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Abstract. A graph is edge-primitive if its automorphism group acts primitively on
the edge set. In this short paper, we prove that a finite 2-arc-transitive edge-primitive
graph has almost simple automorphism group if it is neither a cycle nor a complete
bipartite graph. We also present two examples of such graphs, which are 3-arc-transitive
and have faithful vertex-stabilizers.
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1. Introduction

All graphs and groups considered in this paper are assumed to be finite.

A graph in this paper is a pair Γ = (V,E) of a nonempty set V and a set E of 2-subsets
of V . The elements in V and E are called the vertices and edges of Γ , respectively. The
number |V | of vertices is called the order of Γ . For v ∈ V , the set Γ (v) = {u ∈ V |
{u, v} ∈ E} is called the neighborhood of v in Γ , while |Γ (v)| is called the valency of
v. We say that Γ has valency d or Γ is d-regular if its vertices all have equal valency
d. For an integer s ≥ 1, an s-arc in Γ is an (s+ 1)-tuple (v0, v1, . . . , vs) of vertices such
that {vi, vi+1} ∈ E and vi 6= vi+2 for all possible i. A 1-arc is also called an arc.

Let Γ = (V,E) be a graph. A permutation g on V is called an automorphism of Γ
if {ug, vg} ∈ E for all {u, v} ∈ E. Let AutΓ denote the set of all automorphisms of Γ .
Then AutΓ is a subgroup of the symmetric group Sym(V ), and called the automorphism
group of Γ . Note that the group AutΓ has a natural action on the edge set E (and also
on the set of s-arcs). The graph Γ is called edge-transitive if E 6= ∅ and for each pair
of edges there exists some g ∈ AutΓ mapping one of these two edges to the other one.
(Similarly, we may define vertex-transitive, arc-transitive or s-arc-transitive graphs.) An
edge-transitive graph is called edge-primitive if some (and hence every) edge-stabilizer,
the subgroup of its automorphism group which fixes a given edge, is a maximal subgroup
of the automorphism group.

It is well-known that edge-transitive graphs and hence edge-primitive graphs are either
bipartite or vertex-transitive. As a subclass of the edge-transitive graphs, edge-primitive
graphs posses more restrictions on their symmetries and automorphism groups. For ex-
ample, a connected edge-primitive graph is necessarily arc-transitive provided that it
is not a star graph. In [9], appealing to the O’Nan-Scott Theorem for (quasi)primitive
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groups [22], Giudici and Li investigated the structural properties of edge-primitive graph-
s, particularly, on their automorphism groups. Let Γ = (V,E) be an edge-primitive
graph which is neither a cycle nor a complete bipartite graph. If Γ is bipartite then
let Aut+Γ be the subgroup of AutΓ preserving the bipartition. By [9], as a primitive
group on E, only four of the eight O’Nan-Scott types for (quasi)primitive groups may
occur for AutΓ , namely, SD, CD, PA and AS. For the first two types, Γ is bipartite and
Aut+Γ is quasiprimitive of type CD on each bipartite half. For the last two types, with
one exceptional case, AutΓ or Aut+Γ is quasiprimitive on V or on each bipartite half
respectively of the same type for AutΓ on E. In this paper, we will work on the types
of AutΓ on E and on V under the further assumption that Γ is 2-arc-transitive.

The interest for edge-primitive graphs arises partially from the fact that many (al-
most) simple groups may be represented as the automorphism groups of edge-primitive
graphs. Consulting the Atlas [3], one may get first-hand such examples. For example,
the sporadic Higman-Sims group HS is a group of automorphisms of a rank 3 graph (i.e.,
HS acts on the vertex set as a transitive permutation group of rank 3) with order 100
and valency 22, which is in fact a 2-arc-transitive and edge-primitive graph with auto-
morphism group HS.2; the sporadic Rudvalis group Ru is the automorphism group of a
rank 3 graph with order 4060 and valency 2304, which is edge-primitive but not 2-arc-
transitive. Besides, the almost simple groups PSU(3, 5).2, M22.2, J2.2 and McL.2 all have
representations on edge-primitive graphs. The reader may refer to [11, 12, 18, 21, 26] for
more examples of edge-primitive graphs which have almost simple automorphism group-
s. Of course, using the constructions given in [9], one can easily construct examples of
edge-primitive graphs with automorphism groups not almost simple.

From the known examples of edge-primitive graphs in the literature, we get the im-
pression that a 2-arc-transitive edge-primitive graph has almost simple automorphism
group unless it is a cycle or a complete bipartite graph. In Section 3, we shall prove the
following result.

Theorem 1.1. Let Γ = (V,E) be an edge-primitive d-regular graph for some d ≥ 3.
If Γ is 2-arc-transitive, then either Γ is a complete bipartite graph, or AutΓ is almost
simple.

Remarks on Theorem 1.1. (1) Li and Zhang [18] proved that 4-arc-transitive and
edge-primitive graphs have almost simple automorphism groups. Further, as a con-
sequence of their classification on almost simple primitive groups with soluble point-
stabilizers, they give a complete list for 4-arc-transitive and edge-primitive graphs.

(2) By Theorem 1.1, appealing to the classification of almost simple groups with
soluble maximal subgroups, it might be feasible to classify 2-arc-transitive and edge-
primitive graphs with soluble edge-stabilizers.

2. Preliminaries

For the subgroups of (almost) simple groups, we sometimes follow the notation used
in the Atlas [3], while we also use Zl and Zkp to denote respectively the cyclic group of

order l and the elementary abelian group of order pk.
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2.1. Primitive groups. In this subsection, Ω is a nonempty finite set, and G is a
transitive subgroup of the symmetric group Sym(Ω). Let soc(G) be the socle of G, that
is, soc(G) is generated by all minimal normal subgroups of G.

Consider the point-stabilizer Gα := {g ∈ G | αg = α}, where α ∈ Ω. Then

(1) G is primitive if Gα is a maximal subgroup of G;
(2) G is 3

2
-transitive if Gα is 1

2
-transitive on Ω\{α}, that is, all Gα-orbits on Ω\{α}

have equal length > 1;
(3) G is a Frobenius group if Gα is semiregular on Ω \ {α};
(4) G is 2-transitive if Gα is transitive on Ω \ {α}.

Note that a 2-transitive group is also primitive and 3
2
-transitive, and a 3

2
-transitive group

is either a primitive group or a Frobenius group (refer to [29, Theorem 10.4]).

Let 1 6= N�G. Then N is 1
2
-transitive, and Nα = N∩Gα�Gα, and so Gα is contained

in the normalizer NG(Nα) of Nα in G. Thus, if Gα is maximal then either Nα � G or
NG(Nα) = Gα. The former case yields Nα = 1, while the latter case gives

NN(Nα) = N ∩NG(Nα) = N ∩Gα = Nα.

Then we have following simple fact for primitive groups.

Lemma 2.1. Assume that G is primitive on Ω and N is a normal subgroup of G with
N 6= 1. Then either N is regular on Ω or Nα is self-normalizing. If further G is
2-transitive then N is either regular or 3

2
-transitive on Ω.

For an almost simple 2-transitive group G, each non-trivial normal subgroup N of G
is primitive, and in fact 2-transitive except for the case where N = soc(G) = PSL(2, 8)
acting on 28 points, refer to [1, page 197, Table 7.4]. Next we consider the normal
subgroups of affine 2-transitive groups. Refer to [1, page 195, Table 7.3] for a complete
list of affine 2-transitive groups. We consider the affine 2-transitive groups in their
natural actions.

Lemma 2.2. Let G be an affine 2-transitive group and 1 6= N �G. If N is imprimitive
on Ω, then N is a soluble Frobenius group, N0 is cyclic, and either G0 ≤ ΓL(1, q) or
N0 ≤ Z(G0), where q is not a prime.

Proof. Assume that N is imprimitive. Then N 6= G, and so N0 6= G0. Further, by
Lemma 2.1 and [29, Theorem 10.4], N is a Frobenius group. Let |Ω| = pk for a prime p.
We may write G0 ≤ GL(k, p), G = Zkp:G0 and N = Zkp:N0. Since N is imprimitive, N0

is not maximal in N , and thus N0 is a normal reducible subgroup of G0. Then, by [13,
Lemma 5.1], N0 is cyclic and |N0| is a divisor of pl − 1, where l < k and l

∣∣ k. Finally,
the lemma follows from checking all affine 2-transitive groups one by one. �

If every minimal normal subgroup of G is transitive on Ω, then G is called a quasiprim-
itive group. Praeger [22, 24] generalized the O’Nan-Scott Theorem for primitive groups
to quasiprimitive groups, which says that a quasiprimitive group has one of the following
eight types: HA, HS, HC, TW, AS, SD, CD and PA. In particular, if G is quasiprimitive
then G has at most two minimal normal subgroups, and if two (for HS and HC) then
they are isomorphic and regular.

Suppose that G has a transitive insoluble minimal normal subgroup N . Then G =
NGα for α ∈ Ω. Write N = T1 × · · · × Tk for isomorphic nonabelian simple groups Ti
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and integer k ≥ 1. Then Gα acts transitively on {Ti | 1 ≤ i ≤ k} by conjugation. Note
that, for g ∈ Gα and 1 ≤ i ≤ k,

((Ti)α)g = (Ti ∩Gα)g = T gi ∩Gg
α = (Ti)

g
α = (Tj)α for some j.

Thus Gα acts transitively on {(Ti)α | 1 ≤ i ≤ k} by conjugation. Clearly, (T1)α × · · · ×
(Tk)α ≤ Nα; however, the equality does not necessarily hold even if G is quasiprimitive.
A sufficient condition for this equality is that G is primitive and of type AS or PA, refer
to [4, Theorem 4.6] and its proof. In conclusion, we have the simple fact as follows.

Lemma 2.3. Assume that G has a transitive minimal normal subgroup N = T1×· · ·×Tk,
where Ti are isomorphic nonabelian simple groups. Let α ∈ Ω. Then Gα acts transitively
on {(Ti)α | 1 ≤ i ≤ k} by conjugation. If further G is primitive and of type AS or PA,
then Nα = (T1)α × · · · × (Tk)α.

2.2. Locally-primitive graphs. In this subsection, Γ = (V,E) is a connected d-regular
graph for some d ≥ 3, and G ≤ AutΓ . Assume further that the graph Γ is G-locally
primitive, that is, Gv acts primitively on Γ (v) for all v ∈ V .

Fix an edge {u, v} ∈ E. Note that Gv induces a primitive permutation group G
Γ (v)
v

(on Γ (v)). Let G
[1]
v be the kernel of Gv acting on Γ (v). Then G

Γ (v)
v
∼= Gv/G

[1]
v . Set

G
[1]
uv = G

[1]
u ∩G[1]

v . Then G
[1]
v induces a normal subgroup of (G

Γ (u)
u )v with the kernel G

[1]
uv,

and so (G
[1]
v )Γ (u) ∼= G

[1]
v /G

[1]
uv.

Assume that G is transitive on V . Then G
[1]
uv is a p-group for some prime p, refer

to [6]. Note that G is transitive on the arc set of Γ . There is some element in G

interchanging u and v. This implies that (G
[1]
v )Γ (u) � (G

Γ (u)
u )v ∼= (G

Γ (v)
v )u. Suppose that

G
Γ (v)
v is soluble. Then (G

Γ (v)
v )u is soluble, and hence (G

Γ (u)
u )v is soluble. Thus (G

[1]
v )Γ (u)

is soluble. Recalling that (G
[1]
v )Γ (u) ∼= G

[1]
v /G

[1]
uv and G

Γ (v)
v
∼= Gv/G

[1]
v , it follows that Gv

is soluble. Thus we have the following lemma.

Lemma 2.4. Assume that G is transitive on V , and {u, v} ∈ E. Then G
[1]
uv is a p-

group, and (G
[1]
v )Γ (u) is isomorphic to a normal subgroup of a point-stabilizer in G

Γ (v)
v .

In particular, Gv is soluble if and only if G
Γ (v)
v is soluble.

The graph Γ = (V,E) is said to be (G, s)-arc-transitive if Γ has an s-arc and G acts
transitively on the set of s-arcs of Γ , where s ≥ 1. Note that Γ is (G, 2)-arc-transitive if

and only if G is transitive on V , and G
Γ (v)
v is a 2-transitive group for some (and hence

every) v ∈ V . By [7, 27, 28], we have the following result.

Theorem 2.5. Assume that Γ = (V,E) is (G, 2)-arc-transitive. Then Γ is not (G, 8)-
arc-transitive. Further,

(1) if G
[1]
uv = 1 then Γ is not (G, 4)-arc-transitive.

(2) if G
[1]
uv 6= 1 then G

[1]
uv is a nontrivial p-group for some prime p, Op(G

Γ (v)
uv ) 6= 1,

PSL(n, q)�G
Γ (v)
v , and |Γ (v)| = qn−1

q−1 , where n ≥ 2 and q is a power of p; in this

case, Γ is (G, 4)-arc-transitive if and only if n = 2.
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3. The proof of Theorem 1.1

In this section, we let Γ = (V,E) be a connected graph of valency d ≥ 3, and
G ≤ AutΓ . Assume that Γ is G-edge-primitive, that is, G acts primitively on E. Then,
by [9, Lemma 3.4], G acts transitively on the arc set of Γ . Thus, for an edge {u, v} ∈ E,
d = |Gv : Guv| and |G{u,v} : Guv| = 2.

Let 1 6= N � G. Then N is transitive on E, and so either N is transitive on V or
N has two orbits on V ; for the latter case, Nv is transitive on Γ (v). This implies that
either G = NGv, or |G : (NGv)| = 2 and Nuv = N{u,v}. Note that G = NG{u,v} by the
maximality of G{u,v} or the transitivity of N on E. We have

|G| =
|N ||G{u,v}|
|N∩G{u,v}|

=
|N ||G{u,v}|
|N{u,v}|

= 2|N ||Guv |
|N{u,v}|

= 2|N ||Gv |
d|N{u,v}|

= |N ||Gv |
|Nv | ·

2|Nv |
d|N{u,v}|

= |NGv| 2|Nv |
d|N{u,v}|

.

Then the next lemma follows.

Lemma 3.1. Let 1 6= N � G. If N is transitive on V then 2|Nv| = d|N{u,v}|; if
N is intransitive on V then |Nv| = d|N{u,v}| = d|Nuv|. In particular, Nv 6= 1 and
Nuv 6= Nv 6= N{u,v}.

Let Kd,d and Kd+1 be the complete bipartite graph and complete graph of valency d,
respectively.

Lemma 3.2. Let 1 6= N � G. Then either Γ ∼= Kd,d, or Nuv 6= 1 and N{u,v} is self-
normalizing in N , where {u, v} ∈ E.

Proof. Assume that Γ 6∼= Kd,d. Then, by the O’Nan-Scott Theorem and [9, Lemmas
6.1, 6.2 and Propersition 6.13], G has no normal subgroup acting regularly on E. Thus
N{u,v} 6= 1, and so N{u,v} is self-normalizing in N by Lemma 2.1.

Suppose that Nuv = 1. Then N{u,v} has order 2, and so N{u,v} ≤ CN(N{u,v}) ≤
NN(N{u,v}) = N{u,v}. This implies that CN(N{u,v}) = NN(N{u,v}), and then N{u,v} is a
Sylow 2-subgroup of N . By Burnside’s transfer theorem (refer to [14, IV.2.6]), N has
a normal Hall 2′-subgroup, say M . Then this M is normal in G and regular on E, a
contradiction. �

Suppose that Γ 6∼= Kd,d. By [9], as a primitive group on E, the O’Nan-Scott type of G
is one of SD, CD, AS and PA. Then G has a unique minimal normal subgroup, which
is insoluble, refer to [22, 24]. In particular, G is insoluble, and so G{u,v} is not abelian
by [14, IV.7.4]. For the case where the arc-stabilizer Guv is abelian, the following result
says that Γ is a complete graph.

Theorem 3.3. Assume that Γ 6∼= Kd,d. Let 1 6= N �G.

(1) If N{u,v} has a normal Sylow subgroup P 6= 1 then P is also a Sylow subgroup of
N ; in particular, N{u,v} is not abelian.

(2) If Nuv is abelian then N is transitive on the arc set of Γ .
(3) If Nuv is an abelian 2-group then soc(G) = PSL(2, q) and Γ ∼= Kq+1, where q is

a power of some prime with q − 1 a power of 2 greater than 8.
(4) If Guv is an abelian group then d = q and either soc(G) ∼= PSL(2, q) and Γ ∼=

Kq+1, or soc(G) = Sz(q), AutΓ = Aut(Sz(q)) and Γ is (Sz(q), 2)-arc-transitive,
where q is a power of some prime.
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Proof. (1) Assume that P 6= 1 is a normal Sylow p-subgroup of N{u,v}. Then P is a
characteristic subgroup of N{u,v}, and so P � G{u,v} as N{u,v} � G{u,v}. Thus NG(P ) ≥
G{u,v}, and then NG(P ) = G{u,v} by the maximality of G{u,v}. This gives NN(P ) =
N ∩NG(P ) = N ∩ G{u,v} = N{u,v}. Choose a Sylow p-subgroup Q of N with P ≤ Q.
Then NQ(P ) ≤ Q ∩ NG(P ) = Q ∩ N{u,v} = P . This yields P = Q, so P is a Sylow
p-subgroup of N .

Suppose that N{u,v} is abelian. Let R 6= 1 be a Sylow subgroup of N{u,v}. Then R
is a Sylow subgroup of N , and N{u,v} ≤ CN(Q) ≤ NN(R) = N{u,v}, yielding CN(R) =
NN(R). By Burnside’s transfer theorem, R has a normal complement H in N , that is
N = RH with R ∩H = 1 and H �N . Note that H is a Hall subgroup of N . It follows
that H is characteristic in N , and hence H �G. Let R runs over the Sylow subgroups
of N{u,v}. Then the resulting normal complements intersect at a normal complement
of N{u,v} in N , which is normal in G and regular on E. This contradicts Lemma 3.2.
Therefore, N{u,v} is nonabelian, and (1) of this theorem follows.

(2) Assume that Nuv is abelian. Then Nuv 6= N{u,v} by (1), and thus (u, v) = (v, u)x

for some x ∈ N{u,v}. Since Γ is N -edge-transitive, Γ is N -arc-transitive.

(3) Assume that Nuv is an abelian 2-group. Recall that G has a unique minimal
normal subgroup, say M . Then M ≤ N , and (1) and (2) hold for M . Then, since Muv

is an abelian 2-group, M{u,v} is a Sylow 2-subgroup of M , and M{u,v} is not abelian.
Write M = T1 × · · · × Tk, where Ti are isomorphic nonabelian simple groups. Recall

that M{u,v} is a Sylow 2-subgroup of M . For each i, choose a Sylow 2-subgroup Qi of Ti
with Qi ≤M{u,v}. Then M{u,v} = Q1×· · ·×Qk. Noting that Qi are all isomorphic, every
Qi is nonabelian; otherwise, M{u,v} is abelian, a contradiction. In particular, Q1 6≤Muv.
Then M{u,v} = MuvQ1, and so

Q2 × · · · ×Qk
∼= M{u,v}/Q1 = MuvQ1/Q1

∼= Muv/(Muv ∩Q1).

Since Muv is abelian, the only possibility is k = 1. Thus M = soc(G) is simple.
By [10, Corollary 5], M{u,v} has cyclic commutator subgroup. Since M{u,v} is non-

abelian, by [2], M is isomorphic to one of the groups M11, PSL(2, q) (with q2−1 divisible
by 16), PSL(3, q) (with q odd) and PSU(3, q) (with q odd). If M ∼= M11, then G = M ,
and so M{u,v} is maximal in M ; however, by the Atlas [3], a Sylow 2-subgroup of M11 is
not a maximal subgroup, a contradiction. Thus we next let M ∼= PSL(2, q), PSL(3, q)
or PSU(3, q).

Since M is transitive on E, we know that |E| = |M : M{u,v}| is odd. Thus G is
an almost simple primitive group (on E) of odd degree. Noting that M{u,v} = M ∩
G{u,v}, by [20], M{u,v} is known. Noting the isomorphisms among simple groups (refer
to [15, Proposition 2.9.1 and Theorem 5.1.1]), since M{u,v} is a Sylow 2-subgroup of
M , the only possibility is that M ∼= PSL(2, q), and M{u,v} is the stabilizer of some
orthogonal decomposition of a natural projective module associated with M into 1-
dimensional subspaces. It follows that M{u,v} ∼= Dq−1 or Dq+1, and so Muv

∼= Z q−1
2

or

Z q+1
2

, respectively. Since M is transitive on the arc set of Γ , we have |Mv : Muv| =

d ≥ 3. Checking the subgroups of PSL(2, q) (refer to [14, II.8.27]), we conclude that
Muv

∼= Z q−1
2

, d = q, V = |M : Mv| = q + 1 and M is 2-transitive on V . Thus Γ ∼= Kq+1.

(4) Assume that Guv is abelian. Let M be the unique minimal normal subgroup of
G. If Muv is a 2-group, then (4) of this theorem follows from (3).
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We next assume that |Muv| has an odd prime divisor p. By (1), the unique Sylow
p-subgroup of Muv is also a Sylow p-subgroup of M . Write M = T1×· · ·×Tk , where Ti
are isomorphic nonabelian simple groups. By (1) of this theorem, M{u,v} is not abelian,
so M{u,v} 6≤ Guv, and then G{u,v} = M{u,v}Guv. Thus G = MGuv, and hence Guv acts
transitively on {T1, . . . , Tk} by conjugation. Choose, for each i, a Sylow p-subgroup Pi
of Ti such that P1× · · ·×Pk is the unique Sylow subgroup of Muv. Since Guv is abelian,
we have P1 = P x

1 ≤ T x1 for x ∈ Guv. It follows that P1 ≤ Ti for all i. The only possibility
is that k = 1, and so M is simple.

Note that G is an almost simple group with a soluble maximal subgroup G{u,v}. Then,
by [18], both M = soc(G) and M{u,v} = M ∩ G{u,v} are known. Since M{u,v} has an
abelian subgroup of index 2, it follows that either M ∼= PSL(2, q) and M{u,v} ∼= D 2(q±1)

(2,q−1)

,

or M = Sz(q) and M{u,v} ∼= D2(q−1). Recalling that G = MGuv, we know that M is

transitive on V . By Lemma 3.1, |Mv| = d
2
|M{u,v}|. Check the subgroups of M , refer

to [25] for Sz(q). For M ∼= PSL(2, q), we have Mv
∼= [q]:Z q−1

(2,q−1)
, and then Γ ∼= Kq+1.

Assume that M = Sz(q) and M{u,v} ∼= D2(q−1). Then Mv
∼= [q]:Zq−1 and d = q; in this

case, Γ is (M, 2)-arc-transitive. By [5], we have that AutΓ = Aut(Sz(q)) and Γ is unique
up to isomorphism. Thus (4) of this theorem follows. �

Lemma 3.4. Assume that G has type PA on E. Let soc(G) = T1 × · · · × Tk. Then
(Ti)uv 6= 1 for each i and {u, v} ∈ E; in particular, every Ti is neither semiregular on V
nor semiregular on E.

Proof. Let M = soc(G). By Lemma 2.3, M{u,v} = (T1){u,v}×· · ·×(Tk){u,v}, and (Ti){u,v}
all have equal order. By Theorem 3.3, M{u,v} is nonabelian. Thus (Ti){u,v} is nonabelian
for all i. Then the lemma follows. �

For the case where Γ is a bipartite graph, we let G+ be the subgroup of G preserving
the bipartition of Γ . Then |G : G+| = 2, and each bipartite half of Γ is a G+-orbit on
V .

Lemma 3.5. Assume that the graph Γ = (V,E) is (G, 2)-arc-transitive, and G has type
PA on E. Then either Γ ∼= Kd,d, or one of the following holds:

(1) G is quasiprimitive on V ;
(2) Γ is bipartite, and G+ is faithful and quasiprimitive on each bipartite half of Γ .

Proof. Since G is primitive on E, every minimal normal subgroup of G is transitive on
E, and so has at most two orbits on V . If Γ is not bipartite then G is quasiprimitive on
V .

Now let Γ be bipartite with bipartition, say, V = V1∪V2. Note that Gv ≤ G+ for each
v ∈ V . Then G+ is locally-primitive on Γ . Suppose that Γ 6∼= Kd,d. Then, by [23], G+

is faithful on both V1 and V2, and either (2) of this lemma holds, or the unique minimal
normal subgroup of G is a direct product M1×M2, where M1 and M2 are normal in G+

and conjugate in G, and Mi is intransitive on Vi for i = 1, 2. For the latter case, if M1

is intransitive on V2 then M1 is semiregular on V by [8, Lemma 5.1]; if M1 is transitive
on V2 then M2 is semiregular on V2. These two cases all contradict Lemma 3.4. Thus
G+ is quasiprimitive on both V1 and V2. �
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As permutation groups on V and on E, the types of G (and G+) have been determined
in [9]. Then by Lemma 3.5 and combined with the reduction theorems for 2-arc-transitive
graphs given by Praeger [22, 23], we get the following result.

Lemma 3.6. Assume that the graph Γ = (V,E) is (G, 2)-arc-transitive. Suppose that
Γ 6∼= Kd,d. If G is not almost simple, then G has type PA on E and either

(1) G is quasiprimitive and of type PA on V ; or
(2) Γ is bipartite, G+ is faithful and quasiprimitive on each bipartite half of Γ with

type PA.

Now we are ready to give a proof of Theorem 1.1.

Theorem 3.7. Let Γ = (V,E) be a connected d-regular graph for some d ≥ 3, and
let G ≤ AutΓ . Assume that Γ is both G-edge-primitive and (G, 2)-arc-transitive. Then
either Γ ∼= Kd,d, or G is almost simple.

Proof. Assume that Γ 6∼= Kd,d, and let {u, v} ∈ E. By the 2-arc-transitivity of G on Γ ,

we know that G
Γ (v)
v is a 2-transitive permutation group of degree d.

Let M = soc(G) = T1 × · · · × Tk, where Ti are isomorphic nonabelian simple groups.

Then Mv�Gv, and 1 6= Mv 6= Muv by Lemma 3.1; in particular, Mv 6≤ G
[1]
v . Thus M

Γ (v)
v

is a transitive normal subgroup of G
Γ (v)
v .

Assume that M
Γ (v)
v is primitive on Γ (v). Noting that G is transitive on V , we conclude

that M
Γ (w)
w is primitive for every w ∈ V . Thus Γ is M -locally primitive. Then, by

Lemma 3.4 and [8, Lemma 5.1], we conclude that k = 1, and so G is almost simple.

Next assume that M
Γ (v)
v is imprimitive on Γ (v).

Note that every non-trivial normal subgroup of an almost simple 2-transitive group

is primitive. Then G
Γ (v)
v is an affine 2-transitive group, and by Lemma 2.2, M

Γ (v)
v is a

soluble Frobenius group and (M
Γ (v)
v )u is cyclic. Set (M

Γ (v)
v )u ∼= Ze and soc(G

Γ (v)
v ) ∼= Zlr

for a prime r and integer l ≥ 1 with d = rl. Then e is a divisor of rl− 1, and e < rl− 1.

Assume that e = 1. Then M
Γ (v)
v = soc(G

Γ (v)
v ) ∼= Zlr, and so M

Γ (v)
v is regular on Γ (v).

By [17, Lemma 2.3], Mv is faithful and hence regular on Γ (v), and thus Muv = 1, which
contradicts Lemma 3.2. Thus e 6= 1.

If l = 1 then |Γ (v)| = d = r and M
Γ (v)
v is primitive on Γ (v), a contradiction. Thus

l > 1. Note that e is a proper divisor of d− 1 = rl − 1. Then d− 1 is a not a prime. It

follows that d = rl ≥ 9. Since G
Γ (v)
v is an affine 2-transitive group of degree d, G

Γ (v)
v has

no normal subgroup isomorphic to a projective special linear group of dimension ≥ 2.

By Theorem 2.5, G
[1]
uv = 1, and so M

[1]
uv = 1.

Let x ∈ G{u,v} \ Guv. Then (u, v)x = (v, u), this implies that M
Γ (v)
v and M

Γ (u)
u are

permutation isomorphic. In particular, (M
Γ (u)
u )v ∼= (M

Γ (v)
v )u = Ze. Since M

[1]
v ∩M [1]

u =

M
[1]
uv = 1, we know that Muv is isomorphic to a subgroup of (Muv/M

[1]
u ) × (Muv/M

[1]
v ).

Note that Muv/M
[1]
v
∼= (M

Γ (v)
v )u and Muv/M

[1]
u
∼= (M

Γ (u)
u )v. Then Muv is isomorphic

to a subgroup of Ze × Ze. In particular, Muv is abelian. Then, by Theorem 3.3, M is
transitive on the arc set of Γ , and so M{u,v} = Muv.2.

If e is a power of 2 then, by Theorem 3.3, M ∼= PSL(2, rl), Γ ∼= Krl+1; however, in
this case, M is locally primitive on Γ , a contradiction. Thus e has odd prime divisors.
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Let s be an odd prime divisor of e, and S be a Sylow s-subgroup of Muv. Then, noting
that M{u,v} = Muv.2, we know that S is also a Sylow s-subgroup of M by Theorem 3.3.
Thus S = S1 × · · · × Sk, where Si is a Sylow s-subgroup of Ti for 1 ≤ i ≤ k. Since Muv

is isomorphic to a subgroup of Ze × Ze, we know that Muv has no subgroup isomorphic
to Z3

s. It follows that k ≤ 2.

Now we deduce a contradiction by supposing that k = 2.
Let k = 2. Since G ≤ (Aut(T1)× Aut(T1)):2, we have

G{u,v}/M{u,v} = G{u,v}/(M ∩G{u,v}) ∼= MG{u,v}/M = G/M ≤ (Out(T1)× Out(T1)):2.

It follows that G{u,v}/M{u,v} is soluble, and so G{u,v} is soluble as M{u,v} is soluble. Thus

(G
Γ (v)
v )u is soluble, and G

Γ (v)
v = soc(G

Γ (v)
v ):(G

Γ (v)
v )u is also soluble. Checking the soluble

affine 2-transitive groups, by Lemma 2.2, (G
Γ (v)
v )u ≤ ΓL(1, rl) or Ze ∼= (M

Γ (v)
v )u ≤

Z((G
Γ (v)
v )u) ∼= Z2. Note that (M

Γ (v)
v )u is a reducible subgroup of (G

Γ (v)
v )u. Recalling

that e is not a power of 2, the latter case does not occur.
Since |M{u,v} : Muv| = 2, we have M{u,v} 6≤ Guv, and so Guv 6= M{u,v}Guv ≤ G{u,v}.

Then M{u,v}Guv = G{u,v}, and G = MG{u,v} = MGuv. Recalling that M = T1 × T2, it
follows that Guv acts transitively on {T1, T2} by conjugation. Let H be the kernel of
this action. Then |Guv : H| = 2, and each Ti is normalized by H. For h ∈ H,

((Ti)v)
h = (Ti ∩Gv)

h = T hi ∩ (Gv)
h = Ti ∩Gv = (Ti)v, i = 1, 2.

This implies that H normalizes each (Ti)v. Then (Ti)
Γ (v)
v is normalized by HΓ (v). Note

that (Ti)
Γ (v)
v is a normal subgroup of M

Γ (v)
v = soc(G

Γ (v)
v ):(M

Γ (v)
v )u, and e = |(MΓ (v)

v )u|
is a proper divisor of rl − 1. Let Ki be the Sylow r-subgroup of (Ti)

Γ (v)
v . Then Ki is

normalized by HΓ (v), and Ki ≤ soc(G
Γ (v)
v ) and K1 ∩K2 = 1.

Recalling that |Guv : H| = 2, we have |(GΓ (v)
v )u : HΓ (v)| ≤ 2. Since G

Γ (v)
v is 2-

transitive, |(GΓ (v)
v )u| is divisible by rl − 1, and so |HΓ (v)| is divisible by rl−1

2
. Note that

rl−1
2

> rl

2
− 1 ≥ rl−1− 1. Then |HΓ (v)| is not a divisor of rb− 1 for any 1 ≤ b < l. Then,

by [13, Lemma 5.1], HΓ (v) is irreducible on soc(G
Γ (v)
v ). It implies that K1 = K2 = 1, and

thus (Ti)
Γ (v)
v ≤ (M

Γ (v)
v )u for i = 1, 2. Let u run over Γ (v). It follows that (Ti)

Γ (v)
v = 1,

and hence (Ti)v ≤ M
[1]
v , i = 1, 2. Since M is transitive on V , by [17, Lemma 2.3], we

have (T1)v = (T2)v = 1, which contradicts Lemma 3.4. This completes the proof. �

As a consequence of Theorems 3.3 and 3.7, an edge-primitive graph of prime valency
is 2-arc-transitive, and then it has almost simple automorphism group if it is not a
complete bipartite graph. See also [21].

Corollary 3.8. Assume that d is a prime and Γ 6∼= Kd,d. Then G is almost simple, and
either G = PSL(2, d) with d > 11 and Γ ∼= Kd+1 or G is transitive on the set of 2-arcs
of Γ .

Proof. Note that G is transitive on the arc set of Γ . Let {u, v} ∈ E. By Theorem 3.7,

it suffices to deal with the case where G
Γ (v)
v is not 2-transitive.

Suppose that G
Γ (v)
v is not 2-transitive. Then G

Γ (v)
v

∼= Zd:Zl with l < d − 1 and
l a divisor of d − 1. If l = 1 then Gv

∼= Zd by [17, Lemma 2.3], and so Guv = 1,

which contradicts Lemma 3.2. Then l > 1, and so d ≥ 5. By Theorem 2.5, G
[1]
uv = 1.
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Then Guv is isomorphic to a subgroup of (G
Γ (u)
u )v × (G

Γ (v)
v )u ∼= Zl × Zl. Thus Guv

is abelian. By Theorem 3.3, Γ ∼= Kd+1, soc(G) ∼= PSL(2, d), soc(G)v ∼= Zd:Z d−1
2

and

soc(G){u,v} ∼= Dd−1. If G ∼= PGL(2, d) then G is transitive on the set of 2-arcs of Γ ,
which is not the case. Thus G ∼= PSL(2, d), and so d > 11 by the maximality of G{u,v}. �

4. Examples

Let Γ = (V,E) be a connected d-regular graph, where d ≥ 3. Let v ∈ V and
G ≤ AutΓ . Assume that Γ is (G, 2)-arc-transitive. Choose an integer s ≥ 2 such that Γ
is (G, s)-arc-transitive but not (G, s+ 1)-arc-transitive; in this case, we call Γ a (G, s)-
transitive graph. Then s ≤ 7 by [28]. If Gv is faithful on Γ (v) then s ≤ 3 by Theorem
2.5, and s = 3 yields that d = 7 and Gv

∼= A7 or S7, see [16, Proposition 2.6]. This leads
to the following interesting problem: Do there exist 3-arc-transitive graphs with faithful
stabilizers? We next answer this problem by giving several examples of edge-primitive
graphs which are 3-arc-transitive and have faithful stabilizers.

The first example is the Hoffman-Singleton graph, which has valency 7, order 50
and automorphism group G = T.2, where T = PSU(3, 5). Let X = T or G. For an
edge {u, v} of this graph, Xv

∼= A7 or S7 and X{u,v} ∼= M10 or PΓL(2, 9), which are
maximal subgroups of X. Thus the Hoffman-Singleton graph is both X-edge-primitive
and (X, 2)-arc-transitive. To see the 3-arc-transitivity, we fix an edge {u, v} and consider
the action of the arc-stabilizer Xuv (∼= A6 or S6) on Γ (u)∪Γ (v). By the 2-arc-transitivity
of X, we have two faithful transitive actions of Xuv on Γ (u) and Γ (v), respectively. Let
v1 ∈ Γ (v) \ {u} and x ∈ X{u,v} \Xuv. Then u1 := vx1 ∈ Γ (u) \ {v}, and

(Xuv)u1 = (X{u,v})u1 = (X{u,v})vx1 = ((X{u,v})v1)
x = ((Xuv)v1)

x.

By the choice of x, we know that (Xuv)v1 and ((Xuv)v1)
x are not conjugate in Xuv, and

so do for (Xuv)v1 and (Xuv)u1 . This implies that the actions of Xuv on Γ (u) and Γ (v)
are not equivalent. Thus (Xuv)v1 acts on Γ (u) \ {v} without fixed-points, this yields
that (Xuv)v1 is transitive on Γ (u) \ {v}. It follows that the Hoffman-Singleton graph is
(X, 3)-arc-transitive.

In general, combined with [16, Proposition 2.6], a similar argument as above yields
the following result.

Lemma 4.1. Let Γ = (V,E) be a connected d-regular graph for d ≥ 3, {u, v} ∈ E and
G ≤ AutΓ . If Γ is (G, 2)-arc-transitive and Gv is faithful on Γ (v), then Γ is (G, 3)-arc-
transitive if and only if d = 7, soc(Gv) ∼= A7 and G{u,v} 6∼= S6, i.e. G{u,v} ∼= PGL(2, 9),
M10 or Aut(A6).

We next give another example.

Example 4.2. By the information given in the Atlas [3] for the O’Nan simple group O′N,
there are exactly two conjugacy classes C1 and C2 of (maximal) subgroups isomorphic to
A7, which are merged into one class in O′N.2. Further, there are H ∈ C1 and involutions
x1, x2 ∈ O′N.2\O′N such that (H∩Hxi):〈xi〉 both are maximal subgroups of O′N.2 with
(H ∩ Hx1):〈x1〉 ∼= PGL(2, 9) and (H ∩ Hx2):〈x2〉 ∼= PSL(2, 7):2. Define two bipartite
graphs Γ1 = (V,E1) and Γ2 = (V,E2) with vertex set V = C1 ∪ C2 and edge sets
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E1 = {{H1, H2} | H1 ∈ C1, H2 ∈ C2, H1 ∩H2
∼= A6};

E2 = {{H1, H2} | H1 ∈ C1, H2 ∈ C2, H1 ∩H2
∼= PSL(2, 7)}.

Then Γ1 and Γ2 are both O′N.2-edge-primitive and (O′N.2, 2)-arc-transitive, which have
valency 7 and 15 respectively. By Lemma 4.1, only Γ1 is (O′N.2, 3)-arc-transitive. �

Lemma 4.3. Let Γ1 be as in Example 4.2. Then AutΓ1 = O′N.2.

Proof. Let G = AutΓ1. Then G ≥ O′N.2. By Theorem 1.1, G is almost simple, and

so O′N ≤ soc(G). Let {u, v} be an edge of Γ1. Then G
Γ (v)
v
∼= A7 or S7, and G

[1]
uv = 1

by Theorem 2.5. Thus, by the group extensions (~) in Section 2, we conclude that |Gv|
has no prime divisor other than 2, 3, 5 and 7. Since O′N.2 is transitive on the vertices
of Γ1, we have G = (O′N.2)Gv. It follows that |O′N| and |soc(G)| have the same prime
divisors. Using [19, Corollary 5], we get soc(G) = O′N, and so G = O′N.2. �
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