
ON ARC-TRANSITIVE CAYLEY DIGRAPHS OF OUT-VALENCY 3
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Abstract. In this paper, based on the calculation using GAP, we give a classification
result on arc-transitive Cayley digraphs of finite simple groups. Let G be a finite simple
group and S ⊂ G \ {1} with |S| = 3, S 6= S−1 and G = 〈SS−1〉. If the Cayley digraph
Γ = Cay(G,S) is arc-transitive, then Γ is either normal or isomorphic to one of 382
Cayley digraphs of the alternating group A47. Further, we consider the underlying
graphs and standard double covers of these 382 Cayley digraphs, and then we get 172
(non-isomorphic) half-transitive Cayley graphs of valency 6, and 144 semisymmetric
cubic graphs.
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1. introduction

In this paper, all graphs and digraphs are assumed to be finite and simple.

Let V be a nonempty set. A digraph (directed graph) Γ on V is a pair (V,A) with
A a set of ordered pairs of distinct elements in V , where the elements in V and A
are called vertices and arcs, respectively. For the case where A is self-paired, that is,
A = A∗ := {(v, u) | (u, v) ∈ A}, the digraph Γ gives an (undirected) graph on V with
edge set {{u, v} | (u, v) ∈ A}, and vice versa.

Let Γ = (V,A) be a digraph. For vertices u, v ∈ V , an alternating walk between
u and v means a sequence u = v0 v1 . . . v2l = v of odd number of vertices such that
(v2i, v2i+1), (v2i+2, v2i+1) ∈ A for 0 ≤ i ≤ l− 1. The digraph Γ is said to be alternatingly
connected if there exists an alternating walk between every pair of vertices. Note that
an alternatingly connected digraph must be connected, and that a graph (self-paired
digraph) is alternatingly connected if and only if it is connected but not bipartite. Let
AutΓ be the automorphism group of Γ . For a subgroup X ≤ AutΓ , the digraph Γ is
said to be X-arc-transitive if X acts transitively on both V and A. In this paper we
deal with alternatingly connected arc-transitive Cayley digraphs.

Let G be a finite group, and S a subset of G which does not contain the identity 1
of G. The Cayley digraph Cay(G,S) on G with respect to S is the digraph with vertex
set u(G), the underlying set of G, and arc set {(u(g), u(sg)) | g ∈ G, s ∈ S}. Clearly,
all vertices of Cay(G,S) have the same out-valency |S|. If S is inverse-closed, that is,
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S = S−1 := {s−1 | s ∈ S}, then Cay(G,S) can be viewed as an (undirected) graph; in
this case, we call it a Cayley graph. By the definition of Cay(G,S), each g ∈ G induces
an automorphism of Cay(G,S) by right multiplication, say

g : u(G)→ u(G); u(x) 7→ u(xg).

Then the group G can be viewed as a regular subgroup of AutCay(G,S). In particular,
Cay(G,S) is vertex-transitive, that is, AutCay(G,S) acts transitively on the vertex set
of Cay(G,S).

Another obvious subgroup of AutCay(G,S) consists of automorphisms of the group
G which fix S set-wise, say

Aut(G,S) := {α ∈ Aut(G) | S = Sα},

which acts on u(G) by

u(g)α = u(gα); g ∈ G, α ∈ Aut(G,S).

By [11, Lemma 2.1], the normalizer of G in AutCay(G,S) is

NAutCay(G,S)(G) = G:Aut(G,S),

a semidirect product of G by Aut(G,S). In general, NAutCay(G,S)(G) is not equal to
AutCay(G,S). For example, considering the complete graph Kn as a Cayley graph of
the cyclic group Zn, we have an example with NAutCay(G,S)(G) 6= AutCay(G,S).

A Cayley digraph Cay(G,S) is said to be normal with respect to G if G is a normal
subgroup group of AutCay(G,S), i.e., NAutCay(G,S)(G) = AutCay(G,S). In 1998, Xu [27]
conjectured that almost Cayley digraphs are normal. This stimulates the study of the
following natural problem: Describe the pairs (G,S) such that Cay(G,S) is not normal,
particularly, do this under certain restrictions on G or S such as restrictions on the
structure of G or on the size of S, etc.. This problem has received considerable attention
in the literature, see for example [5, 6, 8, 9, 10, 15, 17, 20, 22, 28, 30].

Let G be a finite nonabelian simple group and S a generating subset of G with |S| = 3.
For the case where S is inverse-closed, Li [16] proved that if Cay(G,S) is arc-transitive
then it is normal unless G is one of the seven exceptions: A5, PSL(2, 11), M11, A11, M23,
A23 and A47. Xu et al. [28, 29] improved Li’s result by showing that the only exception
is A47 and, up to isomorphism, there are two non-normal arc-transitive Cayley graphs
on A47. In 2009, Li and Lu [22] gave a complete classification of core-free arc-transitive
Cayley graphs of valency 3, which covers the main results in [28, 29]. For the directed
case, that is, S 6= S−1, Fang at al. [8] proved that if G is generated by {st−1 | s, t ∈ S}
(equivalently, Cay(G,S) is alternatingly connected) and Cay(G,S) is arc-transitive then
Cay(G,S) is normal unless G is one of a finite number of exceptions. In Section 3 of
the present paper, we improve the above result by proving that the only exception is
A47, and then we give a classification of non-normal arc-transitive Cayley digraph of
out-valency 3 on finite simple groups.

Recall that, for a group X and a subgroup Y ≤ X, the core CoreX(Y ) of Y in
X is the intersection of all conjugations of Y in X, i.e., CoreX(Y ) = ∩x∈XY x. The
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subgroup Y is said to be core-free in X if CoreX(Y ) = 1. For a subset D of X, write
DD−1 = {xy−1 | x, y ∈ D}, and let 〈DD−1〉 be the subgroup of X generated by DD−1.

Theorem 1.1. Let G be a finite group and S ⊆ G \ {1} with |S| = 3, S−1 6= S and
〈SS−1〉 = G. Let Γ = Cay(G,S) and G ≤ X ≤ AutΓ . Assume that Γ is X-arc-
transitive. If G is core-free in X, then either

(1) G ∼= Z11:Z5, AutΓ = X ∼= PSL(2, 11), and Γ is unique up to isomorphism; or
(2) G = A47, AutΓ = X = A48 and Γ is isomorphic to one of 382 Cayley digraphs

of A47.

Remark. Assume that Γ is a connected arc-transitive digraph of out-valency 3, and H
is the stabilizer in AutΓ of some vertex. Then |H| = 2e3f for some integers e ≥ 0 and
f ≥ 1. For the case where Γ is self-paired, e ≤ 3 and f = 1, refer to [1, 18c]. If Γ is
a normal Cayley digraph then it is easily shown that e ≤ 1 and f = 1. In general, are
there upper bounds for e and f? This may be an interesting problem.

Assume further that Γ is a Cayley digraph Cay(G,S) with S−1 6= S. Under the
assumption that G = 〈SS−1〉, the order of H is a divisor of 48. Thus, if further G is
core-free in AutΓ then we can consider AutΓ as a subgroup of the symmetric group of
some small degree, which has a point-stabilizer G and a regular subgroup H. This allows
us get the classification in Theorem 1.1 successfully, see Section 3 for the details. �

Note that, for a finite simple group G and S ⊆ G \ {1}, either the Cayley digraph
Γ = Cay(G,S) is normal or G is core-free in AutΓ . The following result is a direct
consequence of Theorem 1.1.

Corollary 1.2. Let G be a finite simple group and S ⊆ G \ {1} with |S| = 3, S−1 6= S
and 〈SS−1〉 = G. Assume that Γ = Cay(G,S) is arc-transitive. If Γ is not normal then
G = A47, AutΓ = A48 and Γ is isomorphic to one of 382 Cayley digraphs of A47.

Recall that a regular graph is semisymmetric if it is edge-transitive but not vertex-
transitive, and half-transitive if it is both vertex-transitive and edge-transitive but not
arc-transitive. In Sections 4 and 5, we investigate the underlying graphs and the standard
double covers of the 382 Cayley digraphs on A47. As a result, we get some examples of
half-transitive graphs and semisymmetric graphs.

Theorem 1.3. Let G be the set of 382 digraphs involved in Corollary 1.2. For Γ =
Cay(G,S) ∈ G, we let Γ = Cay(G,S ∪ S−1), and let Γ (2) be the bipartite graph on
u(G)× Z2 such that {(u(h)), 0), (u(g), 1)} is an edge if and only if gh−1 ∈ S.

(1) If Γ ∈ G then AutΓ = A48 or Z2 × A48, and Γ is arc-transitive if and only if
AutΓ ∼= Z2×A48. In particular, when Γ runs over G, there are 38 arc-transitive
graphs Γ , and 172 half-transitive graphs Γ .

(2) If Γ ∈ G then AutΓ (2) = A48 or Z2 × A48, and Γ (2) is arc-transitive if and
only if AutΓ (2) ∼= Z2 × A48. In particular, when Γ runs over G, there are 66
arc-transitive cubic graphs Γ (2) and 144 semisymmetric cubic graphs Γ (2).
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Remark. In Theorem 1.3 (1), the 210 graphs are not isomorphic to every other. Ac-
cording to vertex-transitivity, the 210 graphs in Theorem 1.3 (2) are divided into two
subdivisions; however, we do not know the isomorphisms among the members in a same
subdivision.

2. Preliminaries

Let Γ = (V,A) be a digraph. For u ∈ V , set Γ+(u) = {v | v ∈ V, (u, v) ∈ A} and
Γ−(u) = {v | v ∈ V, (v, u) ∈ A}. The sizes |Γ+(u)| and |Γ−(u)| are the out-valency and
in-valency of u in Γ , respectively. Note that, for a graph (self-paired digraph) Γ , we
have Γ+(u) = Γ−(u) := Γ (u); in this case, Γ (u) is called the neighborhood of u, and
|Γ (u)| called the valency of u. For X ≤ AutΓ and u ∈ V , set Xu = {x ∈ X | ux = u},
called the stabilizer of u in X.

2.1. Alternatingly connected digraphs. Let Γ be a digraph. If every vertex of Γ
has positive out-valency and in-valency, then it is easily shown that the following two
statements are equivalent:

(a1) Γ is alternatingly connected;
(a2) For every pair of vertices u and v, there is a sequence u = v0 v1 . . . v2l = v of

odd number of vertices such that (v2i+1, v2i), (v2i, v2i+2) ∈ A for 0 ≤ i ≤ l − 1.

We next assume that Γ = (V,A) is a digraph with A 6= ∅, and let X ≤ AutΓ such
that Γ is X-vertex-transitive, that is, X is transitive on V . Then the above (a1) and
(a2) are equivalent for Γ . Fix a vertex u ∈ V . Then V = {ux | x ∈ X}.

Let Xu = {x ∈ X | ux = u}, the stabilizer of u in X, and D = {x | x ∈ X, ux ∈
Γ+(u)}. Then it is easily shown that D is a union of some double cosets XuxXu of Xu

in X, and Γ is X-arc-transitive if and only if D is a single double coset. Clearly, since
we consider only simple digraphs, D does not contain the identity of X. It is well-known
and easily shown that Γ is connected if and only if X = 〈H,D〉.

Consider the subgroups of X generated by DD−1 and D−1D. Then, for x, y ∈ D, we
have x〈D−1D〉y−1 ⊆ 〈DD−1〉 and 〈D−1D〉 ⊇ x−1〈DD−1〉y. This implies that 〈D−1D〉
and 〈DD−1〉 have the same order. Thus X = 〈D−1D〉 if and only if and X = 〈DD−1〉.

Lemma 2.1. Let Γ = (V,A) be an X-vertex-transitive digraph, u ∈ V , H = Xu and
D = {x | x ∈ X, ux ∈ Γ+(u)}. Then Γ is alternatingly connected if and only if
X = 〈DD−1〉 = 〈D−1D〉. In particular, if D = HxH for some x ∈ G \ H, then Γ is
alternatingly connected if and only if X = 〈H,Hx〉.

Proof. Assume that Γ is alternatingly connected. For each x ∈ X, take an alternating
walk u = v0 v1 . . . v2l = ux. Set vi = uyi for yi ∈ X with y0 = 1 and y2l+1 = x. Then
(uy2i , uy2i+1), (uy2i+2 , uy2i+1) ∈ A, i.e., y2i+1y

−1
2i , y2i+1y

−1
2i+2 ∈ D, where 0 ≤ i ≤ l− 1. Thus

x = y2l = (y2ly
−1
2l−1)(y2l−1y

−1
2l−2) · · · (y2i+2y

−1
2i+1)(y2i+1y

−1
2i ) · · · (y2y−11 )(y1y

−1
0 ) ∈ 〈D−1D〉.
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Then we have X = 〈D−1D〉 = 〈DD−1〉.
Let X = 〈D−1D〉. For v ∈ V , take x ∈ X with ux = v. Write x = c−1l−1dl−1 · · · c

−1
0 d0,

where ci, di ∈ D. For 1 ≤ i ≤ l, let

v2i−1 = udi−1c
−1
i−2di−2···c−1

0 d0 , v2i = uc
−1
i−1di−1···c−1

0 d0 .

Then, v2l = ux = v, and we get an alternating walk u = v0 v1 . . . v2l = v.

For D = HxH, we have 〈DD−1〉 = 〈Hx−1HxH〉 = 〈H,Hx〉. Then the second part of
this lemma follows. �

If X has a regular subgroup then we have the following simple fact.

Lemma 2.2. Let Γ be an X-vertex-transitive digraph, u ∈ V , H = Xu and D = {x |
x ∈ X, ux ∈ Γ+(u)}. If G ≤ X with G ∩ H = 1 and X = GH, then Γ ∼= Cay(G,S)
with S = G ∩D, and Γ is alternatingly connected if and only if G = 〈SS−1〉.

By [18, Lemma 2.3], we have the next result.

Lemma 2.3. Let Γ = (V,A) and Σ = (V,A′) be two X-vertex-transitive digraphs on V ,
u ∈ V , H = Xu, D = {x | x ∈ X, ux ∈ Γ+(u)} and D′ = {x | x ∈ X, ux ∈ Σ+(u)}.
Assume that AutΓ = X = AutΣ. Then Γ ∼= Σ if and only if D′ = Dσ for some
σ ∈ Aut(X) with Hσ = H.

Let Γ = (V,A) be an alternatingly connected X-arc-transitive digraph of out valency
3. Consider the standard double cover Γ (2) of Γ , which is the graph on V ×Z2 such that
{(u, 0), (v, 1)} is an edge if and only if (u, v) ∈ A. Then Γ (2) is a connected bipartite
cubic graph, and X has an action on the vertex set of Γ (2) by

(u, i)x = (ux, i); x ∈ X, u ∈ V, i ∈ Z2.

It is easily shown that X acts transitively on the edge set but not on the vertex set of
Γ (2). Noting that the stabilizers X(u,0) = Xu and X(v,1) = Xv are conjugate in X, by
[12], we can determine the structures of Xu and Xv.

Lemma 2.4. Let Γ = (V,A) be an alternatingly connected X-arc-transitive digraph of
out valency 3. If (u, v) ∈ A then Xu

∼= Xv
∼= Z3, S3, D12, S4 or Z2 × S4.

Lemma 2.5. Let Γ = (V,A) be an alternatingly connected X-arc-transitive digraph of
out valency 3, (u, v) ∈ A with (v, u) 6∈ A, Xuv = Xu ∩Xv, and v = uy for some y ∈ X.
Then NX(Xuv)/Xuv is not an elementary 2-group, and NX(Xuv) contains an element z
such that XuyXu = XuzXu and X = 〈Xu, X

z
u〉.

Proof. Let w = uy
−1

. Then w ∈ Γ−(u). Since Γ is X-arc-transitive, Xu is transitive on
both Γ+(u) and Γ−(u). This implies that |Xu : Xuv| = |Xu : Xuw| = 3, and so both Xuv

and Xuw are Sylow 2-subgroups of Xu, and then Xuv = Xx
uw for some x ∈ Xu. Thus

Xuv = Xx
uw = (Xu ∩Xy−1

u )x = (Xy
u ∩Xu)

y−1x = Xy−1x
uv ,

yielding y−1x ∈ NX(Xuv). Let z = x−1y. Then z ∈ NX(Xuv), XuyXu = XuzXu,
and X = 〈Xu, X

y
u〉 = 〈Xu, X

z
u〉. Noting that v = uy = uz, if z2 ∈ Xuv then (v, u) =
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(uz, uz
2
) = (u, uz)z = (u, v)z ∈ A, a contradiction. Thus NX(Xuv)/Xuv contains an

element of order greater than 2, and so NX(Xuv)/Xuv is not an elementary 2-group. �

2.2. Vertex-stabilizers. Let Γ = (V,E) be a graph and X ≤ AutΓ . Then, for u ∈ V ,

the stabilizer Xu induces a permutation group X
Γ (u)
u (on Γ (u)). The next lemma is

easily shown, see [3] for example.

Lemma 2.6. Let Γ = (V,E) be a connected regular graph, X ≤ AutΓ and u ∈ V .
Assume that Xu 6= 1. Let p be a prime divisor of |Xu|. Then p ≤ |Γ (u)|. If further Γ

is X-vertex-transitive, then p divides |XΓ (u)
u | and, for v ∈ Γ (u), each prime divisor of

|Xuv| is less than |Γ (u)|.

For a positive integer s, an s-arc in a graph Γ is an (s + 1)-tuple (v0, v1, · · · , vs) of
vertices such that vi−1 ∈ Γ(vi) for 1 ≤ i ≤ s and vi−1 6=vi+1 for 1 ≤ i ≤ s − 1. For
X ≤ AutΓ , the graph Γ is said to be (X, s)-arc-transitive if it contains at least one s-arc
and X acts transitively on both the vertex set and the set of s-arcs, and said to be
(X, s)-transitive if it is (X, s)-arc-transitive but not (X, s+ 1)-arc-transitive.

It is well known that an X-vertex-transitive graph Γ is (X, 2)-arc-transitive if and only

if Xv induces a 2-transitive permutation group X
Γ (u)
u for some vertex u. By Lemma 2.6,

if Γ is a connected X-arc-transitive cubic graph then either Xu has order 3 or Γ is
(X, 2)-arc-transitive. The well-known result of Tutte determines Xu, refer to [1, 18c].

Theorem 2.7. If Γ = (V,E) is a connected X-arc-transitive cubic graph, then Xu
∼= Z3,

S3, D12, S4 or S4×S2, where u ∈ V .

Let Γ = (V,E) be a connected graph of valency 6, X ≤ AutΓ and u ∈ V . Then, by

Lemma 2.6, Xu is a {2, 3, 5}-group. Further, if |Xu| is divisible by 5, then either X
Γ (u)
u

is a 2-transitive permutation group or Xu = Xv for some v ∈ Γ (u). Assume that X is
transitive on both V and E. Then Xu either has two orbits of size 3 or acts transitively

on Γ (u). It follows that either Xu is a {2, 3}-group, or X
Γ (u)
u is 2-transitive. Then, by

Lemma 2.6 and [19], we have the following result.

Theorem 2.8. Let Γ = (V,E) be a connected graph of valency 6, X ≤ AutΓ and u ∈ V .
Assume that X is transitive on both V and E. Then either Xu is a {2, 3}-group, or Γ
is (X, s)-transitive with s and Xu listed in the following table.

s 2 3 4
Xu A6, S6 A5×A6, (A5×A6).2, S5×S6

A5, S5 D10×PSL(2, 5), (5×PSL(2, 5)).2 52:GL(2, 5)
D10×PGL(2, 5), (5:4)×PGL(2, 5)

2.3. Quotients. In this subsection, we assume that Γ = (V,E) is a connected graph,
and X ≤ AutΓ .

Suppose that X has a normal subgroup N which is intransitive on every X-orbit on
V . Denote by B the set of N -orbits. The quotient graph ΓN is defined on B such that
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distinct B1 ∈ B and B2 ∈ B are adjacent if and only if some u1 ∈ B1 and some u2 ∈ B2

are adjacent in Γ . The graph Γ is called a normal cover of ΓN if for every edge {B1, B2}
of ΓN the subgraph [B1, B2] of Γ induced by B1∪B2 is a complete matching. We collect
in the following lemma some well-known facts on ΓN .

Lemma 2.9. Let Γ = (V,E), X, N , B and ΓN be as above. Assume that Γ is X-edge-
transitive, that is, X is transitive on E. Then X has at most two orbits on V , every
B ∈ B is an independent set of Γ , and ΓN is XB-edge-transitive. Moreover,

(1) if u, v ∈ B ∈ B then |Γ (u)| = |Γ (v)| and |ΓN(B)| is a divisor of |Γ (u)|;
(2) Γ is a normal cover of ΓN if and only if there is an edge {B1, B2} of ΓN such

that |ΓN(Bi)| = |Γ (ui)| for ui ∈ Bi and i = 1, 2;
(3) if Γ is a normal cover of ΓN then XB ∼= X/N , N is regular on every B ∈ B, and

(i) Γ is X-vertex-transitive if and only if ΓN is XB-vertex-transitive;
(ii) Γ is (X, s)-arc-transitive if and only if ΓN is (XB, s)-arc-transitive.

Suppose that Γ = (V,E) is X-half-transitive, that is, X is transitive on both V and
E but not transitive on the arcs of Γ . Then X has two orbits on the arc set of Γ , and
the following lemma holds, see [21, Theorem 4].

Lemma 2.10. Assume that Γ = (V,E) is a connected X-half-transitive graph. Let
∆ be the digraph on V with arc set an X-orbit on the arcs of Γ . Suppose that ∆ is
alternatingly connected, and for u ∈ V , the stabilizer Xu acts primitively on both ∆+(u)
and ∆−(u). Suppose that N is an intransitive normal subgroup of X (acting on V ). Let
B be the set of N-orbits on V . Then XB ∼= X/N , every B ∈ B is an independent set of
Γ , N is regular on every B ∈ B, and either

(1) Γ is a normal cover of ΓN ; or

(2) ΓN is XB-arc-transitive, non-bipartite and of valency |Γ (u)|
2

.

3. Core-free Cayley digraphs of out-valency 3

Let G be a finite group and S ⊆ G \ {1} with |S| = 3, S−1 6= S and G = 〈SS−1〉. Let
Γ = Cay(G,S) and G ≤ X ≤ AutΓ . Assume that Γ is X-arc-transitive.

3.1. Conclusions based on GAP calculation. In this subsection, we assume that G
is core-free in X, and determine the triple (X,G, S).

Denoted by u(g) the vertex of Γ corresponding to g ∈ G. Let u = u(1) and let
H = Xu. Then X = GH = HG, H ∩ G = 1, and H is core-free in X. For any given
x ∈ X and g ∈ G, the product gx can be written uniquely as hg′ with h ∈ H and g′ ∈ G,
and thus

(3.1) u(g)x = u(1)gh = u(g′).



8 LU AND XU

Consider the action of X on Ω = [X,G], the set of right cosets of G in X, by right
multiplication. Then the kernel of this action is CoreX(G). Recall that G is core-free in
X. Thus we may identify X with a subgroup of the symmetric group Sym(Ω). Noting
that |Ω| = H and |G| > 6, we have |H| > 3. By Lemma 2.4,

(3.2) H ∼= S3, D12, S4 or Z2 × S4.

Further, we may identify Ω with the set {1, 2, 3, . . . , n}, where n = |H|. Then we have
X ≤ Sn and, without loss of generality, we let G = Xn, the stabilizer of the point n in
X. Note that, for each v ∈ Γ+(u), the arc-stabilizer Xuv is a Sylow 2-subgroup of H.
By Lemmas 2.1, 2.2 and 2.5, S = G ∩HxH, where x normalizes a Sylow 2-subgroup of
H such that HxH 6= Hx−1H and X = 〈H,Hx〉.

By the above argument, our task is to find all possible x ∈ Sn which satisfies the
following conditions:

(C1) x normalizes a Sylow 2-subgroup of H, and HxH 6= Hx−1H;
(C2) x ∈ 〈H,Hx〉 and H is core-free in 〈H,Hx〉.

The following lemma is easily shown.

Lemma 3.1. Let H be a regular subgroup of Sn with H ∼= S3, D12, S4 or Z2 × S4. If
a permutation x ∈ Sn satisfies the conditions (C1) and (C2), setting X = 〈H,Hx〉,
G = Xn and S = G ∩ HxH, then |S| = 3, S = {y ∈ HxH | ny = n} 6= S−1 and
Cay(G,S) is alternatingly connected and X-arc-transitive, where X acts on u(G) as in
(3.1).

Let x ∈ Sn satisfy (C1) and (C2). Assume that x ∈ NSn(P ) for a Sylow 2-subgroup
P of H. For y ∈ Sn with ny = n, we have xy ∈ NSn(P )y = NSn(P y), and

Cay(G,G ∩HxH) ∼= Cay(Gy, Gy ∩HyxyHy).

Let y ∈ NSn(H) with ny = n. Noting that P and P y are Sylow 2-subgroups of H, we
may let P y = P h for some h ∈ H. Then xy = (x′)h for some x′ ∈ NSn(P ). Thus

Cay(G,G ∩HxH) ∼= Cay(Gy, Gy ∩HyxyHy) = Cay(Gy, Gy ∩Hx′H),

where Gy ∩ Hx′H = {z ∈ Hx′H | nz = n}. It is easily shown that any two Sylow
2-subgroups of H are conjugate under (NSn(H))n. Thus when we work on x, up to
isomorphism of digraphs, we may fix a regular subgroup H of Sn and a Sylow 2-subgroup
P of H, and locate x in a set It satisfying the following conditions:

(C3) It is a set of representatives of right cosets of P in NSn(P ), and HxH 6= Hx−1H
for each x ∈ It, where t is such that n = 2t3;

(C4) Distinct elements x1, x2 ∈ It are not conjugate under NSn(H), and Hx1H 6=
(Hx2H)y for all y ∈ NSn(H).

(C5) 〈H, x〉 = 〈H,Hx〉, and H is core-free in 〈H,Hx〉 for each x ∈ It;

Further, by [22], we choose H and P as follows:

(1) For n = 6, H = 〈a, b〉 and P = 〈b〉, where a=(1 2 3)(4 5 6) and b=(1 5)(2 4)(3 6).
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(2) For n = 12, H = 〈a, b〉 and P = 〈a3, b〉, where a = (1 2 3 4 5 6)(7 8 9 10 11 12)
and b = (1 12)(2 11)(3 10)(4 9)(5 8)(6 7).

(3) For n = 24, H = 〈a, b, c〉 and P = 〈a, c〉, where

a = (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24),
b = (1 18)(2 11)(3 6)(4 15)(5 16)(7 10)(8 21)(9 22)(12 17)(13 24)(14 19)(20 23),
c = (1 23)(2 22)(3 21)(4 24)(5 19)(6 18)(7 17)(8 20)(9 13)(10 16)(11 15)(12 14).

(4) For n = 48, H = 〈a, b, c, d〉 and P = 〈a, b, d〉, where

a= (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)
(41 42 43 44)(45 46 47 48),

b= (1 8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 24)(18 23)(19 22)
(20 21)(25 32)(26 31)(27 30)(28 29)(33 40)(34 39)(35 38)
(36 37)(41 48)(42 47)(43 46)(44 45),

c= (1 17 33)(2 39 20)(3 24 38)(4 34 23)(5 37 21)(6 19 40)(7 36 18)
(8 22 35)(9 25 41)(10 47 28)(11 32 46)(12 42 31)
(13 45 29)(14 27 48)(15 44 26)(16 30 43),

d= (1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)
(20 28)(21 29)(22 30)(23 31)(24 32)(33 41)(34 42)(35 43)
(36 44)(37 45)(38 46)(39 47)(40 48).

The following conclusions are based on the calculation using GAP [26].

Lemma 3.2. Let It be defined as above. Let I ′4 be the set of elements x ∈ I4 with x−1 ∈
I4, let I ′′4 be the set of elements x ∈ I4 with Hx−1H = (HxH)y for some y ∈ NS48(H),
and let I ′′′4 be the set of elements x ∈ I4 with t(A47 ∩Hx−1H)t = A47 ∩HxH for some
t ∈ NA47(H). Then

(1) I1 = ∅;
(2) I2 is a singleton, say {x}, 〈H, x〉 = 〈H,Hx〉 ∼= PSL(2, 11), and the stabilizer of point
12 in 〈H,Hx〉 is isomorphic to Z11:Z5;

(3) I3 = ∅;
(4) |I4| = 382, 〈H,Hx〉 = A48 for each x ∈ I4, the stabilizer of point 48 in 〈H,Hx〉 is
equal to A47; |I ′4| = 18, |I ′′4 | = 38, I ′4 ∩ I ′′4 = ∅, |I ′′′4 | = 94, I ′′4 ⊂ I ′′′4 , and I ′4 ∩ I ′′′4 consists
of 4 inverse-paired elements. Moreover, NS48(H) is a subgroup of A48, and if x ∈ I ′′4
then HxH = (Hx−1H)y and Hx−1H = (HxH)y for some y ∈ NS48(H).

Remark. For (2) of Lemma 3.2, we may choose x = (1 7 11)(2 4 3)(5 12 10)(6 8 9).
Then S = {(1 5 9 6 8)(2 3 4 7 10), (1 5 10 7 3 9 4 11 8 2 6), (1 9 2 6 10)(3 4 5 8 11)}. Let y =
(1 6)(2 5)(3 4)(7 11)(8 10). Then (HxH)y = Hx−1H, 〈y, x,H〉 ∼= PGL(2, 11), and y

normalizes both H and the stabilizer of point 12 in 〈H,Hx〉. �

For x ∈ It, t = 2 or 4, we set

Sx = G ∩HxH, Γx = Cay(G,Sx),
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where either G = A47 if t = 4 or, otherwise, G is the stabilizer of the point 12 in 〈x,H〉.
By Lemma 3.2 and the choice of It, we have the following result.

Corollary 3.3. If x ∈ I2 then AutΓx ∼= PSL(2, 11); if x ∈ I4 then AutΓx = A48.

It is easily shown that two paired digraphs (V,A) and (V,A∗) have the same auto-
morphism group. By Corollary 3.3, Lemmas 2.3 and 3.2, we have the following result.

Corollary 3.4. I ′4 ∩ I ′′4 = ∅, and for distinct x, y ∈ I4,

Γx 6∼= Γy;
Γx ∼= Cay(A47, S

−1
x ) if and only if x ∈ I ′′4 .

Remark. By the above corollary and the choices of I ′4 and I ′′4 , there are examples of
digraphs which are not isomorphic to their paired digraphs, and there also are examples
of digraphs which are isomorphic to their paired digraphs.

3.2. The proof of Theorem 1.1. Let G be a finite group and S ⊆ G \ {1} with
|S| = 3, S−1 6= S and G = 〈SS−1〉. Let Γ = Cay(G,S) and G ≤ X ≤ AutΓ . Assume
that Γ is X-arc-transitive, and CoreX(G) = 1. By the foregoing discussion, we conclude
that Γ is isomorphic to one of the Cayley digraphs arising from the elements in I2 and
I4. In particular, either G ∼= Z11:Z5 and AutΓ = X ∼= PSL(2, 11), or G = A47 and
AutΓ = X = A48. For I2, we have a unique digraph. For the digraphs arising from
I4, by the choice of I4 and Lemma 2.3, we know that they are not isomorphic to every
other. Then our result follows.

3.3. Consequences. By Theorem 1.1, we may give a description on the automorphism
groups of alternatingly connected arc-transitive Cayley digraph with out-valency 3.

Corollary 3.5. Let G be a finite group and S ⊆ G \ {1} with |S| = 3, S−1 6= S and
〈SS−1〉 = G. Let Γ = Cay(G,S), G ≤ X ≤ AutΓ and N = CoreX(G). Assume that Γ
is X-arc-transitive. Then either N = G, or N ∩ S = ∅ and one of the following holds.

(1) NS = NS−1, G/N ∼= Z4 and X/N ∼= S4;
(2) NS 6= NS−1, G/N ∼= Z11:Z5 and X/N ∼= PSL(2, 11);
(3) G/N ∼= A47 and X/N ∼= A48.

Proof. By Theorem 1.1, we let N 6= 1. Assume further that N 6= G. Then N is
intransitive on u(G). Let X be the permutation group induced by X on the set of N -
orbits. Consider the Cayley graph Γ := Cay(G,S∪S−1). Clearly, Γ is X-half-transitive
and of valency 6. By Lemma 2.10, N ∩S = ∅, X ∼= X/N , and either Γ is a normal cover

of ΓN or ΓN is X-arc-transitive and of valency 3. Note that ΓN
∼= Cay(G/N, S ∪ S−1),

where S = {Ns | s ∈ S}.

Assume that Γ is a normal cover of ΓN . Then Γ is of valency 6; in particular, S 6= S
−1

,
and so NS 6= NS−1. By Lemma 2.9, ΓN is X is half-transitive. Then it is easily shown
that Cay(G/N, S) is isomorphic to the digraph arising from one of the X-orbits on the



CAYLEY DIGRAPHS 11

arcs of ΓN . Clearly, Cay(G/N, S) is X/N -arc-transitive and G/N is core-free in X/N .
By Theorem 1.1, one of (2) and (3) of this corollary occurs.

Assume that ΓN is cubic and X-arc-transitive. Then S = S
−1

, yielding NS = NS−1,
and ΓN is an arc-transitive core-free Cayley graph of valency 3. By Lemma 2.10, ΓN is
not bipartite. Checking the 13 graphs given in [22], we conclude that either ΓN is the
complete graph of order 4, or G/N ∼= A47 and X/N ∼= A48. Then (1) or (3) of Corollary
3.5 occurs. �

Corollary 3.6. Let G be a finite group and S ⊆ G \ {1} with |S| = 3 and S 6= S−1.
If 〈S〉 = G and |Aut(G,S)| is divisible by 3, then either G 6= 〈SS−1〉 or Cay(G,S) is a
normal Cayley digraph.

Proof. Assume that |Aut(G,S)| is divisible by 3. Let X = AutΓ . Since 〈S〉 = G, the
action of Aut(G,S) on S is faithful. Then Γ is X-arc-transitive. In the following, we
prove that G is normal in X if G = 〈SS−1〉.

Suppose that G = 〈SS−1〉 and N = CoreX(G) 6= G. Since Γ is X-arc-transitive
and alternatingly connected, Corollary 1.3 holds for Γ , X and N . Note that NX(G) =
G:Aut(G,S) and NX(G)/N = NX/N(G/N). Then

|NX/N(G/N) : (G/N)| = |NX(G) : G| = |Aut(G,S)|.

For (1) of Corollary 3.5, we have G/N ∼= Z4 and NX/N(G/N) ∼= D8, and so |Aut(G,S)| =
|NX/N(G/N) : (G/N)| = 2, a contradiction. For (2) of Corollary 3.5, we have G/N ∼=
Z11:Z5 and NX/N(G/N) ∼= Z11:Z10, yielding |Aut(G,S)| = 2, a contradiction. For (3)
of Corollary 3.5, we have G/N ∼= A47 and X/N ∼= A48, and so NX/N(G/N) = G/N ,
yielding Aut(G,S) = 1, again a contradiction. This completes the proof. �

4. The underlying graphs of digraphs Γx

In this section, we consider some graphs arising from the Cayley digraphs given in
Section 3. For x ∈ It, t = 2 or 4, we set

Sx = G ∩HxH, Γx = Cay(G,Sx), Γx = Cay(G,Sx ∪ S−1x ),

where either G = A47 if t = 4 or, otherwise, G is the stabilizer of the point 12 in 〈x,H〉.
Then each Γx is a Cayley graph of valency 6. By Lemma 3.2 and Corollary 3.4, there
are exactly 383 Cayley digraphs Γx up to isomorphism, and

(I2) if x ∈ I2 then AutΓx ∼= PSL(2, 11) and G ∼= Z11:Z5;
(I4) if x ∈ I4 then AutΓx = A48 and G = A47.

Clearly, AutΓx ≤ AutΓx, and Γx is AutΓx-half-transitive. Then Γx is arc-transitive if and
only if AutΓx 6= AutΓx.

Lemma 4.1. If x ∈ I ′′4 then CAutΓx(AutΓx) ∼= Z2 and Γx is arc-transitive.
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Proof. Assume that x ∈ I ′′4 . Then, by (4) of Lemma 3.2, there is some y ∈ NS48(H)
with HxH = (Hx−1H)y and Hx−1H = (HxH)y. Note that NS48(H) = LH, where L is
the point-stabilizer of 48 in NS48(H). By (4) of Lemma 3.2, L is a subgroup of G = A47.
Thus, we write y = ab with a ∈ L and b ∈ H. Then we have HxH = (Hx−1H)a

and Hx−1H = (HxH)a, and hence (Sx)
a = (G ∩ HxH)a = G ∩ Hx−1H = S−1x , and

(S−1x )a = (G ∩ Hx−1H)a = G ∩ HxH = Sx. Let â be the (inner) automorphism of G
induced by the conjugation of a. Then â ∈ AutΓx, and so âa−1 ∈ AutΓx. Noting that

u(g)âa
−1

= u(a−1g) for all g ∈ G, we know that z 6= 1 and z centralizes G. For h ∈ H
and g ∈ G, noting that AutΓx = GH = HG, we may write gh = h′g′ for g′ ∈ G and
h′ ∈ H. Then

u(g)hâa
−1

= u(1)ghâa
−1

= u(1)h
′g′âa−1

= u(1)g
′âa−1

= u(a−1g′)

and

u(g)âa
−1h = u(a−1g)h = u(1)a

−1gh = u(1)a
−1h′g′ = u(1)a

−1h′aa−1g′ = u(1)a
−1g′ = u(a−1g′).

It follows that z centralizes H, and so z centralizes AutΓx = GH. Since AutΓx = A48,
we have z 6∈ AutΓx. Thus AutΓx 6= AutΓx, and then Γx is arc-transitive.

Let C = CAutΓx(AutΓx), and Y = 〈AutΓx, C〉. Then Y = AutΓx×C, and Γx is Y -arc-
transitive. Note that AutΓx has two orbits on the arc set of Γx, say A and A∗, which
are exactly the arc sets of Γx and Cay(G,S−1x ). Since AutΓx is normal in Y , we know
that C interchanges A and A∗. In particular, C has a subgroup N of index 2, which
fixes both two A and A∗ set-wise, and then N ≤ AutΓx. Since AutΓx ∩ C = 1, we have
N = 1, and so C ∼= Z2. �

Lemma 4.2. If CAutΓx(AutΓx) 6= 1 then x ∈ I ′′4 .

Proof. Let C = CAutΓx(AutΓx) 6= 1. Considering the action of CAutΓx, by a similar
argument as in the proof of Lemma 4.1, we have C has order 2. Let C = 〈z〉, and let
A and A∗ be the orbits of AutΓx on the arc set of Γx. Then z interchanges A and A∗,
and so z gives an isomorphism from Γx to Cay(G,S−1x ), and also an isomorphism from
Cay(G,S−1x ) to Γx. Noting that AutΓx = AutCay(G,S−1x ), by Lemma 2.3, there is an
automorphism σ of AutΓx which fixes H and interchanges HxH and Hx−1H. Noting
that AutΓx = A48, such a σ is induced by some y ∈ NS48(H) by the conjugation on A48.
Thus the lemma follows. �

Lemma 4.3. Let x ∈ I2 or x ∈ I4, and let N be a minimal normal subgroup of AutΓx.
Then either

(1) AutΓx ≤ N ; or
(2) x ∈ I ′′4 , N = CAutΓx(AutΓx) and ΓxN has valency 6.

Proof. Let X = AutΓx and Y = AutΓx. Then, since X is simple and N ∩X �X, either
X ≤ N or X ∩N = 1. Next we assume that X ∩N = 1 and show (2) occurs.

Let X∩N = 1. Then X = AutΓx 6= XN , it implies that AutΓx is (XN -)arc-transitive.
Since G ≤ X ≤ XN ≤ Y , we know that |N | = |XN : X| is a divisor of |Y : G|, which
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equals the order of Yu for u ∈ u(G). By Lemma 2.6, |Yu| has no prime divisor other that
2, 3 and 5. Thus |N | is not divisible by 11, and so N is intransitive on u(G) as |G| has
a divisor 11. Consider the quotient graph ΓxN . Then X induces a insoluble subgroup of
AutΓxN ; in particular, ΓxN is neither a cycle nor the complete graph on two vertices. It
follows from Lemma 2.9 that ΓxN is of valency 3 or 6.

Suppose that ΓxN is cubic. Then ΓxN is X-arc-transitive, where X is the group

induced by X on ΓxN . Since X is simple, X ∼= X. Take an N -orbit B on u(G). Then

XB and hence XB has order a divisor of 48, see Theorem 2.7. Noting that X is transitive
on u(G), it follows that B is an XB-orbit. Thus |B| = |XB : Xu| for u ∈ B. Since ΓxN
has odd valency, it has even order, and so Γx is of even order. Then x ∈ I4, and so
|Xu| = 48. Thus |B| = |XB : Xu| = 1. Noting that all N -orbits on u(G) have the same
size, it follows that N acts trivially u(G), yielding N = 1, a contradiction.

Assume that ΓxN is of valency 6. Then, by Lemma 2.9, Γx is a normal cover of ΓxN ,
and then N is semiregular on u(G). In particular, |N | is a divisor of |G|, and hence |N |
is a common divisor of |G| and |Yu|. Write N ∼= T l for a positive integer l and a simple
group T . Then every prime divisor of |T | is contained in {2, 3, 5}. Suppose that x ∈ I2.
Then |G| = 55, and so ΓxN has order 5 or 11; however, by [2], such a ΓxN does not exist,
a contradiction. Thus x ∈ I4, and G = A47.

Suppose that T is insoluble, then T ∼= A5 or A6, see [13, pp. 12-14] for example.
In this case, |Yu| is divisible by 5, and so Γx is 2-arc-transitive. Since |N | = |T |l is a
divisor of |Yu|, by Lemma 2.8, l ≤ 2. Note that X induces by conjugation a subgroup of
Aut(N) ∼= Aut(T )l:Sl. It follows that X centralizes N , and so |N | ≤ 2 by Lemmas 4.1
and 4.2, a contradiction.

Now let N is soluble. Then |N | = pl for some p ∈ {2, 3, 5}. Recalling that |N | is a
divisor of |G|, we have l < 37. By [14, Proposition 5.3.7], A48 can not be embedded in a
classical group of Lie type with dimension less than 46. It follows that X acts trivially
on N by conjugation. Thus N ≤ CY (X). Then part (2) of this lemma follows from
Lemmas Lemmas 4.1 and 4.2. �

Corollary 4.4. If x 6∈ I ′′4 then AutΓx is almost simple.

Proof. Let x ∈ I2 ∪ I4 \ I ′′4 . By Lemma 4.3, AutΓx is contained in every minimal normal
subgroup of AutΓx. Thus Y := AutΓx has a unique minimal normal subgroup, say

N ∼= T l with T simple. Since AutΓx ≤ N , we know that |T | is divisible by the largest
prime divisor p of |G|. Then |N | is divisible by pl, and so |N : AutΓx| is divisible by
pl−1. Noting that |N : AutΓx| is a divisor of |Yu| for u ∈ u(G), by Theorem 2.8, we have
l = 1, and so N is simple. Then the result follows. �

Theorem 4.5. Let x ∈ I2. Then AutΓx ∼= PGL(2, 11); in particular, Γx is an arc-
transitive graph of valency 6.

Proof. By the remak after Lemma 3.2, we know that there is an involution y ∈ S12 such
that Syx = S−1x and 〈x, y,H〉 ∼= PGL(2, 11). Then this y induces an automorphism of
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Γx. Then Y := AutΓx has a subgroup X with T1 := AutΓx ≤ X ∼= PGL(2, 11), and Γx
is X-arc-transitive. By [19], there is no 2-arc-transitive graph of order 55 and valency
6. Thus for v ∈ u(G), the stabilizer Yv is a {2, 3}-group, see Lemma 2.6. Let T2 be the
socle soc(Y ). By Corollary 4.4, T2 is simple, and then T1 ≤ T2. Since Y = GYv = T1Yv,
we have T2 = T2 ∩ T1Yv = T1(T2 ∩ Yv). Then the index |T2 : T1| is a {2, 3} number. By
[23], if T1 6= T2 then T2 = M11 or M12. Noting that Y contains a subgroup isomorphic to
PGL(2, 11), by the Atlas [4], we concluder either T1 = T2, or T2 = M12 and Y = M12.2.
Note that T2 = T2∩GYv = G(T2∩Yv), |G| = 55 and G∩Yv = 1. Then T2 has a subgroup
of index 55, it follows that T1 = T2 = PSL(2, 11). This completes the proof. �

Theorem 4.6. Let x ∈ I4. If AutΓx is almost simple then AutΓx = A48, x 6∈ I ′′4 and Γx
is half-transitive. In particular, AutΓx = A48 if and only if x 6∈ I ′′4 .

Proof. Let G = A47, T = AutΓx = A48 and X = soc(AutΓx). Then Γx is T -half-
transitive and, for v ∈ u(G), either Xv is transitive on Γx(v) or Xv has 2-orbits of size
three on Γx(v). Since Γx has valency 6, either Xv is a {2, 3}-group or |Xv| is divisible
by 5, see Lemma 2.6. Assume further that X is simple. Note that X = GXv = TXv

and T = GTv ≤ X, and so |X : T | = |Xv : Tv|.
Suppose that |Xv| is divisible by 5. By Lemma 2.6, we conclude that Xv acts 2-

transitively on Γx(v). Then Γx is 2-arc-transitive, and thus Xv is known as in Theorem
2.8. In particular, either |Xv| is a divisor of 27 · 33 · 52 or |Xv| = 25 · 3 · 53. Recalling
that Tv has order 24 · 3, either |X : T | = 2 · 53 or |X : T | is a divisor of 23 · 32 · 52.
Take a maximal subgroup M of X with T ≤ M . Then |X : M | < 1000 or M = T and
|X : M | = 1800. Then the simple group X has a primitive representation of degree 1800
or less than 1000. All primitive permutation groups of almost type with degree less than
2500 are explicitly classified in [7, 25]. By this classification, we conclude that there is
no simple group X which contains A48 as a proper subgroup of index less than 2500, a
contradiction. Thus Xv is a {2, 3}-group.

Suppose that X 6= T = A48. Take a maximal subgroup M of X with T ≤ M . Then
|X : M | = 2a · 3b and |M : T | = 2c · 3d for some integers a, b, c and d. By [23], the triple
X, M and |X : M | are known. The only possibility is that X = An and M ∼= An−1 with
n = 2a · 3b > 48. Then |X : T | has a prime divisor no less than 7, which is impossible.
Thus we have X = T = A48, and so AutΓx = A48 or S48.

Suppose that AutΓx = S48. Take an permutation y ∈ S48 \A48. Note that A48 has two
orbits on the arc set and Γx, which are in fact the arc set A of Γx and the arc set A∗

of Γx−1 := Cay(G,Sx−1). If y fixes both A and A∗ set-wise, then y is an automorphism
of Γx, which contradicts Corollary 3.3. Thus we have Ay = A∗ and (A∗)y = A, and
then y is an isomorphism between Γx and Γx−1 . Since both Γx and Γx−1 are vertex
transitive, we may let u(1)y = u(1) without loss of generality. This implies that y
normalizes the stabilizer Tu(1) = H, i.e., y ∈ NS48(H). However, by (4) of Lemma 3.2,
y ∈ NS48(H) ≤ A48 = AutΓx, and so Ay = A, a contradiction. Thus the theorem follows
from Lemma 4.1. �
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Theorem 4.7. Let x ∈ I ′′4 . Then AutΓx = C × A48, where C ∼= Z2.

Proof. Let Y = AutΓx and X = AutΓx. By Lemma 4.3 and Theorem 4.6, we conclude
that Y has exactly two minimal normal subgroups, one of them is C = CY (X). By
Lemma 4.2, C ∼= Z2. Let T be the other minimal normal subgroup. Then X ≤ T .
By a similar argument as in the proof of Corollary 4.4, we know that T is simple.
Considering the maximal subgroups of T , a similar argument as in the proof Theorem
4.6, we conclude that T = A48 = X. It follows from the normality of X that each element
in Y either fixes the arc set of Γx or interchanges the arc sets of Γx and Cay(G,S−1x ).
Then X = AutΓx contains a subgroup of Y of index 2, yielding |Y : X| = 2, and then
AutΓx = Y = C × A48. �

By Theorems 4.6 and 4.7, we get the following corollaries, which complete the proof
of Theorem 1.3 (1).

Corollary 4.8. Let x, y ∈ I4 with x 6= y. Then Γx ∼= Γy if and only if Γx ∼= Γy−1.

Proof. If σ : Γx → Γy−1 is an isomorphism then σ : Γx−1 → Γy is also an isomorphism,
and then σ : Γx → Γy is an isomorphism.

Suppose that there is an isomorphism σ : Γx → Γy. Without loss of generality, we

may let u(1)σ = u(1). Then Hσ = H. Note that Γx and Γy have the same automorphism

group A48 or Z2 ×A48. Thus Aσ
48 = A48. Let Ax and A∗x be the orbits of A48 on the arc

set of Γx, and let Ay and A∗y be the orbits of A48 on the arc set of Γy. Then we have

{Ax, A∗x}σ = {Ay, A∗y}. Thus σ is in fact an isomorphism from Γx to Γy or Γy−1 . By
Corollary 3.4, σ is an isomorphism from Γx to Γy−1 . �

Corollary 4.9. Up to isomorphism, there are 210 graphs Γx when x runs over I4,
involving 38 arc-transitive graphs and 172 half-transitive graphs.

Proof. For distinct x, y ∈ I ′4 , by Corollaries 3.4 and 4.8, Γx 6∼= Γy unless y = x−1.

Thus we get 9 non-isomorphic graphs Γx when x runs over I ′4. Similarly, we have 38
non-isomorphic graphs Γx when x runs over I ′′4 . By the choices of I ′4 and I ′′4 , if x ∈ I ′4 and
y ∈ I ′′4 then Γx 6∼= Γy−1 , and so Γx 6∼= Γy by Corollary 4.8. Thus, when x runs over I ′4∪I ′′4 ,

we get 47 non-isomorphic graphs Γx. For x 6∈ I ′4 ∪ I ′′4 and y ∈ I ′4 ∪ I ′′4 , by Corollaries 3.4
and 4.8, Γx 6∼= Γy. Thus it suffices to enumerate the graphs Γx up to isomorphism for

x ∈ I4 \ (I ′4 ∪ I ′′4 ). Note that |I4 \ (I ′4 ∪ I ′′4 )| = 326.

Let x ∈ I4 \ (I ′4∪ I ′′4 ). By the choice of I4, there is a unique y ∈ I4 \ (I ′4∪ I ′′4 ) such that
Γx−1

∼= Γy, and then Γx ∼= Γy. Then, by Corollary 4.8, all graphs Γx with x ∈ I4\(I ′4∪I ′′4 )

are isomorphic in pairs, and distinct pairs of graphs are not isomorphic. Thus, when x
runs over I4 \ (I ′4∪ I ′′4 ), we get 163 non-isomorphic graphs Γx. Then the corollary follows
from Lemma 4.1 and Theorem 4.6. �
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5. Standard double covers of digraphs Γx

Let Γ = Cay(R, S) be a Cayley (di)graph. We may identify AutΓ with a subgroup of
AutΓ (2) by

(u(g), i)y = (u(g)y, i); g ∈ R, y ∈ AutΓ , i ∈ Z2.

Thus, if Γ is arc-transitive, then Γ (2) is AutΓ -semisymmetric. Set ι : u(R) × Z2 →
u(R) × Z2, (u(g), i) 7→ (u(g), i). It is easily shown that ι is an isomorphism between
Γ (2) and Cay(R, S−1)(2). In particular, ι is an automorphism if and only if S = S−1. In
general, we have the following result.

Lemma 5.1. Let Γ = Cay(R, S) be a Cayley (di)graph, and R ≤ Y ≤ AutΓ . Then
tS−1t = S for some t ∈ NR(Yu(1)) \ Yu(1) if and only if there is an involution σ ∈
AutΓ (2) \ Y such that σ centralizes Y and Y × 〈σ〉 is a transitive subgroup of AutΓ (2).

Proof. Assume first that tS−1t = S for some t ∈ NR(Yu(1)) \ Yu(1). Define σ by

(u(g), 0)σ = (u(tg), 1), (u(g), 1)σ = (u(t−1g), 0),

where g ∈ R. It is easily shown that σ is a permutation on u(G)× Z2 of order 2, and σ
interchanges u(G)×{0} and u(G)×{1}. For g, h ∈ R, the vertices (u(h), 0) and (u(g), 1)
are adjacent if and only if gh−1 ∈ S, i.e., hg−1 ∈ S−1. Note that thg−1t = (th)(t−1g)−1

and tS−1t = S. Then gh−1 ∈ S if and only if (th)(t−1g)−1 ∈ S, that is, (u(t−1g), 0)
and (u(th), 1) are adjacent. Thus {(u(h), 0), (u(g), 1)} is an edge of Γ (2) if and only of
{(u(h), 0)σ, (u(g), 1)σ} is an edge of Γ (2). It follows that σ ∈ AutΓ (2), and then 〈σ, Y 〉 is
a transitive subgroup of AutΓ (2). For any g ∈ R and y ∈ Y , since AutΓ = R(AutΓ )u(1) =
(AutΓ )u(1)R, we write gy = y1g1 with y1 ∈ (AutΓ )u(1) and g1 ∈ R. Then

(u(g), 1)yσ = (u(1), 1)gyσ = (u(1), 1)y1g1σ = (u(tg1), 2) = (u(1), 2)tg1

= (u(1), 2)(ty
−1
1 t−1)(ty1g1) = (u(1), 2)tgy = (u(tg), 2)y = (u(g), 1)σy.

Similarly, (u(g), 2)yσ = (u(g), 2)σy. Then σy = yσ for every y ∈ Y and so 〈σ, Y 〉 =
Y × 〈σ〉.

Now let σ be an involution σ ∈ AutΓ (2) such that 〈σ, Y 〉 = Y ×〈σ〉 and σ interchanges
u(G) × {0} and u(G) × {1}. Set (u(1), 0)σ = (u(t), 1) for some t ∈ R. Then Y t

u(1) =

Yu(t) = Y(u(t),1) = Y σ
(u(1),0) = Y(u(1),0) = Yu(1), and so t ∈ NR(Yu(1)). Note that σ maps

the neighborhood u(S)×{1} of (u(1), 0) to the neighborhood u(S−1t)×{0} of (u(t), 1).
For s ∈ S, we have (u(s), 1)σ = (u(t−1s), 0) ∈ u(S−1t)× {0}, yielding t−1s ∈ S−1t, and
so s ∈ tS−1t. It follows that S ⊆ tS−1t, and then S = tS−1t as |S| = |tS−1t| and S is
finite. This completes the proof. �

Clearly, for each x ∈ I4, the standard double cover Γ
(2)
x is connected, cubic and

A48-semisymmetric.

Theorem 5.2. Let x ∈ I4. Then Γ
(2)
x is arc-transitive if and only if there is some

t ∈ NA47(H) with tS−1x t = Sx; in this case, AutΓ (2) = AutΓx × Z2.
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Proof. If tS−1x t = Sx for some t ∈ NA47(H) then, by Lemma 5.1, Γ
(2)
x has an automor-

phism interchanging two parts of Γ
(2)
x , yielding the arc-transitivity of Γ

(2)
x .

Assume that Γ
(2)
x is arc-transitive. Let X = AutΓ

(2)
x . By Theorem 2.7, for a vertex v

of Γ
(2)
x , the stabilizer Xv of v has order a divisor of 48. Note that T := AutΓx ≤ X and

|Tv| = 48. It follows that Xv = Tv, and |X| = 2|G||Tv| = 2|T |. Thus X = T.2. Assume
CX(T ) = 1. Then we have X . Aut(T ) ∼= S48, and so X ∼= S48. If CX(T ) 6= 1 then,
since T is simple, we have X = T × CX(T ) and CX(T ) ∼= Z2. All in all, there is an
involution τ ∈ X \ T which normalizes G and interchanges u(G)× {0} and u(G)× {1}.
Thus Γ

(2)
x is an arc-transitive cubic Cayley graph of R := G:〈t〉. By [22], we conclude

that R is not core-free in X. Note that R ∩ T = G = A47, which is not normal in T .
Then R is not normal in X. Thus 1 6= CoreX(R) 6= R, and hence R = G × CoreX(R),
X = T × CoreX(R), and |CoreX(R)| = 2. By Lemma 5.1, tS−1x t = Sx for some t ∈
NA47(H). �

Theorem 5.3. Let x ∈ I4. If x ∈ I ′′′4 then AutΓ (2) = AutΓx × Z2; if x 6∈ I ′′′4 then
AutΓ (2) = AutΓx.

Proof. By Theorem 5.2, the first part of our result holds. Thus we next let x 6∈ I ′′′4 .

Then Γ
(2)
x is semisymmetric. Let Y = AutΓ

(2)
x and X = AutΓx.

By Lemma 2.9, noting that Γ
(2)
x is of valency 3, if N is normal in Y and neither

transitive on u(G) × {0} nor transitive on u(G) × {1} then Γ
(2)
x is a normal cover of

(Γ
(2)
x )N . Let K be the kernel of Y acting on u(G)×{0}. If K is transitive on u(G)×{1}

then Γ
(2)
x is the complete bipartite graph on 6 vertices, which is impossible. Thus K is

intransitive on u(G)× {1}. Then K = 1, and so Y is faithful on u(G)× {0}. Similarly,
Y is faithful on u(G)× {1}.

Suppose that Y is not almost simple. Then, considering X as a (simple) subgroup
of Y , there is a minimal normal subgroup N of Y such that X ∩ N=1. Since X is
transitive on u(G)×{0}, we have Y = XY(u(1),0), and then |Y : X| = |Y(u(1),0) : X(u(1),0)|.
Since XN ≤ Y , we know that |N | = |XN : X| is a divisor of |Y(u(1),0) : X(u(1),0)|. Note
that X(u(1),0) = Xu(1) has order 48 and, by [12], |Y(u(1),0)| is a divisor of 27 · 3. Then
|Y : X| = |Y(u(1),0) : X(u(1),0)| = 2l for some l ≤ 3. It follows that |N | = 2, 4 or 8.
Considering the conjugation of X on N , we have XN = X × N . Take an involution
σ ∈ N , and set (u(1), i)σ = (u(ti), i) for i ∈ Z2 and ti ∈ G = A47. Then, for g ∈ G, we
have

(u(g), i)σ = (u(1), i)gσ = (u(1), i)σg = (u(tig), i), i ∈ Z2.

In particular, since σ has order 2, we have that t2i = 1, and t0 6= 1 or t1 6= 1. Since σ
centralizes X, the vertices (u(1), i) and (u(ti), i) have the same stabilizer in X. Then
H = Xu(1) = Xu(ti) = X ti

u(1) = H ti , and so ti ∈ NS48(H) ∩ G. Note that σ maps the

neighborhood of (u(1), 0) onto the neighborhood of (u(t0), 0). It follows that St0 = t1S.
However, checking by GAP, there is no such a pair (t0, t1), a contradiction.

By the above argument, we may assume that Y is almost simple. Then X ≤ soc(Y )
and |soc(Y ) : X| ≤ |Y : X| ≤ 8, yielding soc(Y ) = X. Thus Y = A48 or S48, and hence
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2 ≥ |Y : X| = |Y(u(1),0) : X(u(1),0)|. Then Y(u(1),0) ≤ NY (X(u(1),0)) = NA48(H) ≤ A48,
yielding A48 ≤ Y = GY(u(1),0) ≤ A48, and the lemma follows. �

Note that a Cayley digraph and its paired digraph give isomorphic standard double
covers. Then by the above theorem and Lemma 3.2 (4), we have the following result,
which fulfils the proof of Theorem 1.3 (2).

Corollary 5.4. If x ∈ I4, then Γ
(2)
x is isomorphic to one of are 210 cubic graphs which

consist of 66 arc-transitive graphs and 144 semisymmetric graphs.

Proof. By Theorem 5.2, Γ
(2)
x is arc-transitive if and only if x ∈ I ′′′4 . Note that |I ′′′4 | = 94,

|I ′′′4 ∩ I ′4| = 4, |I ′′′4 ∩ (I4 \ (I ′4 ∪ I ′′4 ))| = 52 and I ′′4 ⊂ I ′′′4 . Then elements in I ′′′4 ∩ I ′4 give 2

arc-transitive graphs Γ
(2)
x , the 14 elements in I ′4 \ I ′′′4 give 7 semisymmetric graphs Γ

(2)
x ,

elements in I ′′4 give 38 arc-transitive graphs Γ
(2)
x . Recall that x ∈ I4 \ (I ′4 ∪ I ′′4 ) there is

a unique y ∈ I4 \ (I ′4 ∪ I ′′4 ) such that Γx−1
∼= Γy, and then Γ

(2)
x
∼= Γ

(2)
y . Thus elements

in I ′′′4 ∩ (I4 \ (I ′4 ∪ I ′′4 )) give 26 arc-transitive graphs, and the other 274 elements in I4
result in 137 semisymmetric graphs. Thus we get 66 arc-transitive cubic graphs and 144
half-transitive graphs. Then the corollary follows. �
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