
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/336986346

(Strong) conflict-free connectivity: Algorithm and complexity

Article  in  Theoretical Computer Science · October 2019

DOI: 10.1016/j.tcs.2019.10.043

CITATION

1
READS

21

3 authors:

Some of the authors of this publication are also working on these related projects:

Graph energy View project

Colored notions of connectivity in graphs View project

Meng Ji

Nankai University

9 PUBLICATIONS   7 CITATIONS   

SEE PROFILE

Xueliang Li

Nankai University

541 PUBLICATIONS   6,014 CITATIONS   

SEE PROFILE

Xiaoyu Zhu

Nankai University

12 PUBLICATIONS   10 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Meng Ji on 19 November 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/336986346_Strong_conflict-free_connectivity_Algorithm_and_complexity?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/336986346_Strong_conflict-free_connectivity_Algorithm_and_complexity?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Graph-energy?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Colored-notions-of-connectivity-in-graphs?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meng_Ji4?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meng_Ji4?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nankai_University?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meng_Ji4?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xueliang_Li?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xueliang_Li?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nankai_University?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xueliang_Li?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoyu_Zhu6?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoyu_Zhu6?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nankai_University?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoyu_Zhu6?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Meng_Ji4?enrichId=rgreq-39167f1fa306e2b4c68f49b9c182db0f-XXX&enrichSource=Y292ZXJQYWdlOzMzNjk4NjM0NjtBUzo4MjY3OTI4NDc4OTI0ODBAMTU3NDEzNDE4NDA1Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


JID:TCS AID:12249 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:7/11/2019; 15:11] P.1 (1-9)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

(Strong) conflict-free connectivity: Algorithm and complexity ✩

Meng Ji, Xueliang Li ∗, Xiaoyu Zhu

Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 June 2019
Received in revised form 30 August 2019
Accepted 29 October 2019
Available online xxxx
Communicated by D.-Z. Du

Keywords:
Conflict-free connection
Polynomial-time algorithm
Strong conflict-free connection
Complexity

Let G be an(a) edge(vertex)-colored graph. A path P of G is called a conflict-free path if 
there is a color that is used on exactly one of the edges(vertices) of P . The graph G is 
called conflict-free (vertex-)connected if any two distinct vertices of G are connected by a 
conflict-free path, whereas the graph G is called strongly conflict-free connected if any two 
distinct vertices u, v of G are connected by a conflict-free path of length of a shortest path 
between u and v in G . For a connected graph G , the (strong) conflict-free connection number
of G , denoted by (sc f c(G)) cf c(G), is defined as the smallest number of colors that are 
required to make G (strongly) conflict-free connected. In this paper, we first investigate the 
question: Given a connected graph G and a coloring c : E(or V ) → {1, 2, · · · , k} (k ≥ 1) of 
G , determine whether or not G is, respectively, conflict-free connected, conflict-free vertex-
connected, strongly conflict-free connected under the coloring c. We solve this question 
by providing polynomial-time algorithms. We then show that the problem of deciding 
whether sc f c(G) ≤ k (k ≥ 2) for a given graph G is NP-complete. Moreover, we prove that 
it is NP-complete to decide whether there is a k-edge-coloring (k ≥ 2) of G such that all 
pairs (u, v) ∈ P (P ⊂ V × V ) are strongly conflict-free connected.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow book [4] for undefined notation and 
terminology. Even et al. in [14] introduced the hypergraph version of this concept of conflict-free coloring. The coloring was 
motivated to solve the problem of assigning frequencies to different base stations in cellular networks. There are a number 
of base stations and clients in the network. Each base station is a vertex in the hypergraph which needs to be allocated to 
a frequency. Different frequencies stand for different colors in a vertex-colored hypergraph. Every client is moveable, so it 
can be in the range of lots of base stations. Thus each client is a set of many vertices, i.e., clients represent edges. For each 
client, in order to make connection with one of the base station in the range, there must be at least one base station with 
a unique frequency in the range for fear of interference. Unnecessarily many different frequencies can be expensive, so this 
situation may be converted to a conflict-free vertex-coloring problem of a hypergraph seeking for the minimum number 
of colors which is defined as the conflict-free chromatic number of the hypergraph. More information for the conflict-free 
coloring can be seen from the survey paper [28]. Later on, Czap et al. [12] introduced the concept of conflict-free connection
of graphs on the basis of the earlier hypergraph version. An edge-colored graph G is called conflict-free connected if any two 
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of its vertices are connected by a path which contains a color used on exactly one of the edges of the path, where the 
path is called a conflict-free path. The minimum number of colors required to make G conflict-free connected is called the 
conflict-free connection number of G , denoted by cfc(G). Czap et al. [12] showed that cf c(G) ≤ χ ′

r(G) for a connected graph 
G , where χ ′

r(G) is called edge ranking number. [A vertex (edge) coloring of a graph G = (V , E) is a vertex (edge) t-ranking if, 
for any two vertices (edges) of a same color i, every path between them contains a vertex (edge) of color j larger than i. 
The vertex ranking number χr(G) (edge ranking number χ ′

r (G)) is the smallest value of t such that G has a vertex (edge) 
t-ranking.] Furthermore, Chang et al. [10] showed that if T is a cf c-critical tree, then cf c(T ) = χ ′

r(T ). Lam [16] proved that 
the edge ranking problem of simple graphs is NP-complete. Llewellyn et al. [25] and Pothen [27] independently proved that 
finding an optimal vertex ranking of a graph is NP-hard. For more information on ranking number, we refer to [3,15]. As a 
natural counterpart of the conflict-free connection, Li et al. in [23] introduced the concept of conflict-free vertex-connection
of graphs. An vertex-colored graph G is called conflict-free connected if any two of its vertices are connected by a path which 
contains a color used on exactly one of its vertices, where the path is called a conflict-free path. The minimum number of 
colors required to make G conflict-free vertex-connected is called the conflict-free vertex-connection number of G , denoted 
by vcfc(G).

A path in a vertex-colored graph is called a conflict-free path if it has at least one vertex with a unique color on the path. 
A vertex-colored graph is called conflict-free vertex-connected if there is a conflict-free path between every pair of distinct 
vertices of G . For a connected graph G , the minimum number of colors required to make G conflict-free vertex-connected is 
called the conflict-free vertex-connection number of G , denoted by vcfc(G). There have been many results on the conflict-free 
(vertex-)connection coloring due to its theoretical and practical significance, such as [8–10,12,13,23,24].

The conflict-free connection number of graphs without cut-edges has been obtained in [12,13]. Thus determining the 
value of cf c(G) for graphs G with cut-edges becomes the main task. Trees are extremal such graphs for which every edge 
is a cut-edge. For a tree T we can build a hypergraph H as follows. The hypergraph H E P (T ) = (V, E) has V(H E P ) = E(T )

and E(H E P ) = {E(P )| P is a path of T }. One can easily see that the conflict-free chromatic number of the hypergraph H
is just the conflict-free connection number of T . For more results we refer to [8–10,13]. Nevertheless, most of them are 
about the graph structural characterizations. The graph structural analytic method may be more useful to handle graphs 
with certain characterizations such as the 2-edge-connected graph and some given graph classes. But a polynomial-time 
algorithm is applicable to all general graphs. However, very few results on this have been obtained for now. Thus we 
address the computational aspects of the (strong) conflict-free (vertex-)connection colorings in this paper:

Definition 1.1. An edge-colored graph G is called strongly conflict-free connected if any two distinct vertices u, v of G are 
connected by a conflict-free path of length of a shortest path between u and v in G , where the path is called a strong 
conflict-free path. For a connected graph G , the strong conflict-free connection number of G , denoted by sc f c(G), is defined as 
the smallest number of colors that are required to make G strongly conflict-free connected.

Combining the concepts of rainbow connection number (Chartrand et al. in [11]), proper connection number (Andrews et al. 
in [2] and Borozan et al. in [5]) and monochromatic connection number (Caro and Yuster in [6]), it is natural to ask such a 
question. (For details on the concepts, one can refer to some books [18,20] and survey papers [17,19,21,22].)

Problem 1. Given an integer k ≥ 1 and a connected graph G , is it N P -hard or polynomial-time solvable to answer each of 
the following questions?

(a) Is rc(G) ≤ k?
(b) Is pc(G) ≤ k?
(c) Is mc(G) ≥ k?
(d) Is cf c(G) ≤ k? (Is vcf c(G) ≤ k? for the vertex version)
(e) Is sc f c(G) ≤ k? (can be also referred to as the k-strong conflict-free connectivity problem in the following context).

For general graphs, Ananth et al. proved in [1] that Question (a) is N P -hard. Chakraborty et al. proved in [7] that 
Question (a) is N P -complete even if k = 2. The answers for Questions (b), (c), (d) and (e) remain unknown. For a tree T , 
Question (a) is easy since rc(T ) = n − 1, and Question (b) is also easy since pc(T ) = �(T ), where n is the order of T and 
�(T ) is the maximum degree of T . However, the complexity for Question (d) is unknown even if G is a tree T .

Actually, Problem 1 is equivalent to the following statement:

Problem 2. Given an integer k ≥ 1 and a connected graph G , determine whether there is a k-edge (or vertex)-coloring to 
make G

(a) rainbow connected.
(b) proper connected.
(c) monochromatically connected.
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(d) conflict-free connected (or conflict-free vertex-connected).
(e) strongly conflict-free connected.

The following is a weaker version for Problem 1:

Problem 3. Given a connected graph G with n vertices and m edges and a coloring c : E (or V ) → {1, 2, · · · , k} (k ≥ 1) of 
the graph, for each pair of distinct vertices (u, v) of G , determine whether there is a path P between u, v such that

(a) P is a rainbow path.
(b) P is a proper path.
(c) P is a monochromatic path.
(d) P is a conflict-free path (or vertex conflict-free path).
(e) P is a strong conflict-free path.

For general graphs, Chakraborty et al. proved in [7] that Question (a) is N P -complete. Recently, Ozeki [26] confirmed that 
Question (b) is polynomial-time solvable. It is not difficult to see that Question (c) can also be solved in polynomial-time, 
just by checking all subgraphs each being induced by the set of edges with a same color.

The paper is arranged as follows: Next section, we will provide two polynomial-time algorithms for Problem 3 (d) and 
Problem 3 (e). In section 3, we present the complexity result for the strong conflict-free connection problem by proving 
that it is NP-complete to answer Problem 4 for k ≥ 2 and Problem 1(e) for k ≥ 2.

2. Polynomial-time algorithms

Before presenting our main theorem for Question (d) in Problem 3, some auxiliary lemmas are needed.

Lemma 2.1. [12] Let u, v be distinct vertices and e = xy be an edge of a 2-connected graph G. Then there is a u-v-path in G containing 
the edge e.

Let x be a vertex and Y be a set of vertices of a connected graph G . Then a family of k internally disjoint (x, Y )-paths 
whose terminal vertices are pairwise distinct is referred to as a k- f an from x to Y .

The following is a famous Fan Lemma.

Lemma 2.2. Let G be a k-connected graph, x be a vertex of G, and Y ⊆ V \{x} be a set of at least k vertices of G. Then there exists a 
k- f an in G from x to Y .

For a connected graph G , a vertex of G is called a separating vertex if its removal splits the graph into at least two 
nonempty connected components. We call the graph nonseparable if it is connected without separating vertices. A block of 
the graph is a subgraph which is nonseparable and maximal in this property. We can construct a bipartite graph B(G) for 
every connected graph G as follows: let V (B(G)) = (B, S) where B represents the set of all blocks in G and S is the set of 
separating vertices. A block B ∈ B and a vertex s ∈ S are adjacent if and only if s ∈ B in G . It is clear that B(G) is also a 
tree, and we call it the block tree of G .

Lemma 2.3. For a connected graph G, let u, v ∈ V (G), st ∈ E(G). Then there is no u-v-path containing edge st if and only if there 
exists a vertex z such that neither u nor v is connected to s or t in the graph G − z.

Proof. For sufficiency, suppose there exists a u-v-path containing st . Then obviously z must appear at least twice on this 
path, a contradiction.

For necessity, we claim that G is not 2-connected since otherwise Lemma 2.1 will lead to a contradiction.
Assume that st ∈ B1, u ∈ B2 and v ∈ B3 where Bi (i = 1, 2, 3) are blocks of G . Then B1 = B2 = B3 cannot happen since 

otherwise a u-v-path containing st can be found according to Lemma 2.1, a contradiction. If B2 = B3, then the removal of 
any separating vertex on the path of B(G) between B1 and B2 will leave neither u nor v connected to s or t . Consider the 
case that B2 
= B3. We claim that B1 is not on the path between B2 and B3 in B(G), since otherwise a u-v-path can be 
chosen to go through st by applying Lemma 2.1 to B1, also a contradiction. At last, we consider the deletion of the first 
separating vertex on the path of B(G) from B1 to B2, and this will cause the disconnections we want. �

With a similar proof, one can get the corresponding lemma for the vertex version.

Lemma 2.4. For a connected graph G, let u, v, w ∈ V (G). Then there is no u-v-path containing vertex w if and only if there exists a 
vertex z 
= w such that neither u nor v is connected to w in the graph G − z.
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The famous Depth-First Search (DFS) (see [4]) will be used in our algorithm. For a graph G with n vertices and m edges, 
the DFS starts from a root vertex x and goes as far as it can along a path, after that, it backtracks until finding a new path 
and then explores it. The algorithm stops when all vertices of G have been explored. As is well known, the time complexity 
for DFS is O(n + m).

Theorem 2.5. There exists a polynomial-time algorithm to determine Question (d) in Problem 3. The complexity for the edge version 
is at most O(n3m2), and the complexity for the vertex version is at most O(n4m).

Proof of the edge version. Given k ≥ 1 and a connected graph G with an edge-coloring c : E(G) → {1, 2, · · · , k}, let Ei
(i = 1, 2, · · · , k) be the edge set containing all edges colored with i. We present our algorithm below:

Algorithm 1: Determining whether an edge-colored graph is conflict-free connected.
Input: A given integer k ≥ 1, a connected graph G with n vertices, m edges and an edge-coloring c : E(G) → {1, 2, · · · , k}.
Output: Whether G is conflict-free connected or not.
1: Check if there is an unselected pair of distinct vertices in G . If so, pick one pair (u, v), go to 2; otherwise, go to 8.
2: Set i = 0, go to 3.
3: Check if i ≤ k − 1. If so, i := i + 1, G ′ := G − Ei , go to 4; otherwise, go to 9.
4: For (u, v), determine if there is an unselected edge e in Ei . If so, pick e = st , set G ′′ := G ′ + e, go to 5; otherwise, go to 3.
5: Check if u, v and st are connected in G ′′ . If so, go to 6; otherwise, go to 4.
6: For (u, v) and st , determine if there is an unselected vertex in G ′′. If so, pick one vertex z, go to 7; otherwise, go to 1.
7: Determine if neither u nor v is connected to s or t in G ′′ − z. If so, go to 4; otherwise, go to 6.
8: Return: G is conflict-free connected under coloring c.
9: Return: G is not conflict-free connected under coloring c.

Let us first prove the algorithm above is correct. If for a pair of distinct vertices (u, v), there is no conflict-free path 
between them, then for any edge e in G , there is no u-v-path in G − Ec(e) + e containing e. Thus according to Lemma 2.3, 
for each e, there must be a vertex z (step 6) such that neither u nor v is connected to s or t in G ′′ − z = G − Ec(e) + e − z. 
As a result, after traversing every edge in G , it comes to step 4, then step 3 and finally step 9 obtaining the right result that 
G is not conflict-free connected.

If for u and v , there is a conflict-path between them, then there must exist an edge e such that for any vertex z in G , 
either u or v is connected to s or t in G ′′ − z = G − Ec(e) + e − z. Therefore, after repeating steps 7 and 6 for some times, the 
running process will come to step 1 and then examine the next pair of vertices. If all pairs of vertices have been examined, 
it will announce that G is conflict-free connected. This shows the correctness of our algorithm.

For a fixed pair of vertices u and v and a fixed edge e = st , to examine step 5, we only need to apply the DFS algorithm 
appointing s as the root vertex. Then for any vertex z of G , again apply the DFS algorithm to step 7. Consequently we get 
that the complexity is O((n + m)n + n + m) = O(nm). Since there are O(n2) pair of vertices and m edges in G , the overall 
complexity is at most O(n3m2).

Proof of the vertex version. With Fan Lemma and Lemma 2.4, it actually has analogous analysis with the edge version. The 
differences are as follows: (i) V i (1 ≤ i ≤ k) shall take the place of Ei (1 ≤ i ≤ k), and (ii) we will pick a vertex this time 
instead of an edge in step 4. Because of this, an m will be replaced by an n in the complexity for the edge version, so the 
time complexity for the vertex version is O(n4m).

Besides, for a picked pair of vertices u and v , if c(u) = c(v), then the vertex set V c(u) is not needed to consider in 
step 3 since c(u) can never be the unique color on any u-v-path; if c(u) 
= c(v), any vertex of (V c(u)\u) (or (V c(v)\v)) is 
not needed to add back after removing (V c(u)\u) (or (V c(v)\v)) from G (like in step 4) because the unique color has already 
exists on u (or v). This saves some operations compared to the algorithm for the edge version. Thus the complexity for the 
vertex version is at most O(n4m). �

For Question (e) in Problem 3, we also get a polynomial-time algorithm in which the Breadth-First Search (BFS) is used. 
For a graph G with n vertices and m edges, the BFS starts from a root vertex x and explores all the neighbors of the vertices 
at the present level before moving to the next depth level. The algorithm stops when all vertices of G have been explored. 
As is well known, the time complexity for BFS is O(n + m).

Before presenting our algorithm, we give a necessary definition.

Definition 2.6. For a vertex u in a connected graph G , it is obvious that any edge e = st must have |dG (u, s) − dG(u, t)| ≤ 1. 
So, e is called a vertical edge of u if |dG(u, s) − dG (u, t)| = 1 and a horizontal edge of u otherwise.

Theorem 2.7. There exists a polynomial-time algorithm to determine Question (e) in Problem 3. The complexity is at most O(n2m2).

Proof. Given k ≥ 1 and a connected graph G with an edge-coloring c : E(G) → {1, 2, · · · , k}, let Ei (i = 1, 2, · · · , k) be the 
edge set containing all edges colored with i. We present our algorithm below:
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Algorithm 2: Determining whether an edge-colored graph is strongly conflict-free connected.
Input: A given integer k ≥ 1, a connected graph G with n vertices, m edges and an edge-coloring c : E(G) → {1, 2, · · · , k}.
Output: Whether G is strongly conflict-free connected or not.
1: Check if there is an unselected pair of distinct vertices in G . If so, pick one pair (u, v), go to 2; otherwise, go to 6.
2: Set i = 0, go to 3.
3: Check if i ≤ k − 1. If so, i := i + 1, G ′ := G − Ei , go to 4; otherwise, go to 7.
4: For (u, v), determine if there is an unselected vertical edge e = st with dG (u, s) < dG (u, t) ≤ dG (u, v) in Ei . If so, set G ′′ := G ′ + e, go to 5; 

otherwise, go to 3.
5: Check if dG (u, s) = dG ′′ (u, s) and dG ′′ (v, t) = dG (u, v) − dG (u, t). If so, go to 1; otherwise, go to 4.
6: Return: G is strongly conflict-free connected under coloring c.
7: Return: G is not strongly conflict-free connected under coloring c.

We will prove that the algorithm above is correct. If for a pair of distinct vertices u and v , there is no strong conflict-free 
path between them, then for any vertical edge e = st with dG (u, s) < dG(u, t) ≤ dG(u, v) in G , any u-v-path in G − Ec(e) + e
containing e has length greater than dG (u, v). Hence there must be dG (u, s) 
= dG ′′ (u, s) or dG ′′(v, t) 
= dG(u, v) − dG(u, t) in 
step 5. As a result, after traversing every vertical edge e = st with dG(u, s) < dG(u, t) ≤ dG(u, v) in G , it comes to step 4, 
then step 3 and finally step 7 obtaining the right result that G is not strongly conflict-free connected.

If for a pair of vertices u and v , there is a strong conflict-free path between them, then there must exist a vertical 
edge e = st with dG (u, s) < dG(u, t) ≤ dG(u, v) in G such that we can obtain a u-v-path in G − Ec(e) + e containing e
whose length is equal to dG (u, v). Then there must be dG (u, s) = dG ′′ (u, s) and dG ′′ (v, t) = dG(u, v) − dG (u, t). Therefore, the 
running process will come to step 1 after step 5 and then examine the next pair of vertices. If all pairs of vertices have 
been examined, it will announce that G is strongly conflict-free connected. This shows the correctness of our algorithm.

For a fixed pair of vertices u and v , firstly we need to apply the BFS algorithm to G designating u as the root to acquire 
all vertical edge e = st with dG (u, s) < dG(u, t) ≤ dG (u, v) in G . Then for any fixed edge e = st , we only need to apply the 
BFS algorithm a few more times to G ′ to examine step 5. Consequently we get that the complexity is O(n +m +m(n +m)) =
O(m2). Since there are O(n2) pairs of vertices in G , the overall complexity is at most O(n2m2). �

If one wants to determine whether an edge-colored graph is k-subset strongly conflict-free connected, one only needs 
to examine all pairs of vertices in P instead of those in V × V in Algorithm 2. Then we immediately have the following 
theorem:

Theorem 2.8. There exists a polynomial-time algorithm to determine whether an edge-colored graph is k-subset strongly conflict-free 
connected.

3. Hardness results on strong conflict-free connectivity problem

In this section, we will first prove the main result that Problem 1(e) is NP-complete in subsection 3.1, and then we 
derive the result that Problem 4 for k ≥ 2 is NP-complete in subsection 3.2. Before proving the main result, we first define 
the following three useful problems.

Problem 4 (k-subset strong conflict-free connectivity problem). Given a graph G and a set P ⊂ V × V , deciding whether there 
is an edge-coloring of G with k colors such that all pairs (u, v) ∈ P are strongly conflict-free connected.

Problem 5 (Partial 2-edge-coloring problem). Given a graph G = (V , E) and a partial 2-edge-coloring ĉ : Ê → {0, 1} for Ê ⊂
E , deciding whether ĉ can be extended to a complete 2-edge-coloring c : E → {0, 1} that makes G strongly conflict-free 
connected.

Problem 6 (k-vertex-coloring problem). Given a graph G = (V , E) and a fixed integer k, deciding whether there is a k-vertex-
coloring for G such that each color class is an independent set.

3.1. k-strong conflict-free connectivity problem

Theorem 3.1 is our main result. In the following we first prove Theorem 3.1 for k = 2 and then for k ≥ 3.

Theorem 3.1. For k ≥ 2, Problem 1 (e) is NP-complete.

At first we deal with the case k = 2, Chakraborty et al. obtained the following result (Theorem 1.1 in [7]).

Lemma 3.2. [7] Given a graph G, deciding if rc(G) = 2 is NP-complete. In particular, computing rc(G) is NP-hard.
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Then we can easily get the following result by the definitions of the rainbow connection and strong conflict-free connec-
tion.

Lemma 3.3. Given a graph G = (V , E), rc(G) = 2 if and only if diam(G) = 2 and sc f c(G) = 2.

Lemma 3.4. For k = 2, Problem 1 (e) is NP-complete.

Proof. It is NP-complete to decide whether the rainbow connection number of a connected graph is 2 by Lemma 3.2. 
Therefore, deciding whether sc f c(G) = 2 and diam(G) = 2 is NP-complete by Lemma 3.3. Since it is easy to see that deciding 
if diam(G) = 2 can be done in polynomial-time, then deciding if sc f c(G) = 2 must be NP-complete. �
Lemma 3.5. For k ≥ 3, Problem 6 � Problem 4.

Proof. Now we polynomially construct a graph G ′ = (V ′, E ′): for a given connected graph G = (V , E), let V ′ = V ∪ {x}, 
E ′ = {vx : v ∈ V }, and P = {(u, v) : uv ∈ E}. It remains to prove that the graph G = (V , E) is vertex-colorable with k ≥ 3
colors if and only if the graph G ′ = (V ′, E ′) can be k-edge-colored such that there is a strong conflict-free path between 
every pair (u, v) ∈ P .

Assume that G can be vertex-colored with k colors. We prove that there is an assignment of k colors to the edges of 
the graph G ′ that enables a strong conflict-free path between every pair (u, v) ∈ P . We define a bijection between V and 
E ′: v ∈ V → vx ∈ E ′ . If i is a color assigned to a vertex v ∈ V , then we assign the color i to the edge xv ∈ E ′ . For any 
pair (u, v) ∈ P , xu and xv have different colors since uv ∈ E . Thus, the unique path u − x − v is a strong conflict-free path 
between u and v . The other direction can be also easily verified according to the bijection above. �

Now we are at the point to give the proof of our main result Theorem 3.1.

Proof of Theorem 3.1. For k = 2, it holds by Lemma 3.4. Then for k ≥ 3, considering Theorem 2.7 and Lemma 3.5, to prove 
Theorem 3.1, we only need to reduce the instances obtained from the proof of Lemma 3.5 to some instances of Problem 1(e). 
Let G = (V , E) be a star graph with V̂ = {v1, v2, · · · , vn} being the leaf vertex set and a being the central vertex. The vertices 
of any pair (vi, v j) ∈ P are both leaf vertices of G . Then we construct a graph G ′ according to G as follows: for every vertex 
vi ∈ V̂ , we introduce two new vertices xvi and x′

vi
, and for every pair of leaf vertices (u, v) ∈ (V̂ × V̂ ) \ P we introduce two 

new vertices x(u,v), x′
(u,v) . Then we have:

V ′ = V ∪ V 1 ∪ V 2 where

V 1 = {xvi : i ∈ {1, · · · ,n}} ∪ {x(vi ,v j) : (vi, v j) ∈ (V̂ × V̂ ) \ P }
V 2 = {x′

vi
: i ∈ {1, · · · ,n}} ∪ {x′

(vi ,v j)
: (vi, v j) ∈ (V̂ × V̂ ) \ P }

E ′ = E ∪ E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {vixvi : vi ∈ V̂ , xvi ∈ V 1}
E2 = {vix(vi ,v j), v jx(vi ,v j) : (vi, v j) ∈ (V̂ × V̂ ) \ P }
E3 = {xx′ : x ∈ V 1, x′ ∈ V 2}
E4 = {ax′ : x′ ∈ V 2}

Now we need to prove that G ′ is k-strongly conflict-free connected if and only if G is k-subset strongly conflict-free 
connected.

First, there is a two-length path vi − a − v j in G for any pair (vi, v j) ∈ P , and this path also occurred in G ′ which is the 
unique path of length two in G ′ between vi and v j . It implies that if the graph G ′ is strongly conflict-free colored with k
colors, then G has an edge-coloring with k colors such that every pair in P is strongly conflict-free connected.

Second, assume that there is a k-edge-coloring c of G using colors from {1, 2, · · · , k} such that all pairs in P are strongly 
conflict-free connected. Then we extend this edge-coloring c of G to a k-edge-coloring c′ of G ′: E retains the coloring c; 
assign the color 3 to uv ∈ E1; assign the colors 1 and 2 to vi x(vi ,v j) and v j x(vi ,v j) ∈ E2 respectively. Since the subgraph 
H = (V 1 ∪ V 2, E3) is a complete bipartite graph, we choose a perfect matching M of size |V 1|, and assign the edges in 
M with color 1 and assign the edges in E3 \ M with color 2. We then assign to the edges ax′ ∈ E4 color 3. It is easy to 
verify that this coloring makes G ′ strongly conflict-free connected. Since the graph G ′ is bipartite, the k-strong conflict-free 
connectivity problem is NP-complete even for bipartite graphs. �
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3.2. k-subset strong conflict-free connectivity problem

Now we will show the following Theorem 3.6 in this subsection.

Theorem 3.6. For k ≥ 2, Problem 4 is NP-complete.

In the following process, we first show Problem 5 can be reduced to Problem 4 and then 3-SAT can reduced to Problem 5.

Lemma 3.7. For k = 2, Problem 5 � Problem 4.

Proof. Given such a partial coloring ĉ for Ê ⊂ E , let Ê = Ê1 ∪ Ê2, where Ê1 contains all edges in Ê colored with 0 and 
Ê2 = Ê \ Ê1. We then extend the original graph G = (V , E) to a graph G ′ = (V ′, E ′), and define a set P of pairs of vertices 
of V ′ such that the answer for Problem 5 with G and ĉ as parameters is yes if and only if the answer for Problem 4 with 
G ′ and P as parameters is yes.

Let [n] (n = |V |) be an arbitrary linear ordering of the vertices and l(v) (v ∈ V ) be the number related to v in the 
ordering. Let θ : E → V be a mapping that maps an edge e = uv to u if l(u) > l(v), and to v otherwise. On the contrary, let 
ε: E → V be a mapping that maps e = uv to u if l(u) < l(v), and to v otherwise. Let r = 
 n

2 � if 
 n
2 � is odd, and r = 
 n

2 � + 1
otherwise. We polynomially construct G ′ as follows: the vertex set is

V ′ = V ∪ V 1 ∪ V 2 ∪ V 3 where

V 1 = {b1, c,b2}
V 2 = {ce : for ∀e ∈ (Ê1 ∪ Ê2)}
V 3 = {te

1, te
2, · · · , te

r : for ∀e ∈ (Ê1 ∪ Ê2)}
and the edge set is

E ′ = E ∪ E1 ∪ E2 ∪ E3 where

E1 = {b1c,b2c}
E2 = {bit

e
1, te

1te
2, · · · , te

r−1te
r , te

r ce : i ∈ {1,2}, e ∈ Ê i}
E3 = {ceε(e) : e ∈ (Ê1 ∪ Ê2)}

Now we define the set P of pairs of vertices of V ′:

P = {b1,b2} ∪ {{u, v} : u, v ∈ V , u 
= v} ∪ {{c, te
1}, {bi, te

2}, {te
1, te

3}, {te
2, te

4}, · · · ,

{te
r−2te

r }, {te
r−1, ce}, {te

r , ε(e)} : i ∈ {1,2}, e ∈ Ê i} ∪ {{ce, θ(e)} : e ∈ (Ê1 ∪ Ê2)}
Now, if there is a strong conflict-free coloring with two colors πc = (E1, E2) of G which extends πĉ = (Ê1, Ê2), then 

we color G ′ as follows. Every edge e ∈ E retains the coloring c: the edge is colored with 0 if it is in E1 and otherwise 
it is colored with 1. The edges b1c, ε(e)ce for e ∈ Ê2 are all colored with 0, b2c and ceε(e) for e ∈ Ê1 are all colored 
with 1. Moreover, the edges b1te

1, t
e
1te

2, · · · , te
r−1te

r , te
r ce (e ∈ Ê1) are assigned to the colors 1 and 0 alternately and the edges 

b2te
1, t

e
1te

2, · · · , te
r−1te

r , te
r ce (e ∈ Ê2) are assigned to the colors 0 and 1 alternately. One can see that this coloring indeed 

makes each pair in P strongly conflict-free connected.
On the other direction, we can see that P contains all vertex pairs of G and for each of such pair u and v , all the shortest 

paths between u and v in G ′ are completely contained in G . Thus any 2-edge-coloring of G ′ that makes the pairs in P
strongly conflict-free connected clearly contains a strong conflict-free coloring of G . Also, such a coloring would have to color 
cb1 and cb2 differently. It would also have to give every b1te

1(e ∈ Ê1)(b2te
1(e ∈ Ê2)) a color different from that of cb1(cb2). 

By further reasoning, we can see that the colors used on b1te
1, t

e
1te

2, · · · , te
r−1te

r , te
r ce (e ∈ Ê1) and b2te

1, t
e
1te

2, · · · , te
r−1te

r , te
r ce

(e ∈ Ê2) are both alternately. As a result, ceε(e)(e ∈ Ê1) must be in a color different from that of cb1, and ceε(e)(e ∈ Ê2) is 
in a color different from that of cb2. Finally, every e ∈ Ê i must be assigned with the color identical to that of cbi to make 
θ(e) and ce strongly conflict-free connected. Without loss of generality, we suppose that the edge cb1 is colored with 0. It is 
clear that this coloring of G ′ conforms to the original partial coloring ĉ. This implies that ĉ can be extended to a complete 
2-edge-coloring c: E → {0, 1} that makes G strongly conflict-free connected. �
Lemma 3.8. 3-SAT � Problem 5.
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Proof. Let φ := ∧l
i=1 ci be a 3-conjunctive normal form formula over variables {x1, x2, · · · , xn}. Then we polynomially con-

struct a graph G ′ = (V ′, E ′) as follows:

V ′ = {ci : i ∈ [l]} ∪ {xi : i ∈ [n]} ∪ {a}
E ′ = {xic j : xi ∈ c j} ∪ {xia : i ∈ [n]} ∪ {cic j : i, j ∈ [l]} ∪ {xi x j : i, j ∈ [n]}

Now we define the partial 2-edge-coloring c′: edges {cic j : i, j ∈ [l]} and {xi x j : i, j ∈ [n]} are assigned the color 0; the 
edge xic j ∈ E ′ is assigned the color 0 if xi is positive in c j and color 1 otherwise. Thus only the edges in {xia : i ∈ [n]} are 
left uncolored.

Without loss of generality, assume that all variables in φ appear both as positive and as negative, so it only remains to 
prove that there is an extension c of c′ that enables a strong conflict-free path between a and each ci (i ∈ [l]) if and only if 
φ is satisfiable since there will always be a strong conflict-free path between any other pair of vertices of V ′ whatever the 
extension is. Let c(xia) = xi (i ∈ [n]). One can verify that this relationship does hold. In fact, in a successful extension c of 
c′ , the color vector formed by c(xia) (i ∈ [n]) can be seen as a solution vector of φ, and vice versa. �
Proof of Theorem 3.6. First, Theorem 2.8 implies that Problem 4 belongs to NP. Then, for k = 2, we reduce Problem 5 to 
Problem 4 by Lemma 3.7, and then reduce 3-SAT to Problem 5 by Lemma 3.8. Clearly, Problem 4 is NP-complete for k = 2. 
For k ≥ 3, it also holds by Lemma 3.5. The proof of Theorem 3.6 is completed. �
4. Concluding remarks

In this paper, we mainly study the computational complexity of (strong) conflict-free (vertex-)connection numbers of 
graphs. We show that there exist polynomial-time algorithms to check whether a given (vertex)edge-colored graph is 
(strongly) conflict-free (vertex-)connected. We then show that given a connected graph G and an integer k ≥ 2, it is 
N P -complete to determine whether there is a k-edge-coloring to make G strongly conflict-free connected. For further study, 
we propose the following open problem: For a tree T and an integer k ≥ 2, is it N P -complete to determine whether there 
is a k-edge-coloring to make T conflict-free connected?
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