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Abstract Given a graph H, the planar Turán number of H, denoted exP (n,H), is the
maximum number of edges in an H-free planar graph on n vertices. The idea of determining
exP (n, Pk) was promoted by Lan, Song and Shi, in which they obtained that the planar
Turán number of paths Pk with k ∈ {8, 9}. In this paper, we determine the planar Turán
number of paths Pk with k ∈ {6, 7, 10, 11}.
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1 Introduction

Graphs considered below will always be simple and finite. Our notation in this paper is

standard and refers to [3]. Given a graph G, let |G| and e(G) denote the size of the vertex

set V (G) and edge set E(G), respectively. For a vertex v ∈ V (G), we will use NG(v) to

denote the set of vertices which are adjacent to v in G and its size, denoted dG(v), is the

degree of vertex v. Let δ(G) denote the minimum degree in a graph G. Given two graphs G

and H, the union G∪H is the graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H);

the join G + H is the graph obtained from G ∪ H by adding all edges with one endpoint

in G and the other in H; and let kG denote the disjoint union of k copies of G, where k

is a positive integer. For a vertex set S ⊆ V (G), we use G[S] to denote the subgraph of G

induced by S and G\S the subgraph of G induced by V (G)\S (i.e., the set V (G)− S). For

A ⊆ E(G), let G/A denote the simple graph obtained from G by contracting each component

of G[A] into a single vertex. If A = {uv}, then we simple write G/uv. Moreover, a graph is

a minor of a given graph G if it can be obtained from a subgraph of G by contracting edges.

Denote by Pk a path and Ck a cycle on k vertices. Let K−k denote the complete graph on k

vertices minus one edge.

Given a graph H, we say that a graph is H-free if it does not contain H as a subgraph.

One of the fundamental questions in extremal graph theory is to study the maximum number
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of edges in an H-free graph on n vertices. The maximum, denoted ex(n,H), is called the

Turán number of H. Turán Theorem [15] gave a precise answer to this question for complete

graphs by determining the balanced complete (r−1)-partite graph (called Turán graph) with

the maximum number of edges in a Kr-free graph on n vertices. This was extended by Erdős

and Stone [6], who proved that every H-free graph has at most (1+o(1))(1− 1
χ(H)−1)

(
n
2

)
edges

for given arbitrary graph H, where χ(H) denotes the chromatic number of H. This means

that the asymptotics of ex(n,H) was determined for all non-bipartite graphsH. For bipartite

graphs H, the problem of determining ex(n,H) is still largely open. The Turán problem for

even cycles is of particular interest. Erdős [5] conjectured that ex(n,C2k) = Θ(n1+ 1
k ). The

upper bound on ex(n,C2k) was showed by Bondy and Simonovits [2], but the corresponding

lower bound is only known for k ∈ {2, 3, 5}. The Turán number of paths was completely

determined by Faudree and Schelp [7].

When host graphs are hypergraphs, the Turán number of k-uniform linear paths and

cycles was also investigated and we refer to [9, 10, 11]. More results for Turán problem of

hypergraphs see surveys [8, 12].

When host graphs are planar graphs, the Turán problem was introduced by Dowden [4]

(under the name of “extremal” planar graphs). The planar Turán number of H, denoted

exP (n,H), is the maximum number of edges in an H-free planar graph on n vertices. Euler’s

formula implies that the maximum number of edges in a planar graph on n ≥ 3 vertices equals

3n−6. It is trivial that exP (n,H) = 3n−6 for every non-planar graph H. The planar Turán

number ofKr can be obtained easily asK5 is not planar. Dowden first observed the results for

Kr with 3 ≤ r ≤ 4 and also determined the tight upper bounds of exP (n,Ck) for k ∈ {4, 5}.
Actually, exP (n,K4) = 3n − 6, since the triangulation K2 + Cn−2 is K4-free. In [14], the

authors completely determine exP (n,H) when H is a wheel or a star, and obtain several

sufficient conditions on H which yield exP (n,H) = 3n−6 for all n ≥ |V (H)|, which partially

answers a question of Dowden [4]. In [13], the upper bound of exP (n,C6) was determined

and they promoted the idea of determining exP (n, Pk). In addition, they determined that

the planar Turán number for paths Pk with k = 8, 9. Let Tt denote the family of all planar

triangulations on t vertices and let T ∗t ⊆ Tt denote the family of planar triangulations with

a spanning path. Now we will construct a family of graphs containing a copy of Pk−1 but

no Pk. Let n = bk/3c − 1 + ε + t(bk/3c − 1) + r + 2, t ≥ 2 and 0 ≤ r < bk/3c − 1, where

ε = k (mod 3). Given a positive integer k ≥ 9, let (a0, b0), . . . , (at+1, bt+1) be the two ends

of one fixed spanning path of T0, T1, . . . , Tt+1, respectively, and let Gbk/3c+1+ε, n be the family

of graphs obtained from T0, T1, . . . , Tt+1 by identifying all ai as a and identifying all bi as b,

where

T0 ∈ T ∗bk/3c+1+ε, Tt+1 ∈ T ∗r+2, Ti ∈ T ∗bk/3c+1 for any i ∈ [t] when ε ∈ {0, 1};

T0, T1 ∈ T ∗bk/3c+2, Tt+1 ∈ T ∗r+2, Ti ∈ T ∗bk/3c+1 for any 2 ≤ i ≤ t, or

T0 ∈ T ∗bk/3c+3, Tt+1 ∈ T ∗r+2, Ti ∈ T ∗bk/3c+1 for any i ∈ [t] when ε = 2.
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For n ≥ k − 1, it is easy to see that the longest path of Gbk/3c+1+ε, n has (|T0| − 2) + (|T1| −
2) + (|T2| − 2) + 2 = k − 1 vertices and so Gbk/3c+1+ε, n is Pk-free, where ε = k (mod 3).

Theorem 1.1 ([13]) Let n ≥ 3 be an integer. Let G be a P8-free planar graph on n vertices.

Then e(G) ≤ 15n/7, with equality when n = 7t for any positive integer t and G = T1∪· · ·∪Tt,
where Ti ∈ T7 for all i ∈ [t].

Theorem 1.2 ([13]) Let n ≥ 3 be an integer. Let G be a P9-free planar graph on n vertices.

Then e(G) ≤ max{9n
4
, 5n

2
−4}, with equality when G ∈ T8 or when G = T1∪T2 with T1, T2 ∈ T8

or when n ≥ 16 is even and G ∈ G4,n.

In this paper, we continue to determine the planar Turán number of paths Pk with

k ∈ {6, 7, 10, 11}. Clearly, exP (n, P6) = 3n − 6 when n ∈ {3, 4, 5}. We first introduce more

notation. We say that U is complete to W if for every u ∈ U and every w ∈ W , uw ∈ E(G).

If U = {u}, we simply say u is complete to W . Let eG(S) denote the number of edges in G

meeting the vertex set S ⊆ V (G).

Theorem 1.3 Let n ≥ 6 be an integer and let G be a P6-free planar graph on n vertices.

Then

e(G) ≤



2n− 3 if n ∈ {6, 9}, with equality when G ∈ {K2 +Kn−2, K
−
5 ∪Kn−5};

2n− 3 if n ∈ {7, 8}, with equality when G = K2 +Kn−2;

2n− 2 if n = 10, with equality when G = 2K−5 ;

2n− 3 if n ≥ 11, with equality when G ∈ {K2 +Kn−2, 3K−5 }.

Theorem 1.4 Let n ≥ 7 be an integer. Let G be a P7-free planar graph on n vertices. Then

e(G) ≤



2n if n = 6t, with equality when G = T1 ∪ · · · ∪ Tt;

2n− 1 if n = 6t+ 5, with equality when G = T1 ∪ · · · ∪ Tt ∪K−5 ;

2n− 2 if n = 6t+ 4 with equality when G ∈ {K2 + (Kn−4 +K2), T1 ∪ · · · ∪ Tt ∪K4,

T1 ∪ · · · ∪ Tt−1 ∪ 2K−5 , T1 ∪ · · · ∪ Tt−1 ∪ (K2 + (K6 ∪K2))};

2n− 2 if n = 6t+ 1 with equality when G ∈ {K2 + (Kn−4 +K2), T1 ∪ · · · ∪ Tt ∪K1,

T1 ∪ · · · ∪ Tt−1 ∪ (K2 + (K3 ∪K2))};

2n− 2 if n = 6t+ r with equality when G ∈ {K2 + (Kn−4 +K2),

T1 ∪ · · · ∪ Tt−1 ∪ (K2 + (K2+r ∪K2))},

where Ti ∈ T6 for all i ∈ [t] and r ∈ {2, 3}.
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Theorem 1.5 Let n ≥ 3 be an integer. Let G be a P10-free planar graph on n vertices. Then

e(G) ≤ max{7n
3
, 5n−7

2
}, with equality when G ∈ T9, or when G = T1 ∪ T2 with T1, T2 ∈ T9, or

when n ≥ 21 is odd and G ∈ G5,n.

Theorem 1.6 Let n ≥ 3 be an integer. Let G be a P11-free planar graph on n vertices.

Then e(G) ≤ max{12n
5
, 5n−6

2
}, with equality when G ∈ T10, or when G ∈ {T1∪T2, T1∪T2∪T3

with T1, T2, T3 ∈ T10, or when n ≥ 30 is even and G ∈ G6,n.

2 Preliminary Results

To study planar Turán numbers of paths, we shall make use of the following results.

Lemma 2.1 ([7]) Let t, k, r be integers satisfying t ≥ 0 and 0 ≤ r < k. If G is a Pk+1-free

graph on tk+r vertices, then e(G) ≤ t

(
k

2

)
+

(
r

2

)
, with equality when G = tKk∪Kr or when

k is odd, t > 0, and r ∈ {(k+1)/2, (k−1)/2}, G = (t−s−1)Kk∪ (K(k−1)/2 +K(k+1)/2+sk+r)

for some s ∈ {0, 1, . . . , t− 1}.

Lemma 2.2 ([1]) Let n, k with n > k ≥ 3 be integers. If G is a connected, Pk+1-free graph

on n vertices, then

e(G) ≤ max

{(
k − 1

2

)
+ (n− k + 1),

(
d(k + 1)/2e

2

)
+

⌊
k − 1

2

⌋(
n−

⌈
k + 1

2

⌉)}
,

with equality when G = Ks + (Kk−2s ∪Kn−k+s) for some s ∈ {1, b(k − 1)/2c}.

Lemma 2.3 ([13]) Let G be a connected graph and let P be a longest path in G with vertices

v1, v2, . . . , v` in order, where ` = |P | and |G| > ` ≥ 3. Then

(a) G[V (P )] has no spanning cycle. In particular, v1v` /∈ E(G), and if v1vs ∈ E(G) for

some s ∈ {2, . . . , ` − 1}, then vs−1v` /∈ E(G). Similarly, if v`vs ∈ E(G) for some

s ∈ {2, . . . , `− 1}, then v1vs+1 /∈ E(G).

(b) vs−1vt+1 /∈ E(G) if v1vs ∈ E(G) and v`vt ∈ E(G), where s, t ∈ [`] with 2 ≤ s ≤ t ≤ `−1.

Similarly, vt−1 has no edges to {vs−1, vs+1} if v1vs ∈ E(G) and v`vt ∈ E(G), where

s, t ∈ [`] with 4 ≤ t+ 2 ≤ s ≤ `− 1.

(c) 2δ(G) ≤ dG(v1) + dG(v`) ≤ `− 1.

(d) v` (resp. v1) is not adjacent to any two consecutive vertices in {v2, v3, . . . , v`−1} if v1v`−1 ∈
E(G) (resp. v`v2 ∈ E(G)).

It is worth noting that for all k ∈ {2, 3, 4, 5}, every Pk-free graph must be planar. Hence

the values of exP (n, Pk) when k ∈ {2, 3, 4, 5} and the extremal graphs are determined by

Lemma 2.1.
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3 Proof of Theorem 1.3

Let G and n be given as in the statement. By Lemma 2.2, the components of an extremal

P6-free graph are either Kr when r ≤ 4 and K−5 or K2 + Kr−2 when r ≥ 6. When G is

connected, by Lemma 2.2, e(G) ≤ 2n − 3 with equality when G = K2 + Kn−2. So we

may assume that G is disconnected. Let H1, H2, . . . , Hs be components of G. We see that

e(Hi) ≤ 2n − 3 when |Hi| ∈ {2, 3} or |Hi| ≥ 6, e(Hi) ≤ 2n − 2 when |Hi| ∈ {1, 4} and

e(Hi) ≤ 2n − 1 when |Hi| = 5. If s ≥ 3, then e(G) = e(H1) + · · · + e(Hs) ≤ 2n − 3 with

equality when G = 3K−5 . So we assume s = 2. If H1 = H2 = K−5 , then e(G) = 2n − 2.

If either H1 6= K−5 or H2 6= K−5 , then e(G) = e(H1) + e(H2) ≤ 2n − 3 with equality when

G = K−5 ∪K1 or G = K−5 ∪K4. �

4 Proof of Theorem 1.4

Let G and n be given as in the statement. By Lemma 2.2, the components of an extremal

P7-free graph are either Kr when r ≤ 4, K−5 , K2 + P4 and K2,2,2, or K2 + (Kr−4 + K2)

when r ≥ 7. When G is connected, by Lemma 2.2, e(G) ≤ 2n − 2 with equality when

G = K2 + (Kr−4 +K2). So we may assume that G is disconnected and let H1, H2, . . . , Hs be

the components of G. We see that e(Hi) ≤ 2n− 3 when |Hi| ∈ {2, 3}, e(Hi) ≤ 2n− 2 when

|Hi| ∈ {1, 4} or |Hi| ≥ 7, e(Hi) ≤ 2n−1 when |Hi| = 5 and e(Hi) ≤ 2n when |Hi| = 6. Then

e(G) ≤ 2n with equality when n = 6t and G = T1 ∪ · · · ∪ Tt, where Ti ∈ T6 for all i ∈ [t].

Let t ≥ 1 be any positive integer. If n = 6t+ 5, then e(Hj) ≤ 2|Hj| − 1 for some j ∈ [s], and

so e(G) ≤ 2n− 1 with equality when G = T1 ∪ · · · ∪ Tt ∪K−5 , where Ti ∈ T6 for all i ∈ [t]. If

n = 6t+ 4, then e(Hji) ≤ 2|Hji| − 1 for i ∈ [2] and some j1, j2 ∈ [s] or e(H`) ≤ 2|H`| − 2 for

some ` ∈ [s], and so e(G) ≤ 2n−2 with equality when G ∈ {K2 +(Kn−4 +K2), T1∪· · ·∪Tt∪
K4, T1 ∪ · · · ∪Tt−1 ∪ 2K−5 , T1 ∪ · · · ∪Tt−1 ∪ (K2 + (K6 +K2))}, where Ti ∈ T6 for all i ∈ [t]. If

n = 6t+1, then e(H`) ≤ 2|H`|−2 for some ` ∈ [s], and so e(G) ≤ 2n−2 with equality when

G ∈ {K2+(Kn−4+K2), T1∪· · ·∪Tt∪K1, T1∪· · ·∪Tt−1∪(K2+(K3+K2))}, where Ti ∈ T6 for

all i ∈ [t]. Finally, if n = 6t+r for r ∈ {2, 3}, then e(Hk) ≤ 2|Hk|−2 for some k ∈ [s] and so

e(G) ≤ 2n−2 with equality when G ∈ {K2+(Kn−4+K2), T1∪· · ·∪Tt−1∪(K2+(K2+r+K2))},
where Ti ∈ T6 for all i ∈ [t], as desired. �

5 Proof of Theorem 1.5

Let G and n be given as in the statement. Note that max{7n
3
, 5n−7

2
} = 5n−7

2
when n ≥ 21 and

max{7n
3
, 5n−7

2
} = 7n

3
when n ≤ 21. By induction on n. Since any graph on at most 9 vertices

is P10-free and |G| ≥ 3, we see that e(G) ≤ 3n−6 ≤ 7n
3

, with equality when n = 9 and G ∈ T9.
So we may assume that n ≥ 10. We next show that e(G) ≤ max{7n

3
, 5n−7

2
}. Let x ∈ V (G)

be a vertex with dG(x) = δ(G). Then G− x is a P10-free planar graph on n− 1 vertices. By
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the induction hypothesis, e(G−x) ≤ max{7
3

(n−1), 5
2

(n−1)− 7
2
} and so e(G) = e(G−x)+

dG(x) ≤ max{7n
3
, 5n−7

2
} when dG(x) ≤ 2. So we may assume that dG(x) ≥ 3. Assume next

thatG is disconnected andH is one of its components. Then |H| ≥ 4 and |G\V (H)| ≥ 4 since

δ(G) ≥ 3. By the induction hypothesis, e(H) ≤ max{7
3
|H|, 5

2
|H| − 7

2
} and e(G\V (H)) ≤

max{7
3
|G\V (H)|, 5

2
|G\V (H)|− 7

2
}. Hence, e(G) = e(H)+e(G\V (H)) ≤ max{7

3
|H|, 5

2
|H|−

7
2
} + max{7

3
|G\V (H)|, 5

2
|G\V (H)| − 7

2
} ≤ max{7n

3
, 5n−7

2
}, with equality when both H and

G\V (H) are planar triangulations on 9 vertices. Hence, e(G) ≤ max{7n
3
, 5n−7

2
}, with equality

when n = 18 and G = T1 ∪ T2, where T1, T2 ∈ T9. Now suppose G is connected. Let P be a

longest path in G with vertices v1, v2, . . . , vt in order. We may assume that dG(v1) ≤ dG(vt).

Then t ≤ 9 because G is P10-free. By Lemma 2.3(c), 6 ≤ 2δ(G) ≤ dG(v1)+dG(vt) ≤ t−1 ≤ 8.

Then 7 ≤ t ≤ 9. Assume that t ∈ {7, 8}. Then by Theorem 1.1 (when t = 7) and Theorem

1.2 (when t = 8), e(G) < max{7n
3
, 5n−7

2
}, as desired. So we may assume that t = 9.

Let F be an induced subgraph of G on V (P ). Let `v denote the number of vertices

of the longest path in F starting at v and S = {v ∈ V (F )|`v = 9}. Notice that S 6= ∅.
Since G is connected, it follows that S 6= V (F ). Observe that eF (S ′) = eG(S ′) for any

S ′ ⊆ S. Assume that there exists some R ⊆ S with eF (R) < 7
3
|R|. By the induction

hypothesis, e(G\R) ≤ max{7
3
|G\R|, 5

2
|G\R| − 7

2
}. Hence, e(G) = eG(R) + e(G\R) <

7
3
|R|+ max{7

3
|G\R|, 5

2
|G\R| − 7

2
} ≤ max{7n

3
, 5n−7

2
}. So we may assume that eF (S ′) ≥ 7

3
|S ′|

for any S ′ ⊆ S. Thus we have the following claim.

Claim. The graph G has an induced subgraph F on 9 vertices satisfying the properties: (1)

F is planar; (2) S 6= ∅ and S 6= V (F ); (3) eF (S ′) ≥ 7
3
|S ′| for any S ′ ⊆ S.

It can be shown by computer that there are only 18 graphs with the above three proper-

ties, as depicted in Appendix 1. It can be observed that (`v)v/∈S = (`u1 , `u2) = (7, 7) when

F = Fi for any i ∈ [10], (`v)v/∈S = (`w1 , `w2 , `w3) = (7, 7, 8) when F = F11 or F = F12, and

(`v)v/∈S = (`w1 , `w2 , `w3) = (8, 8, 8) when F = Fi for any 13 ≤ i ≤ 18. Assume that F = Fi for

any 11 ≤ i ≤ 18. Since δ(G) ≥ 3 and G is P10-free, it follows that NG(v) = {w1, w2, w3} for

some v ∈ V (G)\V (F ). But then G contains a copy of K3,3 because n ≥ 10 and F contains

K2,3 as a subgraph with one part {w1, w2, w3}, a contradiction. Assume then that F = Fi
for any i ∈ [10]. Since δ(G) ≥ 3 and G is P10-free, it follows that for any w ∈ V (G)\V (F ),

dG(w) = 3, w is complete to {u1, u2} in G and every component of G\V (F ) is isomorphic

to K2. This is only possible when n is odd. We see that G\V (F ) = n−9
2
K2. Hence, when n

is odd, we see that e(G) ≤ e(F ) + 5(n−9)
2
≤ 19 + 5n−45

2
≤ 5n−7

2
. With equality when F = F6

or F = F10, that is, when G ∈ G5,n. �

6 Proof of Theorem 1.6

Let G and n be given as in the statement. Note that max{12n
5
, 5n−6

2
} = 5n−6

2
when n ≥ 30

and max{12n
5
, 5n−6

2
} = 12n

5
when n ≤ 30. By induction on n. Since any graph on at most 10
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vertices is P11-free and |G| ≥ 3, we see that e(G) ≤ 3n− 6 ≤ 12n
5

, with equality when n = 10

and G ∈ T10. So we may assume that n ≥ 11. We next show that e(G) ≤ max{12n
5
, 5n−6

2
}.

Let x ∈ V (G) be a vertex with dG(x) = δ(G). Then G − x is a P11-free planar graph on

n−1 vertices. By the induction hypothesis, e(G−x) ≤ max{12
5

(n−1), 5
2

(n−1)−3} and so

e(G) = e(G−x)+dG(x) ≤ max{12n
5
, 5n−6

2
} when dG(x) ≤ 2. So we may assume that dG(x) ≥

3. Assume next that G is disconnected and H is one of its components. Then |H| ≥ 4 and

|G\V (H)| ≥ 4 since δ(G) ≥ 3. By the induction hypothesis, e(H) ≤ max{12
5
|H|, 5

2
|H| − 3}

and e(G\V (H)) ≤ max{12
5
|G\V (H)|, 5

2
|G\V (H)|−3}. Hence, e(G) = e(H)+e(G\V (H)) ≤

max{12
5
|H|, 5

2
|H|−3}+max{12

5
|G\V (H)|, 5

2
|G\V (H)|−3} ≤ max{12n

5
, 5n−6

2
}, with equality

when H is planar triangulation on 10 vertices and G\V (H) is either planar triangulation

on 10 vertices or the disjoint union of two planar triangulations on 10 vertices. Hence,

e(G) ≤ max{12n
5
, 5n−6

2
}, with equality when n = 20 and G = T1 ∪ T2, or when n = 30 and

G = T1 ∪ T2 ∪ T3, where T1, T2, T3 ∈ T10. Now suppose G is connected. Let P be a longest

path in G with vertices v1, v2, . . . , vt in order. Assume dG(v1) ≤ dG(vt) and t ≤ 10 since G

is P11-free. By Lemma 2.3(c), 6 ≤ 2δ(G) ≤ dG(v1) + dG(vt) ≤ t − 1 ≤ 9. Then 7 ≤ t ≤ 10.

If t ∈ {7, 8, 9}, then by Theorem 1.1 (when t = 7), Theorem 1.2 (when t = 8) and Theorem

1.5 (when t = 9), we have e(G) < max{12n
5
, 5n−6

2
}, as desired. So now suppose t = 10.

Let H be an induced subgraph of G on V (P ). Let `v denote the number of vertices of

the longest path in H starting at v and S = {v ∈ V (H)|`v = 10}. Notice that S 6= ∅.
Since G is connected, it follows that S 6= V (H). Observe that eH(S ′) = eG(S ′) for any

S ′ ⊆ S. Assume that there exists some R ⊆ S with eH(R) < 12
5
|R|. By the induction

hypothesis, e(G\R) ≤ max{12
5
|G\R|, 5

2
|G\R| − 3}. Hence, e(G) = eG(R) + e(G\R) <

12
5
|R| + max{12

5
|G\R|, 5

2
|G\R| − 3} ≤ max{12n

5
, 5n−6

2
}. So we may assume that eH(S ′) ≥

12
5
|S ′| for any S ′ ⊆ S. Thus we have the following claim.

Claim. The graph G has an induced subgraph H on 10 vertices satisfying the properties:

(1) H is planar; (2) S 6= ∅ and S 6= V (H); (3) eH(S ′) ≥ 12
5
|S ′| for any S ′ ⊆ S.

It could be shown by computer that there are only 200 graphs with the above three

properties, as depicted in Appendix 2. It can be observed that (`w)w/∈S = (`x, `y, `u, `v) =

(8, 8, 9, 9) when H = Hi for any i ∈ [28], (`w)w/∈S = (`x, `y, `u, `v) = (9, 9, 9, 9) when H = Hi

for any 29 ≤ i ≤ 88, (`w)w/∈S = (`x, `y, `u) = (8, 8, 9) when H = Hi for any 89 ≤ i ≤ 118,

(`w)w/∈S = (`x, `y, `u) = (9, 9, 9) when H = Hi for any 119 ≤ i ≤ 166, and (`w)w/∈S =

(`x, `y) = (8, 8) when H = Hi for any 167 ≤ i ≤ 200.

Case 1. H = Hi for any i ∈ [28]. Since V (H)\S = {x, y, u, v}, NH(w) ⊆ {x, y, u, v} and

dH(w) ≤ 4 for any w ∈ V (G)\V (H). We claim that dH(w) ≤ 2 for any w ∈ V (G)\V (H).

Suppose dH(w) ≥ 3 for some w ∈ V (G)\V (H), then either {x, y} ⊆ NH(w) or {u, v} ⊆
NH(w). If {u, v} ⊆ NH(w), then G contains P11 as a subgraph when uv ∈ E(H), and

G contains K3,3-minor as a subgraph with one part {x, y, {u,w, v}} when uv /∈ E(H). If

{x, y} ⊆ NH(w), then G contains K3,3-minor as a subgraph with one part {x, y, {u, v}} or
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{x, y, u} or {x, y, v}. Now suppose dH(w) ≤ 2 for any w ∈ V (G)\V (H). Since δ(G) ≥ 3 and

G is P11-free, it follows that for any w ∈ V (G)\V (H), dG(w) = 3, w is complete to {x, y}
in G, and so each component is isomorphic to K2. We see that G\V (H) = n−10

2
K2. This

is impossible when n is even. Hence, e(G) = e(H) + 5(n−10)
2
≤ 22 + 5n−50

2
≤ 5n−6

2
. With

equality when H = H20 or H = H28, that is, when G ∈ G6,n.

Case 2. H = Hi for any 29 ≤ i ≤ 88. Notice that NH(w) = NG(w) for any w ∈
V (G)\V (H). Since V (H)\S = {x, y, u, v}, NG(w) ⊆ {x, y, u, v} and dG(w) ≤ 4 for any

w ∈ V (G)\V (H). Since δ(G) ≥ 3, it follows that either {x, y} ⊆ NH(w) or {u, v} ⊆ NH(w)

for any w ∈ V (G)\V (H). If {u, v} ⊆ NH(w), then G contains K3,3-minor as a subgraph

with one part {x, y, {u,w, v}} or {u, v, {x, y, w′}}, where w′ ∈ NH(x) ∩ NH(y). If {x, y} ⊆
NH(w), then G contains K3,3-minor as a subgraph with one part {x, y, u} or {x, y, v} or

{x, y, {u,w′, v}}, where w′ ∈ NH(u) ∩NH(v).

Case 3. H = Hi for any 89 ≤ i ≤ 166. Since V (H)\S = {x, y, u}, NH(w) ⊆ {x, y, u}
and dH(w) ≤ 3 for any w ∈ V (G)\V (H). Notice that G\V (H) contains at most one vertex

w with dH(w) = 3 since H contains K1,3 as a subgraph with one part {x, y, u}. Hence,

e(G) ≤ e(H) + 3 + 2(n− 11) = 2n + 3 < 12n
5

when H = Hi for any 119 ≤ i ≤ 166. So next

consider H = Hi for any 97 ≤ i ≤ 118. We see that dH(w) = 2 for any w ∈ V (G)\V (H)

since G contains K2,3-minor as a subgraph with one part {x, y, u}. Since δ(G) ≥ 3 and G

is P11-free, it follows that for any w ∈ V (G)\V (H), dG(w) = 3, w is complete to {x, y}
in G, and so each component is isomorphic to K2. We see that G\V (H) = n−10

2
K2. This

is impossible when n is even. Hence, e(G) ≤ e(H) + 5(n−10)
2
≤ 22 + 5n−50

2
≤ 5n−6

2
. With

equality when H = H112 or H = H118, that is, when G ∈ G6,n. Finally, consider H = Hi

for 89 ≤ i ≤ 96. Since δ(G) ≥ 3 and G is P11-free, it follows that for any w ∈ V (G)\V (H),

dG(w) = 3, w is complete to {x, y} ({x, y, u} when dH(w) = 3) in G, and so each component

is isomorphic to K2 (isolated vertex when dH(w) = 3). Hence, e(G) ≤ e(H) + 3 + 5(n−11)
2
≤

21 + 3 + 5n−55
2

= 5n−7
2

.

Case 4. H = Hi for any 167 ≤ i ≤ 200. Since V (H)\S = {x, y}, NH(w) ⊆ {x, y} and

dH(w) ≤ 2 for any w ∈ V (G)\V (H). Since δ(G) ≥ 3 and G is P11-free, it follows that for

any w ∈ V (G)\V (H), dG(w) = 3, w is complete to {x, y} in G, and so each component

is isomorphic to K2. We see that G\V (H) = n−10
2
K2. This is impossible when n is even.

Hence, e(G) ≤ e(H) + 5(n−10)
2

≤ 22 + 5n−50
2
≤ 5n−6

2
. With equality when H = H184 or

H = H186 or H = H188 or H = H190 or H = H192 or H = H200, that is, when G ∈ G6,n. �
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[1] Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Connected graphs without long paths,

Discrete Math. 308, 4487–4494 (2008)

[2] Bondy, J., Simonovits, M.: Cycles of even length in graphs, J. Combin. Theory Ser. B

16, 97–105 (1974)

[3] Bollobás, B.: Modern Graph Theory, Springer (2013)

[4] Dowden, C.: Extremal C4-free/C5-free planar graphs, J. Graph Theory 83, 213–230

(2016)
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[12] Kostochka, A., Mubayi, D., Verstraëte, J.: Turán problems and shadows I: Paths and

cycles, J. Combin. Theory Ser. A 129, 57–79 (2015)

[13] Lan, Y., Shi, Y., Song, Z-X.: Extremal Theta-free planar graphs, arXiv:1711.01614

[14] Lan, Y., Shi, Y., Song, Z-X.: Extremal H-free planar graphs, Electron. J. Comb.

26(2019), 2.11.

[15] Turán, P.: Eine Extremalaufgabe aus der Graphentheorie, (Hungarian) Mat. Fiz. Lapok

48 436–452 (1941)

9



Appendix 1:
List of 18 graphs satisfying the three properties in Claim used in the proof of Theorem 1.5.

F1 F2 F3 F4 F5

F6 F7 F8 F9 F10

F11 F12 F13 F14

F15 F16 F17 F18
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Appendix 2:
List of 200 graphs satisfying the three properties in Claim used in the proof of Theorem 1.6.

H1 H2 H3 H4 H5

H6 H7 H8 H9 H10

H11 H12 H13 H14 H15

H16 H17 H18 H19 H20

H21 H22 H23 H24 H25

H26 H27 H28 H29 H30

H31 H32 H33 H34 H35

H36 H37 H38 H39 H40
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H41 H42 H43 H44 H45

H46 H47 H48 H49 H50

H51 H52 H53 H54 H55

H56 H57 H58 H59 H60

H61 H62 H63 H64 H65

H66 H67 H68 H69 H70

H71 H72 H73 H74 H75

H76 H77 H78 H79 H80
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H81 H82 H83 H84 H85

H86 H87 H88 H89 H90

H91 H92 H93 H94 H95

H96 H97 H98 H99 H100

H101 H102 H103 H104 H105

H106 H107 H108 H109 H110

H111 H112 H113 H114 H115

H116 H117 H118 H119 H120
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H121 H122 H123 H124 H125

H126 H127 H128 H129 H130

H131 H132 H133 H134 H135

H136 H137 H138 H139 H140

H141 H142 H143 H144 H145

H146 H147 H148 H149 H150

H151 H152 H153 H154 H155

H156 H157 H158 H159 H160
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H161 H162 H163 H164 H165

H166 H167 H168 H169 H170

H171 H172 H173 H174 H175

H176 H177 H178 H179 H180

H181 H182 H183 H184 H185

H186 H187 H188 H189 H190

H191 H192 H193 H194 H195

H196 H197 H198 H199 H200
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