several sufficient conditions on K_{4}-free planar graphs H such that $e x_{p}(n, H)=3 n-6$ for all $n \geqslant|H|$.

Proposition 3. Let H be a K_{4}-free planar graph and let $n \geqslant|H|$ be an integer. Then $e x_{\mathcal{p}}(n, H)=3 n-6$ if one of the following holds.
(a) $\chi(H)=4$ and $n \geqslant|H|+2$.
(b) $\Delta(H) \geqslant 7$.
(c) $\Delta(H)=6$ and either $n_{6}(H)+n_{5}(H) \geqslant 2$ or $n_{6}(H)+n_{5}(H)=1$ and $n_{4}(H) \geqslant 5$.
(d) $\Delta(H)=5$ and either H has at least three 5 -vertices or H has exactly two adjacent 5-vertices.
(e) $\Delta(H)=4$ and $n_{4}(H) \geqslant 7$.
(f) H is 3-regular with $|H| \geqslant 9$ or H has at least three vertex-disjoint cycles or H has exactly one vertex u of degree $\Delta(H) \in\{4,5,6\}$ such that $\Delta(H[N(u)]) \geqslant 3$.
(g) $\delta(H) \geqslant 4$ or H has exactly one vertex of degree at most 3 .

Proposition 3 implies that $e x_{\mathcal{P}}(n, H)=3 n-6$ for all H with $n \geqslant|H|+2$ and either $\chi(H)=4$ or $\chi(H)=3$ and $\Delta(H) \geqslant 7$. Note that $\Theta_{4}=K_{4}^{-}$, and both K_{4}^{-}and $K_{1}+2 K_{2}$ have chromatic number 3. Theorem 2(a) and Theorem 5 (see below) then demonstrate that the chromatic number of H does not play a role, as in the Erdős-Stone Theorem.

By Proposition 3, ex $x_{\mathcal{p}}(n, H)$ remains unknown for K_{4}-free planar graphs H with $\Delta(H)=6, n_{6}(H)+n_{5}(H)=1$ and $n_{4}(H) \leqslant 4$; or $\Delta(H)=5$ and $n_{5}(H) \leqslant 2$ (and
the two 5 -vertices are not adjacent when $n_{5}(H)=2$); or $\Delta(H)=4$ and $n_{4}(H) \leqslant 6$; or $\Delta(H) \leqslant 3$. In particular, by Proposition $3(f)$, ex $x_{\mathcal{P}}(n, H)$ remains unknown for K_{4}-free planar graphs H with exactly one vertex, say u, of degree $\Delta(H) \leqslant 6$ and $\Delta(H[N(u)]) \leqslant 2$. It seems non-trivial to determine $e x_{\mathcal{p}}(n, H)$ for all such H. We next study $e x_{\mathcal{p}}\left(n, W_{k}\right)$, where $W_{k}:=K_{1}+C_{k}$ is a wheel on $k+1 \geqslant 5$ vertices. Unlike the classic Turán number of W_{k} (see [4,5] for more information), the planar Turán number of W_{k} can be completely determined. We establish this in Theorem 4.

Theorem 4. Let n, k be integers with $n \geqslant k+1 \geqslant 5$. Then

$$
e x_{\mathcal{P}}\left(n, W_{k}\right)= \begin{cases}3 n-6 & \text { if } k \geqslant 6, \text { or } k=5 \text { and } n \neq 7, \text { or } k=4 \text { and } n \geqslant 12 \\ 3 n-7 & \text { if } k=4 \text { and } n \in\{5,6\}, \text { or } k=5 \text { and } n=7 \\ 3 n-8 & \text { if } k=4 \text { and } 7 \leqslant n \leqslant 11 .\end{cases}
$$

A graph is a (t, r)-fan if it is isomorphic to $K_{1}+t K_{r-1}$, where $t \geqslant 2$ and $r \geqslant 2$ are integers. The classical Turán number of (t, r)-fan, namely, $e x\left(n, K_{1}+t K_{r-1}\right)$, has also been studied when n is sufficiently large (see [2,6] for more information). We next study $e x_{\mathcal{P}}(n, H)$ when H is a K_{4}-free (t, r)-fan, in particular, when $H \in\left\{K_{1}+2 K_{2}, K_{1, t}, K_{1}+\right.$ $\left.3 K_{2}\right\}$. Theorem 5 below establishes a sharp upper bound for $e x_{\mathcal{p}}\left(n, K_{1}+2 K_{2}\right)$, and Theorem 6 completely determines the value of $e x_{\mathcal{p}}\left(n, K_{1, t}\right)$ for all $t \geqslant 3$. However, the upper bound for $e x_{p}\left(n, K_{1}+3 K_{2}\right)$ when $n \geqslant 15$ in Theorem 7 is not tight.

Theorem 5. Let $n \geqslant 5$ be an integer. Then

$$
2 n-3 \leqslant e x_{\mathcal{P}}\left(n, K_{1}+2 K_{2}\right) \leqslant \frac{19 n}{8}-4
$$

Furthermore, ex $x_{\mathcal{p}}\left(n, K_{1}+2 K_{2}\right)=\frac{19 n}{8}-4$ if and only if n is divisible by 8 .
Theorem 6. Let n, t be integers with $n \geqslant t+1 \geqslant 4$. Then

$$
e x_{\mathcal{P}}\left(n, K_{1, t}\right)= \begin{cases}3 n-6 & \text { if } t \geqslant 7, \text { or } t=6 \text { and } n \in\{7,8,9,10,12\} \\ 3 n-7 & \text { if } t=6 \text { and } n=11 \\ 3 n-8 & \text { if } t=6 \text { and } n \in\{13,14\}, \text { or } t=5 \text { and } n=7 \\ \left\lfloor\frac{(t-1) n}{2}\right\rfloor & \text { if } t \in\{3,4\}, \text { or } t=5 \text { and } n \neq 7, \text { or } t=6 \text { and } n \geqslant 15 .\end{cases}
$$

Theorem 7. Let $n \geqslant 7$ be an integer. Then

$$
\left\lfloor\frac{5 n}{2}\right\rfloor \leqslant e x_{\mathcal{P}}\left(n, K_{1}+3 K_{2}\right)<\frac{17 n}{6}-4
$$

for all $n \geqslant 15$ and

$$
e x_{\mathcal{P}}\left(n, K_{1}+3 K_{2}\right)= \begin{cases}3 n-6 & \text { if } n \in\{7,8,9,10,12\} \\ 3 n-7 & \text { if } n=11 \\ 3 n-8 & \text { if } n \in\{13,14\}\end{cases}
$$

We need to introduce more notation. Given a plane graph G and an integer $i \geqslant 3$, an i-face in G is a face of order i. Let f_{i} denote the number of i-faces in G. Let T_{n} denote a plane triangulation on $n \geqslant 3$ vertices, and let T_{n}^{-}be obtained from T_{n} with one edge removed. For every integer $n \geqslant 5$, let O_{n} denote the unique outerplane graph with $2 n-3$ edges, maximum degree 4, and the outer face of order n; let O_{n}^{\prime} be a different drawing of O_{n} with one unique inner face of order n; and finally, let O_{n}^{*} be the planar triangulation obtained from O_{n} and O_{n}^{\prime} by identifying the outer face of O_{n} with the unique n-face of O_{n}^{\prime} in such a way that O_{n}^{*} is a simple graph. The proof of Proposition 3 relies heavily on the fact that $O_{n}^{*}, K_{1}+O_{n-1}$ and $2 K_{1}+C_{n-2}$ are planar triangulations.

Finally, we shall make use of the following lemma in the proof of Theorem 6 and Theorem 7.

Lemma 8 ([14]). There does not exist a 4 -regular planar graph on 7 vertices, or a 5 -regular planar graph on 14 vertices, or a planar graph on $n \in\{11,13\}$ vertices with exactly one vertex of degree 4 and $n-1$ vertices of degree 5 .

2 Proof of Proposition 3

Let H and n be given as in the statement. To prove (a), assume $\chi(H)=4$ and $n \geqslant|H|+2$. Since the planar triangulation $2 K_{1}+C_{n-2}$ has no subgraph on $|H|$ vertices with chromatic number 4 , we see that $2 K_{1}+C_{n-2}$ is H-free. Hence, $e x_{\mathcal{P}}(n, H)=3 n-6$ when $\chi(H)=4$ and $n \geqslant|H|+2$.

To prove (b), assume that $\Delta(H) \geqslant 7$. Then $n \geqslant|H| \geqslant 8$, and the planar triangulation O_{n}^{*} is H-free because $\Delta\left(O_{n}^{*}\right)=6$. Hence, $e x_{\mathcal{p}}(n, H)=3 n-6$ for all $n \geqslant|H|$.

To prove (c), assume $\Delta(H)=6$. Then $n \geqslant|H| \geqslant 7$. Assume first $n_{6}(H)+n_{5}(H) \geqslant 2$. Let $x, y \in V(H)$ be such that $d_{H}(x)=6$ and $d_{H}(y) \geqslant 5$. Then the planar triangulation $K_{1}+O_{n-1}$ is H-free when $x y \notin E(H)$, and the planar triangulation $2 K_{1}+C_{n-2}$ is H free when $x y \in E(H)$. Hence, $e x_{\mathcal{p}}(n, H)=3 n-6$ when $n_{6}(H)+n_{5}(H) \geqslant 2$. Next assume that $n_{6}(H)+n_{5}(H)=1$ and $n_{4}(H) \geqslant 5$. Then $n_{5}(H)=0$. Note that the planar triangulation $2 K_{1}+C_{n-2}$ is H-free when $n_{4}(H) \geqslant 6$. We may further assume that $n_{4}(H)=5$. Let $u, v_{1}, \ldots, v_{5} \in V(H)$ with $d_{H}(u)=6$ and $d_{H}\left(v_{i}\right)=4$ for all $i \in[5]$. Let $M:=H\left[\left\{u, v_{1}, \ldots, v_{5}\right\}\right]$. We may assume that $u v_{1} \notin E(M)$ when $d_{M}(u)=4$. Then the
planar triangulation $2 K_{1}+C_{n-2}$ is H-free when $d_{M}(u)=5$, or $d_{M}(u) \leqslant 3$, or $d_{M}(u)=4$ and $d_{M}\left(v_{1}\right) \leqslant 3$; and the planar triangulation O_{n}^{*} is H-free when $N_{M}(u)=N_{M}\left(v_{1}\right)=$ $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. It follows that $e x_{\mathcal{p}}(n, H)=3 n-6$ for all $n \geqslant|H|$. This proves (c).

To prove (d), assume $\Delta(H)=5$ and $n_{5}(H) \geqslant 2$. Then $n \geqslant|H| \geqslant 6$. Let u, v be two distinct 5 -vertices in H. Then either $n_{5}(H) \geqslant 3$ or $n_{5}(H)=2$ with $u v \in E(H)$. Note that the planar triangulation $2 K_{1}+C_{n-2}$ has exactly two non-adjacent vertices of degree at least 5 when $n \geqslant 7$ and has maximum degree 4 when $n=6$. Hence, $2 K_{1}+C_{n-2}$ is H-free, and so $e x_{\mathcal{p}}(n, H)=3 n-6$ for all $n \geqslant|H|$. This proves (d).

To prove (e) and (f). Assume $\Delta(H)=4$ and $n_{4}(H) \geqslant 7$, or H is 3-regular with $|H| \geqslant 9$, or H has at least three vertex-disjoint cycles, or H has exactly one vertex u of degree $\Delta(H) \in\{4,5,6\}$ such that $\Delta(H[N(u)]) \geqslant 3$. Then the planar triangulation $2 K_{1}+C_{n-2}$ is H-free. Hence, $e x_{p}(n, H)=3 n-6$ for all $n \geqslant|H|$.

It remains to prove (g). Assume $\delta(H) \geqslant 4$ or H has exactly one vertex of degree at most 3. Then $n \geqslant|H| \geqslant 5$. Note that the planar triangulation $K_{1}+O_{n-1}$ is 3-degenerate and every subgraph of $K_{1}+O_{n-1}$ has at least two vertices of degree at most 3, because every subgraph of O_{n-1} has at least two vertices of degree at most 2. Hence, $K_{1}+O_{n-1}$ is H-free, and so $e x_{\mathcal{p}}(n, H)=3 n-6$ for all $n \geqslant|H|$. This completes the proof of Proposition 3.

3 Proof of Theorem 4

Let n, k be given as in the statement. Assume $k \geqslant 7$. By Proposition $3(b), e x_{\mathcal{P}}\left(n, W_{k}\right)=$ $3 n-6$ for all $n \geqslant k+1$. Assume next $k \in\{5,6\}$. Since the planar triangulation $2 K_{1}+C_{n-2}$ is W_{k}-free when $n \geqslant k+3$ or $n=k+1$, we see that $e x_{\mathcal{P}}\left(n, W_{k}\right)=3 n-6$ when $n \geqslant k+3$ or $n=k+1$. We next determine $e x_{\mathcal{P}}\left(n, W_{k}\right)$ when $n=k+2$. For $k=6$ and $n=8$, the plane triangulation on 8 vertices depicted in Figure 1(a) is W_{6}-free and so $e x_{\mathcal{p}}\left(n, W_{6}\right)=3 n-6$ when $n=8$. For $k=5$ and $n=7$, note that the plane graph with 7 vertices and 14 edges

(a)

(b)

Figure 1: W_{k}-free plane graphs with $n=k+2$ vertices and $3 n-12+k$ edges, where $k \in\{5,6\}$.
given in Figure $1(\mathrm{~b})$ is W_{5}-free. Thus, $e x_{\mathcal{P}}\left(7, W_{5}\right) \geqslant 3 \cdot 7-6-1=14$. On the other
hand, all plane triangulations on seven vertices ${ }^{1}$ are depicted in Figure 2, each containing a copy of W_{5}. Hence, $e x_{\mathcal{P}}\left(n, W_{5}\right)=3 n-7$ when $n=7$.

Figure 2: All plane triangulations on 7 vertices. Furthermore, each T_{7} has a copy of W_{4} and W_{5}, and each T_{7}^{-}has a copy of W_{4}.

It remains to consider the case when $k=4$. To show $e x_{\mathcal{p}}\left(n, W_{4}\right)=3 n-6$ for all $n \geqslant 12$, assume first that $n=5 t+2$ for some integer $t \geqslant 2$. Let L_{t} be a plane triangulation on $n=5 t+2$ vertices constructed as follows: for each $i \in[t]$, let C^{i} be a cycle with vertices $u_{i, 1}, u_{i, 2}, \ldots, u_{i, 5}$ in order. Let L_{t} be the plane triangulation obtained from disjoint union of C^{1}, \ldots, C^{t} by adding edges $u_{i, j} u_{i+1, j}$ and $u_{i, j} u_{i+1, j+1}$ for all $i \in[t-1]$ and $j \in[5]$, where all arithmetic on the index $j+1$ here is done modulo 5 , and finally adding two new nonadjacent vertices u and v such that u is adjacent to all vertices of C^{1} and v is adjacent to all vertices of C^{t}. The graph L_{t} when $t=3$ is depicted in Figure 3. It is worth noting that L_{t} is K_{4}-free, $d_{L_{t}}(u)=d_{L_{t}}(v)=5, d_{L_{t}}\left(u_{1, j}\right)=d_{L_{t}}\left(u_{t, j}\right)=5, d_{L_{t}}\left(u_{i, j}\right)=6$ for $2 \leqslant i \leqslant t-1$ and $j \in[5]$. Furthermore, the subgraph induced by the neighborhood of each vertex in L_{t} is isomorphic to either C_{5} or C_{6}. Hence, L_{t} is W_{4}-free and so $e x_{\mathcal{P}}\left(n, W_{4}\right)=3 n-6$ when $n=5 t+2$ for some integer $t \geqslant 2$.

Next assume that $n=5 t+2+i$ for some $i \in[4]$, where $t \geqslant 2$ is an integer. Note that the plane triangulation L_{t} on $5 t+2$ vertices constructed above contains at least four pairwise vertex-disjoint faces. Let F_{1}, \ldots, F_{i} be any i pairwise vertex-disjoint faces of L_{t}, and let L_{t}^{i} be the plane triangulation obtained from L_{t} by adding one vertex, say x_{j}, of degree 3 to each F_{j} for all $j \in[i]$. Clearly, L_{t}^{i} is a plane triangulation on $n=5 t+2+i$ vertices. By the choice of F_{1}, \ldots, F_{i}, we see that x_{1}, \ldots, x_{i} are pairwise non-adjacent in L_{t}^{i}, and no two of x_{1}, \ldots, x_{i} have common neighbors in L_{t}^{i}. We next show that L_{t}^{i} is W_{4}-free for all $i \in[4]$. Suppose that L_{t}^{i} contains a copy of W_{4} for some $i \in[4]$. Let

[^1]

Figure 3: The plane triangulation L_{t} when $t=3$, where C^{1}, C^{2}, C^{3} are in red, blue and green.
H be a W_{4} in L_{t}^{i}. Then H must contain exactly one, say x_{1}, of x_{1}, \ldots, x_{i}, because L_{t} is W_{4}-free, and no two of x_{1}, \ldots, x_{i} are adjacent or have common neighbors in L_{t}^{i}. Let $y, z \in V(H)$ be the two neighbors of x_{1} such that $y z \notin E(H)$. By the choice of x_{1}, we see that $y z \in E\left(L_{t}\right)$. But then $L_{t}\left[V\left(H \backslash x_{1}\right)\right]=K_{4}$ and so L_{t} contains K_{4} as a subgraph, a contradiction. Therefore, $e x_{\mathcal{p}}\left(n, W_{4}\right)=3 n-6$ for all $n \geqslant 12$.

Figure 4: All plane triangulations on 5 and 6 vertices.
We next show that $e x_{\mathcal{p}}\left(n, W_{4}\right)=3 n-7$ when $n \in\{5,6\}$. Note that all plane triangulations on $n \in\{5,6\}$ vertices are depicted in Figure 4, each containing a copy of W_{4}. Thus, $e x_{\mathcal{p}}\left(n, W_{4}\right) \leqslant 3 n-7$. On the other hand, for all $n \in\{5,6\}$, the planar graph $K_{2}+\left(K_{2} \cup K_{n-4}\right)$ has $3 n-7$ edges and is W_{4}-free. Hence, $e x_{\mathcal{p}}\left(n, W_{4}\right)=3 n-7$ when $n \in\{5,6\}$.

Finally, we show that $e x_{\mathcal{p}}\left(n, W_{4}\right)=3 n-8$ for all $n \in\{7,8,9,10,11\}$. The plane graph
J, given in Figure 5, is W_{4}-free with $n=11$ vertices and $3 n-8$ edges. Let B be the set of

Figure 5: Graph J.
all vertices of degree 3 in J. Then $|B|=5$. For each $n \in\{7,8,9,10\}$, let J_{n} be the plane graph obtained from J by deleting $11-n$ vertices in B. Then J_{n} is an induced subgraph of J. Clearly, J_{n} is W_{4}-free with n vertices and $3 n-8$ edges. Hence, $e x_{\mathcal{p}}\left(n, W_{4}\right) \geqslant 3 n-8$ for all $n \in\{7,8,9,10,11\}$. We next show that $e x_{\mathcal{p}}\left(n, W_{4}\right) \leqslant 3 n-8$ for all $n \in\{7,8,9,10,11\}$. Suppose this is not true. Let G be a W_{4}-free planar graph on $n \in\{7,8,9,10,11\}$ vertices with $e(G) \geqslant 3 n-7$. We choose such a G with n minimum. Then $G=T_{n}$ or $G=T_{n}^{-}$. Since each T_{7}, depicted in Figure 2, contains a copy of W_{4}, and each T_{7}^{-}also contains a copy of W_{4}, it follows that $n \in\{8,9,10,11\}$. Let $u \in V(G)$ with $d_{G}(u)=\delta(G)$. Then $\delta(G) \leqslant 4$, else $e(G) \geqslant \frac{5 n}{2}>3 n-6$ because $n \leqslant 11$, a contradiction. Next, if $\delta(G) \leqslant 3$, then $e(G \backslash u) \leqslant 3(n-1)-8$ by minimality of n and the fact that $e x_{\mathcal{p}}\left(n, W_{4}\right) \leqslant 3 n-8$ when $n=7$. Thus, $e(G)=e(G \backslash u)+d_{G}(u) \leqslant 3(n-1)-8+3=3 n-8$, a contradiction. This proves that $\delta(G)=4$. Since $N_{G}[u]$ does not contain a copy of W_{4} in G, we see that $G \neq T_{n}$. Thus $G=T_{n}^{-}$. We may assume that G is a plane drawing of T_{n}^{-}such that the outer face is a 3 -face. Let $x_{1}, y_{1} \in V(G)$ be such that $G+x_{1} y_{1}=T_{n}$. Then x_{1} and y_{1} must lie on the boundary of the unique 4 -face, say F, in G. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be the vertices on the boundary of F in order. Then $d_{G}(v) \geqslant 5$ for all $v \in V(G) \backslash\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, because $G=T_{n}^{-}$and $N_{G}[u]$ does not contain a copy of W_{4} in G for any $u \in V(G)$ with $d_{G}(u)=4$. Thus $2(3 n-7)=2 e(G) \geqslant 4 \cdot 4+5 \cdot(n-4)$, which implies that $n \in\{10,11\}$. Suppose each vertex in $\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ has degree 4 in G. Since $G=T_{n}^{-}$, there must exist four distinct vertices $z_{1}, z_{2}, z_{3}, z_{4} \in V(G) \backslash\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ such that $G[A]$ is isomorphic to the graph given in Figure 6(a), where $A=\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}\right\}$. But then G contains $K_{3,3}$ as a minor, because $n \in\{10,11\}$ and $d_{G}(v) \geqslant 5$ for any $v \in V(G) \backslash A$. Thus, we may assume that $d_{G}\left(x_{2}\right) \geqslant 5$. Then $2(3 n-7)=2 e(G) \geqslant 4 \cdot 3+5 \cdot(n-3)$, which implies that $n=11$, $d_{G}(v)=4$ for all $v \in\left\{x_{1}, y_{1}, y_{2}\right\}$ and $\Delta(G)=5$. Thus there exist five distinct vertices $z_{1}, z_{2}, z_{3}, z_{4}, z_{5} \in V(G) \backslash\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ such that $G[A]$ is isomorphic to the graph given in Figure 6(b), where $A=\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\}$. But then $e_{G}(A, V(G) \backslash A)=6$,

Figure 6: The graph $G[A]$.
contrary to $e_{G}(V(G) \backslash A, A) \geqslant 8$ because $n=11$ and $d_{G}(v)=5$ for any $v \in V(G) \backslash A$.
This completes the proof of Theorem 4.

4 Proof of Theorem 5

To establish the desired lower bound, note that the planar graph $K_{2}+(n-2) K_{1}$ is $\left(K_{1}+2 K_{2}\right)$-free for all $n \geqslant 5$. Hence, $e x_{\mathcal{p}}\left(n, K_{1}+2 K_{2}\right) \geqslant 2 n-3$ for all $n \geqslant 5$. In particular, $e x_{\mathcal{p}}\left(5, K_{1}+2 K_{2}\right) \geqslant 7$. We next show that every $\left(K_{1}+2 K_{2}\right)$-free planar graph on $n \geqslant 5$ vertices has at most $19 n / 8-4$ edges. We proceed the proof by induction on n. Assume first $n=5$. Then $e x_{\mathcal{p}}\left(5, K_{1}+2 K_{2}\right)=7$, because the only plane triangulation on five vertices, given in Figure 4(a), is not $\left(K_{1}+2 K_{2}\right)$-free, and any T_{5}^{-}is not $\left(K_{1}+2 K_{2}\right)$ free. Hence, $e x_{\mathcal{p}}\left(n, K_{1}+2 K_{2}\right)=7<19 n / 8-4$ when $n=5$. So we may assume that $n \geqslant 6$. Let G be a $\left(K_{1}+2 K_{2}\right)$-free plane graph on $n \geqslant 6$ vertices. Assume there exists a vertex $u \in V(G)$ with $d_{G}(u) \leqslant 2$. By the induction hypothesis, $e(G \backslash u) \leqslant 19(n-1) / 8-4$ and so $e(G)=e(G \backslash u)+d_{G}(u) \leqslant 19(n-1) / 8-4+2<19 n / 8-4$, as desired. So we may assume that $\delta(G) \geqslant 3$. Next, assume G is disconnected. Then each component of G either is isomorphic to K_{4} or has at least six vertices because $\delta(G) \geqslant 3$. Let $G_{1}, \ldots, G_{p}, G_{p+1}, \ldots, G_{p+q}$ be all components of G such that $\left|G_{1}\right|=\cdots=\left|G_{p}\right|=4$ and $6 \leqslant\left|G_{p+1}\right| \leqslant \cdots \leqslant\left|G_{p+q}\right|$, where $p \geqslant 0$ and $q \geqslant 0$ are integers with $p+q \geqslant 2$ and $\left|G_{p+1}\right|+\cdots+\left|G_{p+q}\right|=n-4 p$. Then $e\left(G_{i}\right)=6$ for all $i \in[p]$, and $e\left(G_{j}\right) \leqslant \frac{19\left|G_{j}\right|}{8}-4$ for all $j \in\{p+1, \ldots, p+q\}$ by the induction hypothesis. Therefore,

$$
\begin{aligned}
e(G) & \leqslant 6 p+\frac{19\left(\left|G_{p+1}\right|+\cdots+\left|G_{p+q}\right|\right)}{8}-4 q \\
& =\frac{19 n}{8}-\frac{7 p}{2}-4 q \\
& \leqslant \frac{19 n}{8}-\frac{7(p+q)}{2}<\frac{19 n}{8}-4,
\end{aligned}
$$

as desired. So we may further assume that G is connected. Then G has no faces of size at most two. Hence,

$$
2 e(G)=3 f_{3}+\sum_{i \geqslant 4} i f_{i} \geqslant 3 f_{3}+4\left(f-f_{3}\right)=4 f-f_{3},
$$

which implies that

$$
\begin{equation*}
f \leqslant e(G) / 2+f_{3} / 4 \tag{1}
\end{equation*}
$$

Note that each 3-vertex is incident with at most three distinct 3-faces in G. Furthermore, since G is $\left(K_{1}+2 K_{2}\right)$-free, we see that for all $j \geqslant 4$, each j-vertex is incident with at most two distinct 3 -faces in G. Let $U \subseteq V(G)$ denote the set of 3 -vertices each incident with exactly three distinct 3 -faces in G. Then U must be an independent set in G because G is connected. Furthermore, no two vertices in U have a common neighbor in G, because G is $\left(K_{1}+2 K_{2}\right)$-free. Thus, $4|U| \leqslant n$ and so $|U| \leqslant n / 4$. It follows that

$$
\begin{equation*}
3 f_{3} \leqslant 3|U|+2(n-|U|)=2 n+|U| \leqslant 9 n / 4, \tag{2}
\end{equation*}
$$

which implies that $f_{3} \leqslant 3 n / 4$. This, together with (1), further implies that $f \leqslant e(G) / 2+$ $3 n / 16$. By Euler's formula, $n-2=e(G)-f \geqslant e(G) / 2-3 n / 16$. Hence, $e(G) \leqslant 19 n / 8-4$, as desired.

Figure 7: The construction of F_{k}.

From the proof above, we see that equality in $e(G) \leqslant 19 n / 8-4$ is achieved for n if and only if equalities hold in both (1) and (2), and in $4|U| \leqslant n$. This implies that $e(G)=19 n / 8-4$ for n if and only if G is a connected, $\left(K_{1}+2 K_{2}\right)$-free plane graph on n vertices satisfying: $\delta(G) \geqslant 3$; each 3 -vertex in G is incident with exactly three distinct 3 -faces; each vertex of degree at least 4 in G is incident with exactly two distinct 3 -faces; each face is either a 3 -face or a 4 -face. We next construct such an extremal plane graph for n and $K_{1}+2 K_{2}$. Let $n=8(k+1)$ for some integer $k \geqslant 0$. Let F_{0} be the graph depicted in Figure $7(\mathrm{a})$, we then construct F_{k} of order n recursively for all $k \geqslant 1$
via the illustration given in Figure 7(b): the entire graph F_{k-1} is placed into the center quadrangle of Figure 7(b) (in such a way that the center bold quadrangle of Figure 7(b) is identified with the outer quadrangle of $\left.F_{k-1}\right)$. One can check that F_{k} is $\left(K_{1}+2 K_{2}\right)$-free with $n=8(k+1)$ vertices and $19 n / 8-4$ edges for all $k \geqslant 0$.

5 Proof of Theorem 6

By Proposition 3 (b), ex $x_{\mathcal{p}}\left(n, K_{1, t}\right)=3 n-6$ for all $n \geqslant t+1 \geqslant 8$. So we may assume that $t \leqslant 6$. We next show that $e x_{\mathcal{p}}\left(n, K_{1,6}\right)=3 n-6$ for all $n \in\{7,8,9,10,12\}$. Let J_{a}, J_{b}, J_{c} be the plane graphs given in Figure 8. Let J_{a}^{\prime} be the plane triangulation obtained from J_{a} by adding a new vertex adjacent to $x_{1}, x_{2}, x_{3}, J_{b}^{\prime}$ be the plane triangulation obtained from J_{b} by first deleting the edge $x_{1} x_{3}$ and then adding a new vertex adjacent to $x_{1}, x_{2}, x_{3}, x_{4}$, and J_{c}^{\prime} be the plane triangulation obtained from J_{c} by first deleting the edge $x_{1} x_{3}$ and then adding one new vertex adjacent to $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. Then the plane triangulations $J_{a}, J_{a}^{\prime}, J_{b}, J_{b}^{\prime}$ and J_{c}^{\prime} are $K_{1,6}$-free because each of them has maximum degree 5. Hence, $e x_{\mathcal{p}}\left(n, K_{1,6}\right)=3 n-6$ for all $n \in\{7,8,9,10,12\}$. By Lemma 8, no

Figure 8: The graphs J_{a}, J_{b}, J_{c} and J_{d}.
plane triangulation on 11 vertices has maximum degree at most 5 . Hence, every plane triangulation on $n \in\{11,13,14\}$ vertices has maximum degree at least 6 . This implies that $e x_{\mathcal{P}}\left(n, K_{1,6}\right) \leqslant 3 n-7$ for all $n \in\{11,13,14\}$. Since J_{c} given in Figure 8 is a $K_{1,6}$-free plane graph with $n=11$ vertices and $3 n-7$ edges, we have $e x_{\mathcal{p}}\left(n, K_{1,6}\right)=3 n-7$ when $n=11$. By Lemma 8 , there does not exist any planar graphs on $n \in\{13,14\}$ vertices with $3 n-7$ edges and maximum degree at most 5 . It follows that $e x_{\mathcal{P}}\left(n, K_{1,6}\right) \leqslant 3 n-8$ when $n \in\{13,14\}$. Let $J_{c}^{\prime \prime}$ be the plane graph obtained from J_{c} by first deleting the edge $x_{1} x_{3}$ and then adding two new adjacent vertices y_{1}, y_{2} such that y_{1} is adjacent to x_{1}, x_{2}, x_{3} and y_{2} is adjacent to x_{4}, x_{5}. Then $J_{c}^{\prime \prime}$ and the graph J_{d} given in Figure 8 are $K_{1,6}$-free plane graph with $n \in\{13,14\}$ vertices and $3 n-8$ edges. Hence, $e x_{\mathcal{p}}\left(n, K_{1,6}\right)=3 n-8$ when $n \in\{13,14\}$.

It is easy to see that $e x_{\mathcal{p}}\left(n, K_{1,3}\right)=n$ for all $n \geqslant 4$, because every $K_{1,3}$-free planar graph has maximum degree at most 2 and the planar graph C_{n} is $K_{1,3}$-free with n edges. We next show that $e x_{\mathcal{p}}\left(n, K_{1,4}\right)=\lfloor 3 n / 2\rfloor$ for all $n \geqslant 5$. Clearly, $e x_{\mathcal{p}}\left(n, K_{1,4}\right) \leqslant\lfloor 3 n / 2\rfloor$ for all $n \geqslant 5$, because every $K_{1,4}$-free planar graph has maximum degree at most 3 . Next, for all $n \geqslant 5$, the planar graph obtained from C_{n} by adding a matching of size $\lfloor n / 2\rfloor$ is $K_{1,4}$-free with $\lfloor 3 n / 2\rfloor$ edges. Hence, $e x_{\mathcal{p}}\left(n, K_{1,4}\right)=\lfloor 3 n / 2\rfloor$ for all $n \geqslant 5$. To determine $e x_{\mathcal{P}}\left(n, K_{1,5}\right)$ for all $n \geqslant 6$, since every $K_{1,5}$-free planar graph on $n \geqslant 6$ vertices has maximum degree at most 4 , we have $e x_{\mathcal{p}}\left(n, K_{1,5}\right) \leqslant 2 n$ for all $n \geqslant 6$. Let $J_{a}^{\prime \prime}$ be the plane triangulation obtained from J_{a} by deleting the unique 3 -vertex. Since $J_{a}^{\prime \prime}$ is $K_{1,5}$-free plane graph on $n=6$ vertices with $2 n$ edges, we have $e x_{\mathcal{p}}\left(n, K_{1,5}\right)=2 n$ when $n=6$. By Lemma 8, no planar graph with $n=7$ vertices and $2 n$ edges has maximum degree at most 4. Hence, $e x_{\mathcal{p}}\left(n, K_{1,5}\right) \leqslant 2 n-1$ when $n=7$. Let $J_{a}^{\prime \prime \prime}$ be the plane graph obtained from $J_{a}^{\prime \prime}$ by first deleting the edge $x_{1} x_{2}$ and then adding a new vertex adjacent to x_{1}, x_{2} only. Note that $J_{a}^{\prime \prime \prime}$ is a $K_{1,5}$-free plane graph on $n=7$ vertices with $2 n-1$ edges, we see that $e x_{\mathcal{p}}\left(n, K_{1,5}\right)=2 n-1$ when $n=7$. Next, for all $n \geqslant 8$, let C be a cycle on $2\lfloor n / 2\rfloor$ vertices with vertices $u_{1}, \ldots, u_{\left\lfloor\frac{n}{2}\right\rfloor}, w_{\left\lfloor\frac{n}{2}\right\rfloor}, \ldots, w_{1}$ in order. Let H be the plane graph obtained from C by adding the path with vertices $w_{1}, u_{2}, w_{2}, u_{3}, \ldots, w_{\left\lfloor\frac{n}{2}\right\rfloor-1}, u_{\left\lfloor\frac{n}{2}\right\rfloor}$ in order. When n is even, the planar graph $H+u_{1} u_{\left\lfloor\frac{n}{2}\right\rfloor}+u_{1} w_{\left\lfloor\frac{n}{2}\right\rfloor}+w_{1} w_{\left\lfloor\frac{n}{2}\right\rfloor}$ is $K_{1,5}$-free with $2 n$ edges. When n is odd, let H^{\prime} be obtained from H by first deleting the edge $u_{2} u_{3}$ and then adding a new vertex u adjacent to u_{2} and u_{3}. Then the planar graph $H^{\prime}+u u_{1}+u u_{\left\lfloor\frac{n}{2}\right\rfloor}+w_{1} w_{\left\lfloor\frac{n}{2}\right\rfloor}+u_{1} w_{\left\lfloor\frac{n}{2}\right\rfloor}$ is $K_{1,5}$-free with $2 n$ edges. Hence, $e x_{\mathcal{p}}\left(n, K_{1,5}\right)=2 n$ for all $n \geqslant 8$.

It remains to show that $e x_{\mathcal{P}}\left(n, K_{1,6}\right)=\lfloor 5 n / 2\rfloor$ for all $n \geqslant 15$. Clearly, $e x_{\mathcal{P}}\left(n, K_{1,6}\right) \leqslant$ $\lfloor 5 n / 2\rfloor$ for all $n \geqslant 15$, because every $K_{1,6}$-free planar graph on $n \geqslant 15$ vertices has maximum degree at most 5 . We next show that $e x_{\mathcal{p}}\left(n, K_{1,6}\right) \geqslant\lfloor 5 n / 2\rfloor$ for all $n \geqslant 15$. Let $n:=4 q+r \geqslant 15$, where $q \geqslant 3$ and $r \in\{0,1,2,3\}$. Let $p \in\{q, q+1\}$. Let C^{1} and C^{2} be two vertex-disjoint cycles with vertices $x_{1}, x_{2}, \ldots x_{q}$ in order and $y_{1}, y_{2}, \ldots y_{p}$ in order, respectively. Let C^{3} be a cycle of length $q+p$ with vertices $b_{1}, a_{1}, b_{2}, a_{2}, \ldots b_{q}, a_{q}$ in order when $p=q$, and $b_{1}, a_{1}, b_{2}, a_{2}, \ldots b_{q}, a_{q}, b_{q+1}$ in order when $p=q+1$. Let R_{p} be the plane graph on $2 q+2 p$ vertices obtained from disjoint copies of C^{1}, C^{2} and C^{3} by making x_{i} adjacent to $\left\{a_{i}, b_{i}, b_{i+1}\right\}$, and y_{j} adjacent to $\left\{b_{j}, a_{j-1}, a_{j}\right\}$ for all $1 \leqslant i \leqslant q$ and $1 \leqslant j \leqslant p$, where all arithmetic on the indices $i+1$ and $j-1$ here are done modulo p. Then R_{p} is $K_{1,6}$-free planar graph with $10 q$ edges when $p=q$ and $10 q+3$ edges when $p=q+1$. The construction of R_{p} on $4 q$ vertices when $q=4$ is depicted in Figure 9(a). When $n=4 q$ for $q \geqslant 4$, the planar graph R_{p} with $p=q$ is $K_{1,6}$-free with $10 q$ edges and so $e x_{\mathcal{P}}\left(n, K_{1,6}\right)=10 q=5 n / 2$. When $n=4 q+1$ for $q \geqslant 4$, let R^{1} be obtained from $R_{p}-y_{2} y_{3}-y_{1} y_{p}$ with $p=q$ by adding a new vertex u adjacent to y_{2} and y_{3}. Then the planar graph $R^{1}+u y_{1}+u y_{p}$ is $K_{1,6}$-free with $10 q+2$ edges. Hence, $e x_{\mathcal{P}}\left(n, K_{1,6}\right)=10 q+2=\lfloor 5 n / 2\rfloor$ when $n=4 q+1$ for $q \geqslant 4$. When $n=4 q+2$ for $q \geqslant 4$, let R^{2} be obtained from $R_{p}-y_{2} y_{3}-y_{1} y_{p}-x_{2} x_{3}-x_{1} x_{p}-b_{1} a_{p}$ with $p=q$ by adding

Figure 9: Almost 5-regular plane graphs on $4 q+r$ vertices when $q=4$ and $r \in\{0,3\}$.
two new vertices u adjacent to y_{2} and y_{3} and v adjacent to x_{2} and x_{3}. Then the planar graph $R^{2}+u y_{1}+u y_{p}+u a_{q}+v x_{1}+v x_{q}+v b_{1}$ is $K_{1,6}$-free with $10 q+5$ edges. Hence, $e x_{\mathcal{P}}\left(n, K_{1,6}\right)=10 q+5=5 n / 2$ when $n=4 q+2$ for $q \geqslant 4$. When $n=4 q+3$ for $n \geqslant 3$, the planar graph obtained from R_{p} with $p=q+1$ by adding a new vertex u adjacent to $y_{1}, b_{1}, y_{p}, b_{p}$, given in Figure 9(b) when $q=4$, is $K_{1,6}$-free with $10 q+7$ edges. Hence, $e x_{\mathcal{P}}\left(n, K_{1,6}\right)=10 q+7=\lfloor 5 n / 2\rfloor$ when $n=4 q+3$ for $q \geqslant 3$.

6 Proof of Theorem 7

Since the plane triangulations $J_{a}, J_{a}^{\prime}, J_{b}$ and J_{b}^{\prime} constructed in the proof of Theorem 6 is $\left(K_{1}+3 K_{2}\right)$-free, we see that $e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right)=3 n-6$ for all $n \in\{7,8,9,10\}$. To determine $e x_{\mathcal{p}}\left(11, K_{1}+3 K_{2}\right)$, note that the plane graph J_{c} given in Figure 8 with $n=11$ vertices and $3 n-7$ edges is $\left(K_{1}+3 K_{2}\right)$-free. Thus $e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right) \geqslant 3 n-7$ when $n=11$. By Lemma 8 , no plane triangulation on 11 vertices has maximum degree at most 5. Hence, every plane triangulation on 11 vertices must contain a vertex of degree at least 6 (and so contains a copy of $K_{1}+3 K_{2}$), which implies that $e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right)=3 n-7$ when $n=11$. Since every $K_{1,6}$-free graph is certainly $\left(K_{1}+3 K_{2}\right)$-free, by Theorem 6 , $e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right)=e x_{\mathcal{p}}\left(n, K_{1,6}\right)=3 n-6$ when $n=12, e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right) \geqslant e x_{\mathcal{p}}\left(n, K_{1,6}\right)=$ $3 n-8$ when $n \in\{13,14\}$, and $e x_{\mathcal{P}}\left(n, K_{1}+3 K_{2}\right) \geqslant e x_{\mathcal{p}}\left(n, K_{1,6}\right)=\lfloor 5 n / 2\rfloor$ when $n \geqslant 15$. Since every plane triangulation on $n \in\{13,14\}$ vertices has maximum degree at least 6 , we see that $e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right) \leqslant 3 n-7$ when $n \in\{13,14\}$. By Lemma 8 , every T_{n}^{-}with $n \in\{13,14\}$ has maximum degree at least 6 and so contains a copy of $K_{1}+3 K_{2}$. It follows that $e x_{\mathcal{p}}\left(n, K_{1}+3 K_{2}\right)=3 n-8<17 n / 6-4$ when $n \in\{13,14\}$.

We next show that every $\left(K_{1}+3 K_{2}\right)$-free planar graph G on $n \geqslant 13$ vertices has at most $17 n / 6-4$ edges. We proceed the proof by induction on n. This is trivially true when $n \in\{13,14\}$. So we may assume that $n \geqslant 15$. Assume there exists a vertex $u \in V(G)$ with $d_{G}(u) \leqslant 2$. By the induction hypothesis, $e(G \backslash u) \leqslant 17(n-1) / 6-4$ and so $e(G)=e(G \backslash u)+d_{G}(u) \leqslant 17(n-1) / 6-4+2<17 n / 6-4$, as desired. So we may assume that $\delta(G) \geqslant 3$. Assume next that G is disconnected. Let $G_{1}, \ldots, G_{p}, G_{p+1}, \ldots, G_{p+q}$ be all components of G such that $\left|G_{1}\right| \leqslant \cdots \leqslant\left|G_{p}\right| \leqslant 12$ and $13 \leqslant\left|G_{p+1}\right| \leqslant \cdots \leqslant\left|G_{p+q}\right|$, where $p \geqslant 0$ and $q \geqslant 0$ are integers with $p+q \geqslant 2$ and $\left|G_{1}\right|+\cdots+\left|G_{p+q}\right|=n$. Then $e\left(G_{i}\right) \leqslant 3\left|G_{i}\right|-6$ for all $i \in[p]$, and $e\left(G_{j}\right) \leqslant 17\left|G_{j}\right| / 6-4$ for all $j \in\{p+1, \ldots, p+q\}$ by the induction hypothesis. Therefore,

$$
\begin{aligned}
e(G) & \leqslant 3\left(\left|G_{1}\right|+\cdots+\left|G_{p}\right|\right)-6 p+\frac{17\left(\left|G_{p+1}\right|+\cdots+\left|G_{p+q}\right|\right)}{6}-4 q \\
& =\frac{17 n}{6}-(6 p+4 q)+\frac{\left|G_{1}\right|+\cdots+\left|G_{p}\right|}{6} \\
& \leqslant \frac{17 n}{6}-(6 p+4 q)+2 p=\frac{17 n}{6}-4(p+q)<\frac{17 n}{6}-4,
\end{aligned}
$$

as desired. So we may further assume that G is connected. Then G has no faces of size at most two. Hence,

$$
2 e(G)=3 f_{3}+\sum_{i \geqslant 4} i f_{i} \geqslant 3 f_{3}+4\left(f-f_{3}\right)=4 f-f_{3}
$$

which implies that $f \leqslant e(G) / 2+f_{3} / 4$. Note that $n_{3}(G) \geqslant 0$ and $n_{5}(G)<n$; and for all $i \in\{3,4,5\}$, each i-vertex is incident with at most $i 3$-faces. Furthermore, for all $j \geqslant 6$, each j-vertex is incident with at most four 3 -faces because G is $\left(K_{1}+3 K_{2}\right)$-free and $n \geqslant 15$. It follows that
$3 f_{3} \leqslant 3 n_{3}(G)+4 n_{4}(G)+5 n_{5}(G)+4\left(n-n_{3}(G)-n_{4}(G)-n_{5}(G)\right)=4 n-n_{3}(G)+n_{5}(G)<5 n$,
which implies that $f_{3}<5 n / 3$. This, together with the fact that $f \leqslant e(G) / 2+f_{3} / 4$, further implies that $f<e(G) / 2+5 n / 12$. By Euler's formula, $n-2=e(G)-f>e(G) / 2-5 n / 12$. Hence, $e(G)<17 n / 6-4$.

7 Concluding remarks

The lower bound in Theorem 7 can be further improved when n is divisible by 24. To see this, let $n=24(k+1)$ for some integer $k \geqslant 0$. Let R_{5} be the 5 -regular plane graph on twelve vertices given in Figure 10(a), and let G_{0} be the plane graph obtained from two disjoint copies of R_{5} by adding three independent edges between their outer faces, as depicted in Figure $10(\mathrm{~b})$. We construct G_{k} of order n recursively for all $k \geqslant 1$ via the illustration given in Figure 10(c): the entire graph G_{k-1} is placed into the center
quadrangle of Figure 10(c) (in such a way that the center bold quadrangle of Figure 10(c) is identified with the outer quadrangle of $\left.G_{k-1}\right)$. One can check that G_{k} is $\left(K_{1}+3 K_{2}\right)$-free with $n=24(k+1)$ vertices and $67 n / 24-4$ edges for all $k \geqslant 0$.

Figure 10: The construction of G_{k}.

As mentioned earlier, it seems non-trivial to determine $e x_{\mathcal{p}}(n, H)$ for all K_{4}-free planar graphs H with exactly one vertex, say u, satisfying $d_{H}(u)=\Delta(H) \leqslant 6$ and $\Delta(H[N(u)]) \leqslant$ 2. We conclude this section by giving an upper bound (but not tight) for $e x_{\mathcal{p}}\left(n, K_{1}+H\right)$, where H is a disjoint union of paths.

Theorem 9. Let $4 \leqslant t \leqslant 6$ be an integer and let H be a graph on t vertices such that H is a disjoint union of paths. Then $e x_{\mathcal{P}}\left(n, K_{1}+H\right) \leqslant \frac{13(t-1) n}{4 t-2}-\frac{12(t-1)}{2 t-1}$ for all $n \geqslant t+1$.

Proof. Let t and H be given as in the statement. Since H is a subgraph of $K_{1}+P_{t}$, it suffices to show that $e x_{\mathcal{P}}\left(n, K_{1}+P_{t}\right) \leqslant \frac{13(t-1) n}{4 t-2}-\frac{12(t-1)}{2 t-1}$ for all $n \geqslant t+1$. Let G be a $\left(K_{1}+P_{t}\right)$-free planar graph on $n \geqslant t+1$ vertices. We next show that $e(G) \leqslant$ $\frac{13(t-1) n}{4 t-2}-\frac{12(t-1)}{2 t-1}$ by induction on n. This is trivially true when $n=t+1$ because $e(G) \leqslant$ $3(t+1)-6 \leqslant \frac{13(t-1)(t+1)}{4 t-2}-\frac{12(t-1)}{2 t-1}$ for $5 \leqslant t \leqslant 6$ and $e(G) \leqslant 3(t+1)-7 \leqslant \frac{13(t-1)(t+1)}{4 t-2}-\frac{12(t-1)}{2 t-1}$ for $t=4$. So we may assume that $n \geqslant t+2$. We may further assume that $\delta(G) \geqslant 3$ and G is connected. Hence,

$$
2 e(G)=3 f_{3}+\sum_{i \geqslant 4} i f_{i} \geqslant 3 f_{3}+4\left(f-f_{3}\right)=4 f-f_{3},
$$

which implies that $f \leqslant e(G) / 2+f_{3} / 4$. Note that for all $3 \leqslant i \leqslant t-1$, each i-vertex is incident with at most i many 3 -faces, and for all $j \geqslant t$, each j-vertex is incident with at
most $(t-2)\left\lfloor\frac{j}{t-1}\right\rfloor$ many 3 -faces, because G is $\left(K_{1}+P_{t}\right)$-free. It follows that

$$
\begin{aligned}
3 f_{3} & \leqslant \sum_{i=3}^{t-1} i \cdot n_{i}(G)+\sum_{j \geqslant t}(t-2)\left\lfloor\frac{j}{t-1}\right\rfloor \cdot n_{j}(G) \\
& \leqslant \sum_{i=3}^{t-1}\left(\frac{i \cdot n_{i}(G)}{t-1}+\frac{(t-2) i \cdot n_{i}(G)}{t-1}\right)+\frac{t-2}{t-1} \sum_{j \geqslant t} j \cdot n_{j}(G) \\
& =\sum_{i=3}^{t-1} \frac{i \cdot n_{i}(G)}{t-1}+\frac{t-2}{t-1} \sum_{\ell \geqslant 3} \ell \cdot n_{\ell}(G) \\
& =\sum_{i=3}^{t-1} \frac{i \cdot n_{i}(G)}{t-1}+\left(\frac{t-2}{t-1} \cdot 2 e(G)\right) \\
& =\sum_{i=3}^{t-1} n_{i}(G)-\sum_{i=3}^{t-1} \frac{(t-1-i) \cdot n_{i}(G)}{t-1}+\left(\frac{t-2}{t-1} \cdot 2 e(G)\right) \\
& <n+\frac{t-2}{t-1} \cdot 2 e(G),
\end{aligned}
$$

which implies that $f_{3}<\frac{n}{3}+\frac{2(t-2)}{3(t-1)} \cdot e(G)$. This, together with the fact that $f \leqslant$ $e(G) / 2+f_{3} / 4$, further implies that $f \leqslant \frac{e(G)}{2}+\frac{n}{12}+\frac{(t-2)}{6(t-1)} \cdot e(G)=\frac{(4 t-5)}{6(t-1)} \cdot e(G)+\frac{n}{12}$. By Euler's formula, $n-2=e(G)-f \geqslant \frac{(2 t-1)}{6(t-1)} \cdot e(G)-\frac{n}{12}$. Hence, $e(G) \leqslant \frac{13(t-1) n}{4 t-2}-\frac{12(t-1)}{2 t-1}$.

Acknowledgments. Zi-Xia Song would like to thank Yongtang Shi and the Chern Institute of Mathematics at Nankai University for hospitality and support during her visit in June 2018.

References

[1] B. Bollobás. Modern Graph Theory. Springer, 2013.
[2] G. Chen, R. J. Gould, F. Pfender and B. Wei. Extremal graphs for intersecting cliques. J. Combin. Theory Ser. B, 89:159-171, 2003.
[3] C. Dowden. Extremal C_{4}-free $/ C_{5}$-free planar graphs. J. Graph Theory, 83:213-230, 2016.
[4] T. Dzido. A note on Turán numbers for even wheels. Graphs Combin., 29:1305-1309, 2013.
[5] T. Dzido and A. Jastrzȩbski. Turán numbers for odd wheels. Discrete Math., 341:1150-1154, 2018.
[6] P. Erdős, Z. Füredi, R. J. Gould and D. S. Gunderson. Extremal graphs for intersecting triangles. J. Combin. Theory Ser. B, 64:89-100, 1995.
[7] P. Erdős and A. Stone. On the structure of linear graphs. Bull. Amer. Math. Soc., 52:1087-1091, 1946.
[8] Z. Füredi, Turán type problems, "Surveys in Combinatorics", London Math. Soc. Lecture Note Ser. 166, pages 253-300. Cambridge Univ. Press, 1991.
[9] Z. Füredi and T. Jiang. Hypergraph Turán numbers of linear cycles. J. Combin. Theory Ser. A, 123:252-270, 2014.
[10] Z. Füredi, T. Jiang and R. Seiver. Exact solution of the hypergraph Turán problem for k-uniform linear paths. Combinatorica, 34:299-322, 2014.
[11] P. Keevash. Hypergraph Turán problems, "Surveys in Combinatorics". London Math. Soc. Lecture Note Ser. 392, pages 83-139. Cambridge Univ. Press, 2011.
[12] A. Kostochka, D. Mubayi and J. Verstraëte. Turán problems and shadows I: Paths and cycles. J. Combin. Theory Ser. A, 129:57-79, 2015.
[13] Y. Lan, Y. Shi and Z-X. Song. Extremal Theta-free planar graphs. arXiv:1711.01614v2, 2017.
[14] E. F. Schmeichel and S. L. Hakimi. On planar graphical degree sequences. SIAM J. Appl. Math., 32:598-609, 1977.
[15] P. Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok., 48:436-452, 1941.

[^0]: *Supported by National Natural Science Foundation of China, Natural Science Foundation of Tianjin (No. 17JCQNJC00300), the China-Slovenia bilateral project "Some topics in modern graph theory" (No. 12-6), Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province (No. CICIP2018005), and the Fundamental Research Funds for the Central Universities, Nankai University (63191516).
 ${ }^{\dagger}$ Corresponding author.

[^1]: ${ }^{1}$ To find all plane triangulations on 7 vertices, let H be a plane triangulation on 7 vertices. Then $e(H)=15$ and H must be 3 -connected with maximum degree 5 or 6 . Let $u \in V(H)$ be a vertex of maximum degree. If $d(u)=6$, then H has at most two vertices of degree 6 and $H-u$ has neither K_{4} nor $K_{2,3}$ minor. Thus $H-u$ must be outer planar and so H is isomorphic to one of the plane triangulations in Figure 2(a,b,e). If $d(u)=5$, then the degree sequence of H is either $(5,5,5,4,4,4,3)$ or $(5,5,4,4,4,4,4)$. Since H has no $K_{3,3}$ minor, one can then check that H is isomorphic to one of the plane triangulations in Figure 2(c,d).

