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Abstract. A graph is worthy if no two vertices have the same neighborhood. In
this paper, we characterize the automorphism groups of unworthy edge-transitive
bipartite graphs, and present some worthy semisymmetric graphs arising from vector
spaces over finite fields. We also determine the automorphism groups of these
graphs.
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1. introduction

All graphs in this paper are assumed to be finite, simple and undirected.

Let Γ = (V,E) be a graph with vertex set V and edge set E. Denote by AutΓ
the automorphism group of Γ , i.e., the subgroup of the symmetric group Sym(V )
preserving the adjacency of Γ . Then AutΓ acts naturally on the edge set E of Γ by

{u,w}g = {ug, wg}; ∀{u,w} ∈ E, g ∈ AutΓ .

The graph Γ is said to be vertex-transitive or edge-transitive if AutΓ acts transitively
on V or E, respectively. If Γ is regular, edge-transitive but not vertex-transitive, then
Γ is called a semisymmetric ([10]) graph. It is well-know that a semisymmetric graph
is bipartite with two parts the orbits of its automorphism group on the vertices.

In 1972, Folkman [7] constructed some examples of semisymmetric graphs and
posed eight problems on the existence of semisymmetric graphs with restricted order
or valency. Folkman’s problems stimulated a wide interest in the study of semisym-
metric graphs. As a result, various constructions and also classification results of
semisymmetric graphs have been published, see [1, 2, 3, 4, 6, 5, 8, 9, 11, 12, 14] for
example.

A graph is worthy if no two vertices have the same neighborhood. It is easy
to see that every unworthy semisymmetric graph can be reconstructed from some
worthy edge-transitive bipartite graph by replacing each edge with a suitable complete
bipartite graph, see [14]. Thus, in the field of semisymmetric graphs, worthy graphs
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play an important role. In this paper, we construct several families of semisymmetric
graphs arising from finite vector spaces, most of which are worthy.

2. Automorphisms of graphs with given repeatednesses

Let Γ = (V,E) be a connected bipartite graph with bipartition V = U ∪W . Let
Aut+Γ be the subgroup of AutΓ which fixes the bipartition of Γ . Assume that Aut+Γ
acts transitively on E. Then U and W are orbits of Aut+Γ on V . For v ∈ V , denote
by Γ (v) the set of neighbors of v in Γ .

For u ∈ U and w ∈ W , set

u∗ = {u′ ∈ U | Γ (u′) = Γ (u)}, w∗ = {w′ ∈ W | Γ (w′) = Γ (w)}.

Let U∗ = {u∗ | u ∈ U} and W ∗ = {w∗ | w ∈ W}. Then U∗ and W ∗ are Aut+Γ -
invariant partitions of U andW , respectively. The group Aut+Γ induces two transitive
actions on U∗ and W ∗ by

(u∗)g = (ug)∗, (w∗)g = (wg)∗; u ∈ U, w ∈ W, g ∈ Aut+Γ .

Moreover, the sizes rU := |u∗| and rW := |w∗| are independent of the choices of u ∈ U
and w ∈ W , called the repeatednesses of Γ (see [14]). Let

r = rU , s = rW , k = |Γ (u)|, l = |Γ (w)|,m = |U∗|, n = |W ∗|.

Then

s
∣∣ k, r ∣∣ l, mrk = nsl.

Note that U∗∪W ∗ is an AutΓ -invariant partition of V . We define a bipartite graph
Γ ∗ = (V ∗, E∗) with V ∗ = U∗ ∪W ∗ and {u∗, w∗} ∈ E∗ if and only if the subgraph
[u∗, w∗] of Γ induced by u∗ ∪w∗ is (isomorphic to) the complete bipartite graph Kr,s.
Then Aut+Γ induces a subgroup of Aut+Γ ∗, which acts transitively on E∗. Moreover,
the vertices in U∗ have valency k∗ := k

s
in Γ ∗, and the vertices in W ∗ have valency

l∗ := l
r

in Γ ∗. Clearly, no two vertices in Γ ∗ have the same neighborhood. Note that

each σ ∈ AutΓ \ Aut+Γ if exists induces an automorphism of Γ ∗ interchanging U∗

and W ∗. Then the following lemma holds, see also [14].

Lemma 2.1. If Aut+Γ ∗ = AutΓ ∗ then Aut+Γ = AutΓ . In particular, if k = l but
r 6= s than Γ is semisymmetric.

Set

U∗ = {u∗i | 1 ≤ i ≤ m}, W ∗ = {w∗j | 1 ≤ j ≤ n}.
Let M be the subgroup of the symmetric group Sym(U) fixing every u∗i set-wise, and
let N be the subgroup of Sym(W ) fixing every w∗j set-wise. Then M ≤ Aut+Γ , where
M acts naturally on U and trivially on W . Thus M is contained in the kernel of
Aut+Γ acting on W . On the other hand, if g lies in the kernel of Aut+Γ acting on W ,
then u and ug have the same neighborhood. It follows that M is the kernel of Aut+Γ
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acting on W . Similarly, N is the kernel of Aut+Γ acting on U . Then the following
lemma holds.

Lemma 2.2. Let KU and KW be the kernels of Aut+Γ acting on U and W , respec-
tively. Then

KU = Sym(w∗1)× · · · × Sym(w∗n), KW = Sym(u∗1)× · · · × Sym(u∗m),

and KUKW = KU ×KW is normal in AutΓ .

In particular, we have the following corollary.

Lemma 2.3. (i) Aut+Γ is faithful on U if and only if s = 1;
(ii) Aut+Γ is faithful on W if and only if r = 1.

Write u∗i = {u1i, . . . , uri} and w∗j = {w1j, . . . , wsj}, where 1 ≤ i ≤ m and 1 ≤ j ≤ n.
Then we may assume that the actions of KU and KW are given by

uze i =

{
uez i if z ∈ Sym(u∗i ),
ue i otherwise;

wzf j =

{
wfz j if z ∈ Sym(w∗j );
wf j otherwise.

Consider the semidirect product G := (KU ×KW ):Aut+Γ ∗, where σ ∈ Aut+Γ ∗ acts
on KU ×KW by

(y1, . . . , yn;x1, . . . , xm)σ = (y1σ−1 , . . . , ynσ−1 ;x1σ−1 , . . . , xmσ−1 ).

ThenG has an action on V = U∪W defined as follows: for g = (y1, . . . , yn;x1, . . . , xm;σ) ∈
G, 1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ e ≤ r and 1 ≤ f ≤ s,

uge i = uexi iσ , w
g
f j = wfyj jσ .

It is easily shown that this action is faithful, and each g ∈ G gives an automorphism of
Γ which fixes the bipartition of Γ . Thus Aut+Γ ≥ (KU×KW ):Aut+Γ ∗. (Note that the
action of G on U induces a group isomorphic to the wreath product Sr oAut+Γ ∗, and
the action of G on W induces a group isomorphic to the wreath product Ss oAut+Γ ∗.)

Theorem 2.4. Aut+Γ = (KU ×KW ):Aut+Γ ∗.

Proof. By Lemma 2.2, Aut+Γ ∗ is faithful on both U∗ and W ∗. Then KU × KW is
the kernel of AutΓ acting on V ∗. In particular, Aut+Γ/(KU ×KW ) is isomorphic to
a subgroup of Aut+Γ ∗. Recalling that Aut+Γ ≥ (KU × KW ):Aut+Γ ∗, our theorem
follows. �

Suppose that AutΓ ∗ 6= Aut+Γ ∗. Take σ ∈ AutΓ ∗ \ Aut+Γ ∗. Then σ interchanges
U∗ and W ∗, and hence m = n and k∗ = l∗. In particular, Γ is regular, that is k = l,
if and only if r = s. Assume that r = s. We define

σ̃ : ue i 7→ we i′ , wf j 7→ uf j′ ; 1 ≤ e, f ≤ r, 1 ≤ i, j ≤ m,
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where i′ and j′ are such that (u∗i )
σ = w∗i′ and (w∗j )

σ = u∗j′ . Then it is easy to check
that σ̃ is an automorphism of Γ , which interchanges U and W . Thus, by Lemma 2.1
and Theorem 2.4, we have the following result.

Corollary 2.5. If k = l then Γ is semisymmetric if and only if either r 6= s or Γ ∗ is
semisymmetric.

3. A construction of edge-transitive bipartite graphs

Let n be an integer no less than 4. For a positive power q of some prime p, let
Fq be the finite field of order q, Fnq the n-dimensional column vector space over Fq,
and PG(n − 1, q) the (n − 1)-dimensional projective geometry over Fq. Denote by
P , L and H the sets of 1-dimensional (i.e., points in PG(n − 1, q)), 2-dimensional
(i.e., lines in PG(n − 1, q)) and (n − 1)-dimensional subspaces (i.e., hyperplanes in
PG(n − 1, q)) of Fnq , respectively. Recall that an (n1, n2)-flag of Fnq is an ordered
pair (u,w) of an n1-dimensional subspace u and an n2-dimensional subspace w with
1 ≤ n1 < n2 ≤ n − 1 and u ⊂ w. Let U and W be the sets of (1, 2)-flags and
(1, n− 1)-flags of Fnq , respectively. Then

U = {(p, l) | p ∈ P , p ⊂ l ∈ L}, W = {(p,h) | p ∈ P , p ⊂ h ∈ H},
and

|U | = |W | = (qn − 1)(qn−1 − 1)

(q − 1)(q − 1)
.

Consider the actions of the projective semilinear group PΓL(n, q) on U and W .
Then PΓL(n, q) is transitive (and faithful) on both U and W . For (p, l) ∈ U , the
stabilizer PΓL(n, q)(p,l) has exactly 7 orbits on W :

O1 = {(p′,h) ∈ W | l = p⊕ p′, l ∩ h = p′}, which has length qn−1;

O2 = {(p′,h) ∈ W | l ∩ h = p 6= p′}, which has length qn−1(qn−2−1)
q−1 ;

O3 = {(p′,h) ∈ W | l ∩ h ∈ P \ {p,p′}}, which has length qn(qn−2−1)
q−1 ;

O4 = {(p′,h) ∈ W | l = p⊕ p′ ⊂ h}, which has length q(qn−2−1)
q−1 ;

O5 = {(p′,h) ∈ W | l ⊂ h, l ∩ p′ = 0}, which has length q2(qn−2−1)(qn−3−1)
(q−1)(q−1) ;

O6 = {(p′,h) ∈ W | l ∩ h = p = p′}, which has length qn−2;

O7 = {(p′,h) ∈ W | l ⊂ h,p = p′}, which has length qn−2−1
q−1 .

For each i define a bipartite graph Fi(n, q; 1, 2; 1, n− 1) on U ∪W with edge set

Ei = {{(pg, lg), ((p′)g,hg)} | g ∈ GL(n, q), (p′,h) ∈ Oi}.
Then every Fi(n, q; 1, 2; 1, n− 1) admits PΓL(n, q) acting transitively on the edge set
but not on the vertex set.

It is easy to check that both F6(n, q; 1, 2; 1, n−1) and F7(n, q; 1, 2; 1, n−1) are not
connected. In the following section, we shall prove that, for 1 ≤ i ≤ 5, the graphs
Fi(n, q; 1, 2; 1, n− 1) are connected and semisymmetric.
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4. The numbers of pathes in Fi with length 2

For 1 ≤ i ≤ 5, we let Γi = Fi(n, q; 1, 2; 1, n − 1). For distinct vertices v1 and v2
of Γi, let θΓi(v1, v2) be the number of pathes with length 2 joining v1 and v2, that is,
θΓi(v1, v2) = |Γi(v1) ∩ Γi(v2)|. Set

Θi(U) = {θΓi(u1, u2) | u1, u2 ∈ U, u1 6= u2},
Θi(W ) = {θΓi(w1, w2)| | w1, w2 ∈ W, w1 6= w2}.

Note that every Γi is regular and bipartite. Then Γi is connected if and only if
every pair of vertices in U are joined by some path in Γi, or equivalently, every pair
of vertices in W are joined by some path in Γi. Further, if Γi is connected and
Θi(U) 6= Θi(W ) then there is no automorphism of Γi interchanging U and W , and so
Γi is semisymmetric in this case.

Lemma 4.1. Let l1, l2 ∈ L and write l1 = p1 + p′1 and l2 = p2 + p′2, where
p1,p

′
1,p2,p

′
2 ∈ P with p′1 6= p′2. Then there are h1,h2 ∈ H such that li ∩ hi = p′i,

hi = p′i + h1 ∩ h2, where i = 1, 2.

Proof. Let Hi = {h ∈ H | p′i ⊂ h}, and H′i = {h ∈ H | li ⊂ h}, where i = 1, 2. Then
|Hi \H′i| = qn−2, and each h ∈ Hi \H′i intersects li at p′i. Let H12 = H1 ∩H2, the set

of (n − 1)-dimensional subspaces containing both p′1 and p′2. Then |H12| = qn−2−1
q−1 ,

and so Hi \ H′i \ H12 6= ∅. This yields our lemma. �

Theorem 4.2. (i) Θ1(U) = {0, qn−3(q − 1), qn−2(q − 1)}.
(ii) Θ1(W ) = {0, q − 1, qn−2(q − 1)}.

(iii) Γ1 is connected and semisymmetric.

Proof. (1) Let u1 = (p1, l1) and u2 = (p2, l2) be distinct (1, 2)-flags. Then, by the
construction of Γ1, it is easily shown that Γ1(u1) ∩ Γ1(u2) = ∅ if and only if either
l1 ∩ l2 = 0, or l1 ∩ l2 ∈ {p1,p2}.

Suppose that Γ1(u1) ∩ Γ1(u2) 6= ∅. Then either l1 = l2, or l1 and l2 intersect at
some p ∈ P \ {p1,p2}. Note that a (1, n− 1)-flag (q,h) is connected Γ (u1) ∩ Γ (u2)
if and only if q 6∈ {p1,p2} and q = l1 ∩ h = l2 ∩ h. Let H1 = {h ∈ H | l1 ∩ h =
l2 ∩ h ∈ P \ {p1,p2}}. Then θΓ1(u1, u2) = |H1|. If l1 = l2 then

|H1| =
qn − 1

q − 1
− 2

qn−1 − 1

q − 1
+
qn−2 − 1

q − 1
= qn−2(q − 1).

If l1 ∩ l2 = p 6∈ {p1,p2} then

|H1| =
qn−1 − 1

q − 1
− 2

qn−2 − 1

q − 1
+
qn−3 − 1

q − 1
= qn−3(q − 1).

Thus Θ1(U) is known as in (i).

Suppose that Γ1(u1) ∩ Γ1(u2) = ∅. We write l1 = q1 ⊕ q′1 and l2 = q2 ⊕ q′2, where
q1 = p1 and q2 = p2 if l1 ∩ l2 = 0, or q1 = q2 = p1 if l1 ∩ l2 = p1, or q1 = q2 = p2 if
l1∩l2 = p2. By Lemma 4.1, we take h1,h2 ∈ H such that li∩hi = q′i, hi = q′i+h1∩h2,
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where i = 1, 2. Then, choosing a suitable 1-dimensional subspace q of q′1 + q′2, we
get a path: (p1, l1), (q′1,h1), (q,q′1 + q′2), (q′2,h2), (p2, l2). It follows that every pair
of vertices in U are joined by some path, and so Γ1 is connected.

(2) Take distinct (1, n− 1)-flags w1 = (p1,h1) ∈ W and w2 = (p2,h2) ∈ W . Then
Γ1(w1) ∩ Γ1(w2) 6= ∅ if and only if either p1 = p2 or hi = pi ⊕ (h1 ∩ h2) for i = 1, 2.
For the latter case, (q, l) ∈ Γ1(w1)∩Γ1(w2) if and only if l = p1+p2 and q 6∈ {p1,p2},
yielding θΓ1(w1, w2) = q − 1. Let p1 = p2 = p. Then (q, l) ∈ Γ1(w1) ∩ Γ1(w2) if and
only if l = p + q. Let L1 = {l ∈ L | l ∩ h1 = l ∩ h2 = p}. Then

|L1| =
qn−1 − 1

q − 1
− 2

qn−2 − 1

q − 1
+
qn−3 − 1

q − 1
= qn−3(q − 1),

and each l ∈ L1 contributes q common neighbors (q, l) of w1 and w2. Thus θΓ1(w1, w2) =
qn−2(q − 1). Then part (ii) of this theorem follows.

Finally, noting that Γ1 is connected and Θ1(U) 6= Θ1(W ), there is no automorphism
of Γ1 interchanging U and W . Thus Γ is semisymmetric. �

By the argument in the above proof, we have the following fact.

Corollary 4.3. (i) If u1, u2 ∈ U , then θΓ1(u1, u2) = qn−2(q − 1) if and only if
u1 = (p1, l) and u2 = (p2, l) for some l ∈ L.

(ii) If w1, w2 ∈ W , then θΓ1(w1, w2) = qn−2(q − 1) if and only if w1 = (p,h1) and
w2 = (p,h2) for some p ∈ P.

Theorem 4.4. (i) Θ2(U) = {0, qn−4(qn−1 − 2q + 1), q
n−3(qn−1−2q+1)

q−1 , qn−2(qn−2 −
1)}.

(ii) Θ2(W ) = {qn−3(qn−2−2q+ 1), qn−2(qn−3−1), qn−3(qn−2−1), q
n−2(qn−1−2q+1)

q−1 }.
(iii) Γ2 is connected and semisymmetric.

Proof. (1) Take distinct vertices u1 = (p1, l1) and u2 = (p2, l2) in U . Then Γ2(u1) ∩
Γ2(u2) 6= ∅ if and only if p1 = p2, or l1 ∩ l2 = 0, or l1 ∩ l2 ∈ P \ {p1,p2}.

If p1 = p2 then (q,h) ∈ Γ2(u1) ∩ Γ2(u2) if and only if l1 ∩ h = l2 ∩ h = p1 6= q,
and hence

θΓ2(u1, u2) =
qn−1 − q
q − 1

(
qn−1 − 1

q − 1
− 2

qn−2 − 1

q − 1
+
qn−3 − 1

q − 1
) = qn−2(qn−2 − 1).

If l1 ∩ l2 = 0 then

θΓ2(u1, u2) = (
qn−1 − 1

q − 1
− 2)(

qn−2 − 1

q − 1
− 2

qn−3 − 1

q − 1
+
qn−4 − 1

q − 1
) = qn−4(qn−1− 2q+ 1).

If l1 ∩ l2 ∈ P \ {p1,p2} then

θΓ2(u1, u2) = (
qn−1 − 1

q − 1
− 2)(

qn−2 − 1

q − 1
− qn−3 − 1

q − 1
) =

qn−3(qn−1 − 2q + 1)

q − 1
.

Thus Θ2(U) is known as in part (i).
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(2) Take distinct (1, n − 1)-flags w1 = (p1,h1) ∈ W and w2 = (p2,h2) ∈ W .
Then (q, l) ∈ Γ2(w1) ∩ Γ2(w2) if and only if l ∩ h1 = l ∩ h2 = q 6∈ {p1,p2}. Let
L1 = {l ∈ L | l ∩ h1 = l ∩ h2 6∈ {p1,p2}}. Then each l ∈ L1 contributes a unique
common neighbor (l ∩ h1, l) of w1 and w2, and then θΓ2(w1, w2) = |L1|.

If h1 = h2 then

θΓ2(w1, w2) = |L1| =
(qn−1 − 2q + 1)(qn − qn−1)

q(q − 1)2
= qn−2(qn−1 − 2q + 1).

Thus we assume that h1 ∩h2 has dimension n− 2. If hi = pi⊕ (h1 ∩h2) for i = 1, 2,
then

θΓ2(w1, w2) = |L1| =
(qn−2 − 1)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−3(qn−2 − 1).

If p1 6= p2 and p1 + p2 ⊆ h1 ∩ h2 then

θΓ2(w1, w2) = |L1| =
(qn−2 − 2q + 1)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−3(qn−2 − 2q + 1).

If p1 = p2 or only one of p1 and p2 is contained in h1 ∩ h2, then

θΓ2(w1, w2) = |L1| =
(qn−2 − q)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−2(qn−3 − 1).

By the above argument, we have Θ2(W ) as in part (ii). In particular, since n ≥
4, every pair of distinct vertices in W have common neighbors, and hence Γ2 is
connected. Noting that Θ2(U) 6= Θ2(W ), part (iii) follows. �

By the argument in the above proof, we have the following fact.

Corollary 4.5. (i) If u1, u2 ∈ U then θΓ2(u1, u2) = qn−2(qn−2 − 1) if and only if
u1 = (p, l1) and u2 = (p, l2) for some p ∈ P.

(ii) If w1, w2 ∈ W then θΓ2(w1, w2) = qn−2(qn−1−2q+1) if and only if w1 = (p1,h)
and w2 = (p2,h) for some h ∈ H.

Theorem 4.6. (i) Θ3(U) = {qn−3(qn−2q2+2q−1), qn−2(qn−1−2q+1), qn−1(qn−2−
1), q

n−1(qn−1−2q+1)
q−1 }.

(ii) Θ3(W ) = {(qn−2−1)(qn−1−q+1), qn−2(qn−1−2q+1), qn−1(qn−2−1), q
n−1(qn−1−2q+1)

q−1 }.
(iii) Γ3 is connected and semisymmetric.

Proof. (1) Take distinct (1, 2)-flags u1 = (p1, l1) and u2 = (p2, l2). Note that (q,h) ∈
Γ3(u1) ∩ Γ3(u2) if and only if l1 ∩ h ∈ P \ {p1,q} and l2 ∩ h ∈ P \ {p2,q}. Let
H1 = {h ∈ H | p1 ∩ h = p2 ∩ h = 0}.

If p1 = p2 then

|H1| =
qn − 1

q − 1
− qn−1 − 1

q − 1
= qn−1,
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and each h ∈ H1 contributes (qn−1−1)
q−1 − 2 to θΓ3(u1, u2), and thus

θΓ3(u1, u2) =
qn−1(qn−1 − 2q + 1)

q − 1
.

Assume that p1 6= p2. Then

|H1| =
qn − 1

q − 1
− 2

qn−1 − 1

q − 1
+
qn−2 − 1

q − 1
= qn−2(q − 1).

If l1 = l2 then each h ∈ H1 contributes (qn−1−1)
q−1 − 1 to θΓ3(u1, u2), and thus

θΓ3(u1, u2) = qn−1(qn−2 − 1).

If l1 ∩ l2 = 0 or l1 ∩ l2 ∈ {p1,p2}, then each h ∈ H1 contributes (qn−1−1)
q−1 − 2 to

θΓ3(u1, u2), yielding

θΓ3(u1, u2) = qn−2(qn−1 − 2q + 1).

The remain case is that l1 ∩ l2 ∈ P \ {p1,p2}. Let H2 = {h ∈ H1 | l1 ∩ l2 ⊂ h}.
Then |H2| = qn−3(q−1), each h ∈ H2 contributes (qn−1−1)

q−1 −1 to θΓ3(u1, u2), and each

h ∈ H1 \ H2 contributes (qn−1−1)
q−1 − 2 to θΓ3(u1, u2). It follows that

θΓ3(u1, u2) = qn−3(qn − 2q2 + 2q − 1).

Thus Θ3(U) is known as in part (i). In particular, any two vertices in U have common
neighbors, and so Γ is connected.

(2) Take distinct (1, n − 1)-flags w1 = (p1,h1) and w2 = (p2,h2). Then (q, l) ∈
Γ3(w1) ∩ Γ3(w2) if and only if l ∩ hi ∈ P \ {pi,q} for i = 1, 2.

Let L1 = {l ∈ L | l ∩ hi ∈ P \ {pi}, i = 1, 2}. If h1 = h2 then

|L1| =
(qn−1 − 2q + 1)(qn − qn−1)

q(q − 1)2
,

and each l ∈ L1 contributes q to θΓ3(w1, w2), and thus

θΓ3(w1, w2) =
qn−1(qn−1 − 2q + 1)

q − 1
.

Assume next that h1∩h2 have dimension n−2. Let L2 = {l ∈ L1 | l∩h1 = l∩h2}.
Then each l ∈ L2 contributes q to θΓ3(w1, w2), and each l ∈ L1 \ L2 contributes q− 1
to θΓ3(w1, w2).

Let p1 = p2. Then

|L2| =
(qn−2 − q)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−2(qn−3 − 1)

and

|L1 \ L2| =
(qn−1 − qn−2)2

(q − 1)2
= q2(n−2).

Thus

θΓ3(w1, w2) = qqn−2(qn−3 − 1) + (q − 1)q2(n−2) = qn−1(qn−2 − 1).
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Let p1 6= p2. If hi = pi ⊕ h1 ∩ h2 for i = 1, 2, then

|L2| =
(qn−2 − 1)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−3(qn−2 − 1)

and

|L1 \ L2| =
(qn−1 − qn−2 − q + 1)2

(q − 1)2
= (qn−2 − 1)2,

and hence

θΓ3(w1, w2) = (q − 1)(qn−2 − 1)2 + qqn−3(qn−2 − 1) = (qn−2 − 1)(qn−1 − q + 1).

If p1 + p2 ⊆ h1 ∩ h2, then

|L2| =
(qn−2 − 2q + 1)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−3(qn−2 − 2q + 1)

and

|L1 \ L2| =
(qn−1 − qn−2)2

(q − 1)2
= q2(n−2),

and so

θΓ3(w1, w2) = (q − 1)q2(n−2) + qqn−3(qn−2 − 2q + 1) = qn−2(qn−1 − 2q + 1).

If only one of p1 and p2 is contained in h1 ∩ h2, then

|L2| =
(qn−2 − q)(qn − 2qn−1 + qn−2)

q(q − 1)2
= qn−2(qn−3 − 1)

and

|L1 \ L2| =
(qn−1 − qn−2)(qn−1 − qn−2 − q + 1)

(q − 1)2
= qn−2(qn−2 − 1),

and so

θΓ3(w1, w2) = (q − 1)qn−2(qn−2 − 1) + qqn−2(qn−3 − 1) = qn−2(qn−1 − 2q + 1).

Thus Θ3(W ) is known as in part (ii).

Clearly, Θ3(U) 6= Θ3(W ). Recalling that Γ3 is connected, Γ3 is semisymmetric. �

By the argument in the above proof, we have the following fact.

Corollary 4.7. (i) If u1, u2 ∈ U then θΓ3(u1, u2) = qn−1(qn−2 − 1) if and only if
u1 = (p1, l) and u2 = (p2, l) for l ∈ L.

(ii) If w1, w2 ∈ W then θΓ3(w1, w2) = qn−1(qn−1−2q+1)
q−1 if and only if w1 = (p1,h)

and w2 = (p2,h) for h ∈ H.

Theorem 4.8. (i) Θ4(U) = {0, qn−3−1
q−1 , qn−2 − 1}.

(ii) Θ4(W ) = {0, q − 1, q(q
n−3−1)
q−1 }.

(iii) Γ4 is connected and semisymmetric.
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Proof. (1) Let u1 = (p1, l1) ∈ U and u2 = (p2, l2) ∈ U with u1 6= u2. Then
(q,h) ∈ Γ4(u1) ∩ Γ4(u2) if and only if li = pi ⊕ q ⊂ h, i = 1, 2. In particular, if
Γ4(u1) ∩ Γ4(u2) 6= ∅ then either l1 = l2, or l1 ∩ l2 ∈ P \ {p1,p2}.

If l1 = l2 = l then (q,h) ∈ Γ4(u1) ∩ Γ4(u2) if and only if l = p1 ⊕ q = p2 ⊕ q =
p1 ⊕ p2 ⊂ h, thus

θΓ4(u1, u2) = (q − 1)
qn−2 − 1

q − 1
= qn−2 − 1.

If l1 ∩ l2 ∈ P \ {p1,p2}, then (q,h) ∈ Γ4(u1) ∩ Γ4(u2) if and only if l1 + l2 ⊂ h and

q = l1 ∩ l2, and so θΓ4(u1, u2) = qn−3−1
q−1 . Thus

Θ4(U) = {0, q
n−3 − 1

q − 1
, qn−2 − 1},

as in part (i).

Suppose that Γ4(u1)∩Γ4(u2) = ∅. Then p1 = p2, or l1∩l2 = 0, or l1∩l2 ∈ {p1,p2}.
If p1 = p2, writing li = p1 ⊕ qi for i = 1, 2, choosing h ∈ H with p1 + q1 + q2 ⊂ h,
and taking q ∈ P with q1 + q = q2 + q = q1 + q2, then we get a path:

u1 = (p1, l1), (q1,h) (q,q1 + q2), (q2,h), (p2, l2) = u2.

If l1∩l2 = 0 then there are a path between (p1, l1) and (p1,p1+p2) and a path between
(p2, l2) and (p2,p1 + p2), and so there is a path between u1 and u2 as (p1,p1 + p2)
and (p2,p1 + p2) have common neighbors. Assume that l1 ∩ l2 ∈ {p1,p2}. Without
loss of generality, we let l1 ∩ l2 = p1, and write l1 = p1 ⊕ q1. Choose q2 ∈ P with
q2∩ (l1 + l2) = 0. Let l = q1 +q2. Then l∩ l2 = 0, and so (q2, l) and u2 are joined by
a path. Noting that l1 ∩ l = q1 6∈ {p1,q2}, we know that u1 and (q2, l) have common
neighbors. It follows that u1 and u2 are joined by a path. Then Γ4 is connected.

(2) Take distinct (1, n − 1)-flags w1 = (p1,h1) and w2 = (p2,h2). Then (q, l) ∈
Γ4(w1) ∩ Γ4(w2) if and only if l = pi ⊕ q ⊆ h1 ∩ h2 for i = 1, 2. In particular, if
Γ4(w1) ∩ Γ4(w2) 6= ∅ then p1 + p2 ⊆ h1 ∩ h2.

Let p1 + p2 ⊆ h1 ∩ h2. If p1 = p2 = p then (q, l) ∈ Γ4(w1) ∩ Γ4(w2) if and

only if l = p ⊕ q ⊆ h1 ∩ h2, and hence θΓ4(w1, w2) = q q
n−3−1
q−1 . If p1 6= p2 then

(q, l) ∈ Γ4(w1) ∩ Γ4(w2) if and only if l = p1 ⊕ p2 = p1 ⊕ q = p2 ⊕ q ⊂ h1 ∩ h2, and
then θΓ4(w1, w2) = q − 1. Thus Θ4(W ) is known as in part (ii).

Since Θ4(U) 6= Θ4(W ), recalling that Γ4 is connected, we conclude that Γ4 is
semisymmetric. �

By the argument in the above proof, we have the following fact.

Corollary 4.9. (i) If u1, u2 ∈ U then θΓ4(u1, u2) = qn−2 − 1 if and only if u1 =
(p1, l) and u2 = (p2, l) for l ∈ L.

(ii) If w1, w2 ∈ W then θΓ4(w1, w2) = q(qn−3−1)
q−1 if and only if w1 = (p,h1) and

w2 = (p,h2) for p ∈ P.

Theorem 4.10. Let t = qn−4 − 1.
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(i) Θ5(U) = { qn−1−2q2+1
(q−1)2 t, q(q

n−3−1)(qn−2−2q+1)
(q−1)2 , q

2(qn−2−1)(qn−3−1)
(q−1)2 }.

(ii) Θ5(W ) = { q(q
n−2−q2−q+1)

(q−1)2 t, q
2(qn−3−1)
(q−1)2 t, (q

n−2−1)(qn−3−1)
(q−1)2 , q(q

n−3−1)(qn−1−q2−q+1)
(q−1)2 }.

(iii) Γ5 is connected and semisymmetric.

Proof. (1) Let u1 = (p1, l1) ∈ U and u2 = (p2, l2) ∈ U with u1 6= u2. Then
(q,h) ∈ Γ5(u1) ∩ Γ5(u2) if and only if l1 + l2 ⊆ h and l1 ∩ q = l2 ∩ q = 0. In
particular, if Γ5(u1) ∩ Γ5(u2) = ∅ then n = 4 and l1 ∩ l2 = 0. Thus, if l1 ∩ l2 6= 0 or
n ≥ 4 then there is a path joining u1 and u2. Suppose that l1 ∩ l2 = 0, and write
li = pi ⊕ qi for i = 1, 2. Then (q1,q1 + q2) and each of u1 and u2 have common
neighbors, and so u1 and u2 are joined by a path. Therefore Γ is connected.

If l1 = l2 then

θΓ5(u1, u2) =
qn−1 − q2

q − 1

qn−2 − 1

q − 1
=
q2(qn−2 − 1)(qn−3 − 1)

(q − 1)2
.

If l1 ∩ l2 ∈ P then

θΓ5(u1, u2) =
q(qn−3 − 1)(qn−2 − 2q + 1)

(q − 1)2
.

If l1 ∩ l2 = 0 then

θΓ5(u1, u2) =
(qn−4 − 1)(qn−1 − 2q2 + 1)

(q − 1)2
.

Thus Θ5(U) is known as in par (i).

(2) Let w1 = (p1,h1) ∈ W and w2 = (p2,h2) ∈ W with w1 6= w2. Then (q, l) ∈
Γ5(u1) ∩ Γ5(u2) if and only if l ⊆ h1 ∩ h2 and p1 ∩ l = p2 ∩ l = 0. Let L1 = {l ∈ L |
l ⊆ h1 ∩ h2,p1 ∩ l = p2 ∩ l = 0}. Then θΓ5(w1, w2) = (q + 1)|L1|.

If h1 = h2 then

|L1| =
(qn−1 − 1)(qn−2 − 1)

(q2 − 1)(q − 1)
− 2

qn−2 − 1

q − 1
+ 1,

and so

θΓ5(w1, w2) = (q + 1)|L1| =
q(qn−3 − 1)(qn−1 − q2 − q + 1)

(q − 1)2
.

If p1 = p2 then

|L1| =
(qn−2 − 1)(qn−3 − 1)

(q2 − 1)(q − 1)
− qn−3 − 1

q − 1
,

and then

θΓ5(w1, w2) = (q + 1)|L1| =
q2(qn−4 − 1)(qn−3 − 1)

(q − 1)2
.

Let h1 6= h2 and p1 6= p2. If p1 ∩ h1 ∩ h2 = 0 = p2 ∩ h1 ∩ h2 then |L1| =
(qn−2−1)(qn−3−1)

(q2−1)(q−1) , and so

θΓ5(w1, w2) = (q + 1)|L1| =
(qn−2 − 1)(qn−3 − 1)

(q − 1)2
.



12 CHEN, HAN, AND LU

If p1 + p2 ⊆ h1 ∩ h2 then

|L1| =
(qn−2 − 1)(qn−3 − 1)

(q2 − 1)(q − 1)
− 2

qn−3 − 1

q − 1
+ 1,

and so

θΓ5(w1, w2) = (q + 1)|L1| =
q(qn−4 − 1))(qn−2 − q2 − q + 1)

(q − 1)2
.

If only one of p1 and p2 is contained in h1 ∩ h2, then

|L1| =
(qn−2 − 1)(qn−3 − 1)

(q2 − 1)(q − 1)
− qn−3 − 1

q − 1
,

and so

θΓ5(w1, w2) = (q + 1)|L1| =
q2(qn−4 − 1))(qn−3 − 1)

(q − 1)2
.

Thus Θ5(W ) is known as in part (ii).

Noting that Θ5(U) 6= Θ5(W ), we conclude that Γ5 is semisymmetric. �

By the argument in the above proof and Theorems 4.2, 4.4, 4.6 and 4.8, we have
the following fact.

Corollary 4.11. (i) If w1, w2 ∈ W then θΓ5(w1, w2) = q(qn−3−1)(qn−1−q2−q+1)
(q−1)2 if

and only if w1 = (p1,h) and w2 = (p2,h) for h ∈ H.
(ii) Two vertices v1, v2 ∈ U ∪W have the same neighborhood in Γi if and only if

i = 5 and v1 = (p1, l), v1 = (p2, l) for l ∈ L.

5. The automorphism groups of graphs Fi

For 1 ≤ i ≤ 5, let Ai be the automorphism group of Γi = Fi(n, q; 1, 2; 1, n − 1).
Clearly, every Ai contains the projective semilinear group PΓL(n, q) as a subgroup.
Then, by Lemma 2.3 and Corollary 4.11, the following lemma holds.

Lemma 5.1. (i) PΓL(n, q) ≤ Ai for 1 ≤ i ≤ 5.
(ii) Ai is faithful on both U and W , where 1 ≤ i ≤ 4.

(iii) A5 is faithful on U .

Theorem 5.2. Ai = PΓL(n, q) for 1 ≤ i ≤ 4.

Proof. (1) Let i = 1 or 4. For q ∈ P and l ∈ L, set Ul = {(p, l) | (p, l) ∈ U} and
Wq = {(q,h) | (q,h) ∈ W}. Then, by Corollaries 4.3 and 4.9, we conclude that
U := {Ul | l ∈ L} and W := {Wq | q ∈ P} are Ai-invariant partitions of U and W ,
respectively.

Define a bipartite graph Γi on U ∪W such that {Ul,Wq} is an edge if and only if
there are some u ∈ Ul and w ∈ Wq adjacent in Γi. Then Γi is isomorphic to the point-
line incidence graph of the projective geometry PG(n− 1, q). Let K be the kernel of
Ai acting on U ∪W . Then Ai/K is isomorphic to a subgroup of AutΓi ∼= PΓL(n, q).
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Take an edge {Ul,Wq} of Γi, and consider the subgraph [Ul,Wq] of Γi induced by
Ul ∪Wq. Then Ul contains only one isolated vertex of [Ul,Wq], say (q, l). Noting
that K fixes both Ul and Wq set-wise, K fixes the vertex (q, l). Since K is normal
in Ai, all K-orbits on U have the same length. It follows that K fixes U point-wise.
Then K = 1 as Ai is faithful on U by Lemma 5.1. Then we have Ai = PΓL(n, q) as
PΓL(n, q) ≤ Ai.

(2) For p ∈ P and h ∈ H, set Up = {(p, l) | (p, l) ∈ U} and Wh = {(q,h) |
(q,h) ∈ W}. Then, by Corollary 4.5, we conclude that U := {Up | p ∈ P} and
W := {Wh | h ∈ H} are A2-invariant partitions of U and W , respectively.

Define a bipartite graph Γ2 on U ∪W such that {Up,Wh} is an edge if and only
if there are some u ∈ Up and w ∈ Wh adjacent in Γ2. Then Γ2 is isomorphic to the
point-hyperplane incidence graph of PG(n− 1, q), and so AutΓ2

∼= PΓL(n, q).Z2. Let
K be the kernel of A2 acting on U ∪W . Then A2/K is isomorphic to a subgroup of
AutΓ2. Since A2 fixes U and W set-wise, A2/K isomorphic to a subgroup of PΓL(n, q).

Take an edge {Up,Wh} of Γ2, and consider the subgraph [Up,Wh]. Then Wh

contains a unique isolated vertex of [Up,Wh], say (p,h). Since K fixes both Up and
Wh set-wise, K fixes the vertex (p,h). It follows that K acts trivially on W , and so
K = 1. Then we have A2 = PΓL(n, q).

(3) For h ∈ H and l ∈ L, set Ul = {(p, l) | (p, l) ∈ U} and Wh = {(q,h) |
(q,h) ∈ W}. Then, by Corollary 4.7, we conclude that U := {Ul | l ∈ L} and
W := {Wh | h ∈ H} are A3-invariant partitions of U and W , respectively.

Define a bipartite graph Γ3 on U ∪W such that {Ul,Wh} is an edge if and only
if there are some u ∈ Ul and w ∈ Wh adjacent in Γ3. Then Γ3 is isomorphic to the
graph on L∪H such that {l,h} is an edge if and only if l∩h has dimension 1. Note
that AutΓ3 contains a subgroup isomorphic to PΓL(n, q) which acts 2-transitively on
W . It follows from [13, Proposition 6.1] that AutΓ3 and PΓL(n, q) have isomorphic
socle. Thus we have AutΓ3

∼= PΓL(n, q).

Let K be the kernel of A3 acting on U∪W . Then A3/K is isomorphic to a subgroup
of AutΓ3

∼= PΓL(n, q). If {Ul,Wh} is an edge of Γ3 then Wh contains a unique isolated
vertex of [Ul,Wh], say (l∩h,h). Then a similar argument as in (2) implies that K = 1,
and hence A3 = PΓL(n, q). �

Theorem 5.3. A5
∼= (Sq+1 × · · · × Sq+1︸ ︷︷ ︸

m factors

):PΓL(n, q), where m = |L| = (qn−1)(qn−1−1)
(q2−1)(q−1) .

Proof. By Corollary 4.11, Γ5 has repeatednesses q+ 1 and 1. For l ∈ L, let l∗ be the
set of (1, 2) flags with form of (p, l). Set U∗ = {l∗ | l ∈ L}, and consider the graph
Γ ∗ on U∗ ∪W with edge set {{l∗, (p,h)} | l ∈ L, (p,h) ∈ W, l ⊂ h, l ∩ p = 0}. By
Lemma 2.1, Theorem 2.4 and Corollary 4.11, we have

A5
∼= (Sq+1 × · · · × Sq+1︸ ︷︷ ︸

m factors

):AutΓ ∗,
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where m = |L|. It is easily shown that AutΓ ∗ contains a subgroup isomorphic to
PΓL(n, q). Next we show AutΓ ∗ ∼= PΓL(n, q), and then the result follows.

By Lemma 2.2, AutΓ ∗ is faithful on both U∗ and W . For h ∈ H, denote by Wh the
set of (1, n−1)-flags with form of (p,h). Then, by Corollary 4.11, W = {Wh | h ∈ H}
is a A5-invariant partition and hence an AutΓ ∗-invariant partition of W . Consider
the graph Γ on U∗ ∪W with edge set {{l∗,Wh} | l ⊂ h, l ∈ L,h ∈ H}. Then Γ
is (isomorphic to) the line-hyperplane incidence graph of PG(n − 1, q), and AutΓ ∗

induces a subgroup of AutΓ . Noting that AutΓ contains a subgroup isomorphic to
PΓL(n, q), by [13, Proposition 6.1], we conclude that AutΓ ∼= PΓL(n, q). Let K
be the kernel of AutΓ ∗ acting on W . Note that no two vertices in Γ has the same
neighborhood. It follows that K acts trivially on U∗, and so K = 1 as AutΓ ∗ is
faithful on U∗. Then AutΓ ∗ is isomorphic to a subgroup of PΓL(n, q). This implies
that AutΓ ∗ ∼= PΓL(n, q). Then our theorem follows. �
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