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1. Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow book [2] for undefined notation and
terminology. For a graph G, let c: E(G) — [r] be an edge-coloring of G. For an edge e of G, we denote the color of e by c(e).
And we denote the number of vertices, edges in G by n, m, respectively. We denote [t] the set {1, 2, ---, t} and we define Cs
as a cycle of length s. We denote by d;(v) the degree v in G.

Coloring problems are important topics in graph theory. In recent years, there have appeared a number of colorings
raising great concern due to their wide applications in real world. We list a few well-known colorings here. The first of
such would be the rainbow connection coloring, which is stated as follows. A path in an edge-colored graph is called a
rainbow path if all the edges of the path have distinct colors. An edge-colored graph is called (strongly) rainbow connected
if there is a (shortest and) rainbow path between every pair of distinct vertices in the graph. For a connected graph G, the
(strong) rainbow connection number of G is defined as the smallest number of colors needed to make G (strongly) rainbow
connected, denoted by (src(G)) rc(G). These concepts were first introduced by Chartrand et al. in [6].

Inspired by the rainbow connection coloring, the concept of proper connection coloring was independently posed by
Andrews et al. in [1] and Borozan et al. in [3], the only difference from (strong) rainbow connection coloring is that distinct
colors are only required for adjacent edges instead of all edges on the (shortest) path. For an edge-colored connected graph G,
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the smallest number of colors required to give G a (strong) proper connection coloring is called the (strong) proper connection
number of G, denoted by (spc(G)) pc(G).

The hypergraph version of conflict-free coloring was first introduced by Even et al. in [9]. A hypergraph H is a pair
H = (X,E) where X is the set of vertices, and E is the set of nonempty subsets of X, called hyperedges. The coloring was
motivated to solve the problem of assigning frequencies to different base stations in cellular networks, which is defined as
a vertex-coloring of H such that every hyperedge contains a vertex with a unique color.

Later on, Czap et al. in [7] introduced the concept of conflict-free connection coloring of graphs, motivated by the earlier
hypergraph version. A path in an edge-colored graph G is called a conflict-free path if there is a color appearing only once
on the path. The graph G is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices
of G. For a connected graph G, the minimum number of colors required to make G conflict-free connected is defined as the
conflict-free connection number of G, denoted by cfc(G). For more results, the reader can be referred to [4,6,5,8,12].

In this paper, we focus on studying the strong conflict-free connection coloring which was introduced by Ji et al. in [11],
where only computational complexity was studied. An edge-colored graph is called strongly conflict-free connected if there
exists a conflict-free path of length dg(u,v) for every pair of vertices u and v of G. For a connected graph G, the strong
conflict-free connection number of G, denoted scfc(G), is the smallest number of colors that are required to make G strongly
conflict-free connected.

The paper is organized as follows. In Section 2, we give some preliminary results. In Section 3, we show that if G; is a
connected graph with m (m>2) edges and t edge-disjoint triangles, then scfc(G;) < m — 2t, and the equality holds if and
only if Gt = Spm—_¢ . In Section 4, we characterize the graphs G with scfc(G) =k for ke {1, m —3,m — 2, m — 1, m}. In the last
section, we completely characterize the cubic graphs G with scfc(G) = 2.

2. Basic results and lemmas

In this section, we present some results which will be used in the sequel. In [11], the authors obtained the following
computational complexity result.

Theorem 2.1 [7]. If P, is a path on n vertices, then cfc(Py) = [log, n].
Theorem 2.2 [4]. Let G be a connected graph of order n (n>2). Then cfc(G) =n—1 if and only if G =Kq p_1.

From Theorem 2.1 and 2.2 and the definitions of (strong) conflict-free connection number, we immediately have the
following theorem.

Theorem 2.3. For a tree T, scfc(T) = cfc(T). Therefore, for a path P, on n vertices, scfc(P,) = [log, n; for a star Sy, with m
edges, scfc(Sm) = m.

The authors in [6] obtained the strong rainbow connection number for a wheel graph Wy, where n is the degree of the
central vertex, and the complete bipartite graph K.

Theorem 2.4 [G]. For n>3, let W, be a wheel. Then src(Wy) = [§7.
Theorem 2.5 [6]. For integers s and t with 1 <s<t, src(Ks;) = [Vt].
Theorem 2.6. For the integers n, s and t with 1 <s<t, scfc(Wy) = [§] and scfc(Ks) = [Vt].

Proof. Note that for a graph G with diameter 2, a strong rainbow path (of length 2) of G is a strong conflict-free path of G,
and vice versa. Since diam(Wp) =2, then scfc(Wy) = src(Wh). So, scfc(Wp) = [§] from Theorem 2.4. Since diam(Ks,) = 2,
from Theorem 2.5 we have that scfc(Ks;) = [vt]. O

Lemma 2.7. Let C, be a cycle of order n and let P, be a spanning subgraph of C,. Then scfc(Cy) < scfc(Pp).

Proof. Let P, = vy (= u)vy ---vy_1Vn(= v) be a path with n vertices. We know that scfc(P,) = [log, n| by Theorem 2.3. Now
we first give a coloring for Py: color the edge e; with color x + 1, where 2* is the largest power of 2 that divides i. One can
see that [logyn] is the largest number in the coloring by Theorem 2.3. Clearly, the color [logyn] only occurs once. Thus,
we color the edge uv with [logyn] in Gy if there is only one color occurring once; otherwise, we color the edge uv with
[log, n] — 1. Consequently, the coloring is a strong conflict-free connection coloring of C;. O

Remark. The proposition does not hold for general graphs. Here is a counterexample. Let G=Cg with the edge set
{U] Uy, VU3, U3Vy4, V4Vs, Uslg, Vgl } So SCfC(G) =2.Llet G = Ce +V1V3. Then SCfC(G/) =3.

Lemma 2.8. If C, is a cycle with n (n>3) vertices, then
scfc(Cy) = [log, n] — 1or[log, n].

Proof. By Lemma 2.7 and Theorem 2.3, one can see that scfc(Cy) < [logyn]. It remains to handle with the lower bound.
We first consider the case that diam(Cy,) = 5 for n =2k (ke Z*). Hence, scfc(Gy) > [logy(5 + 1)1 = [logy(n+2)] -1 =
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[log, n] — 1. We then consider the case that diam(C,) = % for n=2k+1 (ke z"%). Thus, scfc(Gy) > [logz(% +1)] =
[logy(n+1)] — 1 > [logy n] — 1. Consequently, scfc(Cy) = [logy n] — 1 or [logyn]. O

Lemma 2.8 implies the following corollary.
Corollary 2.9. Let G be a connected graph with m edges and let C be a cycle in G. Then scfc(G) < m — |C| + [log, |C|].
We end this section with an observation and a lemma.

Observation 2.10. Let G be a connected graph with scfc(G) = |E(G)| — k and let H be a connected graph with scfc(H) <
|E(H)| — k — 1. Then there is not a copy of H in G.

Lemma 2.11. Let G be a connected graph with size m and scfc(G) = m — k. Then diam(G) — [log, (diam(G) +1)] < k.

Proof. Let P be the path of length diam(G). Now we define a coloring with m + [log, diam(G) + 1] — diam(G) colors: assign
the edges of P with [log, diam(G) + 1] colors to make P strongly conflict-free connected; assign each of the remaining
m — diam(G) edges a fresh color. Clearly, G is strongly conflict-free connected. Since scfc(G) = m — k, then we have that
m —k <m+ [log, (diam(G) + 1) — diam(G)7. Consequently, diam(G) — [log, (diam(G) + 1)] <k. O

3. Upper and lower bounds

At first, let us look at trees. We have one trivial result.

Theorem 3.1. Let T be a tree of order n. Then we have
max{[log, (diam(T) + 1)], A(T)} < scfc(T) <n—1.

Next, we show a simple lower bound. Let G be a connected graph and let u, v be two vertices of G. If there are t paths
between u and v in G, where the degree of internal vertices of the paths in G is 2, then we call the paths t-parallel paths.

Theorem 3.2. Let G be a connected graph and let v, u be two vertices of G with d(u,v) > 2. If one of the following conditions
holds, then scfc(G) > 3.

1. There exist a cut-vertex w which splits G into at least three components by deleting w.

2. There exists a path P of length at least 4 between u and v, where the edges of the path are bridges.

3. There exist 2-parallel paths between u and v, where the length of one path is 2 and the length of the other one is 3.
4. There exist 5-parallel paths between u and v.

Proof. 1. Let Cy, Gy, -+, Gy (m>3) be the components when deleting w from G. We choose a vertex u; which is adjacent
to w in each component C;. Clearly, each pair of u; and u; contains the only path, and it contains w. Consequently, we have
that scfc(G) > scfc(Sm) =m > 3.

2. Let P be a path of length at least 4. Since every edge of P is a bridge. Hence, we have scfc(G) > scfc(P) > 3.

3. Since the lengths of the two paths are 2 and 3, there is a 5-cycle in G. Clearly, scfc(G)> 3.

4. Since d(u,v) > 2, every path between u and v has a length at least 2. If we assign a coloring with 2 colors for the
paths, then there always exist at least two internal vertices of the paths which do not contain a strong conflict-free path.
Consequently, scfc(G)>3. O

We now define a graph class. Let S, be a star with k edges uvy, uv,, .-, uv,.. We denote by Sp_ the graph Sy +
{niva, v3vg, - v que} (2<t=m).

Theorem 3.3. If G; is a connected graph with m (m>2) edges and t edge-disjoint triangles, then scfc(G;) <m —2t, and the
equality holds if and only if Gt = Syt t.

Proof. Clearly, scfc(K3) = 1. Now we first give a coloring of G;: Color each triangle with a distinct color, that is, the three
edges of each triangle receive a same color, and color each of the remaining m — 3t edges with a distinct color. Let P be
a strong conflict-free path for any pair of vertices u and v in G. Clearly, P contains at most one edge from each triangle.
Otherwise, it will produce a contradiction. Thus, G; is strongly conflict-free connected. So scfc(G;) <m — 2t.

We now show that scfc(G¢) = m — 2t if and only if G; = Sp_¢¢.

Sufficiency. Suppose that G; = Syt . Clearly, scfc(Sm—rr) < m — 2t. Note that every pendant edge needs a distinct color
and every triangle needs a fresh color. Suppose that there is a coloring of S;_; in which on some triangle there is used
the same color as on some pendant edge. Then the shortest path is not a conflict-free path between the leaf incident
with the pendant edge and one vertex of degree two. Also, if we provide the t triangles with t — 1 colors, there exist two
triangle with the same color. There would also not exist a strong conflict-free path between the vertices of the two triangles.
Consequently, scfc(Sm_¢t) > m — 2t.

Necessity. We now show that it holds for the necessity by the following 3 claims.

Claim 1. If scfc(G;) = m — 2t, then every edge of G;, except of the edges of the triangles, is a cut edge.

Proof of Claim 1. Assume that there is a cycle C (|C| >3) except the t triangles. We know that scfc(C) < [log,|C|] by
Lemma 2.8. Now we define a coloring with m — 2t + [log, |C|] — |C| < m — 2t — 1 colors: assign every triangle with a distinct
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color and assign C with [log,|C|] fresh colors, and the remaining edges are assigned by m — |E(C)| — 3t fresh colors. Clearly,
G; is strongly conflict-free connected. So, scfc(Gt) < m — 2t + [log, |C|] — |C| < m — 2t — 1, a contradiction.

Claim 2. If scfc(G;) = m — 2t, then each triangle in G; contains at least two vertices of degree two.

Proof of Claim 2. Assume that there is at most one vertex of degree two in a triangle v;v,v3v;. Without loss of gener-
ality, let uqvq and u,v, be two edges. We will consider the following three cases.

Case 1. Both uqv; and u,v, are not contained in triangles. We define a coloring c of G;: assign each triangle with a distinct
color; assign both uqv; and u,v, with a fresh same color; the remaining m — 2 — 3t edges are colored by m — 2 — 3t fresh
colors. We only need to check u; — u, paths. By Claim 1, ujviv,u; is the unique strong conflict-free path between u; and
u,. Clearly, G; is strongly conflict-free connected. Hence, scfc(G;) < (m—2 —-3t) + 1+t =m -2t — 1, a contradiction.

Case 2. uqvq and u,v, are contained in different triangles. Let X; contain u;v; and let X, contain u,v,. We now define a
coloring of G;: assign X; and X, with the same color; assign the other triangles with t — 2 fresh colors; each of the remaining
edges is colored by a fresh color. Clearly, G; is strongly conflict-free connected. Hence, scfc(G;) <m — 2t — 1,a contradiction.

Case 3. One of uyv; and u,v, is contained in a triangle. Similarly, there is a strong conflict-free connection coloring with
m — 2t — 1 colors, a contradiction. Completing the proof of Claim 2.

Claim 3. Let C(G;) be the graph induced by all the cut-edges of G;. Then C(G;) is a tree with diam(C(G;)) <2.

Proof of Claim 3. Assume ((G:) is not connected. Let H; and H, be two connected components of C(G;). Clearly, the
path in G; which is connected to two vertices h{( e V(H;)) and hy( e V(H;)) goes through at least one triangle. Thus, the
triangle contains at least two vertices of degree at least 3, which contradicts to Claim 2. Assume that diam(C(G;)) =k > 3.
Let P = vyvy --- v, be a path of length k. Then we define a coloring of G with m — 2t — k + [log, (k+ 1)] colors: assign the
edges of P with [log,k]| colors to make P strongly conflict-free connected from Theorem 2.3; assign each of the t triangles
with a fresh color; assign each of the remaining m — 3t — k edges with a fresh color. Clearly, G; is strongly conflict-free
connected, a contradiction. Completing the proof of Claim 3.

From the above claims, we can deduce that G; = Sp_¢¢. O

4. Graphs with large or small scfc numbers

In this section, we characterize the connected graphs G of size m with scfc(G) =k for ke {1,m -3, m—-2,m-1,mj}.
For the connected graph G with scfc(G) = 1, we have the trivial result.

Theorem 4.1. For a nontrivial connected graph G, scfc(G) =1 if and only if G is a complete graph.
From here on, we start to characterize the graph with large strong conflict-free connection number.
Theorem 4.2. Let G be a nontrivial connected graph of size m. Then scfc(G) = m if and only if G = Sp,.

Proof. Necessity. Suppose that G = S,. we have scfc(G) = m by Theorem 2.3.

Sufficiency. Suppose that scfc(G) = m. Assume there is a cycle C in G. Then scfc(G) <m — |C| + [log, |C|] <m —1 by
Corollary 2.9, a contradiction. Hence, G is a tree. Let u and v be two vertices with dg(u,v) > 3 in G. Similarly, scfc(G) <
m —dg(u, v) + [logy (dg(u,v) + 1)] < m — 1, a contradiction. Thus, G = Sy, O

For convenience, we define some graph-classes before proving the theorem below. Let Sp, be a star with m(>2) edges
and let u be a leaf of Sy,. We define a graph by I'py 1 = (V(S) U {v}, E(S) U {uv}).

Theorem 4.3. Let G be a connected graph of size m. Then scfc(G) = m — 1 if and only if Ge {P4, P5, T';m}.

Proof. Necessity. We have scfc(G) =scfc(Py) =2 =m—1 and scfc(G) = scfc(Ps) =3 =m —1 by Theorem 2.3. On one hand,
we have scfc(I'y) > A('m) = m—1 by Theorem 3.1. On the other hand, we define a coloring of I';; by assigning each
of the m—1 edges of S;,_1(c I'm) with a fresh color and choosing one color from the used colors except for the color
assigned to the edge incident with u to assign the unique remaining edge. Clearly, G is strongly conflict-free connected.
Hence, scfc(I'm) =m —1.

Sufficiency. Suppose that scfc(G) = m — 1. We first show that G is a tree. Assume, to the contrary, that there is a cycle C
in G. We have that scfc(C) < |E(C)| — 2 by Lemma 2.8, and thus C£G by Observation 2.10.

When diam(G) = 2, we have G = S, with scfc(G) = m since G is a tree. But it is a contradiction.

When diam(G) = 3, we show Ge{P4, 'n}. Let Py = v11,1304 of G. If G = P4, then scfc(G) = m—1 by Theorem 2.3. As-
sume M; = Py U {xv,,yv3} is a copy of the subgraph of G. It is easy to check that scfc(M;) <3 =|E(M;)| —2. So M{¢G by
Observation 2.10. Thus, there is at most one vertex v; € V(P;) with dg(v;) > 3. Let My = Py U {XqV5, --- , X515, } for t>3.
Obversely, scfc(M,) >t = |E(M,)| — 1 by Theorem 3.1. On the other hand, there is a strong conflict-free connection coloring
with t colors for G with c(e) =1 for each e € {v11,, V314}, c(Vov3) =2 and c(x;v,) =i for i € [t — 2]. So, Ge{Py, T';m}.

When diam(G) = 4, we show G = Ps. Let Ps = v11,v3v4V5 be a path of G. If G = Ps, then scfc(G) =scfc(Ps) =m—1 by
Theorem 2.3. Assume that M3 = Ps; U {wy;} for ie[5] is a copy of the subgraph of G. By symmetry, M3 = Ps U {wv,} or M3 =
Ps U {wus}. If c(v115) =c(r3v4) =1, c(wrp) =3 (c(wr3) =3) and c(v,v3) = 2, then we can check scfc(Ms) < |E(M3)| — 2.
Hence, M3¢G by Observation 2.10.

For diam(G)>5, clearly, we have diam(G) — [log,(diam(G)+1)] > 1, then scfc(G) #m—1 by Lemma 211, a
contradiction. O
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Az As Ay As

Fig. 1. Graphs with scfc(G) = m — 2. (Remark: The graphs Ay, A;, A3 and As contain t leaves of the star S; with t>0 in Fig. 1. if they occur in the latter
figures, it also means that they are the t leaves of the star S; with t>0).

Theorem 4.4. Let G be a connected graph with m(m > 3) edges. Then scfc(G) = m — 2 if and only if Ge{C4, Cs, Pg, Ay, Ay, -+,
As} which are demonstrated in Fig. 1.

Proof. Necessity. For G =P; we have scfc(G) =scfc(Ps) =3 =m—2 by Theorem 2.3. For Ge{C4, Cs}, clearly, we have
scfc(C4)>2 and scfc(Cs) >3, on the other hand, from the coloring in Fig. 1 we know that scfc(G) =scfc(Cs) =3 =m — 2,
scfc(G) =scfc(Cy) =2 =m—2. For G=A; with ie{2, 3, 5}, we have scfc(G) =scfc(A;) >t+3 =m—2 by Theorem 3.1.
On the other hand, we know that scfc(G) = scfc(A;) <t+3 =m—2 by the coloring in Fig. 1. Clearly, for G = A; we have
scfc(G) =scfc(A1) > A(G) —1=t+1=m-2, meanwhile, we have scfc(G) = scfc(A;) <t+1=m—2 by the coloring in
Fig. 1. For G = A4, the edges incident with x; need to be assigned by three distinct colors, say 1,2 and 3. If c(x1x;) = 2,
then c(x3x3) = 1 or 3. Thus, one of the remaining two edges must be colored by a fresh color. So, scfc(G) =A4 >4=m —4.
Conversely, we have scfc(G) = scfc(A4) <4 =m —4 by coloring in Fig. 1.

Sufficiency. Suppose that G contains one cycle with scfc(G) = m — 2. Let C be a cycle of length at least 6 in G. We have
scfc(C) < |E(C)| — 3 by Lemma 2.8. It follows that CZG by Observation 2.10. A contradiction. Hence, |C| <5.

When [C| =3, we show G = A;. Let C =vv,v3v4. Suppose there are two vertices v;, vj € V(C) with dg(v;) =3 and
dg(vj) = 3. Let H; =CU{rquy, voup} be a copy of a subgraph of G. We have scfc(H;) <2 =|E(H;)| -3 according to
the coloring with c(v11;) = c(1,v3) = c(r1v3) =1 and c(vquq) = c(vyuy) = 2. Thus, there is not a copy of H; in G by
Observation 2.10. A contradiction. Then there is at most one vertex v; € V(C) with dg(v;) >3 in G. Thus, let H, =
Cu{vyuq,uquy} be a copy of subgraph of G. Obviously, scfc(Hy) <2 = |E(H;)| — 3. There is not a copy of H, in G by
Observation 2.10. Hence, we have diam(G) = 2. It means that G = A;.

When |C| =4, we show G = (4. Let C = v11,v3v4v4. Suppose there is one vertex v; € V(C) with dg(v;) >3 in G. Let
Hz =CuU{vquq} or Cu{vqv3} be a copy of the subgraph of G. Clearly, we have scfc(H3) <2 = |E(H3)| — 3 by the coloring
with c(v1v,) = c(1v3) = c(V1v4) =1 and c(v3v4) = c(v1uq) = 2 (or c(v3vy) = c(v1v3) = 2). Thus, there is not a copy of Hj
in G by Observation 2.10. Hence, G = C4.

When |C| =5, we show G = Cs. Let C = v1V,V304V507. Suppose there is one vertex v; € V(C) with d¢(v;) > 3 in G. By the
same way, the graph Hy =CU {vqu;} (or Hy =CU{ryv3}) is not a copy of the subgraph in G by Observation 2.10 since
scfc(Hy) < |E(Hy)| —4 (or scfc(Hy) < |E(H))| —4) by the coloring with c(v1v;) = c(vav5) =1, c(v1v5) = c(vpv3) =2 and
c(v3v4) = c(vquy) =3 (or c(v1vy) = c(rv3) = c(V1v3) = c(V4V5) = 1 and c(v3vy) = c(v1uq) = 2). Hence, there is not a ver-
tex v; € V(C) with dg(v;) > 3 in G. Hence, every vertex v; € V(C) have degree 2, then we can deduce that G = Cs.

Suppose that G is a tree with scfc(G) = m — 2. Assume that diam(G) > 6. Clearly, we have diam(G) — [log, (diam(G) +1)] >
2, then scfc(G) # m — 2 by Lemma 2.11, a contradiction. Thus, diam(G) <5.

When diam(G) = 2. Clearly, we have G = Sy, with scfc(Sm) = m, which is a contradiction.

When diam(G) = 3, we show G = As. Let Py = v1v,v3v4 be a path of G. Assume that the degrees of both v, and v3
are at least 4. Let Hs = Py U {w U5, WU, W33, Wav3} be a copy of the subgraph of G. We have scfc(Hs) <4 = |[E(Hs5)| — 3
by the coloring with c(v11,) = c(V3v4) =1, c(Wyy) = c(Wyav3) = 2, c(wqvy) = c(w3v3) =3 and c(v,v3) = 4. Thus, there is
not a copy of Hs in G by Observation 2.10. Hence, there is at most one vertex v; € {v,, v3} with dg(v;) > 4. Together with
scfc(Py) =2=m—1 and scfc(I'y) = m — 1 for Ge{P4, ['m} by Theorem 4.3, we can deduce that G = As.

When diam(G) = 4, we show Ge{A,, A3, As}). Let Ps = v1v,v3v4V5 be a path of G. Assume that there are two adjacent
vertices with degree 3, say v, and vs. Let Hg = Ps U {w 1, w3} be a copy of the subgraph of G. We have scfc(Hg) <3 =
|E(Hg)| — 3 by the coloring with c(v11,) = c(v3v4) = 1, c(w1p) = c(W,13) = c(V4V5) = 2 and c(v,v3) = 3. Thus, there is not
a copy of Hg in G by Observation 2.10. Furthermore, assume that H; = Ps U {w v, WoU4, W34} is a copy of the subgraph of
G. We have scfc(H;) <4 = |E(H7)| — 3 by the coloring with c(r3v4) =1, c(Vhv3) = c(W3vy) =2, c(V,wq) = c(V4V5) = 3 and
c(v1vy) = c(w,vy) = 4. Thus, there is not a copy of H; in G by Observation 2.10. Together with scfc(G) =m —1 for G = Ps
from Theorem 4.3, we could deduce that G {A,, A3, A4}
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Big Big Bag Bay By Bas

Fig. 2. Graphs with scfc(G) =m —3.

When diam(G) =5, we show G = Pg. Let Ps = v11,U3V4V5V6 be a path of G. If G=Ps;, then scfc(G) =3 =m-2 by
Theorem 2.3. By symmetry, Assume that Hg = P; U {v,x} or Hg = Ps U {r3x} is a copy of the subgraph of G. Clearly, scfc(Hg) <
3 = m — 3. Thus, there is not a copy of Hg in G by Observation 2.10. We can deduce that G = Pg. O

Theorem 4.5. Let G be a connected graph with m(m > 4) edges. Then scfc(G) = m — 3 if and only if Ge{By, By, -+, By3} which
are demonstrated in Fig. 2.

Proof. Sufficiency. Clearly, we have scfc(G)> A(G) for Ge{B;, B3, B7, By3, B14, Big, B1g, B1g, B21, Ba3}. On the other hand, by
the coloring of G € {By, B3, B, B13, B4, B1s, Bis, B1g, B21, By3} in Fig. 2, we have scfc(G) = scfc(By) = scfc(By3) = scfc(Big) =
scfc(Byg) = scfc(Big) = scfc(Byg) =t +3=m—3, scfc(G) =scfc(B3) =3 =m-—3, scfc(G) =scfc(B;)=t+2=m-3 and
scfc(G) = scfc(By1) = scfc(Byy) =t +4 = m — 3. Obviously, for G e {B,, By, Bg, Bg} we have scfc(G) > A(G) — 1. On the other
hand, by the coloring of Ge{B,, B4, Bg, Bg} in Fig. 2, we have scfc(G) = scfc(By) = scfc(Bg) =scfc(Bg) =t+2=m—3 or
scfc(G) =scfc(Bg) =2 =m—3. For G=Byg we have scfc(G) = scfc(Byg) =3 =m—3 by Theorem 2.3. For G = Bg, since
there is exactly one path of length d(x, y) (d(x,y) =4 between x and y, then we have scfc(Bg)>3. By the coloring in
Fig. 2, we have scfc(Bg) =3 = m — 3. Similarly, scfc(Bs) =3 =m — 3. For G = By, the edges incident with x; need to be
assigned by three distinct colors, say 1,2 and 3. Without loss of generality, if c(x;x;) = 1, then the remaining edges incident
with x, must be assigned by 2 and 3. Thus, one of the edges incident with x3, except the edge x,x3, must be assigned
by a fresh color. Hence, scfc(G) = scfc(Byg) =4 =m — 3 in Fig. 2. Clearly, for Ge{By;, B12, Bis, B17, By}, easily, we have
scfc(Byy) = scfc(Byp) = scfc(Bis) = scfc(By7) =4 =m—3; scfc(Byy) =5=m —3.

Necessity. Suppose that G contains one cycle with scfc(G) = m — 3. Let C be a cycle of length at least 6 in G. We have
scfc(C) < |[E(C)| — 4 by Lemma 2.8. We know that there is not a copy of C in G by Observation 2.10. Thus, |C|] <5.

When |C| =5, we show that G = B;. Let C = v1v,v3V4V5v¢. Suppose that there is a chord in C. Let Wy =CU v 13 be a
copy of the subgraph of G. We have scfc(Wp) =scfc(H)) <2 =|E(H))| —4 = |[E(Wp)| — 4. There is not a copy of Wy in G
by Observation 2.10. A contradiction. Without loss of generality, assume that W; = CU {v1uq, huy} or Wy = CU {vquq, v3up}
is a copy of the subgraph of G. Clearly, we have scfc(W;) < |[E(W;)| — 4 according to the coloring with c(v1v;) = c(V3v4) =
1, c(r1vs) = c(rhv3) =2 and c(v4vs) = c(v1uy) = c(Vruy) = 3 (or c(v4Vs5) = c(v1uq) = c(uyv3) = 3). By Observation 2.10 we
know there is not a copy of W; in G. By the same way, the graph W, = CU {vjuq, uqu,} is not a copy of the subgraph of G
by Observation 2.10 since scfc(W,) < 3 = m — 4 by the coloring with c(v11;) = c(v4V5) = c(uuy) =1, c(Vrv3) = c(Vv5) =2
and c(vquq) = c(v3v4) = 3. Let W3 = CU {vyv3). Since scfc(Ws) = scfc(H)) < |Ws| — 4, we know there is not a copy of W5 in
G by Observation 2.10. In addition, we have scfc(G) = m — 2 for G = C by Theorem 4.4. Hence, we deduce that G = B;.
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When |C| =4, we show Ge{B,, B3, By}. Let C = v 1v,130411. We claim that if there is not a chord in C, then Ge{B,,
Bs}. Now assume that Wy = CU {vjuq, ujuy} is a copy of the subgraph of G. Then we have scfc(W,) <2 = |[E(Wy)| — 4 by
the coloring with c(v1;) = c(vov3) = c(V1v4) = c(uquy) =1 and c(vquq) = c(v3v4) = 2. By Observation 2.10, Wy is not a
copy of the subgraph of G. Furthermore, we show that there is not two adjacent vertices v;, vj € V(C) with degree at least
three in G. Thus, let W5 = CU {v1X1, 12X}, W = CU {v;wy, v1w,, v3ws}. The graphs W5 and Wg are not the copies of the
subgraphs of G by Observation 2.10 since scfc(Ws) <2 =m —4 and scfc(Wg) < 2 = |E(Wg)| — 4. Meanwhile, we have GzC
since scfc(C) =2 = |E(C)| — 2 by Theorem 4.4. Hence, we deduce that G = B, or G = Bs. Next, we claim that if there is a
chord in C, then G = B4. We first show there are exactly two vertices of V(C) with degree three. Let W5 = CU {v,v3, v1y} and
Wy = CU {1p1y4, v12}. Let K4 be a complete graph of order 4. The graphs K4, W7 and Wg are not the copies of the subgraphs
of G by Observation 2.10 since scfc(Ky) =1 = |E(Ky)| — 5, scfc(W7) =scfc(Wg) <2 = |E(W5)| — 4 = |E(Wg)| — 4. Clearly, we
deduce that G = By.

When |C| =3, we show G = Bs, B; or Bg. Let C = v1,v3v1. We first show that not all the vertices of V(C) have degree
at least 3. Assume, to the contrary, that Wy = CU {vjuq, vhuy, v3u3} is a copy of the subgraph of G. We have scfc(Wy) <
2 =|E(Wq)| —4 by the coloring with c(vv;) = c(v,v3) =c(v1v3) =1 and c(vquq) = c(vyuy) = c(v3us) = 2. A contradic-
tion by Observation 2.10. Thus, there are at most two vertices in V(C) with degree at least three. Suppose that there
are exactly two vertices vy,v; € V(C) with dg(v1) >3 and dg(vy) > 3. Next, let Wig = CU {vquy, uquy, vous, usuy). Clearly,
scfc(Wyo) <3 = |E(Wyg)| —4 by the coloring with c(v11;) = c(vov3) = c(vv3) =1, c(vqug) = c(vyuz) =2 and c(uquy) =
c(usuy) = 3. Thus Wyg is not a copy of the subgraph of G by Observation 2.10. Similarly, in the same way the graphs
Wi = CU {vywy, 1wy, 1aws, 1aWy}, Wi = CU {11Xq, V1Xp, UpX3, X3X4}, Wiz = CUU{v1y1, V22, VY3, Y3Y4) are not the copies
of the subgraphs in G since scfc(Wj1) <3 =|E(Wqq)| —4, scfc(Wpp) <3 =|EWpp)| —4, scfc(Wi3) <3 = |[E(Wi3)| — 4.
Hence, we have G = Bg or G = Bg for two vertices v{,v, with dg(v1) >3 and dg(v,) > 3. Suppose that there is ex-
actly one vertex vy € V(C) with dg(vy) > 3. Let Wiy = CU {vywy, wywy, Wows, Wawy}, Wis = CU {v1X1, X1X2, X1X3, X3X4} and
Wi = CU {v1¥1,Y1Y2,¥2Y3. ¥2¥4}. Then we have scfc(Wyy) <3 = |[E(Wy4)| —4 according to the coloring with c(vivy) =
c(ra13) = c(V113) = c(Wwp) = c(wawy) = 1, c(vywy) =2 and c(wpws) and scfc(Wys) <3 = [E(Wys5)| — 4 (or scfc(Wig) <
3 =|E(Wsg)| —4) according to the coloring with c(v1vy) = c(h13) = c(V1V3) = c(X1x3) = c(x3x4) =1, c(r1x1) =2 and
c(x1x3) = 3 (c(1¥2) = c(Va13) = c(V1V3) = c(¥2y3) = 1, c(V1y2) = c(¥2y4) =2 and c(¥1y2) = 3). So Wiy, Wys and Wy are
not the copies of the subgraphs of G by Observation 2.10. In addition, for G =A;, we have scfc(G)=m—-2>m—3 by
Theorem 4.4. Hence, G = Bs, B; or Bg.

Suppose that G is a tree. Assume that diam(G) > 7. Clearly, diam(G) — [log, (diam(G) + 1)1 > 4. From Lemma 2.11, we have
scfc(G) # m — 3. A contradiction. Thus, diam(G) <6.

When diam(G) = 6, we show G e{Byg, B11, B12}. Let Py = v11,U304V5V6V; be a path of G. Suppose dg(v;) < 2 for (ie[7]).
Then, clearly, we have G = P; = Byq. Suppose there is at least one vertex v; with d;(v;) = 3. Assume that U; = P; U {uqv3}
or Uy = Py U {vauy, uquy} is a copy of a subgraph of G. Clearly, scfc(U;) <3 =|E(U;)| —4 according to the coloring with
c(13) = c(V4v5) = c(VgV7) = 1, c(V113) = c(uiv3) = c(v5v6) = 2 and c(r3v4) =3 and scfc(U;) <4 = |[E(Uy)| — 4 according
to the coloring with c(v1v3) = c(uquy) = c(v3v4) = c(Usvg) = 1, c(1rv3) = c(VV7) = 2, c(V4V5) = 3 and c(v4uq) = 4. Hence,
we can deduce that G must be By; or Byy. Suppose there is a vertex v; € V(Py) with dg(v;) > 4. Then let Uy = Py U {15X1, V2X5},
Uy = P, U{v3yq, 13y,} and Us = Py U {1421, V42, }. Clearly, scfc(Us) < 4 = |E(U3)| — 4 by the coloring with c(v11,) = c(Vsv5) =
c(r3v4) =1, c(V2x3) = c(V4V5) = 2, c(Vpx1) = c(VgV7) =3 and c(1,13) = 4; scfc(Uy) <4 = |E(Uy)| — 4 by the coloring with
c(Vv) = c(V4V5) = c(VgV7) = c(V3y1) = 1, c(Va13) = c(UsVg) =2, c(v3y2) =3 and c(v3vy) =4; scfc(Us) <4 =|E(Us)| -4
by the coloring with c(v1v;) = c(zyv4) = c(Vsvg) = 1, c(VaV3) = c(V421) = c(VgV7) = 2, c(v4V5) = 3 and c(v3v4) = 4. Hence,
G does not contain one copy of one of {Us, Uy, Us} by Observation 2.10.

When diam(G) =5, we show Ge{Bi3, By, Bis}). Let By = v11,v3v4V5V6 be a path of G. Suppose dg(v;) <2 for ie6],
then we have G =Ps;. But, scfc(G) =scfc(Ps) =3 =m —2 from Theorem 4.4. A contradiction. Suppose there is exactly
one vertex veV(P) with d;(v) >3, then we claim that G = By3 or Byy. By symmetry, assume, to the contrary, that
Us = Ps U {v3y1,¥1y2} is a copy of the subgraph of G. However, we have scfc(Ug) <3 = |[E(Ug) — 4| by the coloring with
c(113) = c(Vavs) =1, c(111p) = c(Vsg) = c(V3y1) = 2 and c(¥1y2) = c(v3v4) = 3. Thus, Ug is not a copy of the subgraph
of G by Observation 2.10. Since diam(G) =5, then G = By3 or By4. We then claim G = Bys if there are at least two ver-
tices v;, v; € V(Bs) with dg(v;) > 3 and dg(v}) > 3. Assume, to the contrary, that U; = Ps U {x113, X,v3}, Ug = Ps U {y1X3, y2X4}
or Ug = P5 U {z115,z,U5} is a copy of the subgraph of G. Since scfc(U;) <3 = |E(U;)| —4 by the coloring with c(v11,) =
c(xav3) = c(Vavs) = 1, c(xq1,) = c(v3v4) = 2 and c(v,v3) = c(Us15) = 3, and scfc(Ug) < 3 = |[E(Ug)| — 4 by the coloring with
c(n1n) = c(y1v3) = c(Yavy) = c(Usv) = 1, c(1p13) = c(V4V5) = 2 and c(v314) = 3, and scfc(Ug) < 3 = |E(Ug)| — 4 by the col-
oring with c(v11,) = c(v3v4) = c(Vsv5) = 1, c(z11,) = c(V4V5) = 2 and c(v,V3) = c(z,v5) = 3. Furthermore, since G does not
contain a copy of Ug, then G must be Bys.

When diam(G) =4, we show Ge{Byg, Bi7, Big, Big, Bag, Bo1, By} Clearly, G#A,, A3 or Ay by Theorem 4.4 and
G#Ps by Theorem 4.3. Let P; = v11,V3v4V5 be a path of G. Suppose that dc(v;) >3, dc(v3) >3 and dg(vy) > 3. Let
Ujg = Ps U {X117, XoU3, X34, X4V4} OF Uy = Ps U {X1V5, XoU3, X34, X4V3}. Then we show G = B,. Since scfc(Uyg) < |E(Uyg)| — 4
by the coloring with c(v,v3) = c(x4v4) = 1, c(X1V3) = c(V4V5) = 2, c(V113) = c(Xav3) = c(X3v4) =3 and c(v3vy) =4, and
scfc(Uyp) < |[E(Uqp)| —4 by the coloring with c(1pv3) =1, c(x117) = c(V3X4) = c(UaVs5) = 2, c(V1V3) = c(XaV3) = C(X3V4) = 3
and c(v3vy) = 4. Thus, both U;g and Uj; are not the copies of the subgraphs of G by Observation 2.10. Let U, = Ps U
{y112,¥213,¥2¥3, V4y4}. Clearly, the graph Uj, is not a copy of the subgraph of G by Observation 2.10. Hence, G = By
when dg(v;) > 3, dg(v3) =3 and dg(v4) > 3. In the similar way, when there are exactly two vertices v;, vj € V(Ps) with
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S1 52 S3 Sk—1 Sk
.

t to i3 k-1 Tk

Fig. 3. Ladder L.

S1 S2 83 Skg—1 Sk
t1 2 t3 th-1

Fig. 4. Mobius Myy.

dg(v;) =3 and dg(v;) > 3, we have G e {Byg, Byg, By1, By2}. When there is exactly one vertex v; € V(Ps) with dg(v;) = 3, we
have Ge {316, 317}.

When diam(G) = 3. Let P4 = 111,314 be a path of G. Let Uiz = Ps U {V,wq, Vw;, W3, U3Wy, V3Ws, 13wg}. Clearly, Ugs is
not a copy of one subgraph of G by Observation 2.10. Together with G# Iy, by Theorem 4.3 and G #As by Theorem 4.4, we
deduce G = By;. O

5. Cubic graphs with scfc-number 2

In this section, we first define some useful definitions and show several lemmas. Next, we will characterize the cubic
graphs G with scfc(G) = 2 by the lemmas.
We first give a useful definition.

Definition 5.1 [10]. A forced 2-path in a graph G is a path xyz such that xz ¢ E(G) and xyz is the unique 2-path connecting x
and z. If each 2-path u;u; qu;,, is forced for i=0,1,--- ,k—2, a k-path P =ugu; ---u;, in a graph G is called forced. A cycle
of a graph G is called a forced cycle if any two successive edges of the cycle form a forced 2-path in G. An edge e in a graph
G is called a forced edge if e is not included in a cycle of length at most 4.

If uv is a forced edge in G and vw is an edge adjacent to uv, then uvw is a forced 2-path in G. The following two results
follow directly from the definition.

Lemma 5.2. Let P =uquy---u, be a forced path in G with scfc(G) = 2. Then the adjacent edges of P are colored by distinct
colors for every strong conflict-free connection coloring with 2 colors.

Lemma 5.3. Let C = uquy---u,uy be a forced cycle of length k in G with scfc(G) = 2. Then the adjacent edges of C are colored
by distinct colors for every strong conflict-free connection coloring with 2 colors and k is even and k <6.

Lemma 5.4. scfc(C,OK,) = 2 if and only if k equals 3, 4 or 6.

Proof. We have scfc(C,OK;) > 2 by Theorem 4.1. For k=3, we define a 2-edge-coloring c: for every edge e in the tri-
angles, c(e) = 1; Otherwise, c(e) = 2. Clearly, the coloring c is a strong conflict-free connection coloring of C300K;. Hence,
scfc(C30Ky) = 2. For k> 4, Clearly, the graph C,0K; has a forced cycle. Then by Lemma 5.3, since scfc(C,OK;) = 2, we have
thatk=4or 6. O

Now we define some graph-classes. A k-ladder, denoted by L, is defined to be the product graph P,0K,, where Py is the
path on k vertices (see Fig. 3). The Mobius ladder M, is the graph obtained from L, by adding two new edges st and t;s;
(see Fig. 4).

Lemma 5.5. scfc(My) =2 if and only if 3<k<7.

Proof. Since M, is not a complete graph, it is clear to see that scfc(M,;)>2 for every k> 3.

First, we show that scfc(M,;)>2 for k> 8. Clearly, for the pair of vertices s, and sg there is only one shortest path
connecting them, which is P’ = s,5354555¢. For every pair of vertices in P, there is only one shortest path in My, connecting
them. So we have that scfc(My) > scfc(P") = 3.

Second, we show that scfc(M,) <2 for 3 <k <7. For the graph M, with k € {4, 6}, we define a 2-edge-coloring c: for ie{1,
3, 5}, c(sisip1) = c(titi 1) = c(sit;) = 1; for the remaining edges e, c(e) = 2. For the graph My, with ke {3, 5, 7}, we define a
2-edge-coloring c: for ie{1, 3, 5}, c(siSiz1) = c(tiyqtizp) =1; forie{l, 2---, k}, c(sit;) = c(sit;) = 1; for the remaining edges
e, c(e) = 2. It is easy to check that every pair of vertices are connected by a strong conflict-free path under the above
2-edge-colorings. O

Before the proof of Lemma 5.6, we first illustrate a cubic graph U (see Fig. 5) with the property that spc(U)>2
and scfc(U) =2. We first illustrate that spc(U)>2. Since each 2-path of {vyv;vg, VgV7Vg, V7UgV10, V7VeVs, V1gVsV3,
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Fig. 5. The graph U.

Vi1 1 v
2 1
U1 V2 Vi—3

1 v1722 ’Ui,—ll Vi 1 U1+12 Vi+2 V-1 Vi

Fig. 6. The path P with an attachment W. (The path v;_;vjv;,; is the replacement for v;_;v;v;,q; the path v;_,v; v} is the replacement for v;_,v;_;v}; the

1
path vj_, vy, is the replacement for vj_, vjvi,1.).

UslU4U3V4 V315, U4V3Vg} is a forced 2-path, every two adjacent edges are needed to be colored by distinct colors from {1,
2}. Thus, there is not a strong proper path between v; and vs, therefore, spc(U) > 2. We have scfc(U) > 2 by Theorem 4.1, and
together with the 2-edge-coloring in Fig. 5, it follows that scfc(U) = 2.

Now we will show Lemma 5.6. In order to be more convenient to handle with Lemma 5.6, in the very beginning, we give
some explanations. Let G be a cubic graph and let c: E(G) — {1, 2} be a strong conflict-free connection coloring of G. Let P =
(u=)v1vy -1V (= v) be a strong conflict-free path between u and v. Suppose that there exists a 2-path v;v;,v;,, with
c(ViViy1) = c(Viy1Vi2) in P. Then there must exist another 2-path v;xv;,, (x ¢ V(P)) with c(v;x) # c(xv;,,) since c is a strong
conflict-free connection coloring of G. Then v;xv;,, is called a replacement for v;v;1V;,,. Suppose that c(v;_1v;) = c(v;x). Then
there must also exist a replacement v;_,yx for v;_v;x. Furthermore, suppose the path yxv; , contains the coloring c(yx) =
c(xviy,). If yvi v, is a replacement for yxv;,,, then G[V'], where V' = {v;_1, v}, V11, Vizn, X, ¥}, is called an attachment of
P. Then, clearly, there is not a strong proper path between v;_; and v;,,. If there does not exist a replacement sharing the
same edges with P, then there is a strong proper path between v;_; and v;,,. Thus, we call the replacements noncyclic
replacements of P. Otherwise, it is called a cyclic replacement of P.

Lemma 5.6. Let G be a cubic graph with GzU. If scfc(G) = 2, then spc(G) = 2.

Proof. Let c: E(G) — [2] be an arbitrary strong conflict-free connection coloring of G. Let P = (u =)v v ---V;_1V: (= V) be
an arbitrary strong conflict-free path between u and v. For every pair of v; and v;, (i € [t —2]), if c(Vjviq1) # c(Vip1Viga),
then P is a strong proper path. Thus, we have spc(G) = 2. Suppose that there exists a 2-path vy 1v;,, (i €[t —2]) with
c(vviy1) = c(Viy1Vi2) in P. When each replacement is a noncyclic replacement for P, then there exists a strong proper path
Q between u and v in G. We also have spc(G) = 2. Suppose that there exist a cyclic attachment for P. We denote G[V'] by W,
where V' = {v;_y, Vi_1, V;, Vi1, v}, Vj_ }, clearly, W is an attachment for P (see Fig. 6), in which there is not a strong proper
path between v;_; and v, .

Claim 1. Let W be an attachment of path P. Then c(vi_sv;_3) # c(Vi_avi_1) = (ViV} ;) and c(ViqVipo) # c(Viviy) =
cWivis).

Proof of Claim 1: Without loss of generality, suppose that c(v;_3v;_3) = c(v;_v;_1). Then, clearly, v;_3v;_,v;_
shortest path between v;_3 and v;_,
This completes the proof of Claim 1.

Suppose P contains an attachment W. We first show there is at most one attachment for P. Assume, to the contrary, that
there are two attachments in P. Let E' = {VjVj,1. Vj11Vj12. VjiaVjs3. Z1V}. Z1Vjy2. Z122. 22V )11, Z2Vj4 3}, for j =i+ 2. Without
loss of generality, let W and G[E’] be two attachments for P. Since both v;_3v;_,v;_; and v;_3v;_,v; ; are forced 2-paths,
then we have c(vj_3v;_y) # c(Vj_v;_1) = c(v;_V}_,). Similarly, we have c(v;_1v;) # c(v;z1) = c(vjvj;1). Clearly, there is not
a strong conflict-free path between v;_, and vj,¢. A contradiction. Hence, there is at most one attachment for P. Suppose
that the path P is not contained in a cycle. Then we are concerned about the path between v;_, and v; 3. Clearly, the paths
ViVi 1Viy2 and Vi Vi Vi, 3 are forced 2-paths. Thus, we have c(vjvi, 1) = c(Vj Vi, 3) # c(Viy1Vip2) = c(Vi_aV;_1). Clearly, there
is not a strong conflict-free path between v;_, and v;,3. A contradiction. Suppose that the path P is contained in a cycle. If
we identify v;_s3 with v; 1, then G = Mg with spc(Mg) = 2 by Theorem 5.7. Now we consider that a shortest cycle C contains
P. Clearly, |C| > 6, otherwise, P does not contain an attachment. Suppose |C| = 6. Then there are two vertices u; and u,
except the vertices of the attachment in C. If u; and u, are not adjacent to the same neighbor, then every pair of edges
incident with u4 is a forced 2-path. Hence, there need at least three colors. A contradiction. Let x be a common neighbor of
uq and uy, where u; is adjacent to v;, 1. Let y be a neighbor of x. Let z be another neighbor of y except x. Thus, v; u;xyz
is a unique forced path for the pair v;,; and z. Then it is not a strong conflict-free path by Lemma 5.2. Suppose |C| = 7. Let

; Is a unique
since G is a cubic graph. It contradicts to c(v;_3V;_;) = c(v;_,Vv;_1) under the coloring c.
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v

Fig. 7. The graph Fy(k).

uq, Uy and uz be three vertices except the vertices of the attachment in C. If each of {u4, uy, us} is contained in a triangle,
then G = U (see Fig. 5). If one of uq, u, and u3 is in a triangle, then there exists a unique forced 4-path for a pair of vertices
in C, a contradiction. Let C = v1V,V3V4U Uy U3U4V1. Suppose that there are two attachments in C. Then G = L, (see Fig. 10)
with an edge-coloring such that scfc(G) = spc(G) = 2. Suppose that uq, u,, u3 and u4 are contained in triangles. Then G =
L3 (see Fig. 10) such that scfc(G) = spc(G) = 2. Otherwise, there will exist a unique forced 4-path for a pair of vertices in C,
a contradiction. Suppose that at most one triangle contains two of the vertices uq, u; us and u4, without loss of generality,
say uq, uy. Suppose further that usuy is a forced edge. Then c(vquy) # c(ugqus) # c(ugx), where x is a neighbor of u, except
vy, u3, a contradiction. Then suppose that both us and u, are contained a 4-cycle C'. Clearly, there induces a unique forced
4-path for the pair of v, and one vertex in (' except us, Uy, a contradiction. Suppose 9 <|C| <10. Then there is a unique
forced 4-path for some pair of vertices in G. Hence, scfc(G) > 3. Assume |C| > 11. There exists a unique shortest path of length
5 between v;_3 and v;,,, thus, scfc(G) > 3. A contradiction by Claim 1. O

Theorem 5.7 [10]. Let G be a cubic graph without forced edges. Suppose further that G+#Ky4. Then spc(G) =2 if and only if
G € {G0Ky, G OKy, My} for some k> 2.

Theorem 5.8. Let G be a cubic graph without forced edges. Then scfc(G) = 2 if and only if G € {GOKy, My, } for 1{3, 4, 6} and
for k with 3<k<7.

Proof. Sufficiency. By Lemma 5.4 and 5.5, Clearly, scfc(G) =2

Necessity. Suppose GzU. If scfc(G) =2, then we have spc(G) =2 by Lemma 5.6. Furthermore, we have G e
{GOK,, G OKy, My, } for some k>2 from Theorem 5.8. Then G e {GOK,, My} for 1€{3, 4, 6} and for k with 3<k<7 by
Lemma 5.4 and 5.5. O

Let Fo(k) be the cubic graph which is obtained from L, by adding two new vertices x and y and adding five new edges
Xy, XS1, Xt1, ¥Sk, Yti (see Fig. 7).

Lemma 5.9. scfc(Fy(k)) = 2 with k> 2 if and only if k{2, 4}.

Proof. When k > 3, the cycle xs{s,---s,yx, say C, is a forced one in Fy(k). Then we have that k = 4 by Lemma 5.3. When k = 2,
we define an edge-coloring ¢ for Fo(k): c(xy) = 2; c(xs1) = c(xt1) = c(¥s,) = c(¥t) = 1; c(siSiy1) = c(titiyq) = c(sit) = 1 for
even i€ [k]; for all the remaining edges, c(s;si;1) = c(tjti 1) = c(s;t;) = 2 for odd i€ [k]. We can easily check that every pair
of vertices have a strong conflict-free path connecting them. Since scfc(Fy(k)) > 1, we have that scfc(Fy(k)) =2 for k=2 or
4, O

We now introduce a family A of graphs which will be used in the latter proof (see Fig. 8).
= {F; (k). Ks, D3, K3 3. Q3. Fy (k) } (k € N)

Theorem 5.10 [10]. Let G be a cubic graph with exactly one forced edge. Then spc(G) = 2 if and only 1fG Fy (k) for some even
k>4, or G is obtained from H; and H, by identifying the pendent edges to a single edge, where H; € {K;, D3} for i=1,2.

Lemma 5.11. Let G be a cubic graph. If G is obtained from Hy and H, by identifying the pendent edges to a single edge, where
H; € {K,, D3} for i =1, 2, then scfc(G)=2 if and only if H; = K, for i =1, 2.

Proof. Sufficiency. If G is obtained from two graphs K, by identifying the pendent edges to a single edge, then we know that
scfc(G) = 2 by the coloring of Fig. 9.

Necessity. Suppose scfc(G)=2. If G is constructed by identifying the pendent edge of H; with H, e {Ky, D3} (see Fig. 8), then,
clearly, there is a forced 4-path which needs three colors to make it strong conflict-free connected. Thus we have scfc(G) > 3.
A contradiction by Lemma 5.2. when H; = H, = K, it is clear that scfc(G)> 1. On the contrary, we have scfc(G) <2 under the
edge-coloring in Fig. 9. O

Theorem 5.12. Let G be a cubic graph with exactly one forced edge. Then scfc(G) =2 if and only if G = Fy(k) for ke {2, 4} or
G=N.

Proof. Sufficiency. From Lemma 5.9 and 5.11, we have scfc(G) = 2 for G = Fy(k) for ke{2, 4} or G = N.
Necessity. Suppose that scfc(G) = 2. From Lemma 5.6, it follows that spc(G) = 2. Furthermore, we then have G = Fy(k)
for ke{2, 4} or G = N by Theorem 5.10 and by 5.11. O
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Fig. 10. The graph class L.

Before proceeding, we need one more definition.

Definition 5.13 [10]. Let G be a connected graph. The forced graph of G is obtained from G by replacing each forced edge uv
(if any) by two pendant edges uu’ and v/, where v’ and v/ are two new vertices with respect to the forced edge uv. Each
component of the forced graph of G is called a forced branch of G, and the new pendant edge uu’ in the forced branch is
called a forced link of G. For each forced edge uv of G, we call uv’ and vv/ the twin links corresponding to the forced edge
uv. In the case that a forced link uu’ and its twin link v/ are contained in a common forced branch of G, we say that uu’ is
a selfish link.

Theorem 5.14 [10]. Let G be a cubic graph containing at least two forced edges, and let Hy, Hy, ---, H; be the forced branches
of G. Then spc(G) =2 if and only if H; € H for i=1,2,.--,r, and there are 2-SPC (strong proper connection number being 2)
patterns pq, pa, ---, br of Hy, Hy, ---, Hy, respectively, such that each pair of twin links receive the same color.

Remark. The definition of pattern in Theorem 5.14 can be referred to [10].

Theorem 5.15. Let G be a cubic graph containing at least two forced edges, and let Hi, H,, - -- , Hr € H be the forced branches of
G. Then scfc(G)=2 if and only if G € £, demonstrated in Fig. 10.
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Proof. Necessity. Since every graph L; € £ is not a complete graph, then scfc(L;) > 2. Also, we have scfc(L;) <2 by the edge
coloring depicted in Fig. 10. Hence, scfc(L;) = 2 for each L; € L.

Sufficiency. Let G* be the forced graph of G. If F;(k) c G* or Fi(k)cG*, then k<2. Otherwise, there is a forced 4-path
which needs at least three colors to make it strong conflict-free connected. Clearly, G* contains at least two forced branches
since G contains at least two forced edges.

Suppose that there exists a forced edge which is a cut-edge in G. It is clear that D ¢ G* or K, ¢ G*. Suppose D; C G*.
Since there is a forced 3-path ujuju,us, then identify the pendent edge of any one graph in # with the pendent edge
uju; € E (D3) will induce a forced 4-path which needs at least three colors. Hence, D5 ¢ G*. Suppose K4 c G*. Clearly, there
are at least two K:l since G contains at least two forced edges. For each graph H’ e {F; (k). I<3~,3, Qs, F (k)} (k € N), if identify
the pendent edges e;, e, € E(H') with each pendent edge of two Ky, then, clearly, there are two forced 2-paths between v
and the copy of v,, which needs at least three colors to make the path (which contains the two forced 2-paths) strong
conflict-free connected. Hence, there does not exist a forced edge which is a cut-edge in G.

Suppose that every forced edge is not one cut-edge in G. Clearly, we have D ¢ G* and K, ¢ G*. There is no selfish link in
G* since G contains at least two forced edges.

Claim 1: If each connected component of G* belongs to {Qg,K;g,Fg(k)} for k<2, then there are at most two connected
components in G*.

Proof of Claim 1: Assume, to the contrary, that there are three connected components in G*. Since each component of G*
contains exactly two pendant edges, then the forced edges are contained in the same cycle. Clearly, both each pendant edge
of the connected components and its each adjacent edge form a forced 2-path. It means that there does not exist a strong
conflict-free path containing two forced 2-paths, between two forced edges. Hence, scfc(G)> 3. A contradiction. Completing
the proof of Claim 1. O

Claim 2: There is at most one copy of Qs in G*.

Proof of Claim 2: Assume, to the contrary, that there are two copies of Q3 in G*. Clearly, the forced edges are contained
in a cycle of length at least 8. Thus, there is exactly a forced 4-path between p, and p4. Clearly, scfc(G) > 3. Completing the
proof of Claim 2. O

Claim 3: There is no the copy of Fi(k) in G*.

Proof of Claim 3: Assume that there is a connected component F;(k) in G*. Clearly, there are at least two connected
components in G*. Then there must exist also another one copy of F;(k) in G* since there are three pendant edges in F;(k).
Since both each pendant edge of the connected components and its each adjacent edge form a forced 2-path, there does
not exist a strong conflict-free path containing two forced 2-paths, between two forced edges. This completes the proof of
Claim 3. O

Then from Claim 1, Claim 2 and Claim 3, we can check by enumeration that Ge £. O

Finally, Combining Theorems 5.8, 5.12 and 5.15, we have our main theorem of this section.
Theorem 5.16. Let G be a cubic graph. Then scfc(G) = 2 if and only if
Ge LorG e {N,GOKy, My, Fy(k)},
where 1€ {3, 4, 6}, 3<r<7 and ke {2, 4}.

Acknowledgement

The authors are very grateful to the reviewers for their valuable suggestions and comments, which helped to improving
the presentation of the paper.

References

[1] E. Andrews, E. Laforge, C. Lumduanhom, P. Zhang, On proper-path colorings in graphs, ]. Combin. Math. Combin. Comput. 97 (2016) 189-207.
[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[3] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Z. Tuza, Proper connection of graphs, Discrete Math. 312 (2012) 2550-2560.
[4] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math. 255 (2019) 167-182.
[5] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees, J. Comb. Optim., In press. doi:10.1007/s10878-018-0363-x.
[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[7] J. Czap, S. Jendroll, J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory 38 (4) (2018) 1007-1021.
[8] T.D. Doan, 1. Schiermeyer, Conflict-free vertex connection number at most 3 and size of graphs, Discus. Math. Graph Theory, In press. doi:10.7151/
dmgt.2211.
[9] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometic regions with applications to frequency assignment in cellular
networks, SIAM J. Comput. 33 (2003) 94-136.
[10] E. Huang, J.J. Yuan, On strong proper connection number of cubic graphs, Discrete Appl. Math. 265 (2019) 104-119.
[11] M. Ji, X. Li, X. Zhu, (Strong) conflict-free connectivity: algorithm and complexity. submitted.
[12] X. Li, Y. Zhang, X. Zhu, Y. Mao, H. Zhao, S. Jendrol’, Conflict-free vertex-connections of graphs, Discus. Math. Graph Theory, In press. doi:10.7151/dmgt.
2116.


http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0001
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0002
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0003
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0004
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0004
https://doi.org/10.1007/s10878-018-0363-x
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0005
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0007
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0007
https://doi.org/10.7151/dmgt.2211
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0008
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0010
http://refhub.elsevier.com/S0096-3003(19)30631-9/sbref0010
https://doi.org/10.7151/dmgt.2116

	Strong conflict-free connection of graphs
	1 Introduction
	2 Basic results and lemmas
	3 Upper and lower bounds
	4 Graphs with large or small scfc numbers
	5 Cubic graphs with scfc-number 2
	Acknowledgement
	References


