# Hypergraph Turán numbers of vertex disjoint cycles* 

Ran Gu, Xueliang Li, Yongtang Shi<br>Center for Combinatorics and LPMC-TJKLC<br>Nankai University, Tianjin 300071, China<br>guran323@163.com, lxl@nankai.edu.cn, shi@nankai.edu.cn


#### Abstract

The Turán number of a $k$-uniform hypergraph $H$, denoted by $e x_{k}(n ; H)$, is the maximum number of edges in any $k$-uniform hypergraph $F$ on $n$ vertices which does not contain $H$ as a subgraph. Let $\mathcal{C}_{\ell}^{(k)}$ denote the family of all $k$-uniform minimal cycles of length $\ell, \mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)$ denote the family of hypergraphs consisting of unions of $r$ vertex disjoint minimal cycles of length $\ell_{1}, \ldots, \ell_{r}$, respectively, and $\mathbb{C}_{\ell}^{(k)}$ denote a $k$-uniform linear cycle of length $\ell$. We determine precisely $e x_{k}\left(n ; \mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)\right)$ and $e x_{k}\left(n ; \mathbb{C}_{\ell_{1}}^{(k)}, \ldots, \mathbb{C}_{\ell_{r}}^{(k)}\right)$ for sufficiently large $n$. The results extend recent results of Füredi and Jiang who determined the Turán numbers for single $k$-uniform minimal cycles and linear cycles.


Keywords: Turán number; cycles; extremal hypergraphs
AMS Subject Classification (2010): 05D05, 05C35, 05C65

## 1 Introduction

In this paper, we employ standard definitions and notation from hypergraph theory (see e.g., [1]). A hypergraph is a pair $H=(V, E)$ consisting of a set $V$ of vertices and a set $E \subseteq \mathcal{P}(V)$ of edges. If every edge contains exactly $k$ vertices, then $H$ is a $k$-uniform hypergraph. For two hypergraphs $G$ and $H$, we write $G \subseteq H$ if there is an injective homomorphism from $G$ into $H$. We use $G \cup H$ to denote the disjoint union

[^0]of (hyper)graphs $G$ and $H$. By disjoint, we will always mean vertex disjoint. A Berge path of length $\ell$ is a family of distinct sets $\left\{F_{1}, \ldots, F_{\ell}\right\}$ and $\ell+1$ distinct vertices $v_{1}, \ldots, v_{\ell+1}$ such that for each $1 \leq i \leq \ell, F_{i}$ contains $v_{i}$ and $v_{i+1}$. Let $\mathcal{B}_{\ell}^{(k)}$ denote the family of $k$-uniform Berge paths of length $\ell$. A linear path of length $\ell$ is a family of sets $\left\{F_{1}, \ldots, F_{\ell}\right\}$ such that $\left|F_{i} \cap F_{i+1}\right|=1$ for each $i$ and $F_{i} \cap F_{j}=\emptyset$ whenever $|i-j|>1$. Let $\mathbb{P}_{\ell}^{(k)}$ denote the $k$-uniform linear path of length $\ell$. It is unique up to isomorphisms. A $k$-uniform Berge cycle of length $\ell$ is a cyclic list of distinct $k$-sets $A_{1}, \ldots, A_{\ell}$ and $\ell$ distinct vertices $v_{1}, \ldots, v_{\ell}$ such that for each $1 \leq i \leq \ell, A_{i}$ contains $v_{i}$ and $v_{i+1}$ (where $v_{\ell+1}=v_{1}$ ). A $k$-uniform minimal cycle of length $\ell$ is a cyclic list of $k$-sets $A_{1}, \ldots, A_{\ell}$ such that consecutive sets intersect in at least one element and nonconsecutive sets are disjoint. Denote the family of all $k$-uniform minimal cycles of length $\ell$ by $\mathcal{C}_{\ell}^{(k)}$. A $k$-uniform linear cycle of length $\ell$, denoted by $\mathbb{C}_{\ell}^{(k)}$, is a cyclic list of $k$-sets $A_{1}, \ldots, A_{\ell}$ such that consecutive sets intersect in exactly one element and nonconsecutive sets are disjoint.

The Turán number, or extremal number, of a $k$-uniform hypergraph $H$, denoted by $e x_{k}(n ; H)$, is the maximum number of edges in any $k$-uniform hypergraph $F$ on $n$ vertices which does not contain $H$ as a subgraph. This is a natural generalization of the classical Turán number for 2-uniform graphs; we restrict ourselves to the case of $k$-uniform hypergraphs. Let $e x_{k}\left(n ; F_{1}, F_{2}, \ldots, F_{r}\right)$ denote the $k$-uniform hypergraph Turán Number of a list of $k$-uniform hypergraphs $F_{1}, F_{2}, \ldots, F_{r}$, i.e., $e x_{k}\left(n ; F_{1}, F_{2}, \ldots, F_{r}\right)=e x_{k}\left(n ; F_{1} \cup F_{2} \cup \ldots \cup F_{r}\right)$.

For the class of $k$-uniform Berge paths of length $\ell$, Györi et al [5] determined $e x_{k}\left(n ; \mathcal{B}_{\ell}^{(k)}\right)$ exactly for infinitely many $n$. In [2], Füredi et al. established the following results.

Theorem 1 [2] Let $k$, $t$ be positive integers, where $k \geq 3$. For sufficiently large $n$, we have

$$
e x_{k}\left(n ; \mathbb{P}_{2 t+1}^{(k)}\right)=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\ldots+\binom{n-t}{k-1}
$$

The only extremal family consists of all the $k$-sets in $[n]$ that meet some fixed set $S$ of $t$ vertices. Also,

$$
e x_{k}\left(n ; \mathbb{P}_{2 t+2}^{(k)}\right)=\binom{n-1}{k-1}+\binom{n-2}{k-1}+\ldots+\binom{n-t}{k-1}+\binom{n-t-2}{k-2}
$$

The only extremal family consists of all the $k$-sets in $[n]$ that meet some fixed set $S$ of $t$ vertices plus all the $k$-sets in $[n] \backslash S$ that contain some two fixed elements.

For more results we refer to [2, 6].

For the minimal and linear cycles, Füredi and Jiang [3], determined the extremal numbers when the forbidden hypergraph is a single minimal cycle or a single linear cycle. This confirms, in a stronger form, a conjecture of Mubayi and Verstraëte [6] for $k \geq 5$ and adds to the limited list of hypergraphs whose Turán numbers have been known either exactly or asymptotically. Their main results are as follows:

Theorem 2 [3] Let $t$ be a positive integer, $k \geq 4$. For sufficiently large $n$, we have $\operatorname{ex} k\left(n ; \mathcal{C}_{2 t+1}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}$, and $\operatorname{ex} k\left(n ; \mathcal{C}_{2 t+2}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}+1$. For $\mathcal{C}_{2 t+1}^{(k)}$, the only extremal family consists of all the $k$-sets in $[n]$ that meet some fixed $k$-set $S$. For $\mathcal{C}_{2 t+2}^{(k)}$, the only extremal family consists of all the $k$-sets in $[n]$ that intersect some fixed $t$-set $S$ plus one additional $k$-set outside $S$.

Theorem 3 [3] Let $t$ be a positive integer, $k \geq 5$. For sufficiently large $n$, we have $\operatorname{ex} k\left(n ; \mathbb{C}_{2 t+1}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}$, and ex $\left(n, \mathbb{C}_{2 t+2}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}+$ $\binom{n-t-2}{k-2}$. For $\mathbb{C}_{2 t+1}^{(k)}$, the only extremal family consists of all the $k$-sets in $[n]$ that meet some fixed $k$-set $S$. For $\mathbb{C}_{2 t+2}^{(k)}$, the only extremal family consists of all the $k$-sets in $[n]$ that intersect some fixed $t$-set $S$ plus all the $k$-sets in $[n] \backslash S$ that contain some two fixed elements.

From the definition of $k$-uniform minimal cycles, two $k$-uniform minimal cycles of the same length may not be isomorphic. Hence we define the following family of hypergraphs, where every member consists of $r$ vertex disjoint cycles:

$$
\mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)=\left\{C_{1} \cup \ldots \cup C_{r}: C_{i} \in \mathcal{C}_{\ell_{i}}^{(k)} \text { for } i \in[r]\right\}
$$

Apart from the results above, we will need the following two results:
Theorem 4 (4) Let $H$ be a $k$-uniform hypergraph on $n$ vertices with no two edges intersecting in exactly one vertex, where $k \geq 3$. Then $|E(H)| \leq\binom{ n}{k-2}$.

We build on earlier work of Füredi and Jiang [3], in this paper, we determine precisely the exact Turán numbers when forbidden hypergraphs are $r$ vertex disjoint minimal cycles or $r$ vertex disjoint linear cycles. Our main results are as follows:

Theorem 5 Let integers $k \geq 4, r \geq 1, \ell_{1}, \ldots, \ell_{r} \geq 3, t=\sum_{i=1}^{r}\left\lfloor\frac{\ell_{i}+1}{2}\right\rfloor-1$, and $I=1$, if all the $\ell_{1}, \ldots, \ell_{r}$ are even, $I=0$ otherwise. For sufficiently large $n$,

$$
e x_{k}\left(n ; \mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)\right)=\binom{n}{k}-\binom{n-t}{k}+I
$$

Theorem 6 Let integers $k \geq 5, r \geq 1, \ell_{1}, \ldots, \ell_{r} \geq 3, t=\sum_{i=1}^{r}\left\lfloor\frac{\ell_{i}+1}{2}\right\rfloor-1$, and $J=\binom{n-t-2}{k-2}$, if all the $\ell_{1}, \ldots, \ell_{r}$ are even, $J=0$ otherwise. For sufficiently large n,

$$
\operatorname{ex} x_{k}\left(n ; \mathbb{C}_{\ell_{1}}^{(k)}, \ldots, \mathbb{C}_{\ell_{r}}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}+J
$$

Sometimes, we allow the hypergraph to contain less than $r$ minimal or linear cycles, consider the Turán number in such cases, we have the following two corollaries. We use notation $r \cdot F$ to denote $r$ vertex disjoint copies of hypergraph $F$. Let $\ell_{1}=$ $\ldots=\ell_{r}=\ell$, we can immediately get the following two corollaries from Theorems 5 and 6 .

Corollary 1 Let integers $k \geq 4, r \geq 1, \ell \geq 3, t=r\left\lfloor\frac{\ell+1}{2}\right\rfloor-1$, and $I=1$, if $\ell$ is even, $I=0$, if $\ell$ is odd. For sufficiently large $n$,

$$
e x_{k}\left(n ; r \cdot \mathcal{C}_{\ell}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}+I
$$

Corollary 2 Let integers $k \geq 5, r \geq 1, \ell \geq 3, t=r\left\lfloor\frac{\ell+1}{2}\right\rfloor-1$, and $J=\binom{n-t-2}{k-2}$, if $\ell$ is even, $J=0$, if $\ell$ is odd. For sufficiently large $n$,

$$
e x_{k}\left(n ; r \cdot \mathbb{C}_{\ell}^{(k)}\right)=\binom{n}{k}-\binom{n-t}{k}+J
$$

## 2 Proof of Theorem 5

For convenience, we define $f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)=\binom{n}{k}-\binom{n-t}{k}+I$. Note that the hypergraph on $n$ vertices that has every edge incident to some fixed $t$-set $S$, along with one additional edge disjoint from $S$ when all of $\ell_{1}, \ldots, \ell_{r}$ are even, has exactly $f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$ edges and dose not contain a copy of any member of $\mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)$.

Thus, to prove Theorem 5, it suffices to prove that $\operatorname{ex} k\left(n ; \mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)\right) \leq\binom{ n}{k}-$ $\binom{n-t}{k}+I$, i.e., any hypergraph on $n$ vertices with more than $f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$ edges must contain a member of $\mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)$. We use induction on $r$. From Theorem

2, the case $r=1$ has been proved. Assume that $r \geq 2$, and Theorem 5 holds for smaller $r$.

Let $H$ be a hypergraph on $n$ vertices with $m$ edges and $m>f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$.
Since $f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)>f\left(n, k, \ell_{1}\right)$ for sufficiently large $n$, there exists at least one $k$-uniform minimal $\ell_{1}$-cycle in $H$. Take one of them, denote its vertex set by $C$, so $\ell_{1} \leq|C| \leq(k-1) \ell_{1}$. We have that $|E(H \backslash C)| \leq f\left(n-|C|, k,\left\{\ell_{2}, \ldots, \ell_{r}\right\}\right)$, since otherwise, by induction hypothesis, we can find vertex disjoint copies of $\mathcal{C}_{\ell_{2}}^{(k)} \cup \ldots \cup \mathcal{C}_{\ell_{r}}^{(k)}$ in $H$; plus the minimal $\ell_{1}$-cycle on $C$, there is a copy of a member of $\mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)$ in $H$ already.

Let $m_{C}$ denote the number of edges in $H$ incident to vertices in $C$. Then,

$$
\begin{align*}
m_{C} & \geq m-f\left(n-|C|, k,\left\{\ell_{2}, \ldots, \ell_{r}\right\}\right)  \tag{1}\\
& \geq f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)-f\left(n-\ell_{1}, k,\left\{\ell_{2}, \ldots, \ell_{r}\right\}\right)  \tag{2}\\
& =\frac{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{(k-1)!} n^{k-1}+O\left(n^{k-2}\right) . \tag{3}
\end{align*}
$$

We call an edge in $H$ is a terminal edge if it contains exactly one vertex in $C$. Let $T$ denote the set of all terminal edges in $H$. For every $(k-1)$-set $R$ in $V(H) \backslash C$, define

$$
T_{R}=\{E \in T: R \subseteq E\}
$$

According to the size of each set $T_{R}$, we partite all the $(k-1)$-sets in $V(H) \backslash C$ into two sets, such that:

$$
\begin{gathered}
X=\left\{R \subseteq V(H) \backslash C \text { and }|R|=k-1:\left|T_{R}\right| \leq\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor-1\right\} \\
Y=\left\{R \subseteq V(H) \backslash C \text { and }|R|=k-1:\left|T_{R}\right| \geq\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor\right\} .
\end{gathered}
$$

It is not difficult to give an upper bound of $m_{C}$ with the terms $|X|$ and $|Y|$ as follows:

$$
\begin{aligned}
m_{C} & \leq\binom{|C|}{2}\binom{n-2}{k-2}+|X|\left(\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor-1\right)+|Y| \cdot|C| \\
& \leq\binom{|C|}{2}\binom{n-2}{k-2}+\binom{n}{k-1}\left(\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor-1\right)+|Y| \cdot \ell_{1}(k-1)
\end{aligned}
$$

Combine with (3), we have that

$$
\begin{equation*}
|Y| \geq \frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}+O\left(n^{k-2}\right) \tag{4}
\end{equation*}
$$

For any $(k-1)$-set $R \in Y$, there are at least $\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor$ vertices in $C$ that can form terminal edges with $R$. We choose exactly $\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor$ of them, call the vertex set of these
$\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor$ vertices terminal set relative to $R$. Since the number of $\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor$-sets in $C$ is at most $\binom{|C|}{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}$, we can get that some elements in $Y$ may have the same terminal set. And it is easy to derive that, the number of $(k-1)$-sets in $Y$ with the same terminal set, is at least
$\frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{|C|}{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}^{-1}+O\left(n^{k-2}\right) \geq \frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{(k-1) \ell_{1}}{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}^{-1}+O\left(n^{k-2}\right)$.
Choose one terminal set $U$ in $C$, such that there are at least $\frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{(k-1) \ell_{1}}{\left\lfloor\frac{1_{1}+1}{2}\right\rfloor}^{-1}+$ $O\left(n^{k-2}\right)(k-1)$-sets in $V(H) \backslash C$, every such $(k-1)$-set can form a terminal edge with every vertex in $U$. Let $R_{U}$ be the set of all the common $(k-1)$-sets associate with $U$ in $V(H) \backslash C$, we have that

$$
\begin{equation*}
\left|R_{U}\right| \geq \frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{(k-1) \ell_{1}}{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}^{-1}+O\left(n^{k-2}\right) \tag{5}
\end{equation*}
$$

Let $m_{U}$ denote the number of edges incident to vertices in $U$, then,

$$
m_{U} \leq\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor\binom{ n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-1}+m^{\prime}
$$

where $m^{\prime}$ is the number of edges which contain at least two vertices in $U$. With some calculations, we have that

$$
\begin{aligned}
& f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)-f\left(n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor, k,\left\{\ell_{2}, \ldots, \ell_{r}\right\}\right)-m_{U} \\
= & \binom{n-1}{k-1}+\binom{n-2}{k-1}+\cdots+\binom{n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-1}-m_{U} \\
\geq & {\left[\binom{n-1}{k-1}-\binom{n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-1}\right]+\left[\binom{n-2}{k-1}-\binom{n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-1}\right] } \\
& +\cdots+\left[\binom{n-\left\lfloor\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor+1\right.}{k-1}-\binom{n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-1}\right]-m^{\prime} .
\end{aligned}
$$

It is not difficult to deduce that the last expression is no less than zero (consider the combinatorial meaning of that expression), hence, we can derive that

$$
\begin{aligned}
E(H \backslash U) & =m-m_{U}>f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)-m_{U} \\
& \geq f\left(n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor, k,\left\{\ell_{2}, \ldots, \ell_{r}\right\}\right) .
\end{aligned}
$$

Thus by the induction hypothesis, there exists a member of $\mathcal{S}\left(\ell_{2}, \ldots, \ell_{r}\right)$ with vertex set $W$ in $V(H) \backslash U$, also we have that

$$
\begin{equation*}
|W| \leq(k-1) \sum_{i=2}^{r} \ell_{i} \tag{6}
\end{equation*}
$$

Now we focus on finding a $k$-uniform minimal $\ell_{1}$-cycle disjoint from $W$.
Considering the $(k-1)$-uniform hypergraph $H_{0}$ with vertex set $V(H) \backslash U$ and edge set $R_{U}$, we will prove the following claim:

Claim 1 There are $\left\lfloor\frac{\ell_{1}}{2}\right\rfloor$ pairs of $(k-1)$-edges in $H_{0}$, say $\left\{a_{i}, b_{i}\right\}, i=1, \ldots,\left\lfloor\frac{\ell_{1}}{2}\right\rfloor$, such that for every $i, a_{i}$ and $b_{i}$ have exactly one common vertex, and for any $j \neq i$, $\left\{a_{i}, b_{i}\right\}$ and $\left\{a_{j}, b_{j}\right\}$ are vertex disjoint, moreover, all these $(k-1)$-edges disjoint from $W$.

Proof. The number of $(k-1)$-edges incident with vertices in $W$ is at most $|W| \cdot\binom{n-1}{k-2}$. With the aid of (5) and (6), in $R_{U}$, the number of $(k-1)$-edges disjoint from $W$ is at least
$\frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{(k-1) \ell_{1}}{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}^{-1}+O\left(n^{k-2}\right)-(k-1) \sum_{i=2}^{r} \ell_{i}\binom{n-1}{k-2}>\binom{n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-2}$.
By Theorem 4, we can find a pair of $(k-1)$-edges $\left\{a_{1}, b_{1}\right\}$ with exactly one common vertex. Let $p=\left\lfloor\frac{\ell_{1}}{2}\right\rfloor(2 k-3)$, since $\frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{(k-1) \ell_{1}}{\left[\frac{\ell_{1}+1}{2}\right\rfloor}^{-1}+O\left(n^{k-2}\right)-(k-$ 1) $\sum_{i=2}^{r} \ell_{i}\binom{n-1}{k-2}-p\binom{n-1}{k-2}>\binom{n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{ k-2}$, we can repeat the argument above to find $\left\{a_{2}, b_{2}\right\}$, $\ldots,\left\{a_{\left\lfloor\frac{\ell_{1}}{2}\right\rfloor}, b_{\left\lfloor\frac{\ell_{1}}{2}\right\rfloor}\right\}$ satisfying the properties described in Claim 1 .

Let $U=\left\{u_{1}, \ldots, u_{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}\right\}$. To form the required minimal $\ell_{1}$-cycle, we need to consider such two cases:

Case 1. $\ell_{1}$ is even.
Find $\frac{\ell_{1}}{2}$ pairs of $(k-1)$-edges in $H_{0}$ as described in Claim 1, still denote them by $\left\{a_{i}, b_{i}\right\}, i=1, \ldots, \frac{\ell_{1}}{2}$. Construct a $k$-uniform minimal $\ell_{1}$-cycle in $H$ with edges:

$$
a_{1} \cup\left\{u_{1}\right\}, b_{1} \cup\left\{u_{2}\right\}, a_{2} \cup\left\{u_{2}\right\}, \ldots, b_{\frac{\ell_{1}}{2}-1} \cup\left\{u_{\frac{\ell_{1}}{2}}\right\}, a_{\frac{\ell_{1}}{2}} \cup\left\{u_{\frac{\ell_{1}}{2}}\right\}, b_{\frac{\ell_{1}}{2}} \cup\left\{u_{1}\right\}
$$

Case 2. $\ell_{1}$ is odd.
Find $\frac{\ell_{1}-3}{2}$ pairs of $(k-1)$-edges in $H_{0}$ as described in Claim 1. Similar to the proof of Claim1. Let $Q$ be the vertex set of $W$ and all these $\frac{\ell_{1}-3}{2}$ pairs of $(k-1)$-edges, hence, $|Q|=\frac{\ell_{1}-3}{2}(2 k-3)+|W|$. By Theorem 团, ex $x_{k-1}\left(n-\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor ; \mathbb{P}_{3}^{(k-1)}\right)=\frac{1}{(k-2)!} n^{k-2}+$ $O\left(n^{k-3}\right)$, for sufficiently large $n$. In $H_{0}$, the number of $(k-1)$-edges disjoint from $Q$ is at least $\frac{n^{k-1}}{(k-1) \ell_{1}(k-1)!}\binom{(k-1) \ell_{1}}{\frac{e_{1}+1}{2}}^{-1}+O\left(n^{k-2}\right)-|Q|\binom{n-1}{k-2}>\frac{1}{(k-2)!} n^{k-2}+O\left(n^{k-3}\right)$. That implies in $H_{0}$, we can find a $\mathbb{P}_{3}^{(k-1)}$ in remaining $(k-1)$-edges disjoint from $Q$. Let $x, y, z$ be the three consecutive $(k-1)$-edges in that $\mathbb{P}_{3}^{(k-1)}$, then, in $H$, we can form a $k$-uniform minimal $\ell_{1}$-cycle with edges:

$$
a_{1} \cup\left\{u_{1}\right\}, b_{1} \cup\left\{u_{2}\right\}, a_{2} \cup\left\{u_{2}\right\}, \ldots, a_{\frac{\ell_{1}-3}{2}} \cup\left\{u_{\frac{\ell_{1}-3}{2}}\right\},
$$

$$
b_{\frac{\ell_{1}-3}{2}} \cup\left\{u_{\frac{\ell_{1}-1}{2}}\right\}, x \cup\left\{u_{\frac{\ell_{1}-1}{2}}^{2}\right\}, y \cup\left\{u_{\frac{\ell_{1}+1}{2}}\right\}, z \cup\left\{u_{1}\right\} .
$$

Moreover, it is easy to see that this $k$-uniform minimal $\ell_{1}$-cycle is not only minimal, but also linear, whenever $\ell_{1}$ is even or odd. Thus, we have constructed $r$ disjoint $k$ uniform minimal cycles. So the hypergraph which contains no member of $\mathcal{S}\left(\ell_{1}, \ldots, \ell_{r}\right)$ can not have more than $f\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$ edges. Thus completes the proof.

## 3 Proof of Theorem 6

The argument in the proof of Theorem 6 is similar to the proof of Theorem [5,
Let $g\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)=\binom{n}{k}-\binom{n-t}{k}+J$. Firstly, we point out that the hypergraph on $n$ vertices that has every edge incident to some fixed $t$-set $S$, along with all the $k$-edges disjoint from $S$ containing some two fixed elements not in $S$ when all of $\ell_{1}, \ldots, \ell_{r}$ are even, has exactly $g\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$ edges and dose not contain a copy of any member of $\mathbb{C}_{\ell_{1}}^{(k)} \cup \ldots \cup \mathbb{C}_{\ell_{r}}^{(k)}$.

Hence it suffices to prove that $\operatorname{ex} x_{k}\left(n ; \mathbb{C}_{\ell_{1}}^{(k)}, \ldots, \mathbb{C}_{\ell_{r}}^{(k)}\right) \leq g\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$. We proceed by induction on $r$ again since the case $r=1$ is provided by Theorem 3, Let $H$ be a hypergraph on $n$ vertices with $m>g\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$ edges. If one of $\ell_{1}, \ldots, \ell_{r}$ is even, rearrange the sequence to make sure $\ell_{1}$ is even.

As in the proof of Theorem 55, since $g\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)>g\left(n, k, \ell_{1}\right)$ for sufficiently large $n$, there exists at least one $k$-uniform linear $\ell_{1}$-cycle in $H$. Take one of them, denote its vertex set by $C$. Similarly, we have that $|E(H \backslash C)| \leq$ $g\left(n-|C|, k,\left\{\ell_{2}, \ldots, \ell_{r}\right\}\right)$. Still let $m_{C}$ denote the number of edges in $H$ incident to vertices in $C$, with some calculations, we can get that:

$$
m_{C} \geq \frac{\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor}{(k-1)!} n^{k-1}+O\left(n^{k-2}\right)
$$

Again we define terminal edges, $T_{R}, X, Y$ as before, we can find the $\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor$-set $U$, too. Then by induction hypothesis, we can find a copy of $\mathbb{C}_{\ell_{2}}^{(k)} \cup \ldots \cup \mathbb{C}_{\ell_{r}}^{(k)}$ on vertex set $W$ in $V(H) \backslash U$. With the same method used in the proof of Theorem 55, we can select a terminal set of size $\left\lfloor\frac{\ell_{1}+1}{2}\right\rfloor$ in $C$, then, similarly, we can construct a $k$-uniform linear $\ell_{1}$-cycle in $H$ since the $k$-uniform minimal $\ell_{1}$-cycle we described in the proof of Theorem 5 is also linear. And this $k$-uniform linear $\ell_{1}$-cycle avoid the vertices in $W$, hence we know that the hypergraph which contains no $\mathbb{C}_{\ell_{1}}^{(k)} \cup \ldots \cup \mathbb{C}_{\ell_{r}}^{(k)}$ can not have more than $g\left(n, k,\left\{\ell_{1}, \ldots, \ell_{r}\right\}\right)$ edges. The proof is thus complete.

## References

[1] C. Berge, Hypergraphs, North-Holland Mathematical Library 45, North-Holland, Amsterdam, 1989.
[2] Z. Füredi, T. Jiang, R. Seiver, Exact Solution of the hypergraph Turán problem for $k$-uniform linear paths, Combinatorica, to appear.
[3] Z. Füredi, T. Jiang, Hypergraph Turán numbers of linear cycles, arXiv:1302.2387. [math.CO] 2013.
[4] P. Keevash, D. Mubayi, R. Wilson, Set systems with no singleton intersection, SIAM J. Discrete Math. 20 (2006), 1031-1041.
[5] E. Györi, G. Katona, N. Lemons, Hypergraph extensions of the Erdös-Gallai theorem, Electronic Notes in Disc. Math. 36 (2010), 655-662.
[6] D. Mubayi, J. Verstraëte: Minimal paths and cycles in set systems, European J. Combin. 28(2007), 1681-1693.


[^0]:    *Supported by NSFC and the " 973 " program.

