Erdös-Gallai-type results for conflict-free connection of graphs^{*}

Meng Ji¹, Xueliang Li^{1,2}

¹Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China jimengecho@163.com, lxl@nankai.edu.cn

²School of Mathematics and Statistics, Qinghai Normal University Xining, Qinghai 810008, China

Abstract

A path in an edge-colored graph is called a conflict-free path if there exists a color used on only one of its edges. An edge-colored graph is called conflictfree connected if there is a conflict-free path between each pair of distinct vertices. The conflict-free connection number of a connected graph G, denoted by cfc(G), is defined as the smallest number of colors that are required to make G conflict-free connected. In this paper, we obtain Erdös-Gallai-type results for the conflict-free connection numbers of graphs.

Keywords: conflict-free connection coloring; conflict-free connection number; Erdös-Gallai-type result.

AMS subject classification 2010: 05C15, 05C40, 05C35.

1 Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow book [1] for undefined notation and terminology. Let $P_1 = v_1 v_2 \cdots v_s$ and $P_2 = v_s v_{s+1} \cdots v_{s+t}$ be two paths. We denote $P = v_1 v_2 \cdots v_s v_{s+1} \cdots v_{s+t}$ by $P_1 \odot P_2$. Coloring problems are important subjects in graph theory. The hypergraph version of

^{*}Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.

conflict-free coloring was first introduced by Even et al. in [7]. A hypergraph H is a pair H = (X, E) where X is the set of vertices, and E is the set of nonempty subsets of X, called hyper-edges. The conflict-free coloring of hypergraphs was motivated to solve the problem of assigning frequencies to different base stations in cellular networks, which is defined as a vertex coloring of H such that every hyper-edge contains a vertex with a unique color.

Later on, Czap et al. in [6] introduced the concept of conflict-free connection colorings of graphs motivated by the conflict-free colorings of hypergraphs. A path in an edge-colored graph G is called a conflict-free path if there is a color appearing only once on the path. The graph G is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices of G. The minimum number of colors required to make a connected graph G conflict-free connected is called the conflict-free connection number of G, denoted by cfc(G). If one wants to see more results, the reader can refer to [3, 4, 5, 6]. For a general connected graph G of order n, the conflict-free connection number of G has the bounds $1 \leq cfc(G) \leq n - 1$. When equality holds, cfc(G) = 1 if and only if $G = K_n$ and cfc(G) = n - 1 if and only if $cfc(G) = K_{1,n-1}$.

The Erdös-Gallai-type problem is an interesting problem in extremal graph theory, which was studied in [9, 10, 11, 12] for rainbow connection number rc(G); in [8] for proper connection number pc(G); in [2] for monochromatic connection number mc(G). We will study the Erdös-Gallai-type problem for the conflict-free number cfc(G) in this paper.

2 Auxiliary results

At first, we need some preliminary results.

Lemma 2.1 [6] Let u, v be distinct vertices and let e = xy be an edge of a 2connected graph. Then there is a u - v path in G containing the edge e.

For a 2-edge connected graph, the authors [5] presented the following result:

Theorem 2.2 [5] If G is a 2-edge connected graph, then cfc(G) = 2.

For a tree T, there is a sharp lower bound:

Theorem 2.3 [4] Let T be a tree of order n. Then $cfc(T) \ge cfc(P_n) = \lceil \log_2 n \rceil$.

Lemma 2.4 Let G be a connected graph and H = G - B, where B denotes the set of the cut-edges of G. Then $cfc(G) \le \max\{2, |B|\}$.

Proof. If $B=\emptyset$, then by Theorem 2.2, cfc(G)=2. If $|B| \ge 1$, then all the blocks are non-trivial in each component of G - B. Now we give G a conflict-free coloring: assign one edge with color 1 and the remaining edges with color 2 in each block of each component of G - B; for the edges $e \in B$, we assign each edge with a distinct color from $\{1, 2, \dots, |B|\}$.

Now we check every pair of vertices. Let u and v be arbitrary two vertices. Consider first the case that u and v are in the same component of G - B. If u and v are in the same block, by Lemma 2.1 there is a conflict-free u - v path. If u, v are in different blocks, let $P = P_1 \odot P_2 \odot \cdots \odot P_r$ be a u - v path, where P_i $(i \in [r])$ is the path in each block of the component. Then we can choose a conflict-free path in one block, say P_1 , and choose a monochromatic path with color 2 in each block of the remaining blocks, say P_i $(2 \le i \le r-1)$, clearly, P is a conflict-free u-vpath. Now consider the case that u and v are in distinct components of G - B. If there exists one cut-edge e with color $c \notin \{1, 2\}$, then there is a conflict-free u - vpath since the color used on e is unique. If there does not exist cut-edge with color $c \notin \{1, 2\}$, then suppose that there is only one cut-edge e = xy with color 1, without loss of generality, let u, x be in a same component and v, y be in a same component. We choose a monochromatic u - x path P_1 with color 2 and choose a monochromatic v - y path P_2 with 2, then $P = P_1 x y P_2$ is a conflict-free u - v path. If there is only one cut-edge e = st colored by 2, without loss of generality, then we say u, s are in the same component and t, v in a same component, we choose a monochromatic u-spath P_1 and a conflict-free t - v path P_2 in each component. Then $P = P_1 st P_2$ is a conflict-free u - v path. If there are exactly two cut-edges $e_1 = st$ and $e_2 = xy$ colored by 1 and 2, respectively, without loss of generality, we say that u, s are in a same component, t, x are in a same component and y, v are in a same component. Then we choose a monochromatic u, s path P_1, t, x path P_2 and y, v path P_3 in the three components, respectively, with color 2. Hence, $P = P_1 st P_2 xy P_3$ is a conflict-free u - vpath. So, we have $cfc(G) \leq \max\{2, |B|\}$.

Lemma 2.5 Let G be a connected graph of order n with k cut-edges. Then

$$|E(G)| \le \binom{n}{k} + k$$

Proof. Clearly, it holds for k = 0. Assuming that $k \ge 1$. Let G be a maximal graphs with k cut-edges. Let B be the set of all the bridges. And let G - B be the graph by deleting all the cut-edges. Let C_1, C_2, \dots, C_{k+1} be the components of G - B and n_i be the orders of C_i . Then $E(G) = \sum_{i=1}^{k+1} {n_i \choose 2} + k$. Let C_i and C_j be two components of G - B with $1 < n_i \le n_j$. Now we construct a graph G' by moving a vertex v from C_i to C_j , replace v with an arbitrary vertex in $V(C_k) \setminus v$ for the cut-edges incident with v, add the edges between v and the vertices in C_j , and delete the edges between v and the vertices in C_i , where v is not adjacent to the vertices of C_i . Now we have $|E(G')| = \sum_{s=1\neq i,j}^{k+1} {n_s \choose 2} + {n_j+1 \choose 2} + k = \sum_{s=1\neq i,j}^{k+1} {n_s \choose 2} + {n_i \choose 2} + n_j + k = |E(G)| + n_j - n_i + 1 > |E(G)|$. When we do repetitively the operation, we have $|E(G)| \le {n \choose k} + k$.

3 Main results

Now we consider the Erdös-Gallai-type problems for cfc(G). There are two types, see below.

Problem 3.1 For each integer k with $2 \le k \le n-1$, compute and minimize the function f(n,k) with the following property: for each connected graph G of order n, if $|E(G)| \ge f(n,k)$, then $cfc(G) \le k$.

Problem 3.2 For each integer k with $2 \le k \le n-1$, compute and maximize the function g(n,k) with the following property: for each connected graph G of order n, if $|E(G)| \le g(n,k)$, then $cfc(G) \ge k$.

Clearly, there are two parameters which are equivalent to f(n,k) and g(n,k) respectively. For each integer k with $2 \le k \le n-1$, let $s(n,k) = \max\{|E(G)| : |V(G)| = n, cfc \ge k\}$ and $t(n,k) = \min\{|E(G)| : |V(G)| = n, cfc \le k\}$. By the definitions, we have g(n,k) = t(n,k-1) - 1 and f(n,k) = s(n,k+1) + 1.

Using Lemma 2.4 we first solve Problem 3.1.

Theorem 3.3 $f(n,k) = \binom{n-k-1}{2} + k + 2$ for $2 \le k \le n-1$.

Proof. At first, we show the following claims.

Claim 1: For $k \ge 2$, $f(n,k) \le \binom{n-k-1}{2} + k + 2$.

Proof of Claim 1: We need to prove that for any connected graph G, if $E(G) \ge \binom{n-k-1}{2}+k+2$, then $cfc(G) \le k$. Suppose to the contrary that $cfc(G) \ge k+1$. By Lemma 2.4, we have $|B| \ge k+1$. By Lemma 2.5, $E(G) \le \binom{n-k-1}{2}+k+1$, which is a contradiction.

Claim 2: For $k \ge 2$, $f(n,k) \ge \binom{n-k-1}{2} + k + 2$.

Proof of Claim 2: We construct a graph G_k by identifying the center vertex of a star S_{k+2} with an arbitrary vertex of K_{n-k-1} . Clearly, $E(G_k) = \binom{n-k-1}{2} + k + 1$. Since $cfc(S_{k+2}) = k + 1$, then $cfc(G_k) \ge k + 1$. It is easy to see that $cfc(G_k) = k + 1$. Hence, $f(n,k) \ge \binom{n-k-1}{2} + k + 2$.

The conclusion holds from Claims 1 and 2.

Now we come to the solution for Problem 3.2, which is divided as three cases.

Lemma 3.4 For k = 2, $g(n, 2) = \binom{n}{2} - 1$.

Proof. Let G be a complete graph of order n. The number of edges in G is $\binom{n}{2}$, *i.e.*, $E(G) = \binom{n}{2}$. Clearly, when $g(n,2) = \binom{n}{2} - 1$ for every G, $cfc(G) \ge 2$.

Lemma 3.5 For every integer k with $3 \le k < \lceil \log_2 n \rceil$, g(n,k) = n-1.

Proof. We first give an upper bound of t(n, k). Let C_n be a cycle. Then $t(n, k) \leq n$ since $cfc(C_n) = 2 \leq k$. And then, we prove that t(n, k) = n. Suppose $t(n, k) \leq n - 1$. Let P_n be a path with size n - 1. Since $cfc(P_n) = \lceil \log_2 n \rceil$ by Theorem 2.3, it contradicts the condition the $k < \lceil \log_2 n \rceil$. So t(n, k) = n. By the relation that g(n, k) = t(n, k - 1) - 1, we have g(n, k) = n - 1.

Lemma 3.6 For $k \ge \lceil \log_2 n \rceil$, g(n,k) does not exist.

Proof. Let P_n be a path. Then we have $t(n,k) \leq n-1$ since $cfc(P_n) = \lceil \log_2 n \rceil$. And since $t(n,k) \geq n-1$, it is clear that t(n,k) = n-1. Since every graph G is connected, $g(n,k) \geq n-1$. By the relation that g(n,k) = t(n,k-1)-1, we have g(n,k) = n-2 for $k \geq \lceil \log_2 n \rceil$, which contradicts the connectivity of graphs. \Box

Combining Lemmas 3.4, 3.5 and 3.6, we get the solution for Problem 3.2.

Theorem 3.7 For k with $2 \le k \le n-1$,

$$g(n,k) = \begin{cases} \binom{n}{2} - 1, & k = 2\\ n - 1, & 3 \le k < \lceil \log_2 n \rceil\\ does \ not \ exist, & \lceil \log_2 n \rceil \le k \le n - 1. \end{cases}$$

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [2] Q. Cai, X. Li, D. Wu, Erdös-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(1)(2017), 123-131.
- [3] H. Chang, T.D. Doan, Z. Huang, S. Jendrol', I. Schiermeyer, Graphs with conflictfree connection number two, Graphs & Combin., in press.
- [4] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees, J. Comb. Optim., in press.
- [5] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math., in press.
- [6] J. Czap, S. Jendrol', J. Valiska, Conflict-free connection of graphs, *Discuss. Math. Graph Theory* 38(2018), 911–920.
- [7] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometic regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33(2003), 94–136.
- [8] F. Huang, X. Li, S. Wang, Upper bounds of proper connection number of graphs, J. Comb. Optim. 34(1)(2017), 165–173.
- H. Li, X. Li, Y. Sun, Y Zhao, Note on minimally d-rainbow connected graphs, Graphs & Combin. 30(4)(2014), 949–955.
- [10] X. Li, M. Liu, Schiermeyer, Rainbow connection number of dense graphs, Discus Math Graph Theory 33(3)(2013), 603–611.
- [11] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs & Combin. 29(5)(2013), 1471–1475.
- [12] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discete Math. 331(2015), 20–21.