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Abstract

The Turédn number of a k-uniform hypergraph H, denoted by exy (n; H),
is the maximum number of edges in any k-uniform hypergraph F' on n ver-
tices which does not contain H as a subgraph. Let Cék) denote the family
of all k-uniform minimal cycles of length ¢, S(¢1,...,¢,) denote the family of
hypergraphs consisting of unions of r vertex disjoint minimal cycles of length

)

denote a k-uniform linear cycle of length ¢. We

determine precisely exy (n;S(41,...,4,)) and exy (n;(Cgf)7 ... ,(Cé’:)) for suffi-

b1, ..., 0., respectively, and (Cgk

ciently large n. The results extend recent results of Fiiredi and Jiang who
determined the Turan numbers for single k-uniform minimal cycles and linear

cycles.
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1 Introduction
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In this paper, we employ standard definitions and notation from hypergraph the-
ory (see e.g.,[1]). A hypergraph is a pair H = (V, E') consisting of a set V' of vertices
and a set £ C P(V) of edges. If every edge contains exactly k vertices, then H is a
k-uniform hypergraph. For two hypergraphs G and H, we write G C H if there is an

injective homomorphism from G into H. We use G U H to denote the disjoint union
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of (hyper)graphs G and H. By disjoint, we will always mean vertex disjoint. A Berge
path of length ¢ is a family of distinct sets {Fi,..., Fy} and £ + 1 distinct vertices
vy, ..., Upy1 such that for each 1 < i < ¢, F; contains v; and v;,1. Let Bék) denote
the family of k-uniform Berge paths of length ¢. A linear path of length ¢ is a family
of sets {F1,..., Fy} such that |F; N F;41| = 1 for each ¢ and F; N F; = () whenever
li — 7] > 1. Let ng) denote the k-uniform linear path of length ¢. It is unique up to
isomorphisms. A k-uniform Berge cycle of length ¢ is a cyclic list of distinct k-sets
Ay, ..., Ay and £ distinct vertices vy, ..., v, such that for each 1 <i < /¢, A; contains
v; and v;11 (where vy 1 = v1). A k-uniform minimal cycle of length ¢ is a cyclic list
of k-sets Ay,..., Ay such that consecutive sets intersect in at least one element and
nonconsecutive sets are disjoint. Denote the family of all k-uniform minimal cycles
of length ¢ by Cék). A k-uniform linear cycle of length ¢, denoted by Cﬁk), is a cyclic
list of k-sets Ap,..., A, such that consecutive sets intersect in exactly one element

and nonconsecutive sets are disjoint.

The Turdn number, or extremal number, of a k-uniform hypergraph H, denoted
by exy(n; H), is the maximum number of edges in any k-uniform hypergraph F' on
n vertices which does not contain H as a subgraph. This is a natural generaliza-
tion of the classical Turan number for 2-uniform graphs; we restrict ourselves to
the case of k-uniform hypergraphs. Let exy(n; Fy, Fs, ..., F,) denote the k-uniform
hypergraph Turan Number of a list of k-uniform hypergraphs Fi, Fy, ..., F,, i.e.,
exg(n; F1, Fy, ..., F,) =exp(n; FUF,U...UF,).

For the class of k-uniform Berge paths of length ¢, Gyori et al [5] determined
exg(n; Bék)) exactly for infinitely many n. In [2], Fiiredi et al. established the following

results.

Theorem 1 [2] Let k, t be positive integers, where k > 3. For sufficiently large n,

n—1 n—2 n—t
exy, (n;IP’gQLJ = (k—1>+(k—1>+”'+(k‘—1)'

The only extremal family consists of all the k-sets in [n] that meet some fized set S

we have

of t vertices. Also,

n—1 n—2 n—t n—t—2
exk(n;P;ﬁ2>: (k—1>+(k—1>+'”+(k—l)+( P )

The only extremal family consists of all the k-sets in [n] that meet some fized set S

of t vertices plus all the k-sets in [n]\ S that contain some two fized elements.

For more results we refer to |2, [6].



For the minimal and linear cycles, Fiiredi and Jiang [3], determined the extremal
numbers when the forbidden hypergraph is a single minimal cycle or a single linear
cycle. This confirms, in a stronger form, a conjecture of Mubayi and Verstraéte [6]
for £ > 5 and adds to the limited list of hypergraphs whose Turdn numbers have

been known either exactly or asymptotically. Their main results are as follows:

Theorem 2 [3] Let t be a positive integer, k > 4. For sufficiently large n, we have

n n—=t n n—=t
exk<n;C§f}rl>:<k>—< . ),andewk<n;6$}rz>:<k>—< P )—i—l.

For Céf}rl, the only extremal family consists of all the k-sets in [n] that meet some
fized k-set S. For Céf}rz, the only extremal family consists of all the k-sets in [n] that

intersect some fized t-set S plus one additional k-set outside S.

Theorem 3 [3] Let t be a positive integer, k > 5. For sufficiently large n, we have

n n—t n n—t
exk(n;Cgﬂl):(/J_( k )’a"de‘”’f<”’<c5§)+2):<k>_< k >+

n—t—2
k—2

that meet some fized k-set S. For ngrz, the only extremal family consists of all the

. For (ngzrl, the only extremal family consists of all the k-sets in [n]

k-sets in [n] that intersect some fized t-set S plus all the k-sets in [n]\ S that contain

some two fized elements.

From the definition of k-uniform minimal cycles, two k-uniform minimal cycles
of the same length may not be isomorphic. Hence we define the following family of

hypergraphs, where every member consists of r vertex disjoint cycles:
S(li,....t,)={CiU...UC,: CieCl forielr}
Apart from the results above, we will need the following two results:

Theorem 4 [J] Let H be a k-uniform hypergraph on n vertices with no two edges
intersecting in ezactly one vertez, where k > 3. Then |E(H)| < (,",).

We build on earlier work of Fiiredi and Jiang [3], in this paper, we determine
precisely the exact Turdn numbers when forbidden hypergraphs are r vertex disjoint

minimal cycles or r vertex disjoint linear cycles. Our main results are as follows:

Theorem 5 Let integers k>4, r > 1, l1,...,0, >3, t=> VZ;FIJ —1,and I =1,
i=1
if all the £y, ... 0, are even, I = 0 otherwise. For sufficiently large n,

(1)-()

exy (n; S0y, ..., 0))



Theorem 6 Let integers k > 5, r > 1, {y,...,0, > 3, t = > [4H] — 1, and
=1

—t—2
J = ( " ), if all the 4,...,0,. are even, J = 0 otherwise. For sufficiently

k—2
—t
e:pk<n;Cgf),...,Cg:)> = <Z>_<nk >+J.

Sometimes, we allow the hypergraph to contain less than r minimal or linear

large n,

cycles, consider the Turan number in such cases, we have the following two corollaries.
We use notation 7 - F' to denote r vertex disjoint copies of hypergraph F. Let ¢; =
... =L, ={, we can immediately get the following two corollaries from Theorems
and

Corollary 1 Let integers k >4, r > 1, (>3, t =r L“le —1,and I =1, if { is
even, I =0, if £ is odd. For sufficiently large n,

exy, (n;r.Cék)) :(Z)—(n;t>+l.

—t—2
Corollary 2 Letz’ntegerskZE),rz1,623,t:rv+TlJ—1, ansz(nk 5 );

if € is even, J =0, if £ is odd. For sufficiently large n,

exk(n;r-(c§k)>=<z>— <n;t>+l

2 Proof of Theorem

—1
For convenience, we define f(n,k,{l,...,¢.}) = Z ) (" i + I. Note

that the hypergraph on n vertices that has every edge incident to some fixed t-set

S, along with one additional edge disjoint from S when all of ¢,..., ¢, are even,
has exactly f(n,k,{{,...,¢.}) edges and dose not contain a copy of any member of
Sy, ..., 0).

Thus, to prove Theorem [ it suffices to prove that exy (n; S(4q,...,4.)) < ( Z ) —

—1
< " " ) + 1, i.e., any hypergraph on n vertices with more than f(n, k, {¢,...,¢,.})

edges must contain a member of S(¢1,...,¢,.). We use induction on r. From Theorem

4



2 the case r = 1 has been proved. Assume that » > 2, and Theorem [ holds for

smaller r.
Let H be a hypergraph on n vertices with m edges and m > f(n,k,{l1,...,¢.}).
Since f(n,k,{l1,...,¢.}) > f(n,k,{1) for sufficiently large n, there exists at least

one k-uniform minimal ¢;-cycle in H. Take one of them, denote its vertex set by C|
so 4 < |C| < (k—1)¢;. We have that |[E(H\ C)| < f(n—|C|, k,{ls,...,L.}), since
otherwise, by induction hypothesis, we can find vertex disjoint copies of Céf) U.. .UCéf)

in H; plus the minimal ¢;-cycle on C| there is a copy of a member of S(¢4,...,¢,) in
H already.

Let m¢ denote the number of edges in H incident to vertices in C. Then,

me>m— f(n—|C|, k,{la, ..., 0.}) (1)
2f(n,k,{él,...,ﬁr})—f(n—ﬁl,k,{ég,...,ér}) (2)
I e B -
_(k:—l)!n +O(n ) (3)

We call an edge in H is a terminal edge if it contains exactly one vertex in C. Let T’
denote the set of all terminal edges in H. For every (k—1)-set Rin V(H)\ C, define

Tn={EeT: RCE}.

According to the size of each set Tg, we partite all the (k — 1)-sets in V/(H) \ C into

two sets, such that:

1

Y = {RCV(H)\C and |R| = k —1: |Tx| > Vl;lJ}.

It is not difficult to give an upper bound of m¢ with the terms | X| and |Y] as follows:

<'§' ) (Z:§>+|X|(V1§1J ~1) 4171 jo
e AT -

Combine with (3], we have that

IA

mc

nk—l

Yz G onm—n

+0(n"7?). (4)

For any (k — 1)-set R € Y, there are at least VlTHJ vertices in C' that can form

{1+1

5 J of them, call the vertex set of these

terminal edges with R. We choose exactly L
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VlTHJ vertices terminal set relative to R. Since the number of VIT“J—sets in C is at

%57

set. And it is easy to derive that, the number of (k — 1)-sets in Y with the same

most < C] ), we can get that some elements in Y may have the same terminal

terminal set, is at least

nk! ol k2 nh! (k—1)6\"" k=2
(k—1)41 (k — 1)!({"%%) O™ 2 (k—1)4 (k—l)!( Eal ) +O( )

Choose one terminal set U in C, such that there are at least % (Y@ZJ) - +

O(n*=2) (k — 1)-sets in V(H) \ C, every such (k — 1)-set can form a terminal edge
with every vertex in U. Let Ry be the set of all the common (k — 1)-sets associate
with U in V(H) \ C, we have that

nt! (k—1) &\ k=2
Rl > e (el ) rom 5)

Let my denote the number of edges incident to vertices in U, then,

b1 (n— |l
< | = 2 !
mU_{ B J( E—1 —|—m,

where m’ is the number of edges which contain at least two vertices in U. With some

calculations, we have that

SRy
[ C ) )
e ) ()

It is not difficult to deduce that the last expression is no less than zero (consider the

Vl+1

(]
I

k{£2,..., })—mU

(1)

combinatorial meaning of that expression), hence, we can derive that

EH\U) = m—my> f(nk,{l1,....0}) —

> ﬂn—{&;1J${@,”jJ)

Thus by the induction hypothesis, there exists a member of S(¢5, ..., ¢,) with vertex
set Win V(H) \ U, also we have that

W< (k—1) Ze (6)




Now we focus on finding a k-uniform minimal ¢,-cycle disjoint from W.

Considering the (k — 1)-uniform hypergraph H, with vertex set V(H) \ U and

edge set Ry, we will prove the following claim:

Claim 1 There are L%J pairs of (k — 1)-edges in Hy, say {a;,b;}, 1 = 1,..., L%J,
such that for every i, a; and b; have exactly one common vertex, and for any j # i,
{ai,b;} and {a;,b;} are vertex disjoint, moreover, all these (k—1)-edges disjoint from

w.

Proof. The number of (k—1)-edges incident with vertices in W is at most |W|- (Z:;)
With the aid of (@) and (@), in Ry, the number of (k — 1)-edges disjoint from W is

at least

nk-1 (k’ — ].) fl) ! r n—1 n — L€1+1J
rout-a-n3oa(y 2y) > ("0 )
(/{;—1)61(!{;—1)!( Ead ()=l ); k—2 k—2
By Theorem @, we can find a pair of (k — 1)-edges {aq,b;} with exactly one com-
- 1y 1
mon vertex. Let p = [%J (2k — 3), since (L((Lkﬁgj) +0(n*2) — (k —
2

k—1)f (k—1)!

T £ 1

>4 (Z:;) —p(Z:;) > ("_IE_lg J), we can repeat the argument above to find {as, by},
i=2
. {QV_IJ : bV_IJ} satisfying the properties described in Claim [ O
2 2
Let U = {uy,... ,uLel_HJ }. To form the required minimal ¢;-cycle, we need to
2

consider such two cases:
Case 1. /; is even.

Find %1 pairs of (k — 1)-edges in Hy as described in Claim [T} still denote them by

{a;, b}, i=1,..., % Construct a k-uniform minimal ¢;-cycle in H with edges:
a; U{us}, by U{{ust, as U{us}, ..., b%_l U {u%}, ay U {u%}, b% U {us}.

Case 2. ¢, is odd.

Find 252 pairs of (k—1)-edges in Hy as described in Claim[Il Similar to the proof
of Claim[Il Let @ be the vertex set of W and all these KIT_?’ pairs of (k—1)-edges, hence,
Q| = “52(2k — 3) 4+ [W|. By Theorem [, ex;_, (n — |2 ;ng—1)> _ (k_lz)!nkd +
O(n*=3), for sufficiently large n. In Hy, the number of (k — 1)-edges disjoint from Q

_1 -1 _
is at least (L((F@KJ) +0(n*2) —1Q|(}7)) > (kiQ)!nk_z + O(n*3). That

k—1)01 (k—1)!
implies in Hy, we can find a IP’gkil) in remaining (k — 1)-edges disjoint from . Let
x,y, z be the three consecutive (k — 1)-edges in that ]P’gkil), then, in H, we can form

a k-uniform minimal ¢;-cycle with edges:

a1 U{ui}, by Ufust, ap U{ua}, ... an-s U{uy-s},
2 2
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bey—s U{ug },aU{ug-r b,y U{uga}, 22U {u}.
2 2 2 2

Moreover, it is easy to see that this k-uniform minimal ¢;-cycle is not only minimal,
but also linear, whenever ¢; is even or odd. Thus, we have constructed r disjoint k-
uniform minimal cycles. So the hypergraph which contains no member of S(¢4, ..., ¢,)

can not have more than f(n,k, {¢1,...,¢,}) edges. Thus completes the proof. |

3 Proof of Theorem

The argument in the proof of Theorem [G] is similar to the proof of Theorem

n n—t
= L " ) + J. Firstly, we point out that the

hypergraph on n vertices that has every edge incident to some fixed t-set S, along

Let g(n, k,{l1,...,0.})

with all the k-edges disjoint from .S containing some two fixed elements not in S when
all of ¢1,..., ¢, are even, has exactly g(n, k, {¢1,...,0.}) edges and dose not contain

a copy of any member of (Célf) U...u (Céf).
Hence it suffices to prove that exy (n; Cgf), ey Cé?) < g(n,k,{l,...,¢.}). We

proceed by induction on r again since the case r = 1 is provided by Theorem Bl
Let H be a hypergraph on n vertices with m > g(n, k,{¢1,...,¢.}) edges. If one of

(1, ..., 4, is even, rearrange the sequence to make sure /; is even.

As in the proof of Theorem [l since g(n,k,{l1,...,¢.}) > g(n,k,¢;) for suf-
ficiently large n, there exists at least one k-uniform linear ¢;-cycle in H. Take
one of them, denote its vertex set by C. Similarly, we have that |F(H \ C)| <
gn—|C|, k,{ls,...,L.}). Still let me denote the number of edges in H incident to

vertices in C', with some calculations, we can get that:

[%2] i -
me > n" " 4+0((n"7).

“= k-1 (")
Again we define terminal edges, T, X, Y as before, we can find the [&Tﬂj—set U,
too. Then by induction hypothesis, we can find a copy of (Céf) U...u (Cél:) on vertex
set Win V(H) \ U. With the same method used in the proof of Theorem [ we can
select a terminal set of size VITHJ in C', then, similarly, we can construct a k-uniform
linear ¢;-cycle in H since the k-uniform minimal ¢;-cycle we described in the proof
of Theorem [l is also linear. And this k-uniform linear ¢;-cycle avoid the vertices in
W, hence we know that the hypergraph which contains no (Cgf) Uu...U (Cg:) can not

have more than g(n, k, {¢1,...,¢,}) edges. The proof is thus complete. |
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