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A path P in an edge-colored graph is called a conflict-free path if there exists a color used 

on only one of the edges of P . An edge-colored graph G is called conflict-free connected if 

for each pair of distinct vertices of G there is a conflict-free path in G connecting them. 

The graph G is called strongly conflict-free connected if for every pair of vertices u and v of 

G there exists a conflict-free path of length d G (u, v ) in G connecting them. For a connected 

graph G , the strong conflict-free connection number of G , denoted by scfc ( G ), is defined as 

the smallest number of colors that are required in order to make G strongly conflict-free 

connected. In this paper, we first show that if G t is a connected graph with m ( ≥ 2) edges 

and t edge-disjoint triangles, then sc f c (G t ) ≤ m − 2 t, and the equality holds if and only 

if G t 
∼= 

S m −t,t . Then we characterize the graphs G with sc f c(G ) = k for k ∈ { 1 , m − 3 , m −
2 , m − 1 , m } . In the end, we present a complete characterization for the cubic graphs G 

with sc f c(G ) = 2 . 
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1. Introduction 

All graphs mentioned in this paper are simple, undirected and finite. We follow book [2] for undefined notation and

terminology. For a graph G , let c : E ( G ) �→ [ r ] be an edge-coloring of G . For an edge e of G , we denote the color of e by c ( e ).

And we denote the number of vertices, edges in G by n , m , respectively. We denote [ t ] the set {1, 2, ���, t } and we define C s
as a cycle of length s . We denote by d G (v ) the degree v in G . 

Coloring problems are important topics in graph theory. In recent years, there have appeared a number of colorings

raising great concern due to their wide applications in real world. We list a few well-known colorings here. The first of

such would be the rainbow connection coloring, which is stated as follows. A path in an edge-colored graph is called a

rainbow path if all the edges of the path have distinct colors. An edge-colored graph is called ( strongly ) rainbow connected

if there is a ( shortest and) rainbow path between every pair of distinct vertices in the graph. For a connected graph G , the

( strong ) rainbow connection number of G is defined as the smallest number of colors needed to make G ( strongly ) rainbow

connected, denoted by ( src ( G )) rc ( G ). These concepts were first introduced by Chartrand et al. in [6] . 

Inspired by the rainbow connection coloring, the concept of proper connection coloring was independently posed by

Andrews et al. in [1] and Borozan et al. in [3] , the only difference from ( strong ) rainbow connection coloring is that distinct

colors are only required for adjacent edges instead of all edges on the ( shortest ) path. For an edge-colored connected graph G ,
� Supported by NSFC no. 11871034 , 11531011 and NSFQH no. 2017-ZJ-790 . 
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the smallest number of colors required to give G a ( strong ) proper connection coloring is called the (strong) proper connection

number of G , denoted by ( spc ( G )) pc ( G ). 

The hypergraph version of conflict-free coloring was first introduced by Even et al. in [9] . A hypergraph H is a pair

H = (X, E) where X is the set of vertices, and E is the set of nonempty subsets of X , called hyperedges. The coloring was

motivated to solve the problem of assigning frequencies to different base stations in cellular networks, which is defined as

a vertex-coloring of H such that every hyperedge contains a vertex with a unique color. 

Later on, Czap et al. in [7] introduced the concept of conflict-free connection coloring of graphs, motivated by the earlier

hypergraph version. A path in an edge-colored graph G is called a conflict-free path if there is a color appearing only once

on the path. The graph G is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices

of G . For a connected graph G , the minimum number of colors required to make G conflict-free connected is defined as the

conflict-free connection number of G , denoted by cfc ( G ). For more results, the reader can be referred to [4,6,5,8,12] . 

In this paper, we focus on studying the strong conflict-free connection coloring which was introduced by Ji et al. in [11] ,

where only computational complexity was studied. An edge-colored graph is called strongly conflict-free connected if there

exists a conflict-free path of length d G (u, v ) for every pair of vertices u and v of G . For a connected graph G , the strong

conflict-free connection number of G , denoted scfc ( G ), is the smallest number of colors that are required to make G strongly

conflict-free connected. 

The paper is organized as follows. In Section 2 , we give some preliminary results. In Section 3 , we show that if G t is a

connected graph with m ( m ≥ 2) edges and t edge-disjoint triangles, then sc f c (G t ) ≤ m − 2 t, and the equality holds if and

only if G t 
∼= 

S m −t,t . In Section 4 , we characterize the graphs G with sc f c(G ) = k for k ∈ { 1 , m − 3 , m − 2 , m − 1 , m } . In the last

section, we completely characterize the cubic graphs G with sc f c(G ) = 2 . 

2. Basic results and lemmas 

In this section, we present some results which will be used in the sequel. In [11] , the authors obtained the following

computational complexity result. 

Theorem 2.1 [7] . If P n is a path on n vertices, then c f c (P n ) = 	 log 2 n 
 . 
Theorem 2.2 [4] . Let G be a connected graph of order n ( n ≥ 2) . Then c f c (G ) = n − 1 if and only if G = K 1 ,n −1 . 

From Theorem 2.1 and 2.2 and the definitions of (strong) conflict-free connection number, we immediately have the

following theorem. 

Theorem 2.3. For a tree T , sc f c (T ) = c f c (T ) . Therefore, for a path P n on n vertices, sc f c (P n ) = 	 log 2 n 
 ; for a star S m 

with m

edges, sc f c (S m 

) = m . 

The authors in [6] obtained the strong rainbow connection number for a wheel graph W n , where n is the degree of the

central vertex, and the complete bipartite graph K s , t . 

Theorem 2.4 [6] . For n ≥ 3, let W n be a wheel. Then src (W n ) = 	 n 3 
 . 
Theorem 2.5 [6] . For integers s and t with 1 ≤ s ≤ t , src (K s,t ) = 	 s √ 

t 
 . 
Theorem 2.6. For the integers n , s and t with 1 ≤ s ≤ t , sc f c (W n ) = 	 n 3 
 and sc f c (K s,t ) = 	 s √ 

t 
 . 
Proof. Note that for a graph G with diameter 2, a strong rainbow path (of length 2) of G is a strong conflict-free path of G ,

and vice versa. Since diam (W n ) = 2 , then sc f c (W n ) = src (W n ) . So, sc f c (W n ) = 	 n 3 
 from Theorem 2.4 . Since diam (K s,t ) = 2 ,

from Theorem 2.5 we have that sc f c (K s,t ) = 	 s √ 

t 
 . �

Lemma 2.7. Let C n be a cycle of order n and let P n be a spanning subgraph of C n . Then scfc ( C n ) ≤ scfc ( P n ) . 

Proof. Let P n = v 1 (= u ) v 2 · · · v n −1 v n (= v ) be a path with n vertices. We know that sc f c (P n ) = 	 log 2 n 
 by Theorem 2.3 . Now

we first give a coloring for P n : color the edge e i with color x + 1 , where 2 x is the largest power of 2 that divides i . One can

see that 	 log 2 n 
 is the largest number in the coloring by Theorem 2.3 . Clearly, the color 	 log 2 n 
 only occurs once. Thus,

we color the edge u v with 	 log 2 n 
 in C n if there is only one color occurring once; otherwise, we color the edge u v with

	 log 2 n 
 − 1 . Consequently, the coloring is a strong conflict-free connection coloring of C n . �

Remark. The proposition does not hold for general graphs. Here is a counterexample. Let G = C 6 with the edge set

{ v 1 v 2 , v 2 v 3 , v 3 v 4 , v 4 v 5 , v 5 v 6 , v 6 v 1 } . So sc f c (G ) = 2 . Let G 

′ = C 6 + v 1 v 3 . Then sc f c (G 

′ ) = 3 . 

Lemma 2.8. If C n is a cycle with n ( n ≥ 3) vertices, then 

sc f c (C n ) = 	 log 2 n 
 − 1 or 	 log 2 n 
 . 
Proof. By Lemma 2.7 and Theorem 2.3 , one can see that scfc ( C n ) ≤	 log 2 n 
 . It remains to handle with the lower bound.

We first consider the case that diam (C n ) = 

n for n = 2 k (k ∈ Z 

+ ) . Hence, sc f c (C n ) ≥ 	 log 2 ( 
n + 1) 
 = 	 log 2 (n + 2) 
 − 1 ≥
2 2 
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	 log 2 n 
 − 1 . We then consider the case that diam (C n ) = 

n −1 
2 for n = 2 k + 1 (k ∈ Z 

+ ) . Thus, sc f c (C n ) ≥ 	 log 2 ( 
n −1 

2 + 1) 
 =
	 log 2 (n + 1) 
 − 1 ≥ 	 log 2 n 
 − 1 . Consequently, sc f c (C n ) = 	 log 2 n 
 − 1 or 	 log 2 n 
 . �

Lemma 2.8 implies the following corollary. 

Corollary 2.9. Let G be a connected graph with m edges and let C be a cycle in G. Then sc f c (G ) ≤ m − | C| + 	 log 2 | C|
 . 
We end this section with an observation and a lemma. 

Observation 2.10. Let G be a connected graph with sc f c (G ) = | E(G ) | − k and let H be a connected graph with sc f c (H) ≤
| E(H) | − k − 1 . Then there is not a copy of H in G . 

Lemma 2.11. Let G be a connected graph with size m and sc f c (G ) = m − k . Then diam (G ) − 	 log 2 (diam (G ) + 1) 
 ≤ k . 

Proof. Let P be the path of length diam ( G ). Now we define a coloring with m + 	 log 2 diam (G ) + 1 
 − diam (G ) colors: assign

the edges of P with 	 log 2 diam (G ) + 1 
 colors to make P strongly conflict-free connected; assign each of the remaining

m − diam (G ) edges a fresh color. Clearly, G is strongly conflict-free connected. Since sc f c (G ) = m − k, then we have that

m − k ≤ m + 	 log 2 (diam (G ) + 1) − diam (G ) 
 . Consequently, diam (G ) − 	 log 2 (diam (G ) + 1) 
 ≤ k . �

3. Upper and lower bounds 

At first, let us look at trees. We have one trivial result. 

Theorem 3.1. Let T be a tree of order n. Then we have 

max {	 log 2 (diam (T ) + 1) 
 , �(T ) } ≤ sc f c (T ) ≤ n − 1 . 

Next, we show a simple lower bound. Let G be a connected graph and let u , v be two vertices of G . If there are t paths

between u and v in G , where the degree of internal vertices of the paths in G is 2, then we call the paths t-parallel paths . 

Theorem 3.2. Let G be a connected graph and let v , u be two vertices of G with d(u, v ) ≥ 2 . If one of the following conditions

holds, then scfc ( G ) ≥ 3 . 

1. There exist a cut-vertex w which splits G into at least three components by deleting w . 

2. There exists a path P of length at least 4 between u and v , where the edges of the path are bridges. 

3. There exist 2-parallel paths between u and v , where the length of one path is 2 and the length of the other one is 3. 

4. There exist 5-parallel paths between u and v . 

Proof. 1. Let C 1 , C 2 , ���, C m 

( m ≥ 3) be the components when deleting w from G . We choose a vertex u i which is adjacent

to w in each component C i . Clearly, each pair of u i and u j contains the only path, and it contains w . Consequently, we have

that sc f c (G ) ≥ sc f c (S m 

) = m ≥ 3 . 

2. Let P be a path of length at least 4. Since every edge of P is a bridge. Hence, we have scfc ( G ) ≥ scfc ( P ) ≥ 3. 

3. Since the lengths of the two paths are 2 and 3, there is a 5-cycle in G . Clearly, scfc ( G ) ≥ 3. 

4. Since d(u, v ) ≥ 2 , every path between u and v has a length at least 2. If we assign a coloring with 2 colors for the

paths, then there always exist at least two internal vertices of the paths which do not contain a strong conflict-free path.

Consequently, scfc ( G ) ≥ 3. �

We now define a graph class. Let S k be a star with k edges u v 1 , u v 2 , · · · , u v k . We denote by S m −t,t the graph S m −t +
{ v 1 v 2 , v 3 v 4 , · · · , v t−1 v t } (2 ≤ t ≤ m ). 

Theorem 3.3. If G t is a connected graph with m ( m ≥ 2) edges and t edge-disjoint triangles, then sc f c (G t ) ≤ m − 2 t, and the

equality holds if and only if G t 
∼= 

S m −t,t . 

Proof. Clearly, sc f c (K 3 ) = 1 . Now we first give a coloring of G t : Color each triangle with a distinct color, that is, the three

edges of each triangle receive a same color, and color each of the remaining m − 3 t edges with a distinct color. Let P be

a strong conflict-free path for any pair of vertices u and v in G . Clearly, P contains at most one edge from each triangle.

Otherwise, it will produce a contradiction. Thus, G t is strongly conflict-free connected. So sc f c (G t ) ≤ m − 2 t . 

We now show that sc f c (G t ) = m − 2 t if and only if G t 
∼= 

S m −t,t . 

Sufficiency. Suppose that G t 
∼= 

S m −t,t . Clearly, sc f c (S m −t,t ) ≤ m − 2 t . Note that every pendant edge needs a distinct color

and every triangle needs a fresh color. Suppose that there is a coloring of S m −t,t in which on some triangle there is used

the same color as on some pendant edge. Then the shortest path is not a conflict-free path between the leaf incident

with the pendant edge and one vertex of degree two. Also, if we provide the t triangles with t − 1 colors, there exist two

triangle with the same color. There would also not exist a strong conflict-free path between the vertices of the two triangles.

Consequently, sc f c (S m −t,t ) ≥ m − 2 t . 

Necessity. We now show that it holds for the necessity by the following 3 claims. 

Claim 1. If sc f c (G t ) = m − 2 t, then every edge of G t , except of the edges of the triangles, is a cut edge. 

Proof of Claim 1. Assume that there is a cycle C (| C | ≥ 3) except the t triangles. We know that scfc ( C ) ≤	 log 2 | C | 
 by

Lemma 2.8 . Now we define a coloring with m − 2 t + 	 log | C| 
 − | C| ≤ m − 2 t − 1 colors: assign every triangle with a distinct
2 
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color and assign C with 	 log 2 | C | 
 fresh colors, and the remaining edges are assigned by m − | E(C) | − 3 t fresh colors. Clearly,

G t is strongly conflict-free connected. So, sc f c (G t ) ≤ m − 2 t + 	 log 2 | C| 
 − | C| ≤ m − 2 t − 1 , a contradiction. 

Claim 2. If sc f c (G t ) = m − 2 t, then each triangle in G t contains at least two vertices of degree two. 

Proof of Claim 2. Assume that there is at most one vertex of degree two in a triangle v 1 v 2 v 3 v 1 . Without loss of gener-

ality, let u 1 v 1 and u 2 v 2 be two edges. We will consider the following three cases. 

Case 1. Both u 1 v 1 and u 2 v 2 are not contained in triangles. We define a coloring c of G t : assign each triangle with a distinct

color; assign both u 1 v 1 and u 2 v 2 with a fresh same color; the remaining m − 2 − 3 t edges are colored by m − 2 − 3 t fresh

colors. We only need to check u 1 − u 2 paths. By Claim 1, u 1 v 1 v 2 u 2 is the unique strong conflict-free path between u 1 and

u 2 . Clearly, G t is strongly conflict-free connected. Hence, sc f c (G t ) ≤ (m − 2 − 3 t) + 1 + t = m − 2 t − 1 , a contradiction. 

Case 2. u 1 v 1 and u 2 v 2 are contained in different triangles. Let X 1 contain u 1 v 1 and let X 2 contain u 2 v 2 . We now define a

coloring of G t : assign X 1 and X 2 with the same color; assign the other triangles with t − 2 fresh colors; each of the remaining

edges is colored by a fresh color. Clearly, G t is strongly conflict-free connected. Hence, sc f c (G t ) ≤ m − 2 t − 1 , a contradiction.

Case 3. One of u 1 v 1 and u 2 v 2 is contained in a triangle. Similarly, there is a strong conflict-free connection coloring with

m − 2 t − 1 colors, a contradiction. Completing the proof of Claim 2. 

Claim 3. Let C ( G t ) be the graph induced by all the cut-edges of G t . Then C ( G t ) is a tree with diam ( C ( G t )) ≤ 2. 

Proof of Claim 3. Assume C ( G t ) is not connected. Let H 1 and H 2 be two connected components of C ( G t ). Clearly, the

path in G t which is connected to two vertices h 1 ( ∈ V ( H 1 )) and h 2 ( ∈ V ( H 2 )) goes through at least one triangle. Thus, the

triangle contains at least two vertices of degree at least 3, which contradicts to Claim 2. Assume that diam (C(G t )) = k ≥ 3 .

Let P = v 0 v 1 · · · v k be a path of length k . Then we define a coloring of G t with m − 2 t − k + 	 log 2 (k + 1) 
 colors: assign the

edges of P with 	 log 2 k 
 colors to make P strongly conflict-free connected from Theorem 2.3 ; assign each of the t triangles

with a fresh color; assign each of the remaining m − 3 t − k edges with a fresh color. Clearly, G t is strongly conflict-free

connected, a contradiction. Completing the proof of Claim 3. 

From the above claims, we can deduce that G t 
∼= 

S m −t,t . �

4. Graphs with large or small scfc numbers 

In this section, we characterize the connected graphs G of size m with sc f c (G ) = k for k ∈ { 1 , m − 3 , m − 2 , m − 1 , m } . 
For the connected graph G with sc f c (G ) = 1 , we have the trivial result. 

Theorem 4.1. For a nontrivial connected graph G , sc f c (G ) = 1 if and only if G is a complete graph. 

From here on, we start to characterize the graph with large strong conflict-free connection number. 

Theorem 4.2. Let G be a nontrivial connected graph of size m. Then sc f c (G ) = m if and only if G 

∼= 

S m 

. 

Proof. Necessity. Suppose that G 

∼= 

S m 

. we have sc f c (G ) = m by Theorem 2.3 . 

Sufficiency. Suppose that sc f c (G ) = m . Assume there is a cycle C in G . Then sc f c (G ) ≤ m − | C| + 	 log 2 | C|
 ≤ m − 1 by

Corollary 2.9 , a contradiction. Hence, G is a tree. Let u and v be two vertices with d G (u, v ) ≥ 3 in G . Similarly, sc f c (G ) ≤
m − d G (u, v ) + 	 log 2 (d G (u, v ) + 1) 
 ≤ m − 1 , a contradiction. Thus, G 

∼= 

S m 

. �

For convenience, we define some graph-classes before proving the theorem below. Let S m 

be a star with m ( ≥ 2) edges

and let u be a leaf of S m 

. We define a graph by �m +1 = (V (S) ∪ { v } , E(S) ∪ { u v } ) . 
Theorem 4.3. Let G be a connected graph of size m. Then sc f c (G ) = m − 1 if and only if G ∈ { P 4 , P 5 , �m 

} . 

Proof. Necessity. We have sc f c (G ) = sc f c (P 4 ) = 2 = m − 1 and sc f c (G ) = sc f c (P 5 ) = 3 = m − 1 by Theorem 2.3 . On one hand,

we have sc f c (�m 

) ≥ �(�m 

) = m − 1 by Theorem 3.1 . On the other hand, we define a coloring of �m 

by assigning each

of the m − 1 edges of S m −1 (⊂ �m 

) with a fresh color and choosing one color from the used colors except for the color

assigned to the edge incident with u to assign the unique remaining edge. Clearly, G is strongly conflict-free connected.

Hence, sc f c (�m 

) = m − 1 . 

Sufficiency. Suppose that sc f c (G ) = m − 1 . We first show that G is a tree. Assume, to the contrary, that there is a cycle C

in G . We have that sc f c (C) ≤ | E(C) | − 2 by Lemma 2.8 , and thus C �G by Observation 2.10 . 

When diam (G ) = 2 , we have G 

∼= 

S n with sc f c (G ) = m since G is a tree. But it is a contradiction. 

When diam (G ) = 3 , we show G ∈ { P 4 , �m 

}. Let P 4 = v 1 v 2 v 3 v 4 of G . If G = P 4 , then sc f c (G ) = m − 1 by Theorem 2.3 . As-

sume M 1 = P 4 ∪ { x v 2 , y v 3 } is a copy of the subgraph of G . It is easy to check that sc f c (M 1 ) ≤ 3 = | E(M 1 ) | − 2 . So M 1 �G by

Observation 2.10 . Thus, there is at most one vertex v i ∈ V (P 4 ) with d G (v i ) ≥ 3 . Let M 2 = P 4 ∪ { x 1 v 2 , · · · , x t−2 v 2 , } for t ≥ 3.

Obversely, sc f c (M 2 ) ≥ t = | E(M 2 ) | − 1 by Theorem 3.1 . On the other hand, there is a strong conflict-free connection coloring

with t colors for G with c(e ) = 1 for each e ∈ { v 1 v 2 , v 3 v 4 } , c(v 2 v 3 ) = 2 and c(x i v 2 ) = i for i ∈ [ t − 2] . So, G ∈ { P 4 , �m 

}. 

When diam (G ) = 4 , we show G = P 5 . Let P 5 = v 1 v 2 v 3 v 4 v 5 be a path of G . If G = P 5 , then sc f c (G ) = sc f c (P 5 ) = m − 1 by

Theorem 2.3 . Assume that M 3 = P 5 ∪ { w v i } for i ∈ [5] is a copy of the subgraph of G . By symmetry, M 3 = P 5 ∪ { w v 2 } or M 3 =
P 5 ∪ { w v 3 } . If c(v 1 v 2 ) = c(v 3 v 4 ) = 1 , c(w v 2 ) = 3 ( c(w v 3 ) = 3 ) and c(v 2 v 3 ) = 2 , then we can check sc f c (M 3 ) ≤ | E(M 3 ) | − 2 .

Hence, M 3 �G by Observation 2.10 . 

For diam ( G ) ≥ 5, clearly, we have diam (G ) − 	 log 2 (diam (G ) + 1) 
 > 1 , then sc f c (G ) � = m − 1 by Lemma 2.11 , a

contradiction. �
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Fig. 1. Graphs with sc f c (G ) = m − 2 . (Remark: The graphs A 1 , A 2 , A 3 and A 5 contain t leaves of the star S t with t ≥ 0 in Fig. 1 . if they occur in the latter 

figures, it also means that they are the t leaves of the star S t with t ≥ 0). 
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Theorem 4.4. Let G be a connected graph with m ( m ≥ 3) edges. Then sc f c (G ) = m − 2 if and only if G ∈ { C 4 , C 5 , P 6 , A 1 , A 2 , ���,

A 5 } which are demonstrated in Fig. 1 . 

Proof. Necessity. For G = P 6 we have sc f c (G ) = sc f c (P 6 ) = 3 = m − 2 by Theorem 2.3 . For G ∈ { C 4 , C 5 }, clearly, we have

scfc ( C 4 ) ≥ 2 and scfc ( C 5 ) ≥ 3, on the other hand, from the coloring in Fig. 1 we know that sc f c (G ) = sc f c (C 5 ) = 3 = m − 2 ,

sc f c (G ) = sc f c (C 4 ) = 2 = m − 2 . For G = A i with i ∈ {2, 3, 5}, we have sc f c (G ) = sc f c (A i ) ≥ t + 3 = m − 2 by Theorem 3.1 .

On the other hand, we know that sc f c (G ) = sc f c (A i ) ≤ t + 3 = m − 2 by the coloring in Fig. 1 . Clearly, for G = A 1 we have

sc f c (G ) = sc f c (A 1 ) ≥ �(G ) − 1 = t + 1 = m − 2 , meanwhile, we have sc f c (G ) = sc f c (A 1 ) ≤ t + 1 = m − 2 by the coloring in

Fig. 1 . For G = A 4 , the edges incident with x 1 need to be assigned by three distinct colors, say 1,2 and 3. If c(x 1 x 2 ) = 2 ,

then c(x 2 x 3 ) = 1 or 3. Thus, one of the remaining two edges must be colored by a fresh color. So, sc f c (G ) = A 4 ≥ 4 = m − 4 .

Conversely, we have sc f c (G ) = sc f c (A 4 ) ≤ 4 = m − 4 by coloring in Fig. 1 . 

Sufficiency. Suppose that G contains one cycle with sc f c (G ) = m − 2 . Let C be a cycle of length at least 6 in G . We have

sc f c (C) ≤ | E(C) | − 3 by Lemma 2.8 . It follows that C �G by Observation 2.10 . A contradiction. Hence, | C | ≤ 5. 

When | C| = 3 , we show G 

∼= 

A 1 . Let C = v 1 v 2 v 3 v 1 . Suppose there are two vertices v i , v j ∈ V (C) with d G (v i ) ≥ 3 and

d G (v j ) ≥ 3 . Let H 1 = C ∪ { v 1 u 1 , v 2 u 2 } be a copy of a subgraph of G . We have sc f c (H 1 ) ≤ 2 = | E(H 1 ) | − 3 according to

the coloring with c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 3 ) = 1 and c(v 1 u 1 ) = c(v 2 u 2 ) = 2 . Thus, there is not a copy of H 1 in G by

Observation 2.10 . A contradiction. Then there is at most one vertex v i ∈ V (C) with d G (v i ) ≥ 3 in G . Thus, let H 2 =
 ∪ { v 1 u 1 , u 1 u 2 } be a copy of subgraph of G . Obviously, sc f c (H 2 ) ≤ 2 = | E(H 2 ) | − 3 . There is not a copy of H 2 in G by

Observation 2.10 . Hence, we have diam (G ) = 2 . It means that G 

∼= 

A 1 . 

When | C| = 4 , we show G 

∼= 

C 4 . Let C = v 1 v 2 v 3 v 4 v 1 . Suppose there is one vertex v i ∈ V (C) with d G (v i ) ≥ 3 in G . Let

H 3 = C ∪ { v 1 u 1 } or C ∪ { v 1 v 3 } be a copy of the subgraph of G . Clearly, we have sc f c (H 3 ) ≤ 2 = | E(H 3 ) | − 3 by the coloring

with c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 4 ) = 1 and c(v 3 v 4 ) = c(v 1 u 1 ) = 2 (or c(v 3 v 4 ) = c(v 1 v 3 ) = 2 ). Thus, there is not a copy of H 3

in G by Observation 2.10 . Hence, G 

∼= 

C 4 . 

When | C| = 5 , we show G 

∼= 

C 5 . Let C = v 1 v 2 v 3 v 4 v 5 v 1 . Suppose there is one vertex v i ∈ V (C) with d G (v i ) ≥ 3 in G . By the

same way, the graph H 4 = C ∪ { v 1 u 1 } (or H 

′ 
4 = C ∪ { v 1 v 3 } ) is not a copy of the subgraph in G by Observation 2.10 since

sc f c (H 4 ) ≤ | E(H 4 ) | − 4 (or sc f c (H 

′ 
4 
) ≤ | E(H 

′ 
4 
) | − 4 ) by the coloring with c(v 1 v 2 ) = c(v 4 v 5 ) = 1 , c(v 1 v 5 ) = c(v 2 v 3 ) = 2 and

c(v 3 v 4 ) = c(v 1 u 1 ) = 3 (or c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 3 ) = c(v 4 v 5 ) = 1 and c(v 3 v 4 ) = c(v 1 u 1 ) = 2 ). Hence, there is not a ver-

tex v i ∈ V (C) with d G (v i ) ≥ 3 in G . Hence, every vertex v i ∈ V (C) have degree 2, then we can deduce that G 

∼= 

C 5 . 

Suppose that G is a tree with sc f c (G ) = m − 2 . Assume that diam ( G ) ≥ 6. Clearly, we have diam (G ) − 	 log 2 (diam (G ) + 1) 
 >
2 , then sc f c (G ) � = m − 2 by Lemma 2.11 , a contradiction. Thus, diam ( G ) ≤ 5. 

When diam (G ) = 2 . Clearly, we have G = S m 

with sc f c (S m 

) = m, which is a contradiction. 

When diam (G ) = 3 , we show G 

∼= 

A 5 . Let P 4 = v 1 v 2 v 3 v 4 be a path of G . Assume that the degrees of both v 2 and v 3
are at least 4. Let H 5 = P 4 ∪ { w 1 v 2 , w 2 v 2 , w 3 v 3 , w 4 v 3 } be a copy of the subgraph of G . We have sc f c (H 5 ) ≤ 4 = | E(H 5 ) | − 3

by the coloring with c(v 1 v 2 ) = c(v 3 v 4 ) = 1 , c(w 2 v 2 ) = c(w 4 v 3 ) = 2 , c(w 1 v 2 ) = c(w 3 v 3 ) = 3 and c(v 2 v 3 ) = 4 . Thus, there is

not a copy of H 5 in G by Observation 2.10 . Hence, there is at most one vertex v i ∈ { v 2 , v 3 } with d G (v i ) ≥ 4 . Together with

sc f c (P 4 ) = 2 = m − 1 and sc f c (�m 

) = m − 1 for G ∈ { P 4 , �m 

} by Theorem 4.3 , we can deduce that G 

∼= 

A 5 . 

When diam (G ) = 4 , we show G ∈ { A 2 , A 3 , A 4 }. Let P 5 = v 1 v 2 v 3 v 4 v 5 be a path of G . Assume that there are two adjacent

vertices with degree 3, say v 2 and v 3 . Let H 6 = P 5 ∪ { w 1 v 2 , w 2 v 3 } be a copy of the subgraph of G . We have sc f c (H 6 ) ≤ 3 =
| E(H 6 ) | − 3 by the coloring with c(v 1 v 2 ) = c(v 3 v 4 ) = 1 , c(w 1 v 2 ) = c(w 2 v 3 ) = c(v 4 v 5 ) = 2 and c(v 2 v 3 ) = 3 . Thus, there is not

a copy of H 6 in G by Observation 2.10 . Furthermore, assume that H 7 = P 5 ∪ { w 1 v 2 , w 2 v 4 , w 3 v 4 } is a copy of the subgraph of

G . We have sc f c (H 7 ) ≤ 4 = | E(H 7 ) | − 3 by the coloring with c(v 3 v 4 ) = 1 , c(v 2 v 3 ) = c(w 3 v 4 ) = 2 , c(v 2 w 1 ) = c(v 4 v 5 ) = 3 and

c(v 1 v 2 ) = c(w 2 v 4 ) = 4 . Thus, there is not a copy of H 7 in G by Observation 2.10 . Together with sc f c (G ) = m − 1 for G 

∼= 

P 5
from Theorem 4.3 , we could deduce that G ∈ { A , A , A }. 
2 3 4 
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Fig. 2. Graphs with sc f c (G ) = m − 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When diam (G ) = 5 , we show G 

∼= 

P 6 . Let P 6 = v 1 v 2 v 3 v 4 v 5 v 6 be a path of G . If G = P 6 , then sc f c (G ) = 3 = m − 2 by

Theorem 2.3 . By symmetry, Assume that H 8 = P 6 ∪ { v 2 x } or H 8 = P 6 ∪ { v 3 x } is a copy of the subgraph of G . Clearly, sc f c(H 8 ) ≤
3 = m − 3 . Thus, there is not a copy of H 8 in G by Observation 2.10 . We can deduce that G 

∼= 

P 6 . �

Theorem 4.5. Let G be a connected graph with m ( m ≥ 4) edges. Then sc f c (G ) = m − 3 if and only if G ∈ { B 1 , B 2 , ���, B 23 } which

are demonstrated in Fig. 2 . 

Proof. Sufficiency. Clearly, we have scfc ( G ) ≥�( G ) for G ∈ { B 1 , B 3 , B 7 , B 13 , B 14 , B 16 , B 18 , B 19 , B 21 , B 23 }. On the other hand, by

the coloring of G ∈ { B 1 , B 3 , B 7 , B 13 , B 14 , B 16 , B 18 , B 19 , B 21 , B 23 } in Fig. 2 , we have sc f c (G ) = sc f c (B 1 ) = sc f c (B 13 ) = sc f c (B 14 ) =
sc f c (B 16 ) = sc f c (B 18 ) = sc f c (B 19 ) = t + 3 = m − 3 , sc f c (G ) = sc f c (B 3 ) = 3 = m − 3 , sc f c (G ) = sc f c (B 7 ) = t + 2 = m − 3 and

sc f c (G ) = sc f c (B 21 ) = sc f c (B 21 ) = t + 4 = m − 3 . Obviously, for G ∈ { B 2 , B 4 , B 8 , B 9 } we have sc f c (G ) ≥ �(G ) − 1 . On the other

hand, by the coloring of G ∈ { B 2 , B 4 , B 8 , B 9 } in Fig. 2 , we have sc f c (G ) = sc f c (B 2 ) = sc f c (B 8 ) = sc f c (B 9 ) = t + 2 = m − 3 or

sc f c (G ) = sc f c (B 4 ) = 2 = m − 3 . For G = B 10 we have sc f c (G ) = sc f c (B 10 ) = 3 = m − 3 by Theorem 2.3 . For G = B 6 , since

there is exactly one path of length d ( x , y ) ( d(x, y ) = 4 between x and y , then we have scfc ( B 6 ) ≥ 3. By the coloring in

Fig. 2 , we have sc f c (B 6 ) = 3 = m − 3 . Similarly, sc f c (B 5 ) = 3 = m − 3 . For G = B 20 , the edges incident with x 1 need to be

assigned by three distinct colors, say 1,2 and 3. Without loss of generality, if c(x 1 x 2 ) = 1 , then the remaining edges incident

with x 2 must be assigned by 2 and 3. Thus, one of the edges incident with x 3 , except the edge x 2 x 3 , must be assigned

by a fresh color. Hence, sc f c (G ) = sc f c (B 20 ) = 4 = m − 3 in Fig. 2 . Clearly, for G ∈ { B 11 , B 12 , B 15 , B 17 , B 22 }, easily, we have

sc f c (B 11 ) = sc f c (B 12 ) = sc f c (B 15 ) = sc f c (B 17 ) = 4 = m − 3 ; sc f c (B 22 ) = 5 = m − 3 . 

Necessity. Suppose that G contains one cycle with sc f c (G ) = m − 3 . Let C be a cycle of length at least 6 in G . We have

sc f c (C) ≤ | E(C) | − 4 by Lemma 2.8 . We know that there is not a copy of C in G by Observation 2.10 . Thus, | C | ≤ 5. 

When | C| = 5 , we show that G 

∼= 

B 1 . Let C = v 1 v 2 v 3 v 4 v 5 v 1 . Suppose that there is a chord in C . Let W 0 = C ∪ v 1 v 3 be a

copy of the subgraph of G . We have sc f c (W 0 ) = sc f c (H 

′ 
4 
) ≤ 2 = | E(H 

′ 
4 
) | − 4 = | E(W 0 ) | − 4 . There is not a copy of W 0 in G

by Observation 2.10 . A contradiction. Without loss of generality, assume that W 1 = C ∪ { v 1 u 1 , v 2 u 2 } or W 1 = C ∪ { v 1 u 1 , v 3 u 2 }
is a copy of the subgraph of G . Clearly, we have sc f c (W 1 ) ≤ | E(W 1 ) | − 4 according to the coloring with c(v 1 v 2 ) = c(v 3 v 4 ) =
1 , c(v 1 v 5 ) = c(v 2 v 3 ) = 2 and c(v 4 v 5 ) = c(v 1 u 1 ) = c(v 2 u 2 ) = 3 (or c(v 4 v 5 ) = c(v 1 u 1 ) = c(u 2 v 3 ) = 3 ). By Observation 2.10 we

know there is not a copy of W 1 in G . By the same way, the graph W 2 = C ∪ { v 1 u 1 , u 1 u 2 } is not a copy of the subgraph of G

by Observation 2.10 since sc f c (W 2 ) ≤ 3 = m − 4 by the coloring with c(v 1 v 2 ) = c(v 4 v 5 ) = c(u 1 u 2 ) = 1 , c(v 2 v 3 ) = c(v 1 v 5 ) = 2

and c(v 1 u 1 ) = c(v 3 v 4 ) = 3 . Let W 3 = C ∪ { v 1 v 3 } . Since sc f c (W 3 ) = sc f c (H 

′ 
4 
) ≤ | W 3 | − 4 , we know there is not a copy of W 3 in

G by Observation 2.10 . In addition, we have sc f c (G ) = m − 2 for G = C by Theorem 4.4 . Hence, we deduce that G 

∼= 

B . 
1 
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When | C| = 4 , we show G ∈ { B 2 , B 3 , B 4 } . Let C = v 1 v 2 v 3 v 4 v 1 . We claim that if there is not a chord in C , then G ∈ { B 2 ,

B 3 }. Now assume that W 4 = C ∪ { v 1 u 1 , u 1 u 2 } is a copy of the subgraph of G . Then we have sc f c (W 4 ) ≤ 2 = | E(W 4 ) | − 4 by

the coloring with c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 4 ) = c(u 1 u 2 ) = 1 and c(v 1 u 1 ) = c(v 3 v 4 ) = 2 . By Observation 2.10 , W 4 is not a

copy of the subgraph of G . Furthermore, we show that there is not two adjacent vertices v i , v j ∈ V (C) with degree at least

three in G . Thus, let W 5 = C ∪ { v 1 x 1 , v 2 x 2 } , W 6 = C ∪ { v 1 w 1 , v 1 w 2 , v 3 w 3 } . The graphs W 5 and W 6 are not the copies of the

subgraphs of G by Observation 2.10 since sc f c (W 5 ) ≤ 2 = m − 4 and sc f c (W 6 ) ≤ 2 = | E(W 6 ) | − 4 . Meanwhile, we have G � C

since sc f c (C) = 2 = | E(C) | − 2 by Theorem 4.4 . Hence, we deduce that G 

∼= 

B 2 or G 

∼= 

B 3 . Next, we claim that if there is a

chord in C , then G = B 4 . We first show there are exactly two vertices of V ( C ) with degree three. Let W 7 = C ∪ { v 1 v 3 , v 1 y } and

 8 = C ∪ { v 2 v 4 , v 1 z} . Let K 4 be a complete graph of order 4. The graphs K 4 , W 7 and W 8 are not the copies of the subgraphs

of G by Observation 2.10 since sc f c (K 4 ) = 1 = | E(K 4 ) | − 5 , sc f c (W 7 ) = sc f c (W 8 ) ≤ 2 = | E(W 7 ) | − 4 = | E(W 8 ) | − 4 . Clearly, we

deduce that G 

∼= 

B 4 . 

When | C| = 3 , we show G 

∼= 

B 5 , B 7 or B 8 . Let C = v 1 v 2 v 3 v 1 . We first show that not all the vertices of V ( C ) have degree

at least 3. Assume, to the contrary, that W 9 = C ∪ { v 1 u 1 , v 2 u 2 , v 3 u 3 } is a copy of the subgraph of G . We have sc f c (W 9 ) ≤
2 = | E(W 9 ) | − 4 by the coloring with c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 3 ) = 1 and c(v 1 u 1 ) = c(v 2 u 2 ) = c(v 3 u 3 ) = 2 . A contradic-

tion by Observation 2.10 . Thus, there are at most two vertices in V ( C ) with degree at least three. Suppose that there

are exactly two vertices v 1 , v 2 ∈ V (C) with d G (v 1 ) ≥ 3 and d G (v 2 ) ≥ 3 . Next, let W 10 = C ∪ { v 1 u 2 , u 1 u 2 , v 2 u 3 , u 3 u 4 } . Clearly,

sc f c (W 10 ) ≤ 3 = | E(W 10 ) | − 4 by the coloring with c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 3 ) = 1 , c(v 1 u 1 ) = c(v 2 u 3 ) = 2 and c(u 1 u 2 ) =
c(u 3 u 4 ) = 3 . Thus W 10 is not a copy of the subgraph of G by Observation 2.10 . Similarly, in the same way the graphs

 11 = C ∪ { v 1 w 1 , v 1 w 2 , v 2 w 3 , v 2 w 4 } , W 12 = C ∪ { v 1 x 1 , v 1 x 2 , v 2 x 3 , x 3 x 4 } , W 13 = C ∪ ∪{ v 1 y 1 , v 2 y 2 , v 2 y 3 , y 3 y 4 } are not the copies

of the subgraphs in G since sc f c (W 11 ) ≤ 3 = | E(W 11 ) | − 4 , sc f c (W 12 ) ≤ 3 = | E(W 12 ) | − 4 , sc f c (W 13 ) ≤ 3 = | E(W 13 ) | − 4 .

Hence, we have G 

∼= 

B 6 or G 

∼= 

B 9 for two vertices v 1 , v 2 with d G (v 1 ) ≥ 3 and d G (v 2 ) ≥ 3 . Suppose that there is ex-

actly one vertex v 1 ∈ V (C) with d G (v 1 ) ≥ 3 . Let W 14 = C ∪ { v 1 w 1 , w 1 w 2 , w 2 w 3 , w 3 w 4 } , W 15 = C ∪ { v 1 x 1 , x 1 x 2 , x 1 x 3 , x 3 x 4 } and

 16 = C ∪ { v 1 y 1 , y 1 y 2 , y 2 y 3 , y 2 y 4 } . Then we have sc f c (W 14 ) ≤ 3 = | E(W 14 ) | − 4 according to the coloring with c(v 1 v 2 ) =
c(v 2 v 3 ) = c(v 1 v 3 ) = c(w 1 w 2 ) = c(w 3 w 4 ) = 1 , c(v 1 w 1 ) = 2 and c(w 2 w 3 ) and sc f c (W 15 ) ≤ 3 = | E(W 15 ) | − 4 (or sc f c (W 16 ) ≤
3 = | E(W 16 ) | − 4 ) according to the coloring with c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 3 ) = c(x 1 x 2 ) = c(x 3 x 4 ) = 1 , c(v 1 x 1 ) = 2 and

c(x 1 x 3 ) = 3 ( c(v 1 v 2 ) = c(v 2 v 3 ) = c(v 1 v 3 ) = c(y 2 y 3 ) = 1 , c(v 1 y 2 ) = c(y 2 y 4 ) = 2 and c(y 1 y 2 ) = 3 ). So W 14 , W 15 and W 16 are

not the copies of the subgraphs of G by Observation 2.10 . In addition, for G = A 1 , we have sc f c (G ) = m − 2 > m − 3 by

Theorem 4.4 . Hence, G 

∼= 

B 5 , B 7 or B 8 . 

Suppose that G is a tree. Assume that diam ( G ) ≥ 7. Clearly, diam (G ) − 	 log 2 (diam (G ) + 1) 
 ≥ 4 . From Lemma 2.11 , we have

sc f c (G ) � = m − 3 . A contradiction. Thus, diam ( G ) ≤ 6. 

When diam (G ) = 6 , we show G ∈ { B 10 , B 11 , B 12 }. Let P 7 = v 1 v 2 v 3 v 4 v 5 v 6 v 7 be a path of G . Suppose d G (v i ) ≤ 2 for ( i ∈ [7]) .

Then, clearly, we have G 

∼= 

P 7 = B 10 . Suppose there is at least one vertex v i with d G (v i ) = 3 . Assume that U 1 = P 7 ∪ { u 1 v 3 }
or U 2 = P 7 ∪ { v 4 u 1 , u 1 u 2 } is a copy of a subgraph of G . Clearly, sc f c (U 1 ) ≤ 3 = | E(U 1 ) | − 4 according to the coloring with

c(v 2 v 3 ) = c(v 4 v 5 ) = c(v 6 v 7 ) = 1 , c(v 1 v 2 ) = c(u 1 v 3 ) = c(v 5 v 6 ) = 2 and c(v 3 v 4 ) = 3 and sc f c (U 2 ) ≤ 4 = | E(U 2 ) | − 4 according

to the coloring with c(v 1 v 2 ) = c(u 1 u 2 ) = c(v 3 v 4 ) = c(v 5 v 6 ) = 1 , c(v 2 v 3 ) = c(v 6 v 7 ) = 2 , c(v 4 v 5 ) = 3 and c(v 4 u 1 ) = 4 . Hence,

we can deduce that G must be B 11 or B 12 . Suppose there is a vertex v i ∈ V (P 7 ) with d G (v i ) ≥ 4 . Then let U 3 = P 7 ∪ { v 2 x 1 , v 2 x 2 } ,
 4 = P 7 ∪ { v 3 y 1 , v 3 y 2 } and U 5 = P 7 ∪ { v 4 z 1 , v 4 z 2 } . Clearly, sc f c (U 3 ) ≤ 4 = | E(U 3 ) | − 4 by the coloring with c(v 1 v 2 ) = c(v 5 v 6 ) =

c(v 3 v 4 ) = 1 , c(v 2 x 2 ) = c(v 4 v 5 ) = 2 , c(v 2 x 1 ) = c(v 6 v 7 ) = 3 and c(v 2 v 3 ) = 4 ; sc f c (U 4 ) ≤ 4 = | E(U 4 ) | − 4 by the coloring with

c(v 1 v 2 ) = c(v 4 v 5 ) = c(v 6 v 7 ) = c(v 3 y 1 ) = 1 , c(v 2 v 3 ) = c(v 5 v 6 ) = 2 , c(v 3 y 2 ) = 3 and c(v 3 v 4 ) = 4 ; sc f c (U 5 ) ≤ 4 = | E(U 5 ) | − 4

by the coloring with c(v 1 v 2 ) = c(z 2 v 4 ) = c(v 5 v 6 ) = 1 , c(v 2 v 3 ) = c(v 4 z 1 ) = c(v 6 v 7 ) = 2 , c(v 4 v 5 ) = 3 and c(v 3 v 4 ) = 4 . Hence,

G does not contain one copy of one of { U 3 , U 4 , U 5 } by Observation 2.10 . 

When diam (G ) = 5 , we show G ∈ { B 13 , B 14 , B 15 }. Let P 6 = v 1 v 2 v 3 v 4 v 5 v 6 be a path of G . Suppose d G (v i ) ≤ 2 for i ∈ [6],

then we have G = P 6 . But, sc f c (G ) = sc f c (P 6 ) = 3 = m − 2 from Theorem 4.4 . A contradiction. Suppose there is exactly

one vertex v ∈ V (P 6 ) with d G (v ) ≥ 3 , then we claim that G = B 13 or B 14 . By symmetry, assume, to the contrary, that

 6 = P 6 ∪ { v 3 y 1 , y 1 y 2 } is a copy of the subgraph of G . However, we have sc f c (U 6 ) ≤ 3 = | E(U 6 ) − 4 | by the coloring with

c(v 2 v 3 ) = c(v 4 v 5 ) = 1 , c(v 1 v 2 ) = c(v 5 v 6 ) = c(v 3 y 1 ) = 2 and c(y 1 y 2 ) = c(v 3 v 4 ) = 3 . Thus, U 6 is not a copy of the subgraph

of G by Observation 2.10 . Since diam (G ) = 5 , then G = B 13 or B 14 . We then claim G = B 15 if there are at least two ver-

tices v i , v j ∈ V (P 6 ) with d G (v i ) ≥ 3 and d G (v j ) ≥ 3 . Assume, to the contrary, that U 7 = P 6 ∪ { x 1 v 2 , x 2 v 3 } , U 8 = P 6 ∪ { y 1 x 3 , y 2 x 4 }
or U 9 = P 6 ∪ { z 1 v 2 , z 2 v 5 } is a copy of the subgraph of G . Since sc f c (U 7 ) ≤ 3 = | E(U 7 ) | − 4 by the coloring with c(v 1 v 2 ) =
c(x 2 v 3 ) = c(v 4 v 5 ) = 1 , c(x 1 v 2 ) = c(v 3 v 4 ) = 2 and c(v 2 v 3 ) = c(v 5 v 6 ) = 3 , and sc f c (U 8 ) ≤ 3 = | E(U 8 ) | − 4 by the coloring with

c(v 1 v 2 ) = c(y 1 v 3 ) = c(y 2 v 4 ) = c(v 5 v 6 ) = 1 , c(v 2 v 3 ) = c(v 4 v 5 ) = 2 and c(v 3 v 4 ) = 3 , and sc f c (U 9 ) ≤ 3 = | E(U 9 ) | − 4 by the col-

oring with c(v 1 v 2 ) = c(v 3 v 4 ) = c(v 5 v 6 ) = 1 , c(z 1 v 2 ) = c(v 4 v 5 ) = 2 and c(v 2 v 3 ) = c(z 2 v 5 ) = 3 . Furthermore, since G does not

contain a copy of U 6 , then G must be B 15 . 

When diam (G ) = 4 , we show G ∈ { B 16 , B 17 , B 18 , B 19 , B 20 , B 21 , B 22 }. Clearly, G � = A 2 , A 3 or A 4 by Theorem 4.4 and

G � = P 5 by Theorem 4.3 . Let P 5 = v 1 v 2 v 3 v 4 v 5 be a path of G . Suppose that d G (v 2 ) ≥ 3 , d G (v 3 ) ≥ 3 and d G (v 4 ) ≥ 3 . Let

 10 = P 5 ∪ { x 1 v 2 , x 2 v 3 , x 3 v 4 , x 4 v 4 } or U 11 = P 5 ∪ { x 1 v 2 , x 2 v 3 , x 3 v 4 , x 4 v 3 } . Then we show G 

∼= 

B 20 . Since sc f c (U 10 ) ≤ | E(U 10 ) | − 4

by the coloring with c(v 2 v 3 ) = c(x 4 v 4 ) = 1 , c(x 1 v 2 ) = c(v 4 v 5 ) = 2 , c(v 1 v 2 ) = c(x 2 v 3 ) = c(x 3 v 4 ) = 3 and c(v 3 v 4 ) = 4 , and

sc f c (U 11 ) ≤ | E(U 11 ) | − 4 by the coloring with c(v 2 v 3 ) = 1 , c(x 1 v 2 ) = c(v 3 x 4 ) = c(v 4 v 5 ) = 2 , c(v 1 v 2 ) = c(x 2 v 3 ) = c(x 3 v 4 ) = 3

and c(v 3 v 4 ) = 4 . Thus, both U 10 and U 11 are not the copies of the subgraphs of G by Observation 2.10 . Let U 12 = P 5 ∪
{ y 1 v 2 , y 2 v 3 , y 2 y 3 , v 4 y 4 } . Clearly, the graph U 12 is not a copy of the subgraph of G by Observation 2.10 . Hence, G 

∼= 

B 20

when d G (v 2 ) ≥ 3 , d G (v 3 ) ≥ 3 and d G (v 4 ) ≥ 3 . In the similar way, when there are exactly two vertices v i , v j ∈ V (P 5 ) with
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Fig. 3. Ladder L k . 

Fig. 4. Möbius M 2 k . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d G (v i ) ≥ 3 and d G (v j ) ≥ 3 , we have G ∈ { B 18 , B 19 , B 21 , B 22 }. When there is exactly one vertex v i ∈ V (P 5 ) with d G (v i ) ≥ 3 , we

have G ∈ { B 16 , B 17 }. 

When diam (G ) = 3 . Let P 4 = v 1 v 2 v 3 v 4 be a path of G . Let U 13 = P 5 ∪ { v 2 w 1 , v 2 w 2 , v 2 w 3 , v 3 w 4 , v 3 w 5 , v 3 w 6 } . Clearly, U 13 is

not a copy of one subgraph of G by Observation 2.10 . Together with G � = �m 

by Theorem 4.3 and G � = A 5 by Theorem 4.4 , we

deduce G 

∼= 

B 23 . �

5. Cubic graphs with scfc -number 2 

In this section, we first define some useful definitions and show several lemmas. Next, we will characterize the cubic

graphs G with sc f c (G ) = 2 by the lemmas. 

We first give a useful definition. 

Definition 5.1 [10] . A forced 2-path in a graph G is a path xyz such that xz �∈ E ( G ) and xyz is the unique 2-path connecting x

and z . If each 2-path u i u i +1 u i +2 is forced for i = 0 , 1 , · · · , k − 2 , a k -path P = u 0 u 1 · · · u k in a graph G is called forced . A cycle

of a graph G is called a forced cycle if any two successive edges of the cycle form a forced 2-path in G . An edge e in a graph

G is called a forced edge if e is not included in a cycle of length at most 4. 

If u v is a forced edge in G and v w is an edge adjacent to u v , then u v w is a forced 2-path in G . The following two results

follow directly from the definition. 

Lemma 5.2. Let P = u 1 u 2 · · · u k be a forced path in G with sc f c (G ) = 2 . Then the adjacent edges of P are colored by distinct

colors for every strong conflict-free connection coloring with 2 colors. 

Lemma 5.3. Let C = u 1 u 2 · · · u k u 1 be a forced cycle of length k in G with sc f c (G ) = 2 . Then the adjacent edges of C are colored

by distinct colors for every strong conflict-free connection coloring with 2 colors and k is even and k ≤ 6 . 

Lemma 5.4. sc f c (C k �K 2 ) = 2 if and only if k equals 3, 4 or 6. 

Proof. We have sc f c (C k �K 2 ) ≥ 2 by Theorem 4.1 . For k = 3 , we define a 2-edge-coloring c : for every edge e in the tri-

angles, c(e ) = 1 ; Otherwise, c(e ) = 2 . Clearly, the coloring c is a strong conflict-free connection coloring of C 3 �K 2 . Hence,

sc f c (C 3 �K 2 ) = 2 . For k ≥ 4, Clearly, the graph C k �K 2 has a forced cycle. Then by Lemma 5.3 , since sc f c (C k �K 2 ) = 2 , we have

that k = 4 or 6. �

Now we define some graph-classes. A k -ladder, denoted by L k , is defined to be the product graph P k �K 2 , where P k is the

path on k vertices (see Fig. 3 ) . The Möbius ladder M 2 k is the graph obtained from L k by adding two new edges s 1 t k and t 1 s k 
(see Fig. 4 ) . 

Lemma 5.5. sc f c (M 2 k ) = 2 if and only if 3 ≤ k ≤ 7 . 

Proof. Since M 2 k is not a complete graph, it is clear to see that scfc ( M 2 k ) ≥ 2 for every k ≥ 3. 

First, we show that scfc ( M 2 k ) > 2 for k ≥ 8. Clearly, for the pair of vertices s 2 and s 6 there is only one shortest path

connecting them, which is P ′ = s 2 s 3 s 4 s 5 s 6 . For every pair of vertices in P , there is only one shortest path in M 2 k connecting

them. So we have that sc f c (M 2 k ) ≥ sc f c (P ′ ) = 3 . 

Second, we show that scfc ( M 2 k ) ≤ 2 for 3 ≤ k ≤ 7. For the graph M 2 k with k ∈ {4, 6}, we define a 2-edge-coloring c : for i ∈ {1,

3, 5}, c(s i s i +1 ) = c(t i t i +1 ) = c(s i t i ) = 1 ; for the remaining edges e , c(e ) = 2 . For the graph M 2 k with k ∈ {3, 5, 7}, we define a

2-edge-coloring c : for i ∈ {1, 3, 5}, c(s i s i +1 ) = c(t i +1 t i +2 ) = 1 ; for i ∈ {1, 2 ���, k }, c(s i t i ) = c(s k t 1 ) = 1 ; for the remaining edges

e , c(e ) = 2 . It is easy to check that every pair of vertices are connected by a strong conflict-free path under the above

2-edge-colorings. �

Before the proof of Lemma 5.6 , we first illustrate a cubic graph U ( see Fig. 5 ) with the property that spc ( U ) > 2

and sc f c (U) = 2 . We first illustrate that spc ( U ) > 2. Since each 2-path of { v v v , v v v , v v v , v v v , v v v ,
1 7 6 8 7 6 7 6 10 7 6 5 10 4 3 
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Fig. 5. The graph U . 

'v i−1 'v i

Fig. 6. The path P with an attachment W . (The path v i −1 v ′ i v i +1 is the replacement for v i −1 v i v i +1 ; the path v i −2 v ′ i −1 
v ′ 

i 
is the replacement for v i −2 v i −1 v ′ i ; the 

path v ′ 
i −1 

v i v i +1 is the replacement for v ′ 
i −1 

v ′ 
i 
v i +1 .). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v 5 v 4 v 3 v 4 v 3 v 2 , v 4 v 3 v 9 } is a forced 2-path, every two adjacent edges are needed to be colored by distinct colors from {1,

2}. Thus, there is not a strong proper path between v 7 and v 3 , therefore, spc ( U ) > 2. We have scfc ( U ) ≥ 2 by Theorem 4.1 , and

together with the 2-edge-coloring in Fig. 5 , it follows that sc f c (U) = 2 . 

Now we will show Lemma 5.6 . In order to be more convenient to handle with Lemma 5.6 , in the very beginning, we give

some explanations. Let G be a cubic graph and let c : E ( G ) �→ {1, 2} be a strong conflict-free connection coloring of G . Let P =
(u =) v 1 v 2 · · · v t−1 v t (= v ) be a strong conflict-free path between u and v . Suppose that there exists a 2-path v i v i +1 v i +2 with

c(v i v i +1 ) = c(v i +1 v i +2 ) in P . Then there must exist another 2-path v i x v i +2 ( x �∈ V ( P )) with c(v i x ) � = c(x v i +2 ) since c is a strong

conflict-free connection coloring of G . Then v i x v i +2 is called a replacement for v i v i +1 v i +2 . Suppose that c(v i −1 v i ) = c(v i x ) . Then

there must also exist a replacement v i −1 yx for v i −1 v i x . Furthermore, suppose the path yx v i +2 contains the coloring c(yx ) =
c(x v i +2 ) . If y v i +1 v i +2 is a replacement for yx v i +2 , then G [ V 

′ ], where V ′ = { v i −1 , v i , v i +1 , v i +2 , x, y } , is called an attachment of

P . Then, clearly, there is not a strong proper path between v i −1 and v i +2 . If there does not exist a replacement sharing the

same edges with P , then there is a strong proper path between v i −1 and v i +2 . Thus, we call the replacements noncyclic

replacements of P . Otherwise, it is called a cyclic replacement of P . 

Lemma 5.6. Let G be a cubic graph with G � U. If sc f c (G ) = 2 , then spc (G ) = 2 . 

Proof. Let c : E ( G ) �→ [2] be an arbitrary strong conflict-free connection coloring of G . Let P = (u =) v 1 v 2 · · · v t−1 v t (= v ) be

an arbitrary strong conflict-free path between u and v . For every pair of v i and v i +2 (i ∈ [ t − 2]) , if c(v i v i +1 ) � = c(v i +1 v i +2 ) ,

then P is a strong proper path. Thus, we have spc (G ) = 2 . Suppose that there exists a 2-path v i v i +1 v i +2 (i ∈ [ t − 2]) with

c(v i v i +1 ) = c(v i +1 v i +2 ) in P . When each replacement is a noncyclic replacement for P , then there exists a strong proper path

Q between u and v in G . We also have spc (G ) = 2 . Suppose that there exist a cyclic attachment for P . We denote G [ V 

′ ] by W ,

where V ′ = { v i −2 , v i −1 , v i , v i +1 , v ′ i , v ′ i −1 
} , clearly, W is an attachment for P (see Fig. 6 ) , in which there is not a strong proper

path between v i −2 and v i +1 . 

Claim 1. Let W be an attachment of path P. Then c(v i −3 v i −2 ) � = c(v i −2 v i −1 ) = c(v i −2 v ′ i −1 
) and c(v i +1 v i +2 ) � = c(v i v i +1 ) =

c(v ′ 
i 
v i +1 ) . 

Proof of Claim 1: Without loss of generality, suppose that c(v i −3 v i −2 ) = c(v i −2 v i −1 ) . Then, clearly, v i −3 v i −2 v ′ i −1 
is a unique

shortest path between v i −3 and v ′ 
i −1 

since G is a cubic graph. It contradicts to c(v i −3 v i −2 ) = c(v i −2 v i −1 ) under the coloring c .

This completes the proof of Claim 1. 

Suppose P contains an attachment W . We first show there is at most one attachment for P . Assume, to the contrary, that

there are two attachments in P . Let E ′ = { v j v j+1 , v j+1 v j+2 , v j+2 v j+3 , z 1 v j , z 1 v j+2 , z 1 z 2 , z 2 v j+1 , z 2 v j+3 } , for j ≥ i + 2 . Without

loss of generality, let W and G [ E ′ ] be two attachments for P . Since both v i −3 v i −2 v i −1 and v i −3 v i −2 v ′ i −1 
are forced 2-paths,

then we have c(v i −3 v i −2 ) � = c(v i −2 v i −1 ) = c(v i −2 v ′ i −1 
) . Similarly, we have c(v j−1 v j ) � = c(v j z 1 ) = c(v j v j+1 ) . Clearly, there is not

a strong conflict-free path between v i −2 and v j+1 . A contradiction. Hence, there is at most one attachment for P . Suppose

that the path P is not contained in a cycle. Then we are concerned about the path between v i −2 and v i +3 . Clearly, the paths

v i v i +1 v i +2 and v i +1 v i +2 v i +3 are forced 2-paths. Thus, we have c(v i v i +1 ) = c(v i +2 v i +3 ) � = c(v i +1 v i +2 ) = c(v i −2 v i −1 ) . Clearly, there

is not a strong conflict-free path between v i −2 and v i +3 . A contradiction. Suppose that the path P is contained in a cycle. If

we identify v i −3 with v i +1 , then G = M 6 with spc (M 6 ) = 2 by Theorem 5.7 . Now we consider that a shortest cycle C contains

P . Clearly, | C | ≥ 6, otherwise, P does not contain an attachment. Suppose | C| = 6 . Then there are two vertices u 1 and u 2
except the vertices of the attachment in C . If u 1 and u 2 are not adjacent to the same neighbor, then every pair of edges

incident with u 1 is a forced 2-path. Hence, there need at least three colors. A contradiction. Let x be a common neighbor of

u 1 and u 2 , where u 2 is adjacent to v i +1 . Let y be a neighbor of x . Let z be another neighbor of y except x . Thus, v i +1 u 2 xyz

is a unique forced path for the pair v i +1 and z . Then it is not a strong conflict-free path by Lemma 5.2 . Suppose | C| = 7 . Let
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Fig. 7. The graph F 0 ( k ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u 1 , u 2 and u 3 be three vertices except the vertices of the attachment in C . If each of { u 1 , u 2 , u 3 } is contained in a triangle,

then G 

∼= 

U ( see Fig. 5 ). If one of u 1 , u 2 and u 3 is in a triangle, then there exists a unique forced 4-path for a pair of vertices

in C , a contradiction. Let C = v 1 v 2 v 3 v 4 u 1 u 2 u 3 u 4 v 1 . Suppose that there are two attachments in C . Then G 

∼= 

L 2 ( see Fig. 10 )

with an edge-coloring such that sc f c (G ) = spc (G ) = 2 . Suppose that u 1 , u 2 , u 3 and u 4 are contained in triangles. Then G 

∼=
L 3 ( see Fig. 10 ) such that sc f c (G ) = spc (G ) = 2 . Otherwise, there will exist a unique forced 4-path for a pair of vertices in C ,

a contradiction. Suppose that at most one triangle contains two of the vertices u 1 , u 2 u 3 and u 4 , without loss of generality,

say u 1 , u 2 . Suppose further that u 3 u 4 is a forced edge. Then c(v 1 u 4 ) � = c(u 4 u 3 ) � = c(u 4 x ) , where x is a neighbor of u 4 except

v 1 , u 3 , a contradiction. Then suppose that both u 3 and u 4 are contained a 4-cycle C ′ . Clearly, there induces a unique forced

4-path for the pair of v 2 and one vertex in C ′ except u 3 , u 4 , a contradiction. Suppose 9 ≤ | C | ≤ 10. Then there is a unique

forced 4-path for some pair of vertices in G . Hence, scfc ( G ) ≥ 3. Assume | C | ≥ 11. There exists a unique shortest path of length

5 between v i −3 and v i +2 , thus, scfc ( G ) ≥ 3. A contradiction by Claim 1. �

Theorem 5.7 [10] . Let G be a cubic graph without forced edges. Suppose further that G � = K 4 . Then spc (G ) = 2 if and only if

G ∈ { C 3 �K 2 , C 2 k �K 2 , M 2 k } for some k ≥ 2 . 

Theorem 5.8. Let G be a cubic graph without forced edges. Then sc f c (G ) = 2 if and only if G ∈ { C l �K 2 , M 2 k } for l ∈ {3, 4, 6} and

for k with 3 ≤ k ≤ 7 . 

Proof. Sufficiency. By Lemma 5.4 and 5.5 , Clearly, sc f c (G ) = 2 . 

Necessity. Suppose G � U . If sc f c (G ) = 2 , then we have spc (G ) = 2 by Lemma 5.6 . Furthermore, we have G ∈
{ C 3 �K 2 , C 2 k �K 2 , M 2 k } for some k ≥ 2 from Theorem 5.8 . Then G ∈ { C l �K 2 , M 2 k } for l ∈ {3, 4, 6} and for k with 3 ≤ k ≤ 7 by

Lemma 5.4 and 5.5 . �

Let F 0 ( k ) be the cubic graph which is obtained from L k by adding two new vertices x and y and adding five new edges

xy , xs 1 , xt 1 , ys k , yt k ( see Fig. 7 ). 

Lemma 5.9. sc f c (F 0 (k )) = 2 with k ≥ 2 if and only if k ∈ {2, 4} . 

Proof. When k ≥ 3, the cycle xs 1 s 2 ���s k yx , say C , is a forced one in F 0 ( k ). Then we have that k = 4 by Lemma 5.3 . When k = 2 ,

we define an edge-coloring c for F 0 ( k ): c(xy ) = 2 ; c(xs 1 ) = c(xt 1 ) = c(ys k ) = c(yt k ) = 1 ; c(s i s i +1 ) = c(t i t i +1 ) = c(s i t i ) = 1 for

even i ∈ [ k ]; for all the remaining edges, c(s i s i +1 ) = c(t i t i +1 ) = c(s i t i ) = 2 for odd i ∈ [ k ]. We can easily check that every pair

of vertices have a strong conflict-free path connecting them. Since scfc ( F 0 ( k )) > 1, we have that sc f c (F 0 (k )) = 2 for k = 2 or

4. �

We now introduce a family H of graphs which will be used in the latter proof ( see Fig. 8 ). 

H = { F ∗0 (k ) , ˆ K 4 , ˆ D 3 , ˜ K 3 , 3 , ˜ Q 3 , F 1 (k ) } (k ∈ N ) 

Theorem 5.10 [10] . Let G be a cubic graph with exactly one forced edge. Then spc (G ) = 2 if and only if G = F 0 (k ) for some even

k ≥ 4, or G is obtained from H 1 and H 2 by identifying the pendent edges to a single edge, where H i ∈ { ˆ K 4 , ˆ D 3 } for i = 1 , 2 . 

Lemma 5.11. Let G be a cubic graph. If G is obtained from H 1 and H 2 by identifying the pendent edges to a single edge, where

H i ∈ { ˆ K 4 , ˆ D 3 } for i = 1 , 2 , then scfc ( G ) = 2 if and only if H i = 

ˆ K 4 for i = 1 , 2 . 

Proof. Sufficiency. If G is obtained from two graphs ˆ K 4 by identifying the pendent edges to a single edge, then we know that

sc f c (G ) = 2 by the coloring of Fig. 9 . 

Necessity. Suppose scfc ( G ) = 2. If G is constructed by identifying the pendent edge of H 1 with H 2 ∈ { ˆ K 4 , ˆ D 3 } ( see Fig. 8 ), then,

clearly, there is a forced 4-path which needs three colors to make it strong conflict-free connected. Thus we have scfc ( G ) ≥ 3.

A contradiction by Lemma 5.2 . when H 1 = H 2 = 

ˆ K 4 , it is clear that scfc ( G ) > 1. On the contrary, we have scfc ( G ) ≤ 2 under the

edge-coloring in Fig. 9 . �

Theorem 5.12. Let G be a cubic graph with exactly one forced edge. Then sc f c (G ) = 2 if and only if G 

∼= 

F 0 ( k ) for k ∈ {2, 4} or

G 

∼= 

N. 

Proof. Sufficiency. From Lemma 5.9 and 5.11 , we have sc f c (G ) = 2 for G 

∼= 

F 0 ( k ) for k ∈ {2, 4} or G 

∼= 

N . 

Necessity. Suppose that sc f c (G ) = 2 . From Lemma 5.6 , it follows that spc (G ) = 2 . Furthermore, we then have G 

∼= 

F 0 ( k )

for k ∈ {2, 4} or G 

∼= 

N by Theorem 5.10 and by 5.11 . �
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Fig. 8. The graph family H. 

Fig. 9. The graph N . 

Fig. 10. The graph class L . 

 

 

 

 

 

 

 

 

Before proceeding, we need one more definition. 

Definition 5.13 [10] . Let G be a connected graph. The forced graph of G is obtained from G by replacing each forced edge u v
(if any) by two pendant edges uu ′ and vv ′ , where u ′ and v ′ are two new vertices with respect to the forced edge u v . Each

component of the forced graph of G is called a forced branch of G , and the new pendant edge uu ′ in the forced branch is

called a forced link of G . For each forced edge u v of G , we call uu ′ and vv ′ the twin links corresponding to the forced edge

u v . In the case that a forced link uu ′ and its twin link vv ′ are contained in a common forced branch of G , we say that uu ′ is

a selfish link . 

Theorem 5.14 [10] . Let G be a cubic graph containing at least two forced edges, and let H 1 , H 2 , ���, H r be the forced branches

of G. Then spc (G ) = 2 if and only if H i ∈ H for i = 1 , 2 , · · · , r, and there are 2 - SP C (strong proper connection number being 2)

patterns p 1 , p 2 , ���, p r of H 1 , H 2 , ���, H r , respectively, such that each pair of twin links receive the same color. 

Remark. The definition of pattern in Theorem 5.14 can be referred to [10] . 

Theorem 5.15. Let G be a cubic graph containing at least two forced edges, and let H 1 , H 2 , · · · , H r ∈ H be the forced branches of

G. Then scfc ( G ) = 2 if and only if G ∈ L , demonstrated in Fig. 10 . 
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Proof. Necessity. Since every graph L i ∈ L is not a complete graph, then scfc ( L i ) ≥ 2. Also, we have scfc ( L i ) ≤ 2 by the edge

coloring depicted in Fig. 10 . Hence, sc f c (L i ) = 2 for each L i ∈ L . 

Sufficiency. Let G 

∗ be the forced graph of G . If F ∗
0 
(k ) ⊂ G 

∗ or F 1 ( k ) ⊂ G 

∗, then k ≤ 2. Otherwise, there is a forced 4-path

which needs at least three colors to make it strong conflict-free connected. Clearly, G 

∗ contains at least two forced branches

since G contains at least two forced edges. 

Suppose that there exists a forced edge which is a cut-edge in G. It is clear that ˆ D 3 � G 

∗ or ˆ K 4 � G 

∗. Suppose ˆ D 3 ⊂ G 

∗.

Since there is a forced 3-path u ′ 
1 
u 1 u 2 u 3 , then identify the pendent edge of any one graph in H with the pendent edge

u ′ 
1 
u 1 ∈ E( ˆ D 3 ) will induce a forced 4-path which needs at least three colors. Hence, ˆ D 3 � G 

∗. Suppose ˆ K 4 ⊂ G 

∗. Clearly, there

are at least two ˆ K 4 since G contains at least two forced edges. For each graph H 

′ ∈ { F ∗0 (k ) , ˜ K 3 , 3 , ˜ Q 3 , F 1 (k ) } (k ∈ N ) , if identify

the pendent edges e 1 , e 2 ∈ E ( H 

′ ) with each pendent edge of two ˆ K 4 , then, clearly, there are two forced 2-paths between v 2 
and the copy of v 2 , which needs at least three colors to make the path (which contains the two forced 2-paths) strong

conflict-free connected. Hence, there does not exist a forced edge which is a cut-edge in G . 

Suppose that every forced edge is not one cut-edge in G. Clearly, we have ˆ D 3 � G 

∗ and 

ˆ K 4 � G 

∗. There is no selfish link in

G 

∗ since G contains at least two forced edges. 

Claim 1: If each connected component of G 

∗ belongs to { ˜ Q 3 , ˜ K 3 , 3 , F 
∗

0 
(k ) } for k ≤ 2, then there are at most two connected

components in G 

∗. 

Proof of Claim 1: Assume, to the contrary, that there are three connected components in G 

∗. Since each component of G 

∗

contains exactly two pendant edges, then the forced edges are contained in the same cycle. Clearly, both each pendant edge

of the connected components and its each adjacent edge form a forced 2-path. It means that there does not exist a strong

conflict-free path containing two forced 2-paths, between two forced edges. Hence, scfc ( G ) ≥ 3. A contradiction. Completing

the proof of Claim 1. �
Claim 2: There is at most one copy of ˜ Q 3 in G 

∗. 

Proof of Claim 2: Assume, to the contrary, that there are two copies of ˜ Q 3 in G 

∗. Clearly, the forced edges are contained

in a cycle of length at least 8. Thus, there is exactly a forced 4-path between p 2 and p 4 . Clearly, scfc ( G ) ≥ 3. Completing the

proof of Claim 2. �
Claim 3: There is no the copy of F 1 ( k ) in G 

∗. 

Proof of Claim 3: Assume that there is a connected component F 1 ( k ) in G 

∗. Clearly, there are at least two connected

components in G 

∗. Then there must exist also another one copy of F 1 ( k ) in G 

∗ since there are three pendant edges in F 1 ( k ).

Since both each pendant edge of the connected components and its each adjacent edge form a forced 2-path, there does

not exist a strong conflict-free path containing two forced 2-paths, between two forced edges. This completes the proof of

Claim 3. �
Then from Claim 1, Claim 2 and Claim 3, we can check by enumeration that G ∈ L . �

Finally, Combining Theorems 5.8, 5.12 and 5.15 , we have our main theorem of this section. 

Theorem 5.16. Let G be a cubic graph. Then sc f c (G ) = 2 if and only if 

G ∈ L or G ∈ { N, C l �K 2 , M 2 r , F 0 (k ) } , 
where l ∈ {3, 4, 6}, 3 ≤ r ≤ 7 and k ∈ {2, 4} . 
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