Strong conflict-free connection of graphs

Meng Ji ${ }^{\text {a }}$, Xueliang Li ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
${ }^{\mathrm{b}}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China

ARTICLE INFO

Article history:

Received 25 January 2019
Revised 20 July 2019
Accepted 29 July 2019

MSC:

05 C 15
05 C 40
05 C 75

Keywords:

Strong conflict-free connection coloring
(number)
Characterization
Cubic graph

Abstract

A path P in an edge-colored graph is called a conflict-free path if there exists a color used on only one of the edges of P. An edge-colored graph G is called conflict-free connected if for each pair of distinct vertices of G there is a conflict-free path in G connecting them. The graph G is called strongly conflict-free connected if for every pair of vertices u and v of G there exists a conflict-free path of length $d_{G}(u, v)$ in G connecting them. For a connected graph G, the strong conflict-free connection number of G, denoted by $\operatorname{scfc}(G)$, is defined as the smallest number of colors that are required in order to make G strongly conflict-free connected. In this paper, we first show that if G_{t} is a connected graph with $m(\geq 2)$ edges and t edge-disjoint triangles, then $\operatorname{scfc}\left(G_{t}\right) \leq m-2 t$, and the equality holds if and only if $G_{t} \cong S_{m-t, t}$. Then we characterize the graphs G with $\operatorname{scfc}(G)=k$ for $k \in\{1, m-3, m-$ $2, m-1, m\}$. In the end, we present a complete characterization for the cubic graphs G with $\operatorname{scfc}(G)=2$.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow book [2] for undefined notation and terminology. For a graph G, let $c: E(G) \mapsto[r]$ be an edge-coloring of G. For an edge e of G, we denote the color of e by $c(e)$. And we denote the number of vertices, edges in G by n, m, respectively. We denote $[t]$ the set $\{1,2, \cdots, t\}$ and we define C_{s} as a cycle of length s. We denote by $d_{G}(v)$ the degree v in G.

Coloring problems are important topics in graph theory. In recent years, there have appeared a number of colorings raising great concern due to their wide applications in real world. We list a few well-known colorings here. The first of such would be the rainbow connection coloring, which is stated as follows. A path in an edge-colored graph is called a rainbow path if all the edges of the path have distinct colors. An edge-colored graph is called (strongly) rainbow connected if there is a (shortest and) rainbow path between every pair of distinct vertices in the graph. For a connected graph G, the (strong) rainbow connection number of G is defined as the smallest number of colors needed to make G (strongly) rainbow connected, denoted by $(\operatorname{src}(G)) r c(G)$. These concepts were first introduced by Chartrand et al. in [6].

Inspired by the rainbow connection coloring, the concept of proper connection coloring was independently posed by Andrews et al. in [1] and Borozan et al. in [3], the only difference from (strong) rainbow connection coloring is that distinct colors are only required for adjacent edges instead of all edges on the (shortest) path. For an edge-colored connected graph G,

[^0]the smallest number of colors required to give G (strong) proper connection coloring is called the (strong) proper connection number of G, denoted by $(s p c(G)) p c(G)$.

The hypergraph version of conflict-free coloring was first introduced by Even et al. in [9]. A hypergraph H is a pair $H=(X, E)$ where X is the set of vertices, and E is the set of nonempty subsets of X, called hyperedges. The coloring was motivated to solve the problem of assigning frequencies to different base stations in cellular networks, which is defined as a vertex-coloring of H such that every hyperedge contains a vertex with a unique color.

Later on, Czap et al. in [7] introduced the concept of conflict-free connection coloring of graphs, motivated by the earlier hypergraph version. A path in an edge-colored graph G is called a conflict-free path if there is a color appearing only once on the path. The graph G is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices of G. For a connected graph G, the minimum number of colors required to make G conflict-free connected is defined as the conflict-free connection number of G, denoted by $c f c(G)$. For more results, the reader can be referred to [4,6,5,8,12].

In this paper, we focus on studying the strong conflict-free connection coloring which was introduced by Ji et al. in [11], where only computational complexity was studied. An edge-colored graph is called strongly conflict-free connected if there exists a conflict-free path of length $d_{G}(u, v)$ for every pair of vertices u and v of G. For a connected graph G, the strong conflict-free connection number of G, denoted $\operatorname{scfc}(G)$, is the smallest number of colors that are required to make G strongly conflict-free connected.

The paper is organized as follows. In Section 2, we give some preliminary results. In Section 3, we show that if G_{t} is a connected graph with $m(m \geq 2)$ edges and t edge-disjoint triangles, then $\operatorname{scfc}\left(G_{t}\right) \leq m-2 t$, and the equality holds if and only if $G_{t} \cong S_{m-t, t}$. In Section 4, we characterize the graphs G with $\operatorname{scfc}(G)=k$ for $k \in\{1, m-3, m-2, m-1, m\}$. In the last section, we completely characterize the cubic graphs G with $\operatorname{scfc}(G)=2$.

2. Basic results and lemmas

In this section, we present some results which will be used in the sequel. In [11], the authors obtained the following computational complexity result.

Theorem 2.1 [7]. If P_{n} is a path on n vertices, then $c f c\left(P_{n}\right)=\left\lceil\log _{2} n\right\rceil$.
Theorem 2.2 [4]. Let G be a connected graph of order $n(n \geq 2)$. Then $c f c(G)=n-1$ if and only if $G=K_{1, n-1}$.
From Theorem 2.1 and 2.2 and the definitions of (strong) conflict-free connection number, we immediately have the following theorem.

Theorem 2.3. For a tree T, $s c f c(T)=c f c(T)$. Therefore, for a path P_{n} on n vertices, $s c f c\left(P_{n}\right)=\left\lceil\log _{2} n\right\rceil$; for a star S_{m} with m edges, $\operatorname{scfc}\left(S_{m}\right)=m$.

The authors in [6] obtained the strong rainbow connection number for a wheel graph W_{n}, where n is the degree of the central vertex, and the complete bipartite graph $K_{\mathrm{s}, \mathrm{t}}$.
Theorem 2.4 [6]. For $n \geq 3$, let W_{n} be a wheel. Then $\operatorname{src}\left(W_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$.
Theorem 2.5 [6]. For integers s and t with $1 \leq s \leq t, \operatorname{src}\left(K_{s, t}\right)=\lceil\sqrt[s]{t}\rceil$.
Theorem 2.6. For the integers n, s and t with $1 \leq s \leq t, s c f c\left(W_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ and $s c f c\left(K_{s, t}\right)=\lceil\sqrt[s]{t}\rceil$.
Proof. Note that for a graph G with diameter 2, a strong rainbow path (of length 2) of G is a strong conflict-free path of G, and vice versa. Since $\operatorname{diam}\left(W_{n}\right)=2$, then $\operatorname{scfc}\left(W_{n}\right)=\operatorname{src}\left(W_{n}\right)$. So, $\operatorname{scfc}\left(W_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$ from Theorem 2.4. Since $\operatorname{diam}\left(K_{s, t}\right)=2$, from Theorem 2.5 we have that $\operatorname{scfc}\left(K_{s, t}\right)=\lceil\sqrt[s]{t}\rceil$.
Lemma 2.7. Let C_{n} be a cycle of order n and let P_{n} be a spanning subgraph of C_{n}. Then $\operatorname{scfc}\left(C_{n}\right) \leq \operatorname{scfc}\left(P_{n}\right)$.
Proof. Let $P_{n}=v_{1}(=u) v_{2} \cdots v_{n-1} v_{n}(=v)$ be a path with n vertices. We know that $s c f c\left(P_{n}\right)=\left\lceil\log _{2} n\right\rceil$ by Theorem 2.3. Now we first give a coloring for P_{n} : color the edge e_{i} with color $x+1$, where 2^{x} is the largest power of 2 that divides i. One can see that $\left\lceil\log _{2} n\right\rceil$ is the largest number in the coloring by Theorem 2.3. Clearly, the color $\left\lceil\log _{2} n\right\rceil$ only occurs once. Thus, we color the edge $u v$ with $\left\lceil\log _{2} n\right\rceil$ in C_{n} if there is only one color occurring once; otherwise, we color the edge $u v$ with $\left\lceil\log _{2} n\right\rceil-1$. Consequently, the coloring is a strong conflict-free connection coloring of C_{n}.

Remark. The proposition does not hold for general graphs. Here is a counterexample. Let $G=C_{6}$ with the edge set $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}, v_{4} v_{5}, v_{5} v_{6}, v_{6} v_{1}\right\}$. So $s c f c(G)=2$. Let $G^{\prime}=C_{6}+v_{1} v_{3}$. Then $\operatorname{scfc}\left(G^{\prime}\right)=3$.

Lemma 2.8. If C_{n} is a cycle with $n(n \geq 3)$ vertices, then

$$
\operatorname{scfc}\left(C_{n}\right)=\left\lceil\log _{2} n\right\rceil-1 \text { or }\left\lceil\log _{2} n\right\rceil .
$$

Proof. By Lemma 2.7 and Theorem 2.3, one can see that $s c f c\left(C_{n}\right) \leq\left\lceil\log _{2} n\right\rceil$. It remains to handle with the lower bound. We first consider the case that $\operatorname{diam}\left(C_{n}\right)=\frac{n}{2}$ for $n=2 k\left(k \in \mathbb{Z}^{+}\right)$. Hence, $\operatorname{scfc}\left(C_{n}\right) \geq\left\lceil\log _{2}\left(\frac{n}{2}+1\right)\right\rceil=\left\lceil\log _{2}(n+2)\right\rceil-1 \geq$
$\left\lceil\log _{2} n\right\rceil-1$. We then consider the case that $\operatorname{diam}\left(C_{n}\right)=\frac{n-1}{2}$ for $n=2 k+1\left(k \in \mathbb{Z}^{+}\right)$. Thus, $\operatorname{scfc}\left(C_{n}\right) \geq\left\lceil\log _{2}\left(\frac{n-1}{2}+1\right)\right\rceil=$ $\left\lceil\log _{2}(n+1)\right\rceil-1 \geq\left\lceil\log _{2} n\right\rceil-1$. Consequently, $s c f c\left(C_{n}\right)=\left\lceil\log _{2} n\right\rceil-1$ or $\left\lceil\log _{2} n\right\rceil$.

Lemma 2.8 implies the following corollary.
Corollary 2.9. Let G be a connected graph with m edges and let C be a cycle in G. Then scfc $(G) \leq m-|C|+\left\lceil\log _{2}|C|\right\rceil$.
We end this section with an observation and a lemma.
Observation 2.10. Let G be a connected graph with $\operatorname{scfc}(G)=|E(G)|-k$ and let H be a connected graph with $\operatorname{scfc}(H) \leq$ $|E(H)|-k-1$. Then there is not a copy of H in G.

Lemma 2.11. Let G be a connected graph with size m and $\operatorname{scfc}(G)=m-k$. Then $\operatorname{diam}(G)-\left\lceil\log _{2}(\operatorname{diam}(G)+1)\right\rceil \leq k$.
Proof. Let P be the path of length $\operatorname{diam}(G)$. Now we define a coloring with $m+\left\lceil\log _{2} \operatorname{diam}(G)+1\right\rceil-\operatorname{diam}(G)$ colors: assign the edges of P with $\left\lceil\log _{2} \operatorname{diam}(G)+1\right\rceil$ colors to make P strongly conflict-free connected; assign each of the remaining m - $\operatorname{diam}(G)$ edges a fresh color. Clearly, G is strongly conflict-free connected. Since $s c f c(G)=m-k$, then we have that $m-k \leq m+\left\lceil\log _{2}(\operatorname{diam}(G)+1)-\operatorname{diam}(G)\right\rceil$. Consequently, $\operatorname{diam}(G)-\left\lceil\log _{2}(\operatorname{diam}(G)+1)\right\rceil \leq k$.

3. Upper and lower bounds

At first, let us look at trees. We have one trivial result.
Theorem 3.1. Let T be a tree of order n. Then we have

$$
\max \left\{\left\lceil\log _{2}(\operatorname{diam}(T)+1)\right\rceil, \Delta(T)\right\} \leq \operatorname{scfc}(T) \leq n-1
$$

Next, we show a simple lower bound. Let G be a connected graph and let u, v be two vertices of G. If there are t paths between u and v in G, where the degree of internal vertices of the paths in G is 2 , then we call the paths t-parallel paths.

Theorem 3.2. Let G be a connected graph and let v, u be two vertices of G with $d(u, v) \geq 2$. If one of the following conditions holds, then $\operatorname{scfc}(G) \geq 3$.

1. There exist a cut-vertex w which splits G into at least three components by deleting w.
2. There exists a path P of length at least 4 between u and v, where the edges of the path are bridges.
3. There exist 2-parallel paths between u and v, where the length of one path is 2 and the length of the other one is 3 .
4. There exist 5-parallel paths between u and v.

Proof. 1. Let $C_{1}, C_{2}, \cdots, C_{m}(m \geq 3)$ be the components when deleting w from G. We choose a vertex u_{i} which is adjacent to w in each component C_{i}. Clearly, each pair of u_{i} and u_{j} contains the only path, and it contains w. Consequently, we have that $\operatorname{scfc}(G) \geq \operatorname{scfc}\left(S_{m}\right)=m \geq 3$.
2. Let P be a path of length at least 4 . Since every edge of P is a bridge. Hence, we have $s c f c(G) \geq s c f c(P) \geq 3$.
3. Since the lengths of the two paths are 2 and 3, there is a 5 -cycle in G. Clearly, $\operatorname{scfc}(G) \geq 3$.
4. Since $d(u, v) \geq 2$, every path between u and v has a length at least 2 . If we assign a coloring with 2 colors for the paths, then there always exist at least two internal vertices of the paths which do not contain a strong conflict-free path. Consequently, $\operatorname{scfc}(G) \geq 3$.

We now define a graph class. Let S_{k} be a star with k edges $u v_{1}, u v_{2}, \cdots, u v_{k}$. We denote by $S_{m-t, t}$ the graph $S_{m-t}+$ $\left\{v_{1} v_{2}, v_{3} v_{4}, \cdots, v_{t-1} v_{t}\right\}(2 \leq t \leq m)$.
Theorem 3.3. If G_{t} is a connected graph with $m(m \geq 2)$ edges and t edge-disjoint triangles, then $\operatorname{scfc}\left(G_{t}\right) \leq m-2 t$, and the equality holds if and only if $G_{t} \cong S_{m-t, t}$.
Proof. Clearly, $\operatorname{scfc}\left(K_{3}\right)=1$. Now we first give a coloring of G_{t} : Color each triangle with a distinct color, that is, the three edges of each triangle receive a same color, and color each of the remaining $m-3 t$ edges with a distinct color. Let P be a strong conflict-free path for any pair of vertices u and v in G. Clearly, P contains at most one edge from each triangle. Otherwise, it will produce a contradiction. Thus, G_{t} is strongly conflict-free connected. So $s c f c\left(G_{t}\right) \leq m-2 t$.

We now show that $\operatorname{scfc}\left(G_{t}\right)=m-2 t$ if and only if $G_{t} \cong S_{m-t, t}$.
Sufficiency. Suppose that $G_{t} \cong S_{m-t, t}$. Clearly, $\operatorname{scfc}\left(S_{m-t, t}\right) \leq m-2 t$. Note that every pendant edge needs a distinct color and every triangle needs a fresh color. Suppose that there is a coloring of $S_{m-t, t}$ in which on some triangle there is used the same color as on some pendant edge. Then the shortest path is not a conflict-free path between the leaf incident with the pendant edge and one vertex of degree two. Also, if we provide the t triangles with $t-1$ colors, there exist two triangle with the same color. There would also not exist a strong conflict-free path between the vertices of the two triangles. Consequently, $s c f c\left(S_{m-t, t}\right) \geq m-2 t$.

Necessity. We now show that it holds for the necessity by the following 3 claims.
Claim 1. If $\operatorname{scfc}\left(G_{t}\right)=m-2 t$, then every edge of G_{t}, except of the edges of the triangles, is a cut edge.
Proof of Claim 1. Assume that there is a cycle $C(|C| \geq 3)$ except the t triangles. We know that $s c f c(C) \leq\left\lceil\log _{2}|C|\right\rceil$ by Lemma 2.8. Now we define a coloring with $m-2 t+\left\lceil\log _{2}|C|\right\rceil-|C| \leq m-2 t-1$ colors: assign every triangle with a distinct
color and assign C with $\left\lceil\log _{2}|C|\right\rceil$ fresh colors, and the remaining edges are assigned by $m-|E(C)|-3 t$ fresh colors. Clearly, G_{t} is strongly conflict-free connected. So, $s c f c\left(G_{t}\right) \leq m-2 t+\left\lceil\log _{2}|C|\right\rceil-|C| \leq m-2 t-1$, a contradiction.

Claim 2. If $s c f c\left(G_{t}\right)=m-2 t$, then each triangle in G_{t} contains at least two vertices of degree two.
Proof of Claim 2. Assume that there is at most one vertex of degree two in a triangle $v_{1} v_{2} v_{3} v_{1}$. Without loss of generality, let $u_{1} v_{1}$ and $u_{2} v_{2}$ be two edges. We will consider the following three cases.

Case 1. Both $u_{1} v_{1}$ and $u_{2} v_{2}$ are not contained in triangles. We define a coloring c of G_{t} : assign each triangle with a distinct color; assign both $u_{1} v_{1}$ and $u_{2} v_{2}$ with a fresh same color; the remaining $m-2-3 t$ edges are colored by $m-2-3 t$ fresh colors. We only need to check $u_{1}-u_{2}$ paths. By Claim $1, u_{1} v_{1} v_{2} u_{2}$ is the unique strong conflict-free path between u_{1} and u_{2}. Clearly, G_{t} is strongly conflict-free connected. Hence, $\operatorname{scfc}\left(G_{t}\right) \leq(m-2-3 t)+1+t=m-2 t-1$, a contradiction.

Case 2. $u_{1} v_{1}$ and $u_{2} v_{2}$ are contained in different triangles. Let X_{1} contain $u_{1} v_{1}$ and let X_{2} contain $u_{2} v_{2}$. We now define a coloring of G_{t} : assign X_{1} and X_{2} with the same color; assign the other triangles with $t-2$ fresh colors; each of the remaining edges is colored by a fresh color. Clearly, G_{t} is strongly conflict-free connected. Hence, $\operatorname{sc} f c\left(G_{t}\right) \leq m-2 t-1$, a contradiction.

Case 3. One of $u_{1} v_{1}$ and $u_{2} v_{2}$ is contained in a triangle. Similarly, there is a strong conflict-free connection coloring with $m-2 t-1$ colors, a contradiction. Completing the proof of Claim 2.

Claim 3. Let $C\left(G_{t}\right)$ be the graph induced by all the cut-edges of G_{t}. Then $C\left(G_{t}\right)$ is a tree with $\operatorname{diam}\left(C\left(G_{t}\right)\right) \leq 2$.
Proof of Claim 3. Assume $C\left(G_{t}\right)$ is not connected. Let H_{1} and H_{2} be two connected components of $C\left(G_{t}\right)$. Clearly, the path in G_{t} which is connected to two vertices $h_{1}\left(\in V\left(H_{1}\right)\right)$ and $h_{2}\left(\in V\left(H_{2}\right)\right)$ goes through at least one triangle. Thus, the triangle contains at least two vertices of degree at least 3 , which contradicts to Claim 2. Assume that $\operatorname{diam}\left(C\left(G_{t}\right)\right)=k \geq 3$. Let $P=v_{0} v_{1} \cdots v_{k}$ be a path of length k. Then we define a coloring of G_{t} with $m-2 t-k+\left\lceil\log _{2}(k+1)\right\rceil$ colors: assign the edges of P with $\left\lceil\log _{2} k\right\rceil$ colors to make P strongly conflict-free connected from Theorem 2.3; assign each of the t triangles with a fresh color; assign each of the remaining $m-3 t-k$ edges with a fresh color. Clearly, G_{t} is strongly conflict-free connected, a contradiction. Completing the proof of Claim 3.

From the above claims, we can deduce that $G_{t} \cong S_{m-t, t}$.

4. Graphs with large or small scfc numbers

In this section, we characterize the connected graphs G of size m with $\operatorname{scfc}(G)=k$ for $k \in\{1, m-3, m-2, m-1, m\}$. For the connected graph G with $\operatorname{scfc}(G)=1$, we have the trivial result.

Theorem 4.1. For a nontrivial connected graph $G, \operatorname{scfc}(G)=1$ if and only if G is a complete graph.
From here on, we start to characterize the graph with large strong conflict-free connection number.
Theorem 4.2. Let G be a nontrivial connected graph of size m. Then $\operatorname{scfc}(G)=m$ if and only if $G \cong S_{m}$.
Proof. Necessity. Suppose that $G \cong S_{m}$. we have $s c f c(G)=m$ by Theorem 2.3.
Sufficiency. Suppose that $\operatorname{scfc}(G)=m$. Assume there is a cycle C in G. Then $\operatorname{scfc}(G) \leq m-|C|+\left\lceil\log _{2}|C|\right\rceil \leq m-1$ by Corollary 2.9, a contradiction. Hence, G is a tree. Let u and v be two vertices with $d_{G}(u, v) \geq 3$ in G. Similarly, $\operatorname{scfc}(G) \leq$ $m-d_{G}(u, v)+\left\lceil\log _{2}\left(d_{G}(u, v)+1\right)\right\rceil \leq m-1$, a contradiction. Thus, $G \cong S_{m}$.

For convenience, we define some graph-classes before proving the theorem below. Let S_{m} be a star with $m(\geq 2)$ edges and let u be a leaf of S_{m}. We define a graph by $\Gamma_{m+1}=(V(S) \cup\{v\}, E(S) \cup\{u v\})$.

Theorem 4.3. Let G be a connected graph of size m. Then $\operatorname{scfc}(G)=m-1$ if and only if $G \in\left\{P_{4}, P_{5}, \Gamma_{m}\right\}$.
Proof. Necessity. We have $\operatorname{scfc}(G)=\operatorname{scfc}\left(P_{4}\right)=2=m-1$ and $s c f c(G)=s c f c\left(P_{5}\right)=3=m-1$ by Theorem 2.3. On one hand, we have $\operatorname{scfc}\left(\Gamma_{m}\right) \geq \Delta\left(\Gamma_{m}\right)=m-1$ by Theorem 3.1. On the other hand, we define a coloring of Γ_{m} by assigning each of the $m-1$ edges of $S_{m-1}\left(\subset \Gamma_{m}\right)$ with a fresh color and choosing one color from the used colors except for the color assigned to the edge incident with u to assign the unique remaining edge. Clearly, G is strongly conflict-free connected. Hence, $s c f c\left(\Gamma_{m}\right)=m-1$.

Sufficiency. Suppose that $\operatorname{scfc}(G)=m-1$. We first show that G is a tree. Assume, to the contrary, that there is a cycle C in G. We have that $\operatorname{scfc}(C) \leq|E(C)|-2$ by Lemma 2.8 , and thus $C \nsubseteq G$ by Observation 2.10.

When $\operatorname{diam}(G)=2$, we have $G \cong S_{n}$ with $s c f c(G)=m$ since G is a tree. But it is a contradiction.
When $\operatorname{diam}(G)=3$, we show $G \in\left\{P_{4}, \Gamma_{m}\right\}$. Let $P_{4}=v_{1} v_{2} v_{3} v_{4}$ of G. If $G=P_{4}$, then $s c f c(G)=m-1$ by Theorem 2.3. Assume $M_{1}=P_{4} \cup\left\{x v_{2}, y v_{3}\right\}$ is a copy of the subgraph of G. It is easy to check that $\operatorname{scfc}\left(M_{1}\right) \leq 3=\left|E\left(M_{1}\right)\right|-2$. So $M_{1} \nsubseteq G$ by Observation 2.10. Thus, there is at most one vertex $v_{i} \in V\left(P_{4}\right)$ with $d_{G}\left(v_{i}\right) \geq 3$. Let $M_{2}=P_{4} \cup\left\{x_{1} v_{2}, \cdots, x_{t-2} v_{2}\right.$, \} for $t \geq 3$. Obversely, $\operatorname{scfc}\left(M_{2}\right) \geq t=\left|E\left(M_{2}\right)\right|-1$ by Theorem 3.1. On the other hand, there is a strong conflict-free connection coloring with t colors for G with $c(e)=1$ for each $e \in\left\{v_{1} v_{2}, v_{3} v_{4}\right\}, c\left(v_{2} v_{3}\right)=2$ and $c\left(x_{i} v_{2}\right)=i$ for $i \in[t-2]$. So, $G \in\left\{P_{4}, \Gamma_{m}\right\}$.

When $\operatorname{diam}(G)=4$, we show $G=P_{5}$. Let $P_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$ be a path of G. If $G=P_{5}$, then $\operatorname{scfc}(G)=\operatorname{scfc}\left(P_{5}\right)=m-1$ by Theorem 2.3. Assume that $M_{3}=P_{5} \cup\left\{w v_{i}\right\}$ for $i \in[5]$ is a copy of the subgraph of G. By symmetry, $M_{3}=P_{5} \cup\left\{w v_{2}\right\}$ or $M_{3}=$ $P_{5} \cup\left\{w v_{3}\right\}$. If $c\left(v_{1} v_{2}\right)=c\left(v_{3} v_{4}\right)=1, c\left(w v_{2}\right)=3\left(c\left(w v_{3}\right)=3\right)$ and $c\left(v_{2} v_{3}\right)=2$, then we can check $s c f c\left(M_{3}\right) \leq\left|E\left(M_{3}\right)\right|-2$. Hence, $M_{3} \nsubseteq G$ by Observation 2.10.

For $\operatorname{diam}(G) \geq 5$, clearly, we have $\operatorname{diam}(G)-\left\lceil\log _{2}(\operatorname{diam}(G)+1)\right\rceil>1$, then $\operatorname{scfc}(G) \neq m-1$ by Lemma 2.11, a contradiction.

Fig. 1. Graphs with $\operatorname{scfc}(G)=m-2$. (Remark: The graphs A_{1}, A_{2}, A_{3} and A_{5} contain t leaves of the star S_{t} with $t \geq 0$ in Fig. 1. if they occur in the latter figures, it also means that they are the t leaves of the star S_{t} with $t \geq 0$).

Theorem 4.4. Let G be a connected graph with $m(m \geq 3)$ edges. Then $\operatorname{scfc}(G)=m-2$ if and only if $G \in\left\{C_{4}, C_{5}, P_{6}, A_{1}, A_{2}, \cdots\right.$, $\left.A_{5}\right\}$ which are demonstrated in Fig. 1.

Proof. Necessity. For $G=P_{6}$ we have $\operatorname{scfc}(G)=s c f c\left(P_{6}\right)=3=m-2$ by Theorem 2.3. For $G \in\left\{C_{4}, C_{5}\right\}$, clearly, we have $\operatorname{scfc}\left(C_{4}\right) \geq 2$ and $\operatorname{scfc}\left(C_{5}\right) \geq 3$, on the other hand, from the coloring in Fig. 1 we know that $s c f c(G)=s c f c\left(C_{5}\right)=3=m-2$, $\operatorname{scfc}(G)=\operatorname{scfc}\left(C_{4}\right)=2=m-2$. For $G=A_{i}$ with $i \in\{2,3,5\}$, we have $\operatorname{scfc}(G)=\operatorname{scfc}\left(A_{i}\right) \geq t+3=m-2$ by Theorem 3.1. On the other hand, we know that $\operatorname{scfc}(G)=s c f c\left(A_{i}\right) \leq t+3=m-2$ by the coloring in Fig. 1. Clearly, for $G=A_{1}$ we have $\operatorname{scfc}(G)=\operatorname{scfc}\left(A_{1}\right) \geq \Delta(G)-1=t+1=m-2$, meanwhile, we have $\operatorname{scfc}(G)=\operatorname{scfc}\left(A_{1}\right) \leq t+1=m-2$ by the coloring in Fig. 1. For $G=A_{4}$, the edges incident with x_{1} need to be assigned by three distinct colors, say 1,2 and 3 . If $c\left(x_{1} x_{2}\right)=2$, then $c\left(x_{2} x_{3}\right)=1$ or 3 . Thus, one of the remaining two edges must be colored by a fresh color. So, $s c f c(G)=A_{4} \geq 4=m-4$. Conversely, we have $\operatorname{scfc}(G)=\operatorname{scfc}\left(A_{4}\right) \leq 4=m-4$ by coloring in Fig. 1.

Sufficiency. Suppose that G contains one cycle with $\operatorname{scfc}(G)=m-2$. Let C be a cycle of length at least 6 in G. We have $\operatorname{scfc}(C) \leq|E(C)|-3$ by Lemma 2.8. It follows that $C \nsubseteq G$ by Observation 2.10. A contradiction. Hence, $|C| \leq 5$.

When $|C|=3$, we show $G \cong A_{1}$. Let $C=v_{1} v_{2} v_{3} v_{1}$. Suppose there are two vertices $v_{i}, v_{j} \in V(C)$ with $d_{G}\left(v_{i}\right) \geq 3$ and $d_{G}\left(v_{j}\right) \geq 3$. Let $H_{1}=C \cup\left\{v_{1} u_{1}, v_{2} u_{2}\right\}$ be a copy of a subgraph of G. We have $\operatorname{scfc}\left(H_{1}\right) \leq 2=\left|E\left(H_{1}\right)\right|-3$ according to the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=1$ and $c\left(v_{1} u_{1}\right)=c\left(v_{2} u_{2}\right)=2$. Thus, there is not a copy of H_{1} in G by Observation 2.10. A contradiction. Then there is at most one vertex $v_{i} \in V(C)$ with $d_{G}\left(v_{i}\right) \geq 3$ in G. Thus, let $H_{2}=$ $C \cup\left\{v_{1} u_{1}, u_{1} u_{2}\right\}$ be a copy of subgraph of G. Obviously, $\operatorname{scfc}\left(H_{2}\right) \leq 2=\left|E\left(H_{2}\right)\right|-3$. There is not a copy of H_{2} in G by Observation 2.10. Hence, we have $\operatorname{diam}(G)=2$. It means that $G \cong A_{1}$.

When $|C|=4$, we show $G \cong C_{4}$. Let $C=v_{1} v_{2} v_{3} v_{4} v_{1}$. Suppose there is one vertex $v_{i} \in V(C)$ with $d_{G}\left(v_{i}\right) \geq 3$ in G. Let $H_{3}=C \cup\left\{v_{1} u_{1}\right\}$ or $C \cup\left\{v_{1} v_{3}\right\}$ be a copy of the subgraph of G. Clearly, we have $\operatorname{scfc}\left(H_{3}\right) \leq 2=\left|E\left(H_{3}\right)\right|-3$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{4}\right)=1$ and $c\left(v_{3} v_{4}\right)=c\left(v_{1} u_{1}\right)=2$ (or $\left.c\left(v_{3} v_{4}\right)=c\left(v_{1} v_{3}\right)=2\right)$. Thus, there is not a copy of H_{3} in G by Observation 2.10. Hence, $G \cong C_{4}$.

When $|C|=5$, we show $G \cong C_{5}$. Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Suppose there is one vertex $v_{i} \in V(C)$ with $d_{G}\left(v_{i}\right) \geq 3$ in G. By the same way, the graph $H_{4}=C \cup\left\{v_{1} u_{1}\right\}$ (or $H_{4}^{\prime}=C \cup\left\{v_{1} v_{3}\right\}$) is not a copy of the subgraph in G by Observation 2.10 since $\operatorname{scfc}\left(H_{4}\right) \leq\left|E\left(H_{4}\right)\right|-4$ (or $\left.\operatorname{scfc}\left(H_{4}^{\prime}\right) \leq\left|E\left(H_{4}^{\prime}\right)\right|-4\right)$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{4} v_{5}\right)=1, c\left(v_{1} v_{5}\right)=c\left(v_{2} v_{3}\right)=2$ and $c\left(v_{3} v_{4}\right)=c\left(v_{1} u_{1}\right)=3$ (or $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=c\left(v_{4} v_{5}\right)=1$ and $\left.c\left(v_{3} v_{4}\right)=c\left(v_{1} u_{1}\right)=2\right)$. Hence, there is not a vertex $v_{i} \in V(C)$ with $d_{G}\left(v_{i}\right) \geq 3$ in G. Hence, every vertex $v_{i} \in V(C)$ have degree 2 , then we can deduce that $G \cong C_{5}$.

Suppose that G is a tree with $\operatorname{scfc}(G)=m-2$. Assume that $\operatorname{diam}(G) \geq 6$. Clearly, we have $\operatorname{diam}(G)-\left\lceil\log _{2}(\operatorname{diam}(G)+1)\right\rceil>$ 2 , then $\operatorname{scfc}(G) \neq m-2$ by Lemma 2.11, a contradiction. Thus, $\operatorname{diam}(G) \leq 5$.

When $\operatorname{diam}(G)=2$. Clearly, we have $G=S_{m}$ with $\operatorname{scfc}\left(S_{m}\right)=m$, which is a contradiction.
When $\operatorname{diam}(G)=3$, we show $G \cong A_{5}$. Let $P_{4}=v_{1} v_{2} v_{3} v_{4}$ be a path of G. Assume that the degrees of both v_{2} and v_{3} are at least 4. Let $H_{5}=P_{4} \cup\left\{w_{1} v_{2}, w_{2} v_{2}, w_{3} v_{3}, w_{4} v_{3}\right\}$ be a copy of the subgraph of G. We have $\operatorname{scfc}\left(H_{5}\right) \leq 4=\left|E\left(H_{5}\right)\right|-3$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{3} v_{4}\right)=1, c\left(w_{2} v_{2}\right)=c\left(w_{4} v_{3}\right)=2, c\left(w_{1} v_{2}\right)=c\left(w_{3} v_{3}\right)=3$ and $c\left(v_{2} v_{3}\right)=4$. Thus, there is not a copy of H_{5} in G by Observation 2.10. Hence, there is at most one vertex $v_{i} \in\left\{v_{2}, v_{3}\right\}$ with $d_{G}\left(v_{i}\right) \geq 4$. Together with $s c f c\left(P_{4}\right)=2=m-1$ and $s c f c\left(\Gamma_{m}\right)=m-1$ for $G \in\left\{P_{4}, \Gamma_{m}\right\}$ by Theorem 4.3, we can deduce that $G \cong A_{5}$.

When $\operatorname{diam}(G)=4$, we show $G \in\left\{A_{2}, A_{3}, A_{4}\right\}$. Let $P_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$ be a path of G. Assume that there are two adjacent vertices with degree 3 , say v_{2} and v_{3}. Let $H_{6}=P_{5} \cup\left\{w_{1} v_{2}, w_{2} v_{3}\right\}$ be a copy of the subgraph of G. We have $\operatorname{scfc}\left(H_{6}\right) \leq 3=$ $\left|E\left(H_{6}\right)\right|-3$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{3} v_{4}\right)=1, c\left(w_{1} v_{2}\right)=c\left(w_{2} v_{3}\right)=c\left(v_{4} v_{5}\right)=2$ and $c\left(v_{2} v_{3}\right)=3$. Thus, there is not a copy of H_{6} in G by Observation 2.10. Furthermore, assume that $H_{7}=P_{5} \cup\left\{w_{1} v_{2}, w_{2} v_{4}, w_{3} v_{4}\right\}$ is a copy of the subgraph of G. We have $\operatorname{scfc}\left(H_{7}\right) \leq 4=\left|E\left(H_{7}\right)\right|-3$ by the coloring with $c\left(v_{3} v_{4}\right)=1, c\left(v_{2} v_{3}\right)=c\left(w_{3} v_{4}\right)=2, c\left(v_{2} w_{1}\right)=c\left(v_{4} v_{5}\right)=3$ and $c\left(v_{1} v_{2}\right)=c\left(w_{2} v_{4}\right)=4$. Thus, there is not a copy of H_{7} in G by Observation 2.10. Together with $\operatorname{scfc}(G)=m-1$ for $G \cong P_{5}$ from Theorem 4.3, we could deduce that $G \in\left\{A_{2}, A_{3}, A_{4}\right\}$.

Fig. 2. Graphs with $\operatorname{scfc}(G)=m-3$.

When $\operatorname{diam}(G)=5$, we show $G \cong P_{6}$. Let $P_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ be a path of G. If $G=P_{6}$, then $\operatorname{scfc}(G)=3=m-2$ by Theorem 2.3. By symmetry, Assume that $H_{8}=P_{6} \cup\left\{v_{2} x\right\}$ or $H_{8}=P_{6} \cup\left\{v_{3} x\right\}$ is a copy of the subgraph of G. Clearly, $s c f c\left(H_{8}\right) \leq$ $3=m-3$. Thus, there is not a copy of H_{8} in G by Observation 2.10. We can deduce that $G \cong P_{6}$.

Theorem 4.5. Let G be a connected graph with $m(m \geq 4)$ edges. Then $\operatorname{scfc}(G)=m-3$ if and only if $G \in\left\{B_{1}, B_{2}, \cdots, B_{23}\right\}$ which are demonstrated in Fig. 2.

Proof. Sufficiency. Clearly, we have $s c f c(G) \geq \Delta(G)$ for $G \in\left\{B_{1}, B_{3}, B_{7}, B_{13}, B_{14}, B_{16}, B_{18}, B_{19}, B_{21}, B_{23}\right\}$. On the other hand, by the coloring of $G \in\left\{B_{1}, B_{3}, B_{7}, B_{13}, B_{14}, B_{16}, B_{18}, B_{19}, B_{21}, B_{23}\right\}$ in Fig. 2, we have $s c f c(G)=\operatorname{scfc}\left(B_{1}\right)=\operatorname{scfc}\left(B_{13}\right)=\operatorname{scfc}\left(B_{14}\right)=$ $\operatorname{scfc}\left(B_{16}\right)=\operatorname{scfc}\left(B_{18}\right)=\operatorname{scfc}\left(B_{19}\right)=t+3=m-3, \quad \operatorname{scfc}(G)=\operatorname{scfc}\left(B_{3}\right)=3=m-3, \quad s c f c(G)=\operatorname{scfc}\left(B_{7}\right)=t+2=m-3$ and $\operatorname{scfc}(G)=\operatorname{scfc}\left(B_{21}\right)=\operatorname{scfc}\left(B_{21}\right)=t+4=m-3$. Obviously, for $G \in\left\{B_{2}, B_{4}, B_{8}, B_{9}\right\}$ we have $s c f c(G) \geq \Delta(G)-1$. On the other hand, by the coloring of $G \in\left\{B_{2}, B_{4}, B_{8}, B_{9}\right\}$ in Fig. 2, we have $\operatorname{scfc}(G)=s c f c\left(B_{2}\right)=s c f c\left(B_{8}\right)=s c f c\left(B_{9}\right)=t+2=m-3$ or $\operatorname{scfc}(G)=\operatorname{scfc}\left(B_{4}\right)=2=m-3$. For $G=B_{10}$ we have $\operatorname{scfc}(G)=\operatorname{scfc}\left(B_{10}\right)=3=m-3$ by Theorem 2.3. For $G=B_{6}$, since there is exactly one path of length $d(x, y)\left(d(x, y)=4\right.$ between x and y, then we have $\operatorname{scfc}\left(B_{6}\right) \geq 3$. By the coloring in Fig. 2, we have $\operatorname{scfc}\left(B_{6}\right)=3=m-3$. Similarly, $\operatorname{scfc}\left(B_{5}\right)=3=m-3$. For $G=B_{20}$, the edges incident with x_{1} need to be assigned by three distinct colors, say 1,2 and 3 . Without loss of generality, if $c\left(x_{1} x_{2}\right)=1$, then the remaining edges incident with x_{2} must be assigned by 2 and 3 . Thus, one of the edges incident with x_{3}, except the edge $x_{2} x_{3}$, must be assigned by a fresh color. Hence, $\operatorname{scfc}(G)=s c f c\left(B_{20}\right)=4=m-3$ in Fig. 2. Clearly, for $G \in\left\{B_{11}, B_{12}, B_{15}, B_{17}, B_{22}\right\}$, easily, we have $\operatorname{scfc}\left(B_{11}\right)=\operatorname{scfc}\left(B_{12}\right)=\operatorname{scfc}\left(B_{15}\right)=\operatorname{scfc}\left(B_{17}\right)=4=m-3 ; \operatorname{scfc}\left(B_{22}\right)=5=m-3$.

Necessity. Suppose that G contains one cycle with $\operatorname{scfc}(G)=m-3$. Let C be a cycle of length at least 6 in G. We have $\operatorname{scfc}(C) \leq|E(C)|-4$ by Lemma 2.8. We know that there is not a copy of C in G by Observation 2.10. Thus, $|C| \leq 5$.

When $|C|=5$, we show that $G \cong B_{1}$. Let $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Suppose that there is a chord in C. Let $W_{0}=C \cup v_{1} v_{3}$ be a copy of the subgraph of G. We have $\operatorname{scfc}\left(W_{0}\right)=\operatorname{scfc}\left(H_{4}^{\prime}\right) \leq 2=\left|E\left(H_{4}^{\prime}\right)\right|-4=\left|E\left(W_{0}\right)\right|-4$. There is not a copy of W_{0} in G by Observation 2.10. A contradiction. Without loss of generality, assume that $W_{1}=C \cup\left\{v_{1} u_{1}, v_{2} u_{2}\right\}$ or $W_{1}=C \cup\left\{v_{1} u_{1}, v_{3} u_{2}\right\}$ is a copy of the subgraph of G. Clearly, we have $\operatorname{scfc}\left(W_{1}\right) \leq\left|E\left(W_{1}\right)\right|-4$ according to the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{3} v_{4}\right)=$ $1, c\left(v_{1} v_{5}\right)=c\left(v_{2} v_{3}\right)=2$ and $c\left(v_{4} v_{5}\right)=c\left(v_{1} u_{1}\right)=c\left(v_{2} u_{2}\right)=3$ (or $c\left(v_{4} v_{5}\right)=c\left(v_{1} u_{1}\right)=c\left(u_{2} v_{3}\right)=3$). By Observation 2.10 we know there is not a copy of W_{1} in G. By the same way, the graph $W_{2}=C \cup\left\{v_{1} u_{1}, u_{1} u_{2}\right\}$ is not a copy of the subgraph of G by Observation 2.10 since $\operatorname{scfc}\left(W_{2}\right) \leq 3=m-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{4} v_{5}\right)=c\left(u_{1} u_{2}\right)=1, c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{5}\right)=2$ and $c\left(v_{1} u_{1}\right)=c\left(v_{3} v_{4}\right)=3$. Let $W_{3}=C \cup\left\{v_{1} v_{3}\right\}$. Since $\operatorname{scfc}\left(W_{3}\right)=\operatorname{scfc}\left(H_{4}^{\prime}\right) \leq\left|W_{3}\right|-4$, we know there is not a copy of W_{3} in G by Observation 2.10. In addition, we have $\operatorname{scfc}(G)=m-2$ for $G=C$ by Theorem 4.4. Hence, we deduce that $G \cong B_{1}$.

When $|C|=4$, we show $G \in\left\{B_{2}, B_{3}, B_{4}\right\}$. Let $C=v_{1} v_{2} v_{3} v_{4} v_{1}$. We claim that if there is not a chord in C, then $G \in\left\{B_{2}\right.$, $\left.B_{3}\right\}$. Now assume that $W_{4}=C \cup\left\{v_{1} u_{1}, u_{1} u_{2}\right\}$ is a copy of the subgraph of G. Then we have $\operatorname{scfc}\left(W_{4}\right) \leq 2=\left|E\left(W_{4}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{4}\right)=c\left(u_{1} u_{2}\right)=1$ and $c\left(v_{1} u_{1}\right)=c\left(v_{3} v_{4}\right)=2$. By Observation 2.10, W_{4} is not a copy of the subgraph of G. Furthermore, we show that there is not two adjacent vertices $v_{i}, v_{j} \in V(C)$ with degree at least three in G. Thus, let $W_{5}=C \cup\left\{v_{1} x_{1}, v_{2} x_{2}\right\}, W_{6}=C \cup\left\{v_{1} w_{1}, v_{1} W_{2}, v_{3} W_{3}\right\}$. The graphs W_{5} and W_{6} are not the copies of the subgraphs of G by Observation 2.10 since $\operatorname{scfc}\left(W_{5}\right) \leq 2=m-4$ and $\operatorname{scfc}\left(W_{6}\right) \leq 2=\left|E\left(W_{6}\right)\right|-4$. Meanwhile, we have $G \nsubseteq C$ since $\operatorname{scfc}(C)=2=|E(C)|-2$ by Theorem 4.4. Hence, we deduce that $G \cong B_{2}$ or $G \cong B_{3}$. Next, we claim that if there is a chord in C, then $G=B_{4}$. We first show there are exactly two vertices of $V(C)$ with degree three. Let $W_{7}=C \cup\left\{v_{1} v_{3}, v_{1} y\right\}$ and $W_{8}=C \cup\left\{v_{2} v_{4}, v_{1} z\right\}$. Let K_{4} be a complete graph of order 4 . The graphs K_{4}, W_{7} and W_{8} are not the copies of the subgraphs of G by Observation 2.10 since $s c f c\left(K_{4}\right)=1=\left|E\left(K_{4}\right)\right|-5, \operatorname{scfc}\left(W_{7}\right)=\operatorname{scfc}\left(W_{8}\right) \leq 2=\left|E\left(W_{7}\right)\right|-4=\left|E\left(W_{8}\right)\right|-4$. Clearly, we deduce that $G \cong B_{4}$.

When $|C|=3$, we show $G \cong B_{5}, B_{7}$ or B_{8}. Let $C=v_{1} v_{2} v_{3} v_{1}$. We first show that not all the vertices of $V(C)$ have degree at least 3. Assume, to the contrary, that $W_{9}=C \cup\left\{v_{1} u_{1}, v_{2} u_{2}, v_{3} u_{3}\right\}$ is a copy of the subgraph of G. We have $\operatorname{scfc}\left(W_{9}\right) \leq$ $2=\left|E\left(W_{9}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=1$ and $c\left(v_{1} u_{1}\right)=c\left(v_{2} u_{2}\right)=c\left(v_{3} u_{3}\right)=2$. A contradiction by Observation 2.10. Thus, there are at most two vertices in $V(C)$ with degree at least three. Suppose that there are exactly two vertices $v_{1}, v_{2} \in V(C)$ with $d_{G}\left(v_{1}\right) \geq 3$ and $d_{G}\left(v_{2}\right) \geq 3$. Next, let $W_{10}=C \cup\left\{v_{1} u_{2}, u_{1} u_{2}, v_{2} u_{3}, u_{3} u_{4}\right\}$. Clearly, $\operatorname{scfc}\left(W_{10}\right) \leq 3=\left|E\left(W_{10}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=1, c\left(v_{1} u_{1}\right)=c\left(v_{2} u_{3}\right)=2$ and $c\left(u_{1} u_{2}\right)=$ $c\left(u_{3} u_{4}\right)=3$. Thus W_{10} is not a copy of the subgraph of G by Observation 2.10. Similarly, in the same way the graphs $W_{11}=C \cup\left\{v_{1} w_{1}, v_{1} w_{2}, v_{2} w_{3}, v_{2} w_{4}\right\}, W_{12}=C \cup\left\{v_{1} x_{1}, v_{1} x_{2}, v_{2} x_{3}, x_{3} x_{4}\right\}, W_{13}=C \cup \cup\left\{v_{1} y_{1}, v_{2} y_{2}, v_{2} y_{3}, y_{3} y_{4}\right\}$ are not the copies of the subgraphs in G since $\operatorname{scfc}\left(W_{11}\right) \leq 3=\left|E\left(W_{11}\right)\right|-4, \quad \operatorname{scfc}\left(W_{12}\right) \leq 3=\left|E\left(W_{12}\right)\right|-4, \quad \operatorname{scfc}\left(W_{13}\right) \leq 3=\left|E\left(W_{13}\right)\right|-4$. Hence, we have $G \cong B_{6}$ or $G \cong B_{9}$ for two vertices v_{1}, v_{2} with $d_{G}\left(v_{1}\right) \geq 3$ and $d_{G}\left(v_{2}\right) \geq 3$. Suppose that there is exactly one vertex $v_{1} \in V(C)$ with $d_{G}\left(v_{1}\right) \geq 3$. Let $W_{14}=C \cup\left\{v_{1} w_{1}, w_{1} w_{2}, w_{2} w_{3}, w_{3} w_{4}\right\}, W_{15}=C \cup\left\{v_{1} x_{1}, x_{1} x_{2}, x_{1} x_{3}, x_{3} x_{4}\right\}$ and $W_{16}=C \cup\left\{v_{1} y_{1}, y_{1} y_{2}, y_{2} y_{3}, y_{2} y_{4}\right\}$. Then we have $\operatorname{scfc}\left(W_{14}\right) \leq 3=\left|E\left(W_{14}\right)\right|-4$ according to the coloring with $c\left(v_{1} v_{2}\right)=$ $c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=c\left(w_{1} w_{2}\right)=c\left(w_{3} w_{4}\right)=1, c\left(v_{1} w_{1}\right)=2$ and $c\left(w_{2} w_{3}\right)$ and $\operatorname{scfc}\left(W_{15}\right) \leq 3=\left|E\left(W_{15}\right)\right|-4$ (or $\operatorname{scfc} c\left(W_{16}\right) \leq$ $\left.3=\left|E\left(W_{16}\right)\right|-4\right)$ according to the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=c\left(x_{1} x_{2}\right)=c\left(x_{3} x_{4}\right)=1, \quad c\left(v_{1} x_{1}\right)=2$ and $c\left(x_{1} x_{3}\right)=3\left(c\left(v_{1} v_{2}\right)=c\left(v_{2} v_{3}\right)=c\left(v_{1} v_{3}\right)=c\left(y_{2} y_{3}\right)=1, c\left(v_{1} y_{2}\right)=c\left(y_{2} y_{4}\right)=2\right.$ and $\left.c\left(y_{1} y_{2}\right)=3\right)$. So W_{14}, W_{15} and W_{16} are not the copies of the subgraphs of G by Observation 2.10. In addition, for $G=A_{1}$, we have $\operatorname{scfc}(G)=m-2>m-3$ by Theorem 4.4. Hence, $G \cong B_{5}, B_{7}$ or B_{8}.

Suppose that G is a tree. Assume that $\operatorname{diam}(G) \geq 7$. Clearly, $\operatorname{diam}(G)-\left\lceil\log _{2}(\operatorname{diam}(G)+1)\right\rceil \geq 4$. From Lemma 2.11, we have $\operatorname{scfc}(G) \neq m-3$. A contradiction. Thus, $\operatorname{diam}(G) \leq 6$.

When $\operatorname{diam}(G)=6$, we show $G \in\left\{B_{10}, B_{11}, B_{12}\right\}$. Let $P_{7}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}$ be a path of G. Suppose $d_{G}\left(v_{i}\right) \leq 2$ for ($i \in[7]$). Then, clearly, we have $G \cong P_{7}=B_{10}$. Suppose there is at least one vertex v_{i} with $d_{G}\left(v_{i}\right)=3$. Assume that $U_{1}=P_{7} \cup\left\{u_{1} v_{3}\right\}$ or $U_{2}=P_{7} \cup\left\{v_{4} u_{1}, u_{1} u_{2}\right\}$ is a copy of a subgraph of G. Clearly, $\operatorname{scfc}\left(U_{1}\right) \leq 3=\left|E\left(U_{1}\right)\right|-4$ according to the coloring with $c\left(v_{2} v_{3}\right)=c\left(v_{4} v_{5}\right)=c\left(v_{6} v_{7}\right)=1, c\left(v_{1} v_{2}\right)=c\left(u_{1} v_{3}\right)=c\left(v_{5} v_{6}\right)=2$ and $c\left(v_{3} v_{4}\right)=3$ and $s c f c\left(U_{2}\right) \leq 4=\left|E\left(U_{2}\right)\right|-4$ according to the coloring with $c\left(v_{1} v_{2}\right)=c\left(u_{1} u_{2}\right)=c\left(v_{3} v_{4}\right)=c\left(v_{5} v_{6}\right)=1, c\left(v_{2} v_{3}\right)=c\left(v_{6} v_{7}\right)=2, c\left(v_{4} v_{5}\right)=3$ and $c\left(v_{4} u_{1}\right)=4$. Hence, we can deduce that G must be B_{11} or B_{12}. Suppose there is a vertex $v_{i} \in V\left(P_{7}\right)$ with $d_{G}\left(v_{i}\right) \geq 4$. Then let $U_{3}=P_{7} \cup\left\{v_{2} x_{1}, v_{2} x_{2}\right\}$, $U_{4}=P_{7} \cup\left\{v_{3} y_{1}, v_{3} y_{2}\right\}$ and $U_{5}=P_{7} \cup\left\{v_{4} z_{1}, v_{4} z_{2}\right\}$. Clearly, $\operatorname{scfc}\left(U_{3}\right) \leq 4=\left|E\left(U_{3}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{5} v_{6}\right)=$ $c\left(v_{3} v_{4}\right)=1, c\left(v_{2} x_{2}\right)=c\left(v_{4} v_{5}\right)=2, c\left(v_{2} x_{1}\right)=c\left(v_{6} v_{7}\right)=3$ and $c\left(v_{2} v_{3}\right)=4 ; ~ s c f c\left(U_{4}\right) \leq 4=\left|E\left(U_{4}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{4} v_{5}\right)=c\left(v_{6} v_{7}\right)=c\left(v_{3} y_{1}\right)=1, c\left(v_{2} v_{3}\right)=c\left(v_{5} v_{6}\right)=2, c\left(v_{3} y_{2}\right)=3$ and $c\left(v_{3} v_{4}\right)=4 ; ~ s c f c\left(U_{5}\right) \leq 4=\left|E\left(U_{5}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(z_{2} v_{4}\right)=c\left(v_{5} v_{6}\right)=1, c\left(v_{2} v_{3}\right)=c\left(v_{4} z_{1}\right)=c\left(v_{6} v_{7}\right)=2, c\left(v_{4} v_{5}\right)=3$ and $c\left(v_{3} v_{4}\right)=4$. Hence, G does not contain one copy of one of $\left\{U_{3}, U_{4}, U_{5}\right\}$ by Observation 2.10.

When $\operatorname{diam}(G)=5$, we show $G \in\left\{B_{13}, B_{14}, B_{15}\right\}$. Let $P_{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$ be a path of G. Suppose $d_{G}\left(v_{i}\right) \leq 2$ for $i \in[6]$, then we have $G=P_{6}$. But, $\operatorname{scfc}(G)=s c f c\left(P_{6}\right)=3=m-2$ from Theorem 4.4. A contradiction. Suppose there is exactly one vertex $v \in V\left(P_{6}\right)$ with $d_{G}(v) \geq 3$, then we claim that $G=B_{13}$ or B_{14}. By symmetry, assume, to the contrary, that $U_{6}=P_{6} \cup\left\{v_{3} y_{1}, y_{1} y_{2}\right\}$ is a copy of the subgraph of G. However, we have $\operatorname{scfc}\left(U_{6}\right) \leq 3=\left|E\left(U_{6}\right)-4\right|$ by the coloring with $c\left(v_{2} v_{3}\right)=c\left(v_{4} v_{5}\right)=1, c\left(v_{1} v_{2}\right)=c\left(v_{5} v_{6}\right)=c\left(v_{3} y_{1}\right)=2$ and $c\left(y_{1} y_{2}\right)=c\left(v_{3} v_{4}\right)=3$. Thus, U_{6} is not a copy of the subgraph of G by Observation 2.10. Since $\operatorname{diam}(G)=5$, then $G=B_{13}$ or B_{14}. We then claim $G=B_{15}$ if there are at least two vertices $v_{i}, v_{j} \in V\left(P_{6}\right)$ with $d_{G}\left(v_{i}\right) \geq 3$ and $d_{G}\left(v_{j}\right) \geq 3$. Assume, to the contrary, that $U_{7}=P_{6} \cup\left\{x_{1} v_{2}, x_{2} v_{3}\right\}, U_{8}=P_{6} \cup\left\{y_{1} x_{3}, y_{2} x_{4}\right\}$ or $U_{9}=P_{6} \cup\left\{z_{1} v_{2}, z_{2} v_{5}\right\}$ is a copy of the subgraph of G. Since $\operatorname{scfc}\left(U_{7}\right) \leq 3=\left|E\left(U_{7}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=$ $c\left(x_{2} v_{3}\right)=c\left(v_{4} v_{5}\right)=1, c\left(x_{1} v_{2}\right)=c\left(v_{3} v_{4}\right)=2$ and $c\left(v_{2} v_{3}\right)=c\left(v_{5} v_{6}\right)=3$, and $s c f c\left(U_{8}\right) \leq 3=\left|E\left(U_{8}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(y_{1} v_{3}\right)=c\left(y_{2} v_{4}\right)=c\left(v_{5} v_{6}\right)=1, c\left(v_{2} v_{3}\right)=c\left(v_{4} v_{5}\right)=2$ and $c\left(v_{3} v_{4}\right)=3$, and $s c f c\left(U_{9}\right) \leq 3=\left|E\left(U_{9}\right)\right|-4$ by the coloring with $c\left(v_{1} v_{2}\right)=c\left(v_{3} v_{4}\right)=c\left(v_{5} v_{6}\right)=1, c\left(z_{1} v_{2}\right)=c\left(v_{4} v_{5}\right)=2$ and $c\left(v_{2} v_{3}\right)=c\left(z_{2} v_{5}\right)=3$. Furthermore, since G does not contain a copy of U_{6}, then G must be B_{15}.

When $\operatorname{diam}(G)=4$, we show $G \in\left\{B_{16}, B_{17}, B_{18}, B_{19}, B_{20}, B_{21}, B_{22}\right\}$. Clearly, $G \neq A_{2}, A_{3}$ or A_{4} by Theorem 4.4 and $G \neq P_{5}$ by Theorem 4.3. Let $P_{5}=v_{1} v_{2} v_{3} v_{4} v_{5}$ be a path of G. Suppose that $d_{G}\left(v_{2}\right) \geq 3, d_{G}\left(v_{3}\right) \geq 3$ and $d_{G}\left(v_{4}\right) \geq 3$. Let $U_{10}=P_{5} \cup\left\{x_{1} v_{2}, x_{2} v_{3}, x_{3} v_{4}, x_{4} v_{4}\right\}$ or $U_{11}=P_{5} \cup\left\{x_{1} v_{2}, x_{2} v_{3}, x_{3} v_{4}, x_{4} v_{3}\right\}$. Then we show $G \cong B_{20}$. Since $s c f c\left(U_{10}\right) \leq\left|E\left(U_{10}\right)\right|-4$ by the coloring with $c\left(v_{2} v_{3}\right)=c\left(x_{4} v_{4}\right)=1, c\left(x_{1} v_{2}\right)=c\left(v_{4} v_{5}\right)=2, c\left(v_{1} v_{2}\right)=c\left(x_{2} v_{3}\right)=c\left(x_{3} v_{4}\right)=3$ and $c\left(v_{3} v_{4}\right)=4$, and $\operatorname{scfc}\left(U_{11}\right) \leq\left|E\left(U_{11}\right)\right|-4$ by the coloring with $c\left(v_{2} v_{3}\right)=1, c\left(x_{1} v_{2}\right)=c\left(v_{3} x_{4}\right)=c\left(v_{4} v_{5}\right)=2, c\left(v_{1} v_{2}\right)=c\left(x_{2} v_{3}\right)=c\left(x_{3} v_{4}\right)=3$ and $c\left(v_{3} v_{4}\right)=4$. Thus, both U_{10} and U_{11} are not the copies of the subgraphs of G by Observation 2.10. Let $U_{12}=P_{5} \cup$ $\left\{y_{1} v_{2}, y_{2} v_{3}, y_{2} y_{3}, v_{4} y_{4}\right\}$. Clearly, the graph U_{12} is not a copy of the subgraph of G by Observation 2.10. Hence, $G \cong B_{20}$ when $d_{G}\left(v_{2}\right) \geq 3, d_{G}\left(v_{3}\right) \geq 3$ and $d_{G}\left(v_{4}\right) \geq 3$. In the similar way, when there are exactly two vertices $v_{i}, v_{j} \in V\left(P_{5}\right)$ with

Fig. 3. Ladder L_{k}

Fig. 4. Möbius $M_{2 k}$.
$d_{G}\left(v_{i}\right) \geq 3$ and $d_{G}\left(v_{j}\right) \geq 3$, we have $G \in\left\{B_{18}, B_{19}, B_{21}, B_{22}\right\}$. When there is exactly one vertex $v_{i} \in V\left(P_{5}\right)$ with $d_{G}\left(v_{i}\right) \geq 3$, we have $G \in\left\{B_{16}, B_{17}\right\}$.

When $\operatorname{diam}(G)=3$. Let $P_{4}=v_{1} v_{2} v_{3} v_{4}$ be a path of G. Let $U_{13}=P_{5} \cup\left\{v_{2} w_{1}, v_{2} w_{2}, v_{2} w_{3}, v_{3} w_{4}, v_{3} w_{5}, v_{3} w_{6}\right\}$. Clearly, U_{13} is not a copy of one subgraph of G by Observation 2.10. Together with $G \neq \Gamma_{m}$ by Theorem 4.3 and $G \neq A_{5}$ by Theorem 4.4, we deduce $G \cong B_{23}$.

5. Cubic graphs with scfc-number 2

In this section, we first define some useful definitions and show several lemmas. Next, we will characterize the cubic graphs G with $\operatorname{scfc}(G)=2$ by the lemmas.

We first give a useful definition.
Definition 5.1 [10]. A forced 2-path in a graph G is a path $x y z$ such that $x z \notin E(G)$ and $x y z$ is the unique 2-path connecting x and z. If each 2-path $u_{i} u_{i+1} u_{i+2}$ is forced for $i=0,1, \cdots, k-2$, a k-path $P=u_{0} u_{1} \cdots u_{k}$ in a graph G is called forced. A cycle of a graph G is called a forced cycle if any two successive edges of the cycle form a forced 2-path in G. An edge e in a graph G is called a forced edge if e is not included in a cycle of length at most 4.

If $u v$ is a forced edge in G and $v w$ is an edge adjacent to $u v$, then $u v w$ is a forced 2-path in G. The following two results follow directly from the definition.

Lemma 5.2. Let $P=u_{1} u_{2} \cdots u_{k}$ be a forced path in G with $\operatorname{scfc}(G)=2$. Then the adjacent edges of P are colored by distinct colors for every strong conflict-free connection coloring with 2 colors.
Lemma 5.3. Let $C=u_{1} u_{2} \cdots u_{k} u_{1}$ be a forced cycle of length k in G with $\operatorname{scfc}(G)=2$. Then the adjacent edges of C are colored by distinct colors for every strong conflict-free connection coloring with 2 colors and k is even and $k \leq 6$.
Lemma 5.4. $\operatorname{scfc}\left(C_{k} \square K_{2}\right)=2$ if and only if k equals 3,4 or 6 .
Proof. We have $\operatorname{scfc}\left(C_{k} \square K_{2}\right) \geq 2$ by Theorem 4.1. For $k=3$, we define a 2-edge-coloring c : for every edge e in the triangles, $c(e)=1$; Otherwise, $c(e)=2$. Clearly, the coloring c is a strong conflict-free connection coloring of $C_{3} \square K_{2}$. Hence, $\operatorname{scfc}\left(C_{3} \square K_{2}\right)=2$. For $k \geq 4$, Clearly, the graph $C_{k} \square K_{2}$ has a forced cycle. Then by Lemma 5.3, since $s c f c\left(C_{k} \square K_{2}\right)=2$, we have that $k=4$ or 6 .

Now we define some graph-classes. A k-ladder, denoted by L_{k}, is defined to be the product graph $P_{k} \square K_{2}$, where P_{k} is the path on k vertices (see Fig. 3). The Möbius ladder $M_{2 k}$ is the graph obtained from L_{k} by adding two new edges $s_{1} t_{k}$ and $t_{1} s_{k}$ (see Fig. 4).

Lemma 5.5. $\operatorname{scfc}\left(M_{2 k}\right)=2$ if and only if $3 \leq k \leq 7$.
Proof. Since $M_{2 k}$ is not a complete graph, it is clear to see that $\operatorname{scfc}\left(M_{2 k}\right) \geq 2$ for every $k \geq 3$.
First, we show that $\operatorname{scfc}\left(M_{2 k}\right)>2$ for $k \geq 8$. Clearly, for the pair of vertices s_{2} and s_{6} there is only one shortest path connecting them, which is $P^{\prime}=s_{2} s_{3} s_{4} s_{5} s_{6}$. For every pair of vertices in P, there is only one shortest path in $M_{2 k}$ connecting them. So we have that $\operatorname{scfc}\left(M_{2 k}\right) \geq \operatorname{scfc}\left(P^{\prime}\right)=3$.

Second, we show that $\operatorname{scfc}\left(M_{2 k}\right) \leq 2$ for $3 \leq k \leq 7$. For the graph $M_{2 k}$ with $k \in\{4,6\}$, we define a 2-edge-coloring c : for $i \in\{1$, $3,5\}, c\left(s_{i} s_{i+1}\right)=c\left(t_{i} t_{i+1}\right)=c\left(s_{i} t_{i}\right)=1$; for the remaining edges $e, c(e)=2$. For the graph $M_{2 k}$ with $k \in\{3,5,7\}$, we define a 2-edge-coloring c : for $i \in\{1,3,5\}, c\left(s_{i} s_{i+1}\right)=c\left(t_{i+1} t_{i+2}\right)=1$; for $i \in\{1,2 \cdots, k\}, c\left(s_{i} t_{i}\right)=c\left(s_{k} t_{1}\right)=1$; for the remaining edges $e, c(e)=2$. It is easy to check that every pair of vertices are connected by a strong conflict-free path under the above 2-edge-colorings.

Before the proof of Lemma 5.6, we first illustrate a cubic graph U (see Fig. 5) with the property that $\operatorname{spc}(U)>2$ and $\operatorname{scfc}(U)=2$. We first illustrate that $\operatorname{spc}(U)>2$. Since each 2-path of $\left\{v_{1} v_{7} v_{6}, v_{8} v_{7} v_{6}, v_{7} v_{6} v_{10}, v_{7} v_{6} v_{5}, v_{10} v_{4} v_{3}\right.$,

Fig. 5. The graph U.

Fig. 6. The path P with an attachment W. (The path $v_{i-1} v_{i}^{\prime} v_{i+1}$ is the replacement for $v_{i-1} v_{i} v_{i+1}$; the path $v_{i-2} v_{i-1}^{\prime} v_{i}^{\prime}$ is the replacement for $v_{i-2} v_{i-1} v_{i}^{\prime}$; the path $v_{i-1}^{\prime} v_{i} v_{i+1}$ is the replacement for $v_{i-1}^{\prime} v_{i}^{\prime} v_{i+1}$.).
$\left.v_{5} v_{4} v_{3} v_{4} v_{3} v_{2}, v_{4} v_{3} v_{9}\right\}$ is a forced 2-path, every two adjacent edges are needed to be colored by distinct colors from \{1, 2 \}. Thus, there is not a strong proper path between v_{7} and v_{3}, therefore, $\operatorname{spc}(U)>2$. We have $s c f c(U) \geq 2$ by Theorem 4.1, and together with the 2-edge-coloring in Fig. 5, it follows that $\operatorname{scfc}(U)=2$.

Now we will show Lemma 5.6. In order to be more convenient to handle with Lemma 5.6, in the very beginning, we give some explanations. Let G be a cubic graph and let $c: E(G) \mapsto\{1,2\}$ be a strong conflict-free connection coloring of G. Let $P=$ $(u=) v_{1} v_{2} \cdots v_{t-1} v_{t}(=v)$ be a strong conflict-free path between u and v. Suppose that there exists a 2-path $v_{i} v_{i+1} v_{i+2}$ with $c\left(v_{i} v_{i+1}\right)=c\left(v_{i+1} v_{i+2}\right)$ in P. Then there must exist another 2-path $v_{i} x v_{i+2}(x \notin V(P))$ with $c\left(v_{i} x\right) \neq c\left(x v_{i+2}\right)$ since c is a strong conflict-free connection coloring of G. Then $v_{i} x v_{i+2}$ is called a replacement for $v_{i} v_{i+1} v_{i+2}$. Suppose that $c\left(v_{i-1} v_{i}\right)=c\left(v_{i} x\right)$. Then there must also exist a replacement $v_{i-1} y x$ for $v_{i-1} v_{i} x$. Furthermore, suppose the path $y x v_{i+2}$ contains the coloring $c(y x)=$ $c\left(x v_{i+2}\right)$. If $y v_{i+1} v_{i+2}$ is a replacement for $y x v_{i+2}$, then $G\left[V^{\prime}\right]$, where $V^{\prime}=\left\{v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, x, y\right\}$, is called an attachment of P. Then, clearly, there is not a strong proper path between v_{i-1} and v_{i+2}. If there does not exist a replacement sharing the same edges with P, then there is a strong proper path between v_{i-1} and v_{i+2}. Thus, we call the replacements noncyclic replacements of P. Otherwise, it is called a cyclic replacement of P.

Lemma 5.6. Let G be a cubic graph with $G \neq U$. If $\operatorname{scfc}(G)=2$, then $\operatorname{spc}(G)=2$.
Proof. Let $c: E(G) \mapsto[2]$ be an arbitrary strong conflict-free connection coloring of G. Let $P=(u=) v_{1} v_{2} \cdots v_{t-1} v_{t}(=v)$ be an arbitrary strong conflict-free path between u and v. For every pair of v_{i} and $v_{i+2}(i \in[t-2])$, if $c\left(v_{i} v_{i+1}\right) \neq c\left(v_{i+1} v_{i+2}\right)$, then P is a strong proper path. Thus, we have $\operatorname{spc}(G)=2$. Suppose that there exists a 2-path $v_{i} v_{i+1} v_{i+2}(i \in[t-2])$ with $c\left(v_{i} v_{i+1}\right)=c\left(v_{i+1} v_{i+2}\right)$ in P. When each replacement is a noncyclic replacement for P, then there exists a strong proper path Q between u and v in G. We also have $\operatorname{spc}(G)=2$. Suppose that there exist a cyclic attachment for P. We denote $G\left[V^{\prime}\right]$ by W, where $V^{\prime}=\left\{v_{i-2}, v_{i-1}, v_{i}, v_{i+1}, v_{i}^{\prime}, v_{i-1}^{\prime}\right\}$, clearly, W is an attachment for P (see Fig. 6), in which there is not a strong proper path between v_{i-2} and v_{i+1}.

Claim 1. Let W be an attachment of path P. Then $c\left(v_{i-3} v_{i-2}\right) \neq c\left(v_{i-2} v_{i-1}\right)=c\left(v_{i-2} v_{i-1}^{\prime}\right)$ and $c\left(v_{i+1} v_{i+2}\right) \neq c\left(v_{i} v_{i+1}\right)=$ $c\left(v_{i}^{\prime} v_{i+1}\right)$.

Proof of Claim 1: Without loss of generality, suppose that $c\left(v_{i-3} v_{i-2}\right)=c\left(v_{i-2} v_{i-1}\right)$. Then, clearly, $v_{i-3} v_{i-2} v_{i-1}^{\prime}$ is a unique shortest path between v_{i-3} and v_{i-1}^{\prime} since G is a cubic graph. It contradicts to $c\left(v_{i-3} v_{i-2}\right)=c\left(v_{i-2} v_{i-1}\right)$ under the coloring c. This completes the proof of Claim 1 .

Suppose P contains an attachment W. We first show there is at most one attachment for P. Assume, to the contrary, that there are two attachments in P. Let $E^{\prime}=\left\{v_{j} v_{j+1}, v_{j+1} v_{j+2}, v_{j+2} v_{j+3}, z_{1} v_{j}, z_{1} v_{j+2}, z_{1} z_{2}, z_{2} v_{j+1}, z_{2} v_{j+3}\right\}$, for $j \geq i+2$. Without loss of generality, let W and $G\left[E^{\prime}\right]$ be two attachments for P. Since both $v_{i-3} v_{i-2} v_{i-1}$ and $v_{i-3} v_{i-2} v_{i-1}^{\prime}$ are forced 2-paths, then we have $c\left(v_{i-3} v_{i-2}\right) \neq c\left(v_{i-2} v_{i-1}\right)=c\left(v_{i-2} v_{i-1}^{\prime}\right)$. Similarly, we have $c\left(v_{j-1} v_{j}\right) \neq c\left(v_{j} z_{1}\right)=c\left(v_{j} v_{j+1}\right)$. Clearly, there is not a strong conflict-free path between v_{i-2} and v_{j+1}. A contradiction. Hence, there is at most one attachment for P. Suppose that the path P is not contained in a cycle. Then we are concerned about the path between v_{i-2} and v_{i+3}. Clearly, the paths $v_{i} v_{i+1} v_{i+2}$ and $v_{i+1} v_{i+2} v_{i+3}$ are forced 2-paths. Thus, we have $c\left(v_{i} v_{i+1}\right)=c\left(v_{i+2} v_{i+3}\right) \neq c\left(v_{i+1} v_{i+2}\right)=c\left(v_{i-2} v_{i-1}\right)$. Clearly, there is not a strong conflict-free path between v_{i-2} and v_{i+3}. A contradiction. Suppose that the path P is contained in a cycle. If we identify v_{i-3} with v_{i+1}, then $G=M_{6}$ with $s p c\left(M_{6}\right)=2$ by Theorem 5.7 . Now we consider that a shortest cycle C contains P. Clearly, $|C| \geq 6$, otherwise, P does not contain an attachment. Suppose $|C|=6$. Then there are two vertices u_{1} and u_{2} except the vertices of the attachment in C. If u_{1} and u_{2} are not adjacent to the same neighbor, then every pair of edges incident with u_{1} is a forced 2-path. Hence, there need at least three colors. A contradiction. Let x be a common neighbor of u_{1} and u_{2}, where u_{2} is adjacent to v_{i+1}. Let y be a neighbor of x. Let z be another neighbor of y except x. Thus, $v_{i+1} u_{2} x y z$ is a unique forced path for the pair v_{i+1} and z. Then it is not a strong conflict-free path by Lemma 5.2 . Suppose $|C|=7$. Let

Fig. 7. The graph $F_{0}(k)$.
u_{1}, u_{2} and u_{3} be three vertices except the vertices of the attachment in C. If each of $\left\{u_{1}, u_{2}, u_{3}\right\}$ is contained in a triangle, then $G \cong U$ (see Fig. 5). If one of u_{1}, u_{2} and u_{3} is in a triangle, then there exists a unique forced 4 -path for a pair of vertices in C, a contradiction. Let $C=v_{1} v_{2} v_{3} v_{4} u_{1} u_{2} u_{3} u_{4} v_{1}$. Suppose that there are two attachments in C. Then $G \cong L_{2}$ (see Fig. 10) with an edge-coloring such that $\operatorname{scfc}(G)=\operatorname{spc}(G)=2$. Suppose that u_{1}, u_{2}, u_{3} and u_{4} are contained in triangles. Then $G \cong$ L_{3} (see Fig. 10) such that $\operatorname{scfc}(G)=s p c(G)=2$. Otherwise, there will exist a unique forced 4 -path for a pair of vertices in C, a contradiction. Suppose that at most one triangle contains two of the vertices $u_{1}, u_{2} u_{3}$ and u_{4}, without loss of generality, say u_{1}, u_{2}. Suppose further that $u_{3} u_{4}$ is a forced edge. Then $c\left(v_{1} u_{4}\right) \neq c\left(u_{4} u_{3}\right) \neq c\left(u_{4} x\right)$, where x is a neighbor of u_{4} except v_{1}, u_{3}, a contradiction. Then suppose that both u_{3} and u_{4} are contained a 4 -cycle C^{\prime}. Clearly, there induces a unique forced 4-path for the pair of v_{2} and one vertex in C^{\prime} except u_{3}, u_{4}, a contradiction. Suppose $9 \leq|C| \leq 10$. Then there is a unique forced 4 -path for some pair of vertices in G. Hence, $s c f c(G) \geq 3$. Assume $|C| \geq 11$. There exists a unique shortest path of length 5 between v_{i-3} and v_{i+2}, thus, $s c f c(G) \geq 3$. A contradiction by Claim 1 .

Theorem 5.7 [10]. Let G be a cubic graph without forced edges. Suppose further that $G \neq K_{4}$. Then $\operatorname{spc}(G)=2$ if and only if $G \in\left\{C_{3} \square K_{2}, C_{2 k} \square K_{2}, M_{2 k}\right\}$ for some $k \geq 2$.

Theorem 5.8. Let G be a cubic graph without forced edges. Then $\operatorname{scfc}(G)=2$ if and only if $G \in\left\{C_{l} \square K_{2}, M_{2 k}\right\}$ for $l \in\{3,4,6\}$ and for k with $3 \leq k \leq 7$.

Proof. Sufficiency. By Lemma 5.4 and 5.5, Clearly, $s c f c(G)=2$.
Necessity. Suppose $G \neq U$. If $\operatorname{scfc}(G)=2$, then we have $\operatorname{spc}(G)=2$ by Lemma 5.6. Furthermore, we have $G \in$ $\left\{C_{3} \square K_{2}, C_{2 k} \square K_{2}, M_{2 k}\right\}$ for some $k \geq 2$ from Theorem 5.8. Then $G \in\left\{C_{l} \square K_{2}, M_{2 k}\right\}$ for $l \in\{3,4,6\}$ and for k with $3 \leq k \leq 7$ by Lemma 5.4 and 5.5.

Let $F_{0}(k)$ be the cubic graph which is obtained from L_{k} by adding two new vertices x and y and adding five new edges $x y, x s_{1}, x t_{1}, y s_{k}, y t_{k}$ (see Fig. 7).

Lemma 5.9. $\operatorname{scfc}\left(F_{0}(k)\right)=2$ with $k \geq 2$ if and only if $k \in\{2,4\}$.
Proof. When $k \geq 3$, the cycle $x s_{1} s_{2} \cdots s_{k} y x$, say C, is a forced one in $F_{0}(k)$. Then we have that $k=4$ by Lemma 5.3. When $k=2$, we define an edge-coloring c for $F_{0}(k): c(x y)=2 ; c\left(x s_{1}\right)=c\left(x t_{1}\right)=c\left(y s_{k}\right)=c\left(y t_{k}\right)=1 ; c\left(s_{i} s_{i+1}\right)=c\left(t_{i} t_{i+1}\right)=c\left(s_{i} t_{i}\right)=1$ for even $i \in[k]$; for all the remaining edges, $c\left(s_{i} s_{i+1}\right)=c\left(t_{i} t_{i+1}\right)=c\left(s_{i} t_{i}\right)=2$ for odd $i \in[k]$. We can easily check that every pair of vertices have a strong conflict-free path connecting them. Since $\operatorname{scfc}\left(F_{0}(k)\right)>1$, we have that $s c f c\left(F_{0}(k)\right)=2$ for $k=2$ or 4.

We now introduce a family \mathcal{H} of graphs which will be used in the latter proof (see Fig. 8).

$$
\mathcal{H}=\left\{F_{0}^{*}(k), \hat{K_{4}}, \hat{D_{3}}, \tilde{K_{3,3}}, \tilde{Q_{3}}, F_{1}(k)\right\}(k \in \mathbb{N})
$$

Theorem 5.10 [10]. Let G be a cubic graph with exactly one forced edge. Then $\operatorname{spc}(G)=2$ if and only if $G=F_{0}(k)$ for some even $k \geq 4$, or G is obtained from H_{1} and H_{2} by identifying the pendent edges to a single edge, where $H_{i} \in\left\{\hat{K_{4}}, \hat{D_{3}}\right\}$ for $i=1,2$.

Lemma 5.11. Let G be a cubic graph. If G is obtained from H_{1} and H_{2} by identifying the pendent edges to a single edge, where $H_{i} \in\left\{\hat{K_{4}}, \hat{D_{3}}\right\}$ for $i=1,2$, then $\operatorname{scfc}(G)=2$ if and only if $H_{i}=\hat{K}_{4}$ for $i=1,2$.

Proof. Sufficiency. If G is obtained from two graphs \hat{K}_{4} by identifying the pendent edges to a single edge, then we know that $\operatorname{scfc}(G)=2$ by the coloring of Fig. 9 .

Necessity. Suppose $\operatorname{scfc}(G)=2$. If G is constructed by identifying the pendent edge of H_{1} with $H_{2} \in\left\{\hat{K_{4}}, \hat{D_{3}}\right\}$ (see Fig. 8), then, clearly, there is a forced 4 -path which needs three colors to make it strong conflict-free connected. Thus we have $s c f c(G) \geq 3$. A contradiction by Lemma 5.2. when $H_{1}=H_{2}=\hat{K_{4}}$, it is clear that $s c f c(G)>1$. On the contrary, we have $s c f c(G) \leq 2$ under the edge-coloring in Fig. 9.

Theorem 5.12. Let G be a cubic graph with exactly one forced edge. Then $\operatorname{scfc}(G)=2$ if and only if $G \cong F_{0}(k)$ for $k \in\{2,4\}$ or $G \cong N$.

Proof. Sufficiency. From Lemma 5.9 and 5.11, we have $\operatorname{scfc}(G)=2$ for $G \cong F_{0}(k)$ for $k \in\{2,4\}$ or $G \cong N$.
Necessity. Suppose that $\operatorname{scfc}(G)=2$. From Lemma 5.6, it follows that $\operatorname{spc}(G)=2$. Furthermore, we then have $G \cong F_{0}(k)$ for $k \in\{2,4\}$ or $G \cong N$ by Theorem 5.10 and by 5.11.

Fig. 8. The graph family \mathcal{H}.

Fig. 9. The graph N.

Fig. 10. The graph class \mathcal{L}.

Before proceeding, we need one more definition.
Definition 5.13 [10]. Let G be a connected graph. The forced graph of G is obtained from G by replacing each forced edge $u v$ (if any) by two pendant edges $u u^{\prime}$ and $v v^{\prime}$, where u^{\prime} and v^{\prime} are two new vertices with respect to the forced edge $u v$. Each component of the forced graph of G is called a forced branch of G, and the new pendant edge $u u^{\prime}$ in the forced branch is called a forced link of G. For each forced edge $u v$ of G, we call $u u^{\prime}$ and $v v^{\prime}$ the twin links corresponding to the forced edge $u v$. In the case that a forced link $u u^{\prime}$ and its twin link $v v^{\prime}$ are contained in a common forced branch of G, we say that $u u^{\prime}$ is a selfish link.

Theorem 5.14 [10]. Let G be a cubic graph containing at least two forced edges, and let $H_{1}, H_{2}, \cdots, H_{r}$ be the forced branches of G. Then $\operatorname{spc}(G)=2$ if and only if $H_{i} \in \mathcal{H}$ for $i=1,2, \cdots, r$, and there are 2-SPC (strong proper connection number being 2) patterns $p_{1}, p_{2}, \cdots, p_{r}$ of $H_{1}, H_{2}, \cdots, H_{r}$, respectively, such that each pair of twin links receive the same color.

Remark. The definition of pattern in Theorem 5.14 can be referred to [10].
Theorem 5.15. Let G be a cubic graph containing at least two forced edges, and let $H_{1}, H_{2}, \cdots, H_{r} \in \mathcal{H}$ be the forced branches of G. Then $\operatorname{scfc}(G)=2$ if and only if $G \in \mathcal{L}$, demonstrated in Fig. 10.

Proof. Necessity. Since every graph $L_{i} \in \mathcal{L}$ is not a complete graph, then $\operatorname{scfc}\left(L_{i}\right) \geq 2$. Also, we have $\operatorname{scfc}\left(L_{i}\right) \leq 2$ by the edge coloring depicted in Fig. 10. Hence, $\operatorname{scfc}\left(L_{i}\right)=2$ for each $L_{i} \in \mathcal{L}$.

Sufficiency. Let G^{*} be the forced graph of G. If $F_{0}^{*}(k) \subset G^{*}$ or $F_{1}(k) \subset G^{*}$, then $k \leq 2$. Otherwise, there is a forced 4-path which needs at least three colors to make it strong conflict-free connected. Clearly, G^{*} contains at least two forced branches since G contains at least two forced edges.

Suppose that there exists a forced edge which is a cut-edge in G. It is clear that $\hat{D_{3}} \nsubseteq G^{*}$ or $\hat{K_{4}} \nsubseteq G^{*}$. Suppose $\hat{D_{3}} \subset G^{*}$. Since there is a forced 3-path $u_{1}^{\prime} u_{1} u_{2} u_{3}$, then identify the pendent edge of any one graph in \mathcal{H} with the pendent edge $u_{1}^{\prime} u_{1} \in E\left(\hat{D_{3}}\right)$ will induce a forced 4 -path which needs at least three colors. Hence, $\hat{D_{3}} \nsubseteq G^{*}$. Suppose $\hat{K_{4}} \subset G^{*}$. Clearly, there are at least two $\hat{K_{4}}$ since G contains at least two forced edges. For each graph $H^{\prime} \in\left\{F_{0}^{*}(k), \tilde{K_{3,3}}, \tilde{Q_{3}}, F_{1}(k)\right\}(k \in \mathbb{N})$, if identify the pendent edges $e_{1}, e_{2} \in E\left(H^{\prime}\right)$ with each pendent edge of two \hat{K}_{4}, then, clearly, there are two forced 2-paths between v_{2} and the copy of v_{2}, which needs at least three colors to make the path (which contains the two forced 2-paths) strong conflict-free connected. Hence, there does not exist a forced edge which is a cut-edge in G.

Suppose that every forced edge is not one cut-edge in G. Clearly, we have $\hat{D_{3}} \nsubseteq G^{*}$ and $\hat{K_{4}} \nsubseteq G^{*}$. There is no selfish link in G^{*} since G contains at least two forced edges.

Claim 1: If each connected component of G^{*} belongs to $\left\{\tilde{Q_{3}}, K_{3,3}, F_{0}^{*}(k)\right\}$ for $k \leq 2$, then there are at most two connected components in G^{*}.

Proof of Claim 1: Assume, to the contrary, that there are three connected components in G^{*}. Since each component of G^{*} contains exactly two pendant edges, then the forced edges are contained in the same cycle. Clearly, both each pendant edge of the connected components and its each adjacent edge form a forced 2-path. It means that there does not exist a strong conflict-free path containing two forced 2-paths, between two forced edges. Hence, $s c f c(G) \geq 3$. A contradiction. Completing the proof of Claim 1 .

Claim 2: There is at most one copy of $\tilde{Q_{3}}$ in G^{*}.
Proof of Claim 2: Assume, to the contrary, that there are two copies of $\tilde{Q_{3}}$ in G^{*}. Clearly, the forced edges are contained in a cycle of length at least 8 . Thus, there is exactly a forced 4 -path between p_{2} and p_{4}. Clearly, $\operatorname{scfc}(G) \geq 3$. Completing the proof of Claim 2.

Claim 3: There is no the copy of $F_{1}(k)$ in G^{*}.
Proof of Claim 3: Assume that there is a connected component $F_{1}(k)$ in G^{*}. Clearly, there are at least two connected components in G^{*}. Then there must exist also another one copy of $F_{1}(k)$ in G^{*} since there are three pendant edges in $F_{1}(k)$. Since both each pendant edge of the connected components and its each adjacent edge form a forced 2-path, there does not exist a strong conflict-free path containing two forced 2-paths, between two forced edges. This completes the proof of Claim 3.

Then from Claim 1, Claim 2 and Claim 3, we can check by enumeration that $G \in \mathcal{L}$.
Finally, Combining Theorems 5.8, 5.12 and 5.15 , we have our main theorem of this section.
Theorem 5.16. Let G be a cubic graph. Then $\operatorname{scfc}(G)=2$ if and only if

$$
G \in \mathcal{L} \text { or } G \in\left\{N, C_{l} \square K_{2}, M_{2 r}, F_{0}(k)\right\}
$$

where $l \in\{3,4,6\}, 3 \leq r \leq 7$ and $k \in\{2,4\}$.

Acknowledgement

The authors are very grateful to the reviewers for their valuable suggestions and comments, which helped to improving the presentation of the paper.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, J. Combin. Math. Combin. Comput. 97 (2016) $189-207$.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Z. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) $2550-2560$.
[4] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math. 255 (2019) 167-182.
[5] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees, J. Comb. Optim., In press. doi:10.1007/s10878-018-0363-x.
[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[7] J. Czap, S. Jendroll, J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory 38 (4) (2018) 1007-1021.
[8] T.D. Doan, I. Schiermeyer, Conflict-free vertex connection number at most 3 and size of graphs, Discus. Math. Graph Theory, In press. doi:10.7151/ dmgt. 2211.
[9] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometic regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33 (2003) 94-136.
[10] F. Huang, J.J. Yuan, On strong proper connection number of cubic graphs, Discrete Appl. Math. 265 (2019) 104-119.
[11] M. Ji, X. Li, X. Zhu, (Strong) conflict-free connectivity: algorithm and complexity. submitted.
[12] X. Li, Y. Zhang, X. Zhu, Y. Mao, H. Zhao, S. Jendrol', Conflict-free vertex-connections of graphs, Discus. Math. Graph Theory, In press. doi:10.7151/dmgt. 2116.

[^0]: Supported by NSFC no.11871034, 11531011 and NSFQH no.2017-ZJ-790.

 * Corresponding author.

 E-mail address: lx1@nankai.edu.cn (X. Li).

