Erdös-Gallai-type results for conflict-free connection of graphs*

Meng Ji ${ }^{1}$, Xueliang $\mathrm{Li}^{1,2}$
${ }^{1}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
jimengecho@163.com, lxl@nankai.edu.cn
${ }^{2}$ School of Mathematics and Statistics, Qinghai Normal University
Xining, Qinghai 810008, China

Abstract

A path in an edge-colored graph is called a conflict-free path if there exists a color used on only one of its edges. An edge-colored graph is called conflictfree connected if there is a conflict-free path between each pair of distinct vertices. The conflict-free connection number of a connected graph G, denoted by $c f c(G)$, is defined as the smallest number of colors that are required to make G conflict-free connected. In this paper, we obtain Erdös-Gallai-type results for the conflict-free connection numbers of graphs.

Keywords: conflict-free connection coloring; conflict-free connection number; Erdös-Gallai-type result.
AMS subject classification 2010: 05C15, 05C40, 05C35.

1 Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow book [1] for undefined notation and terminology. Let $P_{1}=v_{1} v_{2} \cdots v_{s}$ and $P_{2}=v_{s} v_{s+1} \cdots v_{s+t}$ be two paths. We denote $P=v_{1} v_{2} \cdots v_{s} v_{s+1} \cdots v_{s+t}$ by $P_{1} \odot P_{2}$. Coloring problems are important subjects in graph theory. The hypergraph version of

[^0]conflict-free coloring was first introduced by Even et al. in [7]. A hypergraph H is a pair $H=(X, E)$ where X is the set of vertices, and E is the set of nonempty subsets of X, called hyper-edges. The conflict-free coloring of hypergraphs was motivated to solve the problem of assigning frequencies to different base stations in cellular networks, which is defined as a vertex coloring of H such that every hyper-edge contains a vertex with a unique color.

Later on, Czap et al. in [6] introduced the concept of conflict-free connection colorings of graphs motivated by the conflict-free colorings of hypergraphs. A path in an edge-colored graph G is called a conflict-free path if there is a color appearing only once on the path. The graph G is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices of G. The minimum number of colors required to make a connected graph G conflict-free connected is called the conflict-free connection number of G, denoted by $c f c(G)$. If one wants to see more results, the reader can refer to [3, 4, 5, 6]. For a general connected graph G of order n, the conflict-free connection number of G has the bounds $1 \leq c f c(G) \leq n-1$. When equality holds, $c f c(G)=1$ if and only if $G=K_{n}$ and $c f c(G)=n-1$ if and only if $c f c(G)=K_{1, n-1}$.

The Erdös-Gallai-type problem is an interesting problem in extremal graph theory, which was studied in [9, 10, 11, 12] for rainbow connection number $r c(G)$; in [8] for proper connection number $p c(G)$; in [2] for monochromatic connection number $m c(G)$. We will study the Erdös-Gallai-type problem for the conflict-free number $c f c(G)$ in this paper.

2 Auxiliary results

At first, we need some preliminary results.

Lemma 2.1 [6] Let u, v be distinct vertices and let $e=x y$ be an edge of a 2connected graph. Then there is a $u-v$ path in G containing the edge e.

For a 2-edge connected graph, the authors [5] presented the following result:

Theorem 2.2 [5] If G is a 2-edge connected graph, then $c f c(G)=2$.
For a tree T, there is a sharp lower bound:
Theorem 2.3 [4] Let T be a tree of order n. Then $c f c(T) \geq c f c\left(P_{n}\right)=\left\lceil\log _{2} n\right\rceil$.

Lemma 2.4 Let G be a connected graph and $H=G-B$, where B denotes the set of the cut-edges of G. Then $c f c(G) \leq \max \{2,|B|\}$.

Proof. If $B=\varnothing$, then by Theorem [2.2, $\operatorname{cfc}(G)=2$. If $|B| \geq 1$, then all the blocks are non-trivial in each component of $G-B$. Now we give G a conflict-free coloring: assign one edge with color 1 and the remaining edges with color 2 in each block of each component of $G-B$; for the edges $e \in B$, we assign each edge with a distinct color from $\{1,2, \cdots,|B|\}$.

Now we check every pair of vertices. Let u and v be arbitrary two vertices. Consider first the case that u and v are in the same component of $G-B$. If u and v are in the same block, by Lemma 2.1 there is a conflict-free $u-v$ path. If u, v are in different blocks, let $P=P_{1} \odot P_{2} \odot \cdots \odot P_{r}$ be a $u-v$ path, where $P_{i}(i \in[r])$ is the path in each block of the component. Then we can choose a conflict-free path in one block, say P_{1}, and choose a monochromatic path with color 2 in each block of the remaining blocks, say $P_{i}(2 \leq i \leq r-1)$, clearly, P is a conflict-free $u-v$ path. Now consider the case that u and v are in distinct components of $G-B$. If there exists one cut-edge e with color $c \notin\{1,2\}$, then there is a conflict-free $u-v$ path since the color used on e is unique. If there does not exist cut-edge with color $c \notin\{1,2\}$, then suppose that there is only one cut-edge $e=x y$ with color 1 , without loss of generality, let u, x be in a same component and v, y be in a same component. We choose a monochromatic $u-x$ path P_{1} with color 2 and choose a monochromatic $v-y$ path P_{2} with 2 , then $P=P_{1} x y P_{2}$ is a conflict-free $u-v$ path. If there is only one cut-edge $e=s t$ colored by 2 , without loss of generality, then we say u, s are in the same component and t, v in a same component, we choose a monochromatic $u-s$ path P_{1} and a conflict-free $t-v$ path P_{2} in each component. Then $P=P_{1} s t P_{2}$ is a conflict-free $u-v$ path. If there are exactly two cut-edges $e_{1}=s t$ and $e_{2}=x y$ colored by 1 and 2 , respectively, without loss of generality, we say that u, s are in a same component, t, x are in a same component and y, v are in a same component. Then we choose a monochromatic u, s path P_{1}, t, x path P_{2} and y, v path P_{3} in the three components, respectively, with color 2 . Hence, $P=P_{1} s t P_{2} x y P_{3}$ is a conflict-free $u-v$ path. So, we have $c f c(G) \leq \max \{2,|B|\}$.

Lemma 2.5 Let G be a connected graph of order n with k cut-edges. Then

$$
|E(G)| \leq\binom{ n}{k}+k
$$

Proof. Clearly, it holds for $k=0$. Assuming that $k \geq 1$. Let G be a maximal graphs with k cut-edges. Let B be the set of all the bridges. And let $G-B$ be the graph by deleting all the cut-edges. Let $C_{1}, C_{2}, \cdots, C_{k+1}$ be the components of $G-B$ and n_{i} be the orders of C_{i}. Then $E(G)=\sum_{i=1}^{k+1}\binom{n_{i}}{2}+k$. Let C_{i} and C_{j} be two components of $G-B$ with $1<n_{i} \leq n_{j}$. Now we construct a graph G^{\prime} by moving a vertex v from C_{i} to C_{j}, replace v with an arbitrary vertex in $V\left(C_{k}\right) \backslash v$ for the cut-edges incident with v, add the edges between v and the vertices in C_{j}, and delete the edges between v and the vertices in C_{i}, where v is not adjacent to the vertices of C_{i}. Now we have $\left|E\left(G^{\prime}\right)\right|=\sum_{s=1 \neq i, j}^{k+1}\binom{n_{s}}{2}+\binom{n_{i}-1}{2}+\binom{n_{j}+1}{2}+k=\sum_{s=1 \neq i, j}^{k+1}\binom{n_{s}}{2}+\binom{n_{i}}{2}$ -$n_{i}-1+\binom{n_{j}}{2}+n_{j}+k=|E(G)|+n_{j}-n_{i}+1>|E(G)|$. When we do repetitively the operation, we have $|E(G)| \leq\binom{ n}{k}+k$.

3 Main results

Now we consider the Erdös-Gallai-type problems for $c f c(G)$. There are two types, see below.

Problem 3.1 For each integer k with $2 \leq k \leq n-1$, compute and minimize the function $f(n, k)$ with the following property: for each connected graph G of order n, if $|E(G)| \geq f(n, k)$, then $c f c(G) \leq k$.

Problem 3.2 For each integer k with $2 \leq k \leq n-1$, compute and maximize the function $g(n, k)$ with the following property: for each connected graph G of order n, if $|E(G)| \leq g(n, k)$, then $c f c(G) \geq k$.

Clearly, there are two parameters which are equivalent to $f(n, k)$ and $g(n, k)$ respectively. For each integer k with $2 \leq k \leq n-1$, let $s(n, k)=\max \{|E(G)|$: $|V(G)|=n, c f c \geq k\}$ and $t(n, k)=\min \{|E(G)|:|V(G)|=n, c f c \leq k\}$. By the definitions, we have $g(n, k)=t(n, k-1)-1$ and $f(n, k)=s(n, k+1)+1$.

Using Lemma 2.4 we first solve Problem 3.1.
Theorem 3.3 $f(n, k)=\binom{n-k-1}{2}+k+2$ for $2 \leq k \leq n-1$.
Proof. At first, we show the following claims.
Claim 1: For $k \geq 2, f(n, k) \leq\binom{ n-k-1}{2}+k+2$.
Proof of Claim 1: We need to prove that for any connected graph G, if $E(G) \geq\binom{ n-k-1}{2}+k+$ 2 , then $c f c(G) \leq k$. Suppose to the contrary that $c f c(G) \geq k+1$. By Lemma 2.4, we have $|B| \geq k+1$. By Lemma [2.5, $E(G) \leq\binom{ n-k-1}{2}+k+1$, which is a contradiction.

Claim 2: For $k \geq 2, f(n, k) \geq\binom{ n-k-1}{2}+k+2$.
Proof of Claim 2: We construct a graph G_{k} by identifying the center vertex of a star S_{k+2} with an arbitrary vertex of K_{n-k-1}. Clearly, $E\left(G_{k}\right)=\binom{n-k-1}{2}+k+1$. Since $c f c\left(S_{k+2}\right)=k+1$, then $c f c\left(G_{k}\right) \geq k+1$. It is easy to see that $c f c\left(G_{k}\right)=k+1$. Hence, $f(n, k) \geq\binom{ n-k-1}{2}+k+2$.

The conclusion holds from Claims 1 and 2.

Now we come to the solution for Problem 3.2, which is divided as three cases.
Lemma 3.4 For $k=2, g(n, 2)=\binom{n}{2}-1$.
Proof. Let G be a complete graph of order n. The number of edges in G is $\binom{n}{2}$, i.e., $E(G)=\binom{n}{2}$. Clearly, when $g(n, 2)=\binom{n}{2}-1$ for every $G, c f c(G) \geq 2$.

Lemma 3.5 For every integer k with $3 \leq k<\left\lceil\log _{2} n\right\rceil, g(n, k)=n-1$.

Proof. We first give an upper bound of $t(n, k)$. Let C_{n} be a cycle. Then $t(n, k) \leq n$ since $c f c\left(C_{n}\right)=2 \leq k$. And then, we prove that $t(n, k)=n$. Suppose $t(n, k) \leq n-1$. Let P_{n} be a path with size $n-1$. Since $c f c\left(P_{n}\right)=\left\lceil\log _{2} n\right\rceil$ by Theorem 2.3, it contradicts the condition the $k<\left\lceil\log _{2} n\right\rceil$. So $t(n, k)=n$. By the relation that $g(n, k)=t(n, k-1)-1$, we have $g(n, k)=n-1$.

Lemma 3.6 For $k \geq\left\lceil\log _{2} n\right\rceil$, $g(n, k)$ does not exist.

Proof. Let P_{n} be a path. Then we have $t(n, k) \leq n-1$ since $c f c\left(P_{n}\right)=\left\lceil\log _{2} n\right\rceil$. And since $t(n, k) \geq n-1$, it is clear that $t(n, k)=n-1$. Since every graph G is connected, $g(n, k) \geq n-1$. By the relation that $g(n, k)=t(n, k-1)-1$, we have $g(n, k)=n-2$ for $k \geq\left\lceil\log _{2} n\right\rceil$, which contradicts the connectivity of graphs.

Combining Lemmas 3.4, 3.5 and 3.6, we get the solution for Problem 3.2,

Theorem 3.7 For k with $2 \leq k \leq n-1$,

$$
g(n, k)=\left\{\begin{aligned}
\binom{n}{2}-1, & k=2 \\
n-1, & 3 \leq k<\left\lceil\log _{2} n\right\rceil \\
\text { does not exist, } & \left\lceil\log _{2} n\right\rceil \leq k \leq n-1
\end{aligned}\right.
$$

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] Q. Cai, X. Li, D. Wu, Erdös-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(1)(2017), 123-131.
[3] H. Chang, T.D. Doan, Z. Huang, S. Jendrol', I. Schiermeyer, Graphs with conflictfree connection number two, Graphs \& Combin., in press.
[4] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees, J. Comb. Optim., in press.
[5] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math., in press.
[6] J. Czap, S. Jendrol', J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory 38(2018), 911-920.
[7] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometic regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33(2003), 94-136.
[8] F. Huang, X. Li, S. Wang, Upper bounds of proper connection number of graphs, J. Comb. Optim. 34(1)(2017), 165-173.
[9] H. Li, X. Li, Y. Sun, Y Zhao, Note on minimally d-rainbow connected graphs, Graphs \& Combin. 30(4)(2014), 949-955.
[10] X. Li, M. Liu, Schiermeyer, Rainbow connection number of dense graphs, Discus Math Graph Theory 33(3)(2013), 603-611.
[11] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs \& Combin. 29(5)(2013), 1471-1475.
[12] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discete Math. 331(2015), 20-21.

[^0]: *Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.

