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Abstract. This is one of a series of papers that aims towards to classify finite
connected graphs of odd order admitting a 2-arc-transitive almost simple group
of automorphisms. This one presents such a classification for an automorphism
group that has soluble vertex stabilisers or is an exceptional group of Lie type.

1. Introduction

All graphs in this paper are assumed to be finite, simple and undirected.

Let Γ = (V,E) be a graph with vertex set V and edge set E. For a positive
integer s, an s-arc in Γ is a sequence of s+ 1 vertices of which any two consecutive
vertices are adjacent and any three consecutive vertices are distinct; in particular, a
2-arc is a triple of distinct vertices (α, β, γ) such that β is adjacent to both α and γ.
A graph Γ is called (G, s)-arc-transitive if a group G of automorphisms is transitive
on the set of s-arcs of Γ , or simply called s-arc-transitive.

The study of s-arc-transitive graphs has attracted considerable attentions in the
literature since Tutte [23] proved that there is no 6-arc-transitive cubic graph. In
particular, Weiss [24] generalized Tutte’s result by proving that there is no 8-arc-
transitive graph of valency at least 3. Trofimov in 1990’s determined vertex stabilis-
ers of s-arc-transitive graphs with s > 2 in a series of papers, refer to [21, 22]. On
the other hand, Praeger [20] developed a framework for the study of s-arc-transitive
graphs. Some special families of s-arc-transitive graphs have been classified, see for
example [2, 5, 6, 10, 11, 14, 18]. However, it would be infeasible to classify 2-arc-
transitive graphs in the general case. The first-named author [15] proved that there
is no s-arc-transitive graph of odd order and valency at least 3 with s > 4, and an s-
arc-transitive graph of odd order with s = 2 or 3 is a normal cover of 2-arc-transitive
graph admitting an almost simple group. (Recall that an almost simple group G is
a group such that S 6 G 6 Aut(S) for some finite nonabelian simple group S; in
other words, S is the socle of G and is denoted by soc(G).) This initiated a project
of classifying 2-arc-transitive graphs of odd order, and the following natural problem
arises:

Problem A. Classify 2-arc-transitive graphs of odd order admitting an almost
simple group.

This is one of a series of papers which aim towards to solve this problem. The first
main result of this paper is a classification of such graphs with soluble stabiliser.

The project was partially supported by the NNSF of China (11771200, 11931005, 11861012,
11971248, 11731002) and the Fundamental Research Funds for the Central Universities.
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Theorem 1.1. Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph of odd
order. Assume that G is an almost simple group with socle T , and the stabiliser Gα

is soluble for α ∈ V . Then one of the following statements holds:

(i) Γ is the odd graph O4, and G = A7 or S7;
(ii) G = J1, Gα

∼= AGL(1, 8) or AΓL(1, 8), and Γ has valency 8 and order 3135
or 1045, respectively.

(iii) T = PSL(2, 2f ), Γ is valency 2f for f > 2, and G
Γ (α)
α 6 AΓL(1, 2f );

(iv) T = PSL(2, pf ), Γ is of valency 4, and Gα = A4 or S4, where p is a prime;
(v) T = Ree(32m+1), Tα ∼= Z3

2:Z7 and Γ is of valency 8.

Remarks on Theorem 1.1: The graphs in parts (iii)-(iv) are classified in [10],
see Lemma 3.6 for details, and the graphs in part (v) are determined in [5].

The second result of this paper classifies 2-arc-transitive graphs of odd order
admitting an exceptional group of Lie type.

Theorem 1.2. Let Γ be a connected (G, 2)-arc-transitive graph of odd order. As-
sume that G is an exceptional group of Lie type. Then T = soc(G) = Ree(32m+1),
Tα = Z3

2:Z7 and k = 8.

In a sequel, we shall solve Problem A first for alternating and symmetric groups,
and then for classical groups of Lie type.

We end this introduction by introducing some notion. The group-theoretic nota-
tion used in this paper is standard (see, for example, [4] and [25]). For two groups
K and H, denote by K.H an extension of K by H, while K:H stands for a split ex-
tension, and further, K ·H indicates any case of K.H which is a non-split extension.
The notation K◦H stands for a central product of K and H.

Following [4], for a positive integer n, the symbol [n] sometimes denotes an (un-
specified) group of order n for convenience; in particular, n denotes a cyclic group of
order n, pf with p prime denotes an elementary abelian group of order pf , namely,
a direct product of f copies of Zp.

As usual, for a prime factor p of n, by np we mean the largest power of p dividing
n, sometimes written as np||n; while Gp denote a Sylow p-subgroup of a group G.

2. Stabilisers

Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph. Fix an edge {α, β} ∈
E, and let Γ (α) be the neighbourhood of α, which is the set of vertices adjacent to

α. Then Gα induces a 2-transitive permutation group on Γ (α), denoted by G
Γ (α)
α .

Let G
[1]
α be the kernel of Gα acting on Γ (α). Then G

Γ (α)
α
∼= Gα/G

[1]
α . Let G

[1]
αβ =

G
[1]
α ∩G[1]

β , the kernel of Gαβ acting on Γ (α)∪Γ (β). Then G
[1]
αβ�G

[1]
α G

[1]
β �Gαβ, and

(G[1]
α )Γ (β) ∼= G[1]

α /G
[1]
αβ
∼= G[1]

α G
[1]
β /G

[1]
β �Gαβ/G

[1]
β
∼= G

Γ (β)
αβ
∼= G

Γ (α)
αβ .

In particular, G
[1]
α = G

[1]
αβ.(G

[1]
α )Γ (β), and

Gα = G
[1]
α .G

Γ (α)
α = (G

[1]
αβ.(G

[1]
α )Γ (β)).G

Γ (α)
α .
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The following theorem is a fundamental result in the area of symmetric graphs,
refer to [7, 24].

Theorem 2.1. Assume G
[1]
αβ 6= 1. Then G

[1]
αβ is a p-group for some prime p, G

Γ (α)
αβ

has a nontrivial normal p-subgroup, and G
Γ (α)
α �PSL(d, q) with q = pf and |Γ (α)| =

qd−1
q−1 . Furthermore, if d = 2 then Γ is (G, 4)-arc-transitive.

We remark that in this theorem the prime p divides |Γ (α)| − 1, and hence p does
not divide the valency |Γ (α)|. For a group X and a prime p, let Op(X) be the
largest normal p-subgroup of X, which is a characteristic subgroup of X. The next
lemma slightly improves part (vi) of [17, Theorem 1.1].

Lemma 2.2. Let r be a prime divisor of |Γ (α)|. Then Or(G
[1]
α ) = 1, and either

(i) Or(Gα) = 1, or

(ii) G
Γ (α)
α is affine of degree re, Or(Gα) ∼= Zer, and Gα = Or(Gα):Gαβ =

(Or(Gα)×G[1]
α ).G

Γ (α)
αβ .

Proof. Since G
Γ (α)
α is 2-transitive, Gαβ is transitive on Γ (α) \ {β}. Since Or(Gα) ∩

Gαβ�Gαβ, all orbits of Or(Gα)∩Gαβ on Γ (α)\{β} have the same size. As r divides
|Γ (α)|, r is comprime to |Γ (α)\{β}|. Thus Or(Gα)∩Gαβ acts trivially on Γ (α)\{β}.
Similarly, Or(Gα) ∩Gαβ acts trivially on Γ (β) \ {α}. So Or(Gα) ∩Gαβ 6 G

[1]
αβ.

We claim that Or(Gα) ∩ Gαβ = 1. If G
[1]
αβ = 1, then the claim is true. Suppose

that G
[1]
αβ 6= 1. Then Theorem 2.1 says that G

[1]
αβ is a p-group with p prime, and p

divides |Γ (α)\{β}|. So p does not divides |Γ (α)|, and r 6= p and Or(Gα)∩Gαβ = 1,

as claimed. Since Or(G
[1]
α ) 6 Or(Gα) and G

[1]
α 6 Gαβ, we conclude that Or(G

[1]
α ) 6

Or(Gα) ∩Gαβ = 1.

Assume that Or(Gα) 6= 1. Since Or(G
[1]
α ) = 1, we have 1 6= Or(Gα) ∼= Or(Gα)Γ (α)�

G
Γ (α)
α . As G

Γ (α)
α is a 2-transitive permutation group, it follows that G

Γ (α)
α is affine

and Op(Gα)Γ (α) ∼= Or(Gα) is the socle of G
Γ (α)
α and regular on Γ (α). Hence

Or(Gα) = Zer for some prime r, and Gα = Or(Gα):Gαβ. Since Or(Gα) ∩ G[1]
α 6

Or(Gα)∩Gαβ = 1, we have Or(Gα)G
[1]
α = Or(Gα)×G[1]

α . Finally, Gα/Or(Gα)G
[1]
α
∼=

(Gα/G
[1]
α )/(Or(Gα)G

[1]
α /G

[1]
α ) ∼= G

Γ (α)
α /(Or(Gα))Γ (α) ∼= G

Γ (α)
αβ , and Gα = (Or(Gα)×

G
[1]
α ).G

Γ (α)
αβ . This completes the proof. 2

In the rest of this section, assume that the vertex number |V | is odd.

Lemma 2.3. Assume that M is a subgroup of G containing Gα such that O2(M) 6=
1. Then O2(M) = O2(Gα) ∼= O2(Gα)Γ (α), and G

Γ (α)
α is affine with socle O2(Gα)Γ (α) ∼=

O2(Gα). Moreover, the order |M | is divisible by |O2(M)| − 1.

Proof. Since |M : Gα| is a divisor of |G : Gα| = |V |, the index |M : Gα| is odd.
Since Gα 6 O2(M)Gα 6M , we have

|M : Gα| = |M : O2(M)Gα||O2(M)Gα : Gα|,
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and thus |O2(M)Gα : Gα| is odd. Now

|O2(M)Gα : Gα| =
|O2(M)Gα|
|Gα|

=
|O2(M)||Gα|

|O2(M) ∩Gα||Gα|
=

|O2(M)|
|O2(M) ∩Gα|

.

The fact that |O2(M)Gα : Gα| is odd implies |O2(M)|
|O2(M)∩Gα| = 1. It follows that

O2(M) = O2(M) ∩ Gα, and O2(M) 6 Gα. Further, O2(M) � Gα and O2(M) 6
O2(Gα). By Lemma 2.2, the 2-part O2(Gα) is a minimal normal subgroup of Gα.
Since O2(M) 6 Gα and O2(M) 6 O2(Gα), we conclude that O2(M) = O2(Gα).
The other statements of the lemma follow from Lemma 2.2. 2

By Lemma 2.3, either O2(M) = 1, or O2(M) = O2(Gα) ∼= O2(G
Γ (α)
α ) ∼= Ze2

with |Γ (α)| = 2e. For the latter case, since Gα is insoluble, |Γ (α)| > 4, and then

e > 3. Since Γ is a (G, 2)-arc-transitive graph, the stabiliser G
Γ (α)
α is an affine

2-transitive permutation group of degree 2e. Thus the order |Gα| is divisible by
|O2(M)| − 1 = 2e − 1, and so is |M |.

Lemma 2.4. Assume that M is a subgroup of G containing Gα such that M ∼=
[m].S.[l].2, where m and l are odd, either S = PSL(3, q0) with q0 ≡ 1 (mod 4) or

S = PSU(3, q0) with q0 ≡ −1 (mod 4). Then G
Γ (α)
α is almost simple.

Proof. Assume that G
Γ (α)
α is affine. Note that M has 2-rank at most 3. Then,

since Gα is insoluble, G
Γ (α)
α
∼= Z3

2:SL(3, 2) and Γ is of valency 8. By Theorem 2.1,

G
[1]
αβ = 1. Then G

[1]
α is isomorphic to a normal subgroup of G

Γ (α)
αβ
∼= SL(3, 2), and so

either |G[1]
α | = 1 and |Gα|2 = 26, or |Gα|2 = 29.

Checking the 2-part of |M |, we have |M |2 = 22t+2, where t is such that 2t ‖ (q0−1)
for S = PSL(3, q0), or 2t ‖ (q0 + 1) for S = PSU(3, q0). Since |M : Gα| is odd, the
only possibility is that t = 2, |Gα|2 = 26 and Gα

∼= Z3
2:SL(3, 2) = AGL(3, 2). Note

that M has a subgroup of index 2, which intersects Gα at a subgroup of index 2 in

Gα. However, AGL(3, 2) has no subgroup of index 2, a contradiction. Thus G
Γ (α)
α

is almost simple. 2

Finally, we prove a technical lemma.

Lemma 2.5. Assume that G is an almost simple group with socle T . Then Γ is
T -arc-transitive, and either Gα is soluble, or Tα is insoluble and Γ is (T, 2)-arc-

transitive. In particular, if |Γ (α)| = 28 then soc(G
Γ (α)
α ) 6∼= PSL(2, 8).

Proof. Since Γ has odd order, Γ is not bipartite. Noting that T is nonabelian
simple, it follows that T is transitive on the vertex set V of Γ . Thus G = TGα, and
Gα/Tα = Gα/(T ∩Gα) ∼= TGα/T = G/T , so Gα/Tα is soluble.

Since Tα � Gα and Gα is 2-transitive on Γ (α). Then either Tα 6 G
[1]
α or Tα

is transitive on Γ (α). Then former case implies that T is regular on V , and so
|T | = |V | is even, a contradiction. The latter case says that Γ is T -arc-transitive.

Assume that Gα is insoluble. Then Tα is insoluble, and hence T
Γ (α)
α is an insoluble

normal subgroup of G
Γ (α)
α . Checking all 2-transitive permutation groups of even de-

gree (refer to [3, Sections 7.3 and 7.4]), we conclude that either T
Γ (α)
α is 2-transitive,
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or T
Γ (α)
α
∼= PSL(2, 8). For the latter, G

Γ (α)
α = PΓL(2, 8) and Γ has valency 28. Since

Γ is of odd order, by [15], Γ is not (G, 4)-arc-transitive. Then G
[1]
αβ = 1 by Theorem

2.1, and so G
[1]
α
∼= (G

[1]
α )Γ (β) � G

Γ (β)
αβ
∼= G

Γ (α)
αβ = Z9:Z6. In particular, G

[1]
α has a

unique 2′-Hall subgroup, say L, which is characteristic in G
[1]
α . Thus L � Gα, and

Gα/L = `.PSL(2, 8).3, where ` = 1 or 2. Since the Schur multiplier of PSL(2, 8) is
trivial, we have Gα/L = (` × PSL(2, 8)).3. Thus Gα/L and hence Gα has a Sylow
2-subgroup isomorphic to Z3

2 or Z4
2. By [8, Theorem 16.6], G = T = PSL(2, 16),

which does not have a subgroup PSL(2, 8), a contradiction. 2

3. Proof of Theorem 1.1

Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph, and let (α, β) be an
arc of Γ . Assume that |V | is odd, G is an almost simple group, and Gα is soluble.

It follows from the assumption that the valency |Γ (α)| is even, and G
Γ (α)
α is a

soluble 2-transitive permutation group of even degree. By Huppert’s classification
(see [9] for example), we have

G
Γ (α)
α 6 2d:ΓL(1, 2d) for some d > 2.

In particular, Γ is of valency 2d, and since G
Γ (α)
αβ is transitive on Γ (α) \ {β}, the

order |GΓ (α)
αβ | is divisible by 2d − 1. Furthermore, by Lemma 2.2, we have

(3.1) O2(G
[1]
α ) = 1, O2(Gα) ∼= Zd2, Gα = O2(Gα):Gαβ = (O2(Gα)×G[1]

α ).G
Γ (α)
αβ .

Lemma 3.1. Every Sylow 2-subgroup of G is of the form of (Z2a × Zd2).Z2b, where
0 6 a 6 b and 2b is a divisor of d.

Proof. Note that G
Γ (α)
αβ 6 ΓL(1, 2d) ∼= Z2d−1:Zd, as observed above. Each Sylow

2-subgroup of G
Γ (α)
αβ is isomorphic to a subgroup of Zd, say Z2b . By Theorem 2.1,

G
[1]
αβ is a p-group with p coprime to |Γ (α)| = 2d, and thus p is an odd prime. Now

G
[1]
α /G

[1]
αβ
∼= (G

[1]
α )Γ (β) � G

Γ (β)
αβ
∼= G

Γ (α)
αβ . So a Sylow 2-subgroup of G

[1]
α is a Sylow

2-subgroup of (G
[1]
α )Γ (β), and is of the form Z2a for some a 6 b. Then our lemma

follows from (3.1). 2

The conclusion of this lemma enables us to apply some classical results to deter-
mine all the possibilities for G.

Lemma 3.2. The socle T of G is one of the following groups:

A7, M11, J1, PSL(2, q), PSL(3, q) (q odd), PSU(3, q) (q odd), and
Ree(32m+1).

Proof. Since |T : Tα| is odd, each Sylow 2-subgroup of Tα is a Sylow 2-subgroup
of T . By Lemma 3.1, a Sylow 2-subgroup of the simple group T is abelian or
ableian-by-cyclic.
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Such a simple group T is classified by Gorenstein [8, Theorem 16.6] and Kon-
drat’ev [13, Corollary 1], which shows that T is one of the simple groups listed
above. 2

Thus, to complete the proof of Theorem 1.1, we only need to analyse these can-
didates.

For an abstract group X and subgroups K < H < X such that H is core-free
in X, if there exists g ∈ NX(K) such that g2 ∈ K and 〈H, g〉 = X, we define a
graph with vertex set [X : H] and edge set {{Hx,Hy} | yx−1 ∈ HgH}, denoted by
Cos(X,H,HgH) and called a coset graph.

Lemma 3.3. A coset graph Cos(X,H,HgH) is connected if and only if 〈H, g〉 = X,
and is (X, 2)-arc-transitive if and only if H is 2-transitive on [H : K].

Under our assumption, G is 2-arc-transitive on Γ , H = Gα, K = Gαβ, and
g ∈ G{α,β}; in particular,

(3.2) Gαβ < G{α, β} 6 NG(Gαβ).

Note that Gα = Zd2:Gαβ and 2d− 1
∣∣ |Gαβ|, so Gα is not a 2-group since the valency

2d > 2.

Now we analyse the candidates listed in Lemma 3.2 one by one.

Lemma 3.4. Let G = A7 or S7. Then Γ is the Odd graph O4 of valency 4.

Proof. Note that a Sylow 2-subgroup of G has order 23 or 24. By (3.1), we conclude

that d = 2; in particular, Γ has valency 4. Then G
Γ (α)
α
∼= A4 or S4. It follows that

|G : Gα| is odd and square-free. Then by [16, Lema 6.2], Γ is the Odd graph O4. 2

Let M be a maximal subgroup of G such that Gα 6 M . Then |G : M | and
|M : Gα| are odd as |G : Gα| is odd, and (2d − 1)

∣∣ |M |. By Lemma 2.3,

(3.3) O2(M) = 1 or O2(Gα).

Lemma 3.5. Let T be a sporadic simple group. Then G = J1, Gα
∼= 23:7:3 or 23:7,

and Γ is of valency 8. Further, there indeed exist such graphs.

Proof. By Lemma 3.2, T = M11 or J1, and so G = T .

Suppose that G = M11. Since |G : M | is odd, by the Atlas [4], we have M ∼= M10,
M9:2 or M8:S3. Further since Gα is soluble and |M : Gα| is odd, also by Atlas [4],
one can get M ∼= M10 and Gα

∼= Z8:Z2, or M ∼= M9:2 and Gα = M or Q8.2, or
M ∼= M8:S3 and Gα = M or Q8:2. However, since Gα is not a 2-group, Gα

∼= M9:2
or M8:S3. It implies that O2(Gα) 6∼= Zd2, which contradicts (3.1).

We thus have G = J1. Since |G : M | is odd and O2(M) = 1 or 2d for d > 2
by Lemma 3.1, we have M ∼= Z3

2:Z7:Z3 by the Atlas [4]. Since |Gα| is divisible by
2d − 1, we have Gα

∼= 23:7:3 or 23:7, and d = 3. Let K be a Hall 2′-subgroup of Gα.
Then K ∼= Z7:Z3 or Z7, respectively.

By the Atlas [4], we conclude that NG(K) ∼= Z7:Z6. Let g be an involution of
NG(K), and let X = 〈Gα, g〉. Then X is a subgroup of G which contains two
subgroups, one isomorphic to 23:7:3 and the other isomorphic to Z7:Z6. Thus X has
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odd index in G, and by [4], it follows that X = G. So, by Lemma 3.3, the coset
graph Cos(G,Gα, GαgGα) is connected and (G, 2)-arc-transitive of valency 8. 2

We next treat graphs associated with the groups of Lie type listed in Lemma 3.2.

Lemma 3.6. Let T = soc(G) be a group of Lie type given in Lemma 3.2. Then one
of the following holds:

(i) T = PSL(2, 2d), and G
Γ (α)
α 6 AΓL(1, 2f );

(ii) Γ is of valency 4, and one of the following occurs:
(a) T = PSL(2, pf ) and Tα ∼= Z2

2, where f is odd and divisible by 3, and p
is a prime with p ≡ ±3 (mod 8); or

(b) T = PSL(2, pf ) and Tα ∼= A4, where f is odd and p is a prime with
p ≡ ±3 (mod 8); or

(c) G = PSL(2, p) and Gα
∼= S4, where p is a prime with p ≡ ±1 (mod 8);

or
(d) G = PSL(2, p2) and Gα

∼= S4, where p is a prime with p ≡ ±3 (mod 8);
(iii) T = Ree(32m+1), Tα ∼= Z3

2:Z7 and Γ is of valency 8.

Proof. First, 2-arc-transitive graphs admitting a group G with socle PSL(2, q) or
Ree(q) are classified in [10] or [5], respectively, from which the lemma follows. Thus,
we only need prove that there is no graph arising from the groups PSL(3, q) and
PSU(3, q).

Suppose that T = PSL(3, q) or PSU(3, q), where q is odd. Then T has 2-rank
2 by [1], that is, a Sylow 2-subgroup of T does not have any subgroup which is

homomorphic to Zf2 with f > 3. Recall that Gα = (G
[1]
α ×O2(Gα)).G

Γ (α)
αβ , O2(Gα) ∼=

Zd2 and G
Γ (α)
αβ 6 ΓL(1, 2d) for d > 2, by Lemmas 2.2 and 3.1. Since Tα is normal in

Gα and transitive on Γ (α), we have T
Γ (α)
α �Zd2, that is, Tα has 2-rank d. Clearly, the

2-rank of Tα is not larger than the 2-rank of T . Thus d = 2, and Γ is of valency 4.
By Lemma 3.1, Gα and hence G has a Sylow 2-subgroup isomorphic to a subgroup
of (Z2 × Z2

2).Z2, which has 2-rank at least 3. Since the 2-rank of T is 2, it follows
that |T |2 < |G2, and so |T |2 6 23. However, |T |2 = (q2 − 1)2(q

3 ± 1)2 > 24, which is
a contradiction. This completes the proof. 2

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let Γ = (V,E) be a connected graph of odd order
and valency at least 3, and let G be an almost simple group of automorphisms
of Γ . Assume that Γ is (G, 2)-arc-transitive and, for α ∈ V , the stabiliser Gα is
soluble. Then all possible candidates for soc(G) are given in Lemma 3.2. We finish
the proof by analysing all the candidates. For soc(G) = A7, Lemma 3.4 says that
Γ is the odd graph of valency 4, and then Theorem 1.1 (i) holds. If soc(G) = M11

or J1, then by Lemma 3.5, soc(G) = J1 and Γ is given as in Theorem 1.1 (ii). If
soc(G) = PSL(2, q), PSL(3, q), PSU(3, q) or Ree(32m+1), then Lemma 3.6 shows that
soc(G) = PSL(2, q) or Ree(32m+1), and thus one of (ii)-(v) of Theorem 1.1 holds. 2
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4. Proof of Theorem 1.2

Let Γ = (V,E) be a connected (G, 2)-arc-transitive graph of odd order and valency
k > 3. Take an edge {α, β} ∈ E. Assume further that G is an exceptional group of
Lie type. If Gα is soluble then our theorem holds by Lemma 3.6. In the rest of this
proof, we shall exclude the case that Gα is insoluble.

Suppose next that Gα is insoluble. By Lemma 2.5, we may assume that G is an
exceptional simple group of Lie type, which is defined over GF(q).

Lemma 4.1. q is odd.

Proof. Suppose that q is even. Let M be a maximal subgroup of G containing
Gα. Then M has odd index in G. Such a pair (G,M) is classified in [19], which
shows that M is a maximal parabolic subgroup of G, and so O2(M) 6= 1. Thus, by
Lemma 2.3, the order |M | is divisible by |O2(M)| − 1.

By [25, Theorem 4.1], there is no insoluble maximal parabolic subgroup of Sz(q)
of odd index, so G 6= Sz(q). Maximal parabolic subgroups of G2(q),

3D4(q),
2F4(q)

or F4(q) are given in Table 4.1, Theorem 4.3, Theorem 4.5, and Section 4.8.6 of [25],
respectively, which show that the order |M | is not divisible by |O2(M)|−1. So these
groups are excluded.

For the ‘large’ groups G = E6(q),
2E6(q), E7(q), E8(q), the parabolic subgroup M

is determined by the Dynkin diagrams in the methods described in [25, p. 176], from
which we conclude that |O2(M)| − 1 is not a divisor of |M |. Thus these groups are
also excluded. 2

Since G is defined over GF(q), we write G = L(q) for convenience. Let q0 be
minimum such that Gα 6 L(q0) 6 L(q), where q is a power of q0.

Lemma 4.2. The stabiliser Gα is not equal to L(q0) for any subfield GF(q0) of
GF(q).

Proof. Suppose that Gα = L(q0). Then Gα
∼= G

Γ (α)
α is a 2-transitive permutation

group. Since L(q0) is an exceptional group of Lie type of odd characteristic, we have
L(q0) = Ree(q0) and |Γ (α)| = q30 + 1. By [5], there is no (G, 2)-arc-transitive graph
corresponding to this case, proving the lemma. 2

Let N = L(q0), and let M be a maximal subgroup of N which contains Gα. Then
the index |N : M | is odd, and the pair (N,M) is determined in [19].

Lemma 4.3. The only possibilities for N are G2(q0) and 3D4(q0).

Proof. Suppose that N = Ree(q0), F4(q0),
2E6(q0), E6(q0), E7(q0) or E8(q0). Since

M is a maximal subgroup of N such that |N : M | is odd, by the classification in [19],
either 1 < |O2(M)| 6 4, or O2(M) is not elementary abelian. This is not possible
by Lemma 2.3. We thus have N = G2(q0) or 3D4(q0). 2

Noting that |G : N | is odd, q is an odd power of q0. Set q0 = pe for an odd prime
p.
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Lemma 4.4. Let N = G2(q0) or 3D4(q0). Then soc(G
Γ (α)
α ) is not one of the follow-

ing simple groups:

(i) PSL(3, q1), q0 is an odd power of q1, q0 ≡ 1 (mod 4);
(ii) PSU(3, q1), q0 is an odd power of q1, q0 ≡ −1 (mod 4);
(iii) A5, PSL(2, r), q0 is a power of r.

Proof. If soc(G
Γ (α)
α ) = PSL(3, q1), then asG

Γ (α)
α is 2-transitive it follows that |Γ (α)| =

q31−1
q1−1 = q21 + q1 + 1 is odd, which is not possible.

Suppose that soc(G
Γ (α)
α ) ∼= A5. Then Γ has valency 6, and G

Γ (α)
α
∼= A5 or S5.

By Theorem 2.1, G
[1]
αβ = 1, and so G

[1]
α is isomorphic to a normal subgroup of

G
Γ (α)
αβ . Z5:Z4. Then |G|2 = |Gα|2 = |G[1]

α |2|GΓ (α)
αβ |2 6 25. On the other hand,

|Gα|2 = |G|2 = (q2 − 1)2(q
6 − 1)2 > 26, a contradiction.

Suppose that soc(G
Γ (α)
α ) ∼= PSU(3, q1). Then Γ has valency q31 + 1. By Theorem

2.1, G
[1]
αβ = 1. If G

[1]
α = 1 then Gαβ

∼= (G
Γ (α)
α )β is p-local. Since G

[1]
α is isomorphic

to a normal subgroup of G
Γ (α)
αβ , if G

[1]
αβ 6= 1 then G

[1]
α and hence Gαβ is p-local.

Thus Op(Gαβ) 6= 1 and NG(Gαβ) 6 NG(Op(Gαβ)). By [12, Proposition 5.2.10],
NG(Op(Gαβ)) lies in a maximal parabolic subgroup of G, say P. Check the 2-
part of |P|, refer to [25, Table 4.1, Theorem 4.3] for the structure of P. We have
|NG(Gαβ)|2 6 |P|2 = (q2 − 1)2(q − 1)2. Note that |Gα|2 = |G|2 = (q2 − 1)2(q

6 −
1)2. Since |Gα : Gαβ| = q31 + 1 and q is an odd power of q1, the 2-part |Gαβ|2 >
(q2 − 1)2(q

3 − 1)2 = (q2 − 1)2(q − 1)2. It follows that |NG(Gαβ) : Gαβ| is odd, a
contradiction.

Suppose that soc(G
Γ (α)
α ) ∼= PSL(2, r). Then Γ has valency r + 1. Since Γ is not

(G, 4)-arc-transitive, again by Theorem 2.1, G
[1]
αβ = 1. By a similar argument as

above, Gαβ is p-local and |NG(Gαβ)|2 6 (q2 − 1)2(q − 1)2. If r ≡ 1 (mod 4) then,
since |Gα : Gαβ| = r + 1, we have |Gαβ|2 > (q2 − 1)2(q

3 − 1)2 = (q2 − 1)2(q − 1)2,
a contradiction. Thus r ≡ −1 (mod 4); in particular, r is an odd power of p. Note

that G
[1]
α is isomorphic to a normal subgroup of G

Γ (α)
αβ . ([r]:(r − 1)).`, where ` is

odd. Then (q2 − 1)2(q
6 − 1)2 = |G|2 = |Gα|2 = |G[1]

α |2|GΓ (α)
αβ |2 6 (r2 − 1)2(r − 1)2, a

contradiction. 2

To complete the proof of Theorem 1.2, by Lemma 4.3, we only need to exclude
the groups N = G2(q0) or 3D4(q0).

Lemma 4.5. N 6= G2(q0).

Proof. Suppose N = G2(q0). Recall that O2(M) = 1 or Ze2 for e > 3 by Lem-
ma 2.3. Noting the minimality of q0, we read out all the possibilities for M from
the classification in [19, Table 1] (or refer to [25, Table 4.1]):

(i) M ∼= G2(2) ∼= PSU(3, 3).2, with q0 = p ≡ ±3 (mod 8);
(ii) M ∼= 23.SL(3, 2), with q0 = p ≡ ±3 (mod 8);

(iii) M ∼= SL(3, q0):2, with q0 ≡ 1 (mod 4);
(iv) M ∼= SU(3, q0):2, with q0 ≡ −1 (mod 4).
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Suppose that M ∼= G2(2) as in part (i). Since |M : Gα| is odd and Gα is insoluble,
checking the maximal subgroups of G2(2) (see Atlas [4]), we conclude Gα = M . It

follows that G
Γ (α)
α
∼= Gα

∼= PSU(3, 3).2, and thus the arc stabiliser G
Γ (α)
αβ
∼= Gαβ

∼=
[33]:Z8:Z2. Consequently, the edge stabiliser G{α, β} = Gαβ.2 ∼= ([33]:Z8:Z2).Z2.
However, by [25, Table 4.1], there is no subgroup of G2(q) that is isomorphic to
([33]:Z8:Z2).Z2, which is a contradiction.

Now, suppose that M ∼= 23.SL(3, 2) as in part (ii), which is a non-split extension
of 23 by SL(3, 2). By Lemma 2.2, we have that O2(Gα) = O2(M) ∼= Z3

2, which
is regular on Γ (α). Obviously, M does not have an insoluble proper subgroup of
odd index, and hence Gα = M and Gαβ

∼= SL(3, 2). It implies that M = Gα =
O2(Gα)Gαβ

∼= 23:SL(3, 2), which contradicts the fact that M is not a split extension
of Z3

2 by SL(3, 2).

Next, suppose that M ∼= SL(3, q0):2 with q0 ≡ 1 (mod 4), as in part (iii). Then,

by Lemma 2.4, G
Γ (α)
α is almost simple, and hence O2(Gα) = 1 by Lemma 2.2.

Take a chain of maximal subgroups from Z(L)Gα/Z(L) to L/Z(L). Using [19], by
induction, we shows that Gα has a unique insoluble composition factor, which is

isomorphic to one of PSL(3, q1), PSL(2, r) and A5. Thus soc(G
Γ (α)
α ) is known, and

we get a contradiction by Lemma 4.4.

Finally, assume that M ∼= SU(3, q):2 with q ≡ −1 (mod 4), as in part (iv). Then
the argument in the previous paragraph works with SU(3, q0) replacing SL(3, q0),
and so the case where M ∼= SU(3, q):2 is also excluded. 2

Lemma 4.6. N 6= 3D4(q0).

Proof. Suppose N = 3D4(q0). Note the minimality of q0. Since |N : M | is odd and
|O2(M)| = 1 or 2e for e > 3, by [19, Table 1] and [25, Theorem 4.1], we conclude
that M is listed as follows:

(i) M ∼= G2(q0); or
(ii) M ∼= ((q20 + q0 + 1) ◦ SL(3, q0)).(q

2
0 + q0 + 1, 3).2, where q0 ≡ 1 (mod 4); or

(iii) M ∼= ((q20 − q0 + 1) ◦ SU(3, q0)).(q
2
0 − q0 + 1, 3).2, where q0 ≡ −1 (mod 4).

Employing Lemmas 2.4 and 4.4, (ii) and (iii) are excluded by a similar argument
as used in (iii) and (iv) in the proof of Lemma 4.5.

Assume that M ∼= G2(q0) as in part (i). Since G2(q0) has no 2-transitive permu-
tation representation of even degree (refer to [3, Sections 7.3 and 7.4]), the stabiliser
Gα is a proper subgroup of M . Let L be a maximal subgroup of M = G2(q0) such
that Gα 6 L. Since |M : L| is odd, L is one of the groups listed in (i)-(iv) in the
proof of Lemma 4.5. Then the argument in the proof of Lemma 4.5 works in this
case and excludes all the possibilities. 2

Now we can finish the proof of Theorem 1.2 by summarising the arguments.

Proof of Theorem 1.2. Let Γ = (V,E) be a connected (G, 2)-arc-transitive
graph of odd order and valency at least 3. Assume that G is an exceptional group
of Lie type. Take α ∈ V . Then, by Lemmas 4.3 and 4.4, either Gα is soluble or G
has a subgroup G2(q0) or 3D4(q0) which contains Gα as a proper subgroup, where
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q0 is odd and q is an odd power of q0. By Lemmas 4.5 and 4.6, the latter case does
not occur. Thus Gα is soluble, and the proof follows from Theorem 1.1. 2
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