Planar Turán numbers of short paths

Yongxin Lan ${ }^{1}$ and Yongtang Shi ${ }^{2 *}$
${ }^{1}$ School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin, 300387, China
${ }^{2}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China
Email: yxlan0@126.com, shi@nankai.edu.cn

Abstract

Given a graph H, the planar Turán number of H, denoted $e x_{\mathcal{p}}(n, H)$, is the maximum number of edges in an H-free planar graph on n vertices. The idea of determining $e x_{\mathcal{p}}\left(n, P_{k}\right)$ was promoted by Lan, Song and Shi, in which they obtained that the planar Turán number of paths P_{k} with $k \in\{8,9\}$. In this paper, we determine the planar Turán number of paths P_{k} with $k \in\{6,7,10,11\}$.

Keywords Turán number, planar Turán number, path
AMS Classification: 05C10, 05C35

1 Introduction

Graphs considered below will always be simple and finite. Our notation in this paper is standard and refers to [3]. Given a graph G, let $|G|$ and $e(G)$ denote the size of the vertex set $V(G)$ and edge set $E(G)$, respectively. For a vertex $v \in V(G)$, we will use $N_{G}(v)$ to denote the set of vertices which are adjacent to v in G and its size, denoted $d_{G}(v)$, is the degree of vertex v. Let $\delta(G)$ denote the minimum degree in a graph G. Given two graphs G and H, the union $G \cup H$ is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$; the join $G+H$ is the graph obtained from $G \cup H$ by adding all edges with one endpoint in G and the other in H; and let $k G$ denote the disjoint union of k copies of G, where k is a positive integer. For a vertex set $S \subseteq V(G)$, we use $G[S]$ to denote the subgraph of G induced by S and $G \backslash S$ the subgraph of G induced by $V(G) \backslash S$ (i.e., the set $V(G)-S)$. For $A \subseteq E(G)$, let G / A denote the simple graph obtained from G by contracting each component of $G[A]$ into a single vertex. If $A=\{u v\}$, then we simple write $G / u v$. Moreover, a graph is a minor of a given graph G if it can be obtained from a subgraph of G by contracting edges. Denote by P_{k} a path and C_{k} a cycle on k vertices. Let K_{k}^{-}denote the complete graph on k vertices minus one edge.

Given a graph H, we say that a graph is H-free if it does not contain H as a subgraph. One of the fundamental questions in extremal graph theory is to study the maximum number

[^0]of edges in an H-free graph on n vertices. The maximum, denoted $e x(n, H)$, is called the Turán number of H. Turán Theorem [15] gave a precise answer to this question for complete graphs by determining the balanced complete ($r-1$)-partite graph (called Turán graph) with the maximum number of edges in a K_{r}-free graph on n vertices. This was extended by Erdős and Stone [6], who proved that every H-free graph has at most $(1+o(1))\left(1-\frac{1}{\chi(H)-1}\right)\binom{n}{2}$ edges for given arbitrary graph H, where $\chi(H)$ denotes the chromatic number of H. This means that the asymptotics of $e x(n, H)$ was determined for all non-bipartite graphs H. For bipartite graphs H, the problem of determining $e x(n, H)$ is still largely open. The Turán problem for even cycles is of particular interest. Erdős [5] conjectured that ex $\left(n, C_{2 k}\right)=\Theta\left(n^{1+\frac{1}{k}}\right)$. The upper bound on $e x\left(n, C_{2 k}\right)$ was showed by Bondy and Simonovits [2], but the corresponding lower bound is only known for $k \in\{2,3,5\}$. The Turán number of paths was completely determined by Faudree and Schelp [7].

When host graphs are hypergraphs, the Turán number of k-uniform linear paths and cycles was also investigated and we refer to $[9,10,11]$. More results for Turán problem of hypergraphs see surveys $[8,12]$.

When host graphs are planar graphs, the Turán problem was introduced by Dowden [4] (under the name of "extremal" planar graphs). The planar Turán number of H, denoted $e x_{\mathcal{p}}(n, H)$, is the maximum number of edges in an H-free planar graph on n vertices. Euler's formula implies that the maximum number of edges in a planar graph on $n \geq 3$ vertices equals $3 n-6$. It is trivial that $e x_{\mathcal{p}}(n, H)=3 n-6$ for every non-planar graph H. The planar Turán number of K_{r} can be obtained easily as K_{5} is not planar. Dowden first observed the results for K_{r} with $3 \leq r \leq 4$ and also determined the tight upper bounds of $e x_{\mathcal{P}}\left(n, C_{k}\right)$ for $k \in\{4,5\}$. Actually, $e x_{\mathcal{P}}\left(n, K_{4}\right)=3 n-6$, since the triangulation $\overline{K_{2}}+C_{n-2}$ is K_{4}-free. In [14], the authors completely determine $e x_{\mathcal{p}}(n, H)$ when H is a wheel or a star, and obtain several sufficient conditions on H which yield $e x_{\mathcal{P}}(n, H)=3 n-6$ for all $n \geq|V(H)|$, which partially answers a question of Dowden [4]. In [13], the upper bound of $e x_{\mathcal{P}}\left(n, C_{6}\right)$ was determined and they promoted the idea of determining $e x_{\mathcal{p}}\left(n, P_{k}\right)$. In addition, they determined that the planar Turán number for paths P_{k} with $k=8,9$. Let \mathcal{T}_{t} denote the family of all planar triangulations on t vertices and let $\mathcal{T}_{t}{ }^{*} \subseteq \mathcal{T}_{t}$ denote the family of planar triangulations with a spanning path. Now we will construct a family of graphs containing a copy of P_{k-1} but no P_{k}. Let $n=\lfloor k / 3\rfloor-1+\varepsilon+t(\lfloor k / 3\rfloor-1)+r+2, t \geq 2$ and $0 \leq r<\lfloor k / 3\rfloor-1$, where $\varepsilon=k(\bmod 3)$. Given a positive integer $k \geq 9$, let $\left(a_{0}, b_{0}\right), \ldots,\left(a_{t+1}, b_{t+1}\right)$ be the two ends of one fixed spanning path of $T_{0}, T_{1}, \ldots, T_{t+1}$, respectively, and let $\mathcal{G}_{\lfloor k / 3\rfloor+1+\varepsilon, n}$ be the family of graphs obtained from $T_{0}, T_{1}, \ldots, T_{t+1}$ by identifying all a_{i} as a and identifying all b_{i} as b, where

$$
\begin{gathered}
T_{0} \in \mathcal{T}_{\lfloor k / 3\rfloor+1+\varepsilon}^{*}, T_{t+1} \in \mathcal{T}_{r+2}^{*}, T_{i} \in \mathcal{T}_{\lfloor k / 3\rfloor+1}^{*} \text { for any } i \in[t] \text { when } \varepsilon \in\{0,1\} ; \\
T_{0}, T_{1} \in \mathcal{T}_{\lfloor k / 3\rfloor+2}^{*}, T_{t+1} \in \mathcal{T}_{r+2}^{*}, T_{i} \in \mathcal{T}_{\lfloor k / 3\rfloor+1}^{*} \text { for any } 2 \leq i \leq t, \text { or } \\
T_{0} \in \mathcal{T}_{\lfloor k / 3\rfloor+3}^{*}, T_{t+1} \in \mathcal{T}_{r+2}^{*}, T_{i} \in \mathcal{T}_{\lfloor k / 3\rfloor+1}^{*} \text { for any } i \in[t] \text { when } \varepsilon=2
\end{gathered}
$$

For $n \geq k-1$, it is easy to see that the longest path of $\mathcal{G}_{\lfloor k / 3\rfloor+1+\varepsilon, n}$ has $\left(\left|T_{0}\right|-2\right)+\left(\left|T_{1}\right|-\right.$ $2)+\left(\left|T_{2}\right|-2\right)+2=k-1$ vertices and so $\mathcal{G}_{\lfloor k / 3\rfloor+1+\varepsilon, n}$ is P_{k}-free, where $\varepsilon=k(\bmod 3)$.

Theorem 1.1 ([13]) Let $n \geq 3$ be an integer. Let G be a P_{8}-free planar graph on n vertices. Then $e(G) \leq 15 n / 7$, with equality when $n=7 t$ for any positive integert and $G=T_{1} \cup \cdots \cup T_{t}$, where $T_{i} \in \mathcal{T}_{7}$ for all $i \in[t]$.

Theorem 1.2 ([13]) Let $n \geq 3$ be an integer. Let G be a P_{9}-free planar graph on n vertices. Then $e(G) \leq \max \left\{\frac{9 n}{4}, \frac{5 n}{2}-4\right\}$, with equality when $G \in \mathcal{T}_{8}$ or when $G=T_{1} \cup T_{2}$ with $T_{1}, T_{2} \in \mathcal{T}_{8}$ or when $n \geq 16$ is even and $G \in \mathcal{G}_{4, n}$.

In this paper, we continue to determine the planar Turán number of paths P_{k} with $k \in\{6,7,10,11\}$. Clearly, $e x_{\mathcal{P}}\left(n, P_{6}\right)=3 n-6$ when $n \in\{3,4,5\}$. We first introduce more notation. We say that U is complete to W if for every $u \in U$ and every $w \in W$, $u w \in E(G)$. If $U=\{u\}$, we simply say u is complete to W. Let $e_{G}(S)$ denote the number of edges in G meeting the vertex set $S \subseteq V(G)$.

Theorem 1.3 Let $n \geq 6$ be an integer and let G be a P_{6}-free planar graph on n vertices. Then

$$
e(G) \leq \begin{cases}2 n-3 & \text { if } n \in\{6,9\}, \text { with equality when } G \in\left\{K_{2}+\overline{K_{n-2}}, K_{5}^{-} \cup K_{n-5}\right\} \\ 2 n-3 & \text { if } n \in\{7,8\}, \text { with equality when } G=K_{2}+\overline{K_{n-2}} \\ 2 n-2 & \text { if } n=10, \text { with equality when } G=2 K_{5}^{-} \\ 2 n-3 & \text { if } n \geq 11, \text { with equality when } G \in\left\{K_{2}+\overline{K_{n-2}}, 3 K_{5}^{-}\right\}\end{cases}
$$

Theorem 1.4 Let $n \geq 7$ be an integer. Let G be a P_{7}-free planar graph on n vertices. Then
$e(G) \leq \begin{cases}2 n & \text { if } n=6 t, \text { with equality when } G=T_{1} \cup \cdots \cup T_{t} ; \\ 2 n-1 & \text { if } n=6 t+5, \text { with equality when } G=T_{1} \cup \cdots \cup T_{t} \cup K_{5}^{-} ; \\ 2 n-2 & \text { if } n=6 t+4 \text { with equality when } G \in\left\{K_{2}+\left(\overline{K_{n-4}}+K_{2}\right), T_{1} \cup \cdots \cup T_{t} \cup K_{4},\right. \\ & \left.T_{1} \cup \cdots \cup T_{t-1} \cup 2 K_{5}^{-}, T_{1} \cup \cdots \cup T_{t-1} \cup\left(K_{2}+\left(\overline{K_{6}} \cup K_{2}\right)\right)\right\} ; \\ 2 n-2 & \text { if } n=6 t+1 \text { with equality when } G \in\left\{K_{2}+\left(\overline{K_{n-4}}+K_{2}\right), T_{1} \cup \cdots \cup T_{t} \cup K_{1},\right. \\ \\ & \left.T_{1} \cup \cdots \cup T_{t-1} \cup\left(K_{2}+\left(\overline{K_{3}} \cup K_{2}\right)\right)\right\} ; \\ 2 n-2 & \text { if } n=6 t+r \text { with equality when } G \in\left\{K_{2}+\left(\overline{K_{n-4}}+K_{2}\right),\right. \\ & \left.T_{1} \cup \cdots \cup T_{t-1} \cup\left(K_{2}+\left(\overline{K_{2+r}} \cup K_{2}\right)\right)\right\},\end{cases}$
where $T_{i} \in \mathcal{T}_{6}$ for all $i \in[t]$ and $r \in\{2,3\}$.

Theorem 1.5 Let $n \geq 3$ be an integer. Let G be a P_{10}-free planar graph on n vertices. Then $e(G) \leq \max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$, with equality when $G \in \mathcal{T}_{9}$, or when $G=T_{1} \cup T_{2}$ with $T_{1}, T_{2} \in \mathcal{T}_{9}$, or when $n \geq 21$ is odd and $G \in \mathcal{G}_{5, n}$.

Theorem 1.6 Let $n \geq 3$ be an integer. Let G be a P_{11}-free planar graph on n vertices. Then $e(G) \leq \max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$, with equality when $G \in \mathcal{T}_{10}$, or when $G \in\left\{T_{1} \cup T_{2}, T_{1} \cup T_{2} \cup T_{3}\right.$ with $T_{1}, T_{2}, T_{3} \in \mathcal{T}_{10}$, or when $n \geq 30$ is even and $G \in \mathcal{G}_{6, n}$.

2 Preliminary Results

To study planar Turán numbers of paths, we shall make use of the following results.
Lemma 2.1 ([7]) Let t, k, r be integers satisfying $t \geq 0$ and $0 \leq r<k$. If G is a P_{k+1}-free graph on $t k+r$ vertices, then $e(G) \leq t\binom{k}{2}+\binom{r}{2}$, with equality when $G=t K_{k} \cup K_{r}$ or when k is odd, $t>0$, and $r \in\{(k+1) / 2,(k-1) / 2\}, G=(t-s-1) K_{k} \cup\left(K_{(k-1) / 2}+\bar{K}_{(k+1) / 2+s k+r}\right)$ for some $s \in\{0,1, \ldots, t-1\}$.

Lemma 2.2 ([1]) Let n, k with $n>k \geq 3$ be integers. If G is a connected, P_{k+1}-free graph on n vertices, then

$$
e(G) \leq \max \left\{\binom{k-1}{2}+(n-k+1),\binom{\lceil(k+1) / 2\rceil}{ 2}+\left\lfloor\frac{k-1}{2}\right\rfloor\left(n-\left\lceil\frac{k+1}{2}\right\rceil\right)\right\},
$$

with equality when $G=K_{s}+\left(K_{k-2 s} \cup \bar{K}_{n-k+s}\right)$ for some $s \in\{1,\lfloor(k-1) / 2\rfloor\}$.
Lemma 2.3 ([13]) Let G be a connected graph and let P be a longest path in G with vertices $v_{1}, v_{2}, \ldots, v_{\ell}$ in order, where $\ell=|P|$ and $|G|>\ell \geq 3$. Then
(a) $G[V(P)]$ has no spanning cycle. In particular, $v_{1} v_{\ell} \notin E(G)$, and if $v_{1} v_{s} \in E(G)$ for some $s \in\{2, \ldots, \ell-1\}$, then $v_{s-1} v_{\ell} \notin E(G)$. Similarly, if $v_{\ell} v_{s} \in E(G)$ for some $s \in\{2, \ldots, \ell-1\}$, then $v_{1} v_{s+1} \notin E(G)$.
(b) $v_{s-1} v_{t+1} \notin E(G)$ if $v_{1} v_{s} \in E(G)$ and $v_{\ell} v_{t} \in E(G)$, where $s, t \in[\ell]$ with $2 \leq s \leq t \leq \ell-1$. Similarly, v_{t-1} has no edges to $\left\{v_{s-1}, v_{s+1}\right\}$ if $v_{1} v_{s} \in E(G)$ and $v_{\ell} v_{t} \in E(G)$, where $s, t \in[\ell]$ with $4 \leq t+2 \leq s \leq \ell-1$.
(c) $2 \delta(G) \leq d_{G}\left(v_{1}\right)+d_{G}\left(v_{\ell}\right) \leq \ell-1$.
(d) $v_{\ell}\left(\right.$ resp. v_{1}) is not adjacent to any two consecutive vertices in $\left\{v_{2}, v_{3}, \ldots, v_{\ell-1}\right\}$ if $v_{1} v_{\ell-1} \in$ $E(G)\left(r e s p . v_{\ell} v_{2} \in E(G)\right)$.

It is worth noting that for all $k \in\{2,3,4,5\}$, every P_{k}-free graph must be planar. Hence the values of $e x_{\mathcal{p}}\left(n, P_{k}\right)$ when $k \in\{2,3,4,5\}$ and the extremal graphs are determined by Lemma 2.1.

3 Proof of Theorem 1.3

Let G and n be given as in the statement. By Lemma 2.2, the components of an extremal P_{6}-free graph are either K_{r} when $r \leq 4$ and K_{5}^{-}or $K_{2}+\overline{K_{r-2}}$ when $r \geq 6$. When G is connected, by Lemma 2.2, $e(G) \leq 2 n-3$ with equality when $G=K_{2}+\overline{K_{n-2}}$. So we may assume that G is disconnected. Let $H_{1}, H_{2}, \ldots, H_{s}$ be components of G. We see that $e\left(H_{i}\right) \leq 2 n-3$ when $\left|H_{i}\right| \in\{2,3\}$ or $\left|H_{i}\right| \geq 6, e\left(H_{i}\right) \leq 2 n-2$ when $\left|H_{i}\right| \in\{1,4\}$ and $e\left(H_{i}\right) \leq 2 n-1$ when $\left|H_{i}\right|=5$. If $s \geq 3$, then $e(G)=e\left(H_{1}\right)+\cdots+e\left(H_{s}\right) \leq 2 n-3$ with equality when $G=3 K_{5}^{-}$. So we assume $s=2$. If $H_{1}=H_{2}=K_{5}^{-}$, then $e(G)=2 n-2$. If either $H_{1} \neq K_{5}^{-}$or $H_{2} \neq K_{5}^{-}$, then $e(G)=e\left(H_{1}\right)+e\left(H_{2}\right) \leq 2 n-3$ with equality when $G=K_{5}^{-} \cup K_{1}$ or $G=K_{5}^{-} \cup K_{4}$.

4 Proof of Theorem 1.4

Let G and n be given as in the statement. By Lemma 2.2, the components of an extremal P_{7}-free graph are either K_{r} when $r \leq 4, K_{5}^{-}, K_{2}+P_{4}$ and $K_{2,2,2}$, or $K_{2}+\left(\overline{K_{r-4}}+K_{2}\right)$ when $r \geq 7$. When G is connected, by Lemma $2.2, e(G) \leq 2 n-2$ with equality when $G=K_{2}+\left(\overline{K_{r-4}}+K_{2}\right)$. So we may assume that G is disconnected and let $H_{1}, H_{2}, \ldots, H_{s}$ be the components of G. We see that $e\left(H_{i}\right) \leq 2 n-3$ when $\left|H_{i}\right| \in\{2,3\}, e\left(H_{i}\right) \leq 2 n-2$ when $\left|H_{i}\right| \in\{1,4\}$ or $\left|H_{i}\right| \geq 7, e\left(H_{i}\right) \leq 2 n-1$ when $\left|H_{i}\right|=5$ and $e\left(H_{i}\right) \leq 2 n$ when $\left|H_{i}\right|=6$. Then $e(G) \leq 2 n$ with equality when $n=6 t$ and $G=T_{1} \cup \cdots \cup T_{t}$, where $T_{i} \in \mathcal{T}_{6}$ for all $i \in[t]$. Let $t \geq 1$ be any positive integer. If $n=6 t+5$, then $e\left(H_{j}\right) \leq 2\left|H_{j}\right|-1$ for some $j \in[s]$, and so $e(G) \leq 2 n-1$ with equality when $G=T_{1} \cup \cdots \cup T_{t} \cup K_{5}^{-}$, where $T_{i} \in \mathcal{T}_{6}$ for all $i \in[t]$. If $n=6 t+4$, then $e\left(H_{j_{i}}\right) \leq 2\left|H_{j_{i}}\right|-1$ for $i \in[2]$ and some $j_{1}, j_{2} \in[s]$ or $e\left(H_{\ell}\right) \leq 2\left|H_{\ell}\right|-2$ for some $\ell \in[s]$, and so $e(G) \leq 2 n-2$ with equality when $G \in\left\{K_{2}+\left(\overline{K_{n-4}}+K_{2}\right), T_{1} \cup \cdots \cup T_{t} \cup\right.$ $\left.K_{4}, T_{1} \cup \cdots \cup T_{t-1} \cup 2 K_{5}^{-}, T_{1} \cup \cdots \cup T_{t-1} \cup\left(K_{2}+\left(\overline{K_{6}}+K_{2}\right)\right)\right\}$, where $T_{i} \in \mathcal{T}_{6}$ for all $i \in[t]$. If $n=6 t+1$, then $e\left(H_{\ell}\right) \leq 2\left|H_{\ell}\right|-2$ for some $\ell \in[s]$, and so $e(G) \leq 2 n-2$ with equality when $G \in\left\{K_{2}+\left(\overline{K_{n-4}}+K_{2}\right), T_{1} \cup \cdots \cup T_{t} \cup K_{1}, T_{1} \cup \cdots \cup T_{t-1} \cup\left(K_{2}+\left(\overline{K_{3}}+K_{2}\right)\right)\right\}$, where $T_{i} \in \mathcal{T}_{6}$ for all $i \in[t]$. Finally, if $n=6 t+r$ for $r \in\{2,3\}$, then $e\left(H_{k}\right) \leq 2\left|H_{k}\right|-2$ for some $k \in[s]$ and so $e(G) \leq 2 n-2$ with equality when $G \in\left\{K_{2}+\left(\overline{K_{n-4}}+K_{2}\right), T_{1} \cup \cdots \cup T_{t-1} \cup\left(K_{2}+\left(\overline{K_{2+r}}+K_{2}\right)\right)\right\}$, where $T_{i} \in \mathcal{T}_{6}$ for all $i \in[t]$, as desired.

5 Proof of Theorem 1.5

Let G and n be given as in the statement. Note that $\max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}=\frac{5 n-7}{2}$ when $n \geq 21$ and $\max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}=\frac{7 n}{3}$ when $n \leq 21$. By induction on n. Since any graph on at most 9 vertices is P_{10}-free and $|G| \geq 3$, we see that $e(G) \leq 3 n-6 \leq \frac{7 n}{3}$, with equality when $n=9$ and $G \in \mathcal{T}_{9}$. So we may assume that $n \geq 10$. We next show that $e(G) \leq \max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$. Let $x \in V(G)$ be a vertex with $d_{G}(x)=\delta(G)$. Then $G-x$ is a P_{10}-free planar graph on $n-1$ vertices. By
the induction hypothesis, $e(G-x) \leq \max \left\{\frac{7}{3}(n-1), \frac{5}{2}(n-1)-\frac{7}{2}\right\}$ and so $e(G)=e(G-x)+$ $d_{G}(x) \leq \max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$ when $d_{G}(x) \leq 2$. So we may assume that $d_{G}(x) \geq 3$. Assume next that G is disconnected and H is one of its components. Then $|H| \geq 4$ and $|G \backslash V(H)| \geq 4$ since $\delta(G) \geq 3$. By the induction hypothesis, $e(H) \leq \max \left\{\frac{7}{3}|H|, \frac{5}{2}|H|-\frac{7}{2}\right\}$ and $e(G \backslash V(H)) \leq$ $\max \left\{\frac{7}{3}|G \backslash V(H)|, \frac{5}{2}|G \backslash V(H)|-\frac{7}{2}\right\}$. Hence, $e(G)=e(H)+e(G \backslash V(H)) \leq \max \left\{\frac{7}{3}|H|, \frac{5}{2}|H|-\right.$ $\left.\frac{7}{2}\right\}+\max \left\{\frac{7}{3}|G \backslash V(H)|, \frac{5}{2}|G \backslash V(H)|-\frac{7}{2}\right\} \leq \max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$, with equality when both H and $G \backslash V(H)$ are planar triangulations on 9 vertices. Hence, $e(G) \leq \max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$, with equality when $n=18$ and $G=T_{1} \cup T_{2}$, where $T_{1}, T_{2} \in \mathcal{T}_{9}$. Now suppose G is connected. Let P be a longest path in G with vertices $v_{1}, v_{2}, \ldots, v_{t}$ in order. We may assume that $d_{G}\left(v_{1}\right) \leq d_{G}\left(v_{t}\right)$. Then $t \leq 9$ because G is P_{10}-free. By Lemma 2.3(c), $6 \leq 2 \delta(G) \leq d_{G}\left(v_{1}\right)+d_{G}\left(v_{t}\right) \leq t-1 \leq 8$. Then $7 \leq t \leq 9$. Assume that $t \in\{7,8\}$. Then by Theorem 1.1 (when $t=7$) and Theorem 1.2 (when $t=8$), $e(G)<\max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$, as desired. So we may assume that $t=9$.

Let F be an induced subgraph of G on $V(P)$. Let ℓ_{v} denote the number of vertices of the longest path in F starting at v and $S=\left\{v \in V(F) \mid \ell_{v}=9\right\}$. Notice that $S \neq \emptyset$. Since G is connected, it follows that $S \neq V(F)$. Observe that $e_{F}\left(S^{\prime}\right)=e_{G}\left(S^{\prime}\right)$ for any $S^{\prime} \subseteq S$. Assume that there exists some $R \subseteq S$ with $e_{F}(R)<\frac{7}{3}|R|$. By the induction hypothesis, $e(G \backslash R) \leq \max \left\{\frac{7}{3}|G \backslash R|, \frac{5}{2}|G \backslash R|-\frac{7}{2}\right\}$. Hence, $e(G)=e_{G}(R)+e(G \backslash R)<$ $\frac{7}{3}|R|+\max \left\{\frac{7}{3}|G \backslash R|, \frac{5}{2}|G \backslash R|-\frac{7}{2}\right\} \leq \max \left\{\frac{7 n}{3}, \frac{5 n-7}{2}\right\}$. So we may assume that $e_{F}\left(S^{\prime}\right) \geq \frac{7}{3}\left|S^{\prime}\right|$ for any $S^{\prime} \subseteq S$. Thus we have the following claim.
Claim. The graph G has an induced subgraph F on 9 vertices satisfying the properties: (1) F is planar; (2) $S \neq \emptyset$ and $S \neq V(F) ;(3) e_{F}\left(S^{\prime}\right) \geq \frac{7}{3}\left|S^{\prime}\right|$ for any $S^{\prime} \subseteq S$.

It can be shown by computer that there are only 18 graphs with the above three properties, as depicted in Appendix 1. It can be observed that $\left(\ell_{v}\right)_{v \notin S}=\left(\ell_{u_{1}}, \ell_{u_{2}}\right)=(7,7)$ when $F=F_{i}$ for any $i \in[10],\left(\ell_{v}\right)_{v \notin S}=\left(\ell_{w_{1}}, \ell_{w_{2}}, \ell_{w_{3}}\right)=(7,7,8)$ when $F=F_{11}$ or $F=F_{12}$, and $\left(\ell_{v}\right)_{v \notin S}=\left(\ell_{w_{1}}, \ell_{w_{2}}, \ell_{w_{3}}\right)=(8,8,8)$ when $F=F_{i}$ for any $13 \leq i \leq 18$. Assume that $F=F_{i}$ for any $11 \leq i \leq 18$. Since $\delta(G) \geq 3$ and G is P_{10}-free, it follows that $N_{G}(v)=\left\{w_{1}, w_{2}, w_{3}\right\}$ for some $v \in V(G) \backslash V(F)$. But then G contains a copy of $K_{3,3}$ because $n \geq 10$ and F contains $K_{2,3}$ as a subgraph with one part $\left\{w_{1}, w_{2}, w_{3}\right\}$, a contradiction. Assume then that $F=F_{i}$ for any $i \in[10]$. Since $\delta(G) \geq 3$ and G is P_{10}-free, it follows that for any $w \in V(G) \backslash V(F)$, $d_{G}(w)=3, w$ is complete to $\left\{u_{1}, u_{2}\right\}$ in G and every component of $G \backslash V(F)$ is isomorphic to K_{2}. This is only possible when n is odd. We see that $G \backslash V(F)=\frac{n-9}{2} K_{2}$. Hence, when n is odd, we see that $e(G) \leq e(F)+\frac{5(n-9)}{2} \leq 19+\frac{5 n-45}{2} \leq \frac{5 n-7}{2}$. With equality when $F=F_{6}$ or $F=F_{10}$, that is, when $G \in \mathcal{G}_{5, n}$.

6 Proof of Theorem 1.6

Let G and n be given as in the statement. Note that $\max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}=\frac{5 n-6}{2}$ when $n \geq 30$ and $\max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}=\frac{12 n}{5}$ when $n \leq 30$. By induction on n. Since any graph on at most 10
vertices is P_{11}-free and $|G| \geq 3$, we see that $e(G) \leq 3 n-6 \leq \frac{12 n}{5}$, with equality when $n=10$ and $G \in \mathcal{T}_{10}$. So we may assume that $n \geq 11$. We next show that $e(G) \leq \max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$. Let $x \in V(G)$ be a vertex with $d_{G}(x)=\delta(G)$. Then $G-x$ is a P_{11}-free planar graph on $n-1$ vertices. By the induction hypothesis, $e(G-x) \leq \max \left\{\frac{12}{5}(n-1), \frac{5}{2}(n-1)-3\right\}$ and so $e(G)=e(G-x)+d_{G}(x) \leq \max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$ when $d_{G}(x) \leq 2$. So we may assume that $d_{G}(x) \geq$ 3. Assume next that G is disconnected and H is one of its components. Then $|H| \geq 4$ and $|G \backslash V(H)| \geq 4$ since $\delta(G) \geq 3$. By the induction hypothesis, $e(H) \leq \max \left\{\frac{12}{5}|H|, \frac{5}{2}|H|-3\right\}$ and $e(G \backslash V(H)) \leq \max \left\{\frac{12}{5}|G \backslash V(H)|, \frac{5}{2}|G \backslash V(H)|-3\right\}$. Hence, $e(G)=e(H)+e(G \backslash V(H)) \leq$ $\max \left\{\frac{12}{5}|H|, \frac{5}{2}|H|-3\right\}+\max \left\{\frac{12}{5}|G \backslash V(H)|, \frac{5}{2}|G \backslash V(H)|-3\right\} \leq \max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$, with equality when H is planar triangulation on 10 vertices and $G \backslash V(H)$ is either planar triangulation on 10 vertices or the disjoint union of two planar triangulations on 10 vertices. Hence, $e(G) \leq \max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$, with equality when $n=20$ and $G=T_{1} \cup T_{2}$, or when $n=30$ and $G=T_{1} \cup T_{2} \cup T_{3}$, where $T_{1}, T_{2}, T_{3} \in \mathcal{T}_{10}$. Now suppose G is connected. Let P be a longest path in G with vertices $v_{1}, v_{2}, \ldots, v_{t}$ in order. Assume $d_{G}\left(v_{1}\right) \leq d_{G}\left(v_{t}\right)$ and $t \leq 10$ since G is P_{11}-free. By Lemma $2.3(\mathrm{c}), 6 \leq 2 \delta(G) \leq d_{G}\left(v_{1}\right)+d_{G}\left(v_{t}\right) \leq t-1 \leq 9$. Then $7 \leq t \leq 10$. If $t \in\{7,8,9\}$, then by Theorem 1.1 (when $t=7$), Theorem 1.2 (when $t=8$) and Theorem 1.5 (when $t=9$), we have $e(G)<\max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$, as desired. So now suppose $t=10$.

Let H be an induced subgraph of G on $V(P)$. Let ℓ_{v} denote the number of vertices of the longest path in H starting at v and $S=\left\{v \in V(H) \mid \ell_{v}=10\right\}$. Notice that $S \neq \emptyset$. Since G is connected, it follows that $S \neq V(H)$. Observe that $e_{H}\left(S^{\prime}\right)=e_{G}\left(S^{\prime}\right)$ for any $S^{\prime} \subseteq S$. Assume that there exists some $R \subseteq S$ with $e_{H}(R)<\frac{12}{5}|R|$. By the induction hypothesis, $e(G \backslash R) \leq \max \left\{\frac{12}{5}|G \backslash R|, \frac{5}{2}|G \backslash R|-3\right\}$. Hence, $e(G)=e_{G}(R)+e(G \backslash R)<$ $\frac{12}{5}|R|+\max \left\{\frac{12}{5}|G \backslash R|, \frac{5}{2}|G \backslash R|-3\right\} \leq \max \left\{\frac{12 n}{5}, \frac{5 n-6}{2}\right\}$. So we may assume that $e_{H}\left(S^{\prime}\right) \geq$ $\frac{12}{5}\left|S^{\prime}\right|$ for any $S^{\prime} \subseteq S$. Thus we have the following claim.

Claim. The graph G has an induced subgraph H on 10 vertices satisfying the properties: (1) H is planar; (2) $S \neq \emptyset$ and $S \neq V(H)$; (3) $e_{H}\left(S^{\prime}\right) \geq \frac{12}{5}\left|S^{\prime}\right|$ for any $S^{\prime} \subseteq S$.

It could be shown by computer that there are only 200 graphs with the above three properties, as depicted in Appendix 2. It can be observed that $\left(\ell_{w}\right)_{w \notin S}=\left(\ell_{x}, \ell_{y}, \ell_{u}, \ell_{v}\right)=$ $(8,8,9,9)$ when $H=H_{i}$ for any $i \in[28],\left(\ell_{w}\right)_{w \notin S}=\left(\ell_{x}, \ell_{y}, \ell_{u}, \ell_{v}\right)=(9,9,9,9)$ when $H=H_{i}$ for any $29 \leq i \leq 88,\left(\ell_{w}\right)_{w \notin S}=\left(\ell_{x}, \ell_{y}, \ell_{u}\right)=(8,8,9)$ when $H=H_{i}$ for any $89 \leq i \leq 118$, $\left(\ell_{w}\right)_{w \notin S}=\left(\ell_{x}, \ell_{y}, \ell_{u}\right)=(9,9,9)$ when $H=H_{i}$ for any $119 \leq i \leq 166$, and $\left(\ell_{w}\right)_{w \notin S}=$ $\left(\ell_{x}, \ell_{y}\right)=(8,8)$ when $H=H_{i}$ for any $167 \leq i \leq 200$.

Case 1. $H=H_{i}$ for any $i \in[28]$. Since $V(H) \backslash S=\{x, y, u, v\}, N_{H}(w) \subseteq\{x, y, u, v\}$ and $d_{H}(w) \leq 4$ for any $w \in V(G) \backslash V(H)$. We claim that $d_{H}(w) \leq 2$ for any $w \in V(G) \backslash V(H)$. Suppose $d_{H}(w) \geq 3$ for some $w \in V(G) \backslash V(H)$, then either $\{x, y\} \subseteq N_{H}(w)$ or $\{u, v\} \subseteq$ $N_{H}(w)$. If $\{u, v\} \subseteq N_{H}(w)$, then G contains P_{11} as a subgraph when $u v \in E(H)$, and G contains $K_{3,3}$-minor as a subgraph with one part $\{x, y,\{u, w, v\}\}$ when $u v \notin E(H)$. If $\{x, y\} \subseteq N_{H}(w)$, then G contains $K_{3,3}$-minor as a subgraph with one part $\{x, y,\{u, v\}\}$ or
$\{x, y, u\}$ or $\{x, y, v\}$. Now suppose $d_{H}(w) \leq 2$ for any $w \in V(G) \backslash V(H)$. Since $\delta(G) \geq 3$ and G is P_{11}-free, it follows that for any $w \in V(G) \backslash V(H), d_{G}(w)=3, w$ is complete to $\{x, y\}$ in G, and so each component is isomorphic to K_{2}. We see that $G \backslash V(H)=\frac{n-10}{2} K_{2}$. This is impossible when n is even. Hence, $e(G)=e(H)+\frac{5(n-10)}{2} \leq 22+\frac{5 n-50}{2} \leq \frac{5 n-6}{2}$. With equality when $H=H_{20}$ or $H=H_{28}$, that is, when $G \in \mathcal{G}_{6, n}$.

Case 2. $H=H_{i}$ for any $29 \leq i \leq 88$. Notice that $N_{H}(w)=N_{G}(w)$ for any $w \in$ $V(G) \backslash V(H)$. Since $V(H) \backslash S=\{x, y, u, v\}, N_{G}(w) \subseteq\{x, y, u, v\}$ and $d_{G}(w) \leq 4$ for any $w \in V(G) \backslash V(H)$. Since $\delta(G) \geq 3$, it follows that either $\{x, y\} \subseteq N_{H}(w)$ or $\{u, v\} \subseteq N_{H}(w)$ for any $w \in V(G) \backslash V(H)$. If $\{u, v\} \subseteq N_{H}(w)$, then G contains $K_{3,3}$-minor as a subgraph with one part $\{x, y,\{u, w, v\}\}$ or $\left\{u, v,\left\{x, y, w^{\prime}\right\}\right\}$, where $w^{\prime} \in N_{H}(x) \cap N_{H}(y)$. If $\{x, y\} \subseteq$ $N_{H}(w)$, then G contains $K_{3,3}$-minor as a subgraph with one part $\{x, y, u\}$ or $\{x, y, v\}$ or $\left\{x, y,\left\{u, w^{\prime}, v\right\}\right\}$, where $w^{\prime} \in N_{H}(u) \cap N_{H}(v)$.

Case 3. $H=H_{i}$ for any $89 \leq i \leq 166$. Since $V(H) \backslash S=\{x, y, u\}, N_{H}(w) \subseteq\{x, y, u\}$ and $d_{H}(w) \leq 3$ for any $w \in V(G) \backslash V(H)$. Notice that $G \backslash V(H)$ contains at most one vertex w with $d_{H}(w)=3$ since H contains $K_{1,3}$ as a subgraph with one part $\{x, y, u\}$. Hence, $e(G) \leq e(H)+3+2(n-11)=2 n+3<\frac{12 n}{5}$ when $H=H_{i}$ for any $119 \leq i \leq 166$. So next consider $H=H_{i}$ for any $97 \leq i \leq 118$. We see that $d_{H}(w)=2$ for any $w \in V(G) \backslash V(H)$ since G contains $K_{2,3}$-minor as a subgraph with one part $\{x, y, u\}$. Since $\delta(G) \geq 3$ and G is P_{11}-free, it follows that for any $w \in V(G) \backslash V(H), d_{G}(w)=3, w$ is complete to $\{x, y\}$ in G, and so each component is isomorphic to K_{2}. We see that $G \backslash V(H)=\frac{n-10}{2} K_{2}$. This is impossible when n is even. Hence, $e(G) \leq e(H)+\frac{5(n-10)}{2} \leq 22+\frac{5 n-50}{2} \leq \frac{5 n-6}{2}$. With equality when $H=H_{112}$ or $H=H_{118}$, that is, when $G \in \mathcal{G}_{6, n}$. Finally, consider $H=H_{i}$ for $89 \leq i \leq 96$. Since $\delta(G) \geq 3$ and G is P_{11}-free, it follows that for any $w \in V(G) \backslash V(H)$, $d_{G}(w)=3, w$ is complete to $\{x, y\}\left(\{x, y, u\}\right.$ when $\left.d_{H}(w)=3\right)$ in G, and so each component is isomorphic to K_{2} (isolated vertex when $d_{H}(w)=3$). Hence, $e(G) \leq e(H)+3+\frac{5(n-11)}{2} \leq$ $21+3+\frac{5 n-55}{2}=\frac{5 n-7}{2}$.

Case 4. $H=H_{i}$ for any $167 \leq i \leq 200$. Since $V(H) \backslash S=\{x, y\}, N_{H}(w) \subseteq\{x, y\}$ and $d_{H}(w) \leq 2$ for any $w \in V(G) \backslash V(H)$. Since $\delta(G) \geq 3$ and G is P_{11}-free, it follows that for any $w \in V(G) \backslash V(H), d_{G}(w)=3, w$ is complete to $\{x, y\}$ in G, and so each component is isomorphic to K_{2}. We see that $G \backslash V(H)=\frac{n-10}{2} K_{2}$. This is impossible when n is even. Hence, $e(G) \leq e(H)+\frac{5(n-10)}{2} \leq 22+\frac{5 n-50}{2} \leq \frac{5 n-6}{2}$. With equality when $H=H_{184}$ or $H=H_{186}$ or $H=H_{188}$ or $H=H_{190}$ or $H=H_{192}$ or $H=H_{200}$, that is, when $G \in \mathcal{G}_{6, n}$.

Acknowledgments. The authors would like to thank the anonymous referees for many valuable suggestions and comments, especially detailed proof idea for Theorems 1.3, 1.4 and 1.5 , which also prompts the addition of a new result (Theorem 1.6). The authors also would like to thank $\mathrm{Zi}-\mathrm{Xia}$ Song for helpful discussion and Shunyu Yao for his help on the computer program.

This work was partially supported by National Natural Science Foundation of China, Natural Science Foundation of Tianjin (No. 17JCQNJC00300), the China-Slovenia bilateral project "Some topics in modern graph theory" (No. 12-6), Open Project Foundation of Intelligent Information Processing Key Laboratory of Shanxi Province (No. CICIP2018005), and the Fundamental Research Funds for the Central Universities, Nankai University (63191516).

References

[1] Balister, P.N., Győri, E., Lehel, J., Schelp, R.H.: Connected graphs without long paths, Discrete Math. 308, 4487-4494 (2008)
[2] Bondy, J., Simonovits, M.: Cycles of even length in graphs, J. Combin. Theory Ser. B 16, 97-105 (1974)
[3] Bollobás, B.: Modern Graph Theory, Springer (2013)
[4] Dowden, C.: Extremal C_{4}-free/ C_{5}-free planar graphs, J. Graph Theory 83, 213-230 (2016)
[5] Erdős, P., Simonovits, M.: Compactness results in extremal graph theory, Combinatorica 2, 275-288 (1982)
[6] Erdős, P., Stone, A. H.: On the structure of linear graphs, Bull. Amer. Math. Soc. 52, 1087-1091 (1946)
[7] Faudree, R.J., Schelp, R.H.: Path Ramsey numbers in multicolourings, J. Combin. Theory Ser. B 19, 150-160 (1975)
[8] Füredi, Z.: Turán type problems, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 166, Cambridge Univ. Press, Cambridge, 253-300 (1991)
[9] Füredi, Z., Jiang, T.: Hypergraph Turán numbers of linear cycles, J. Combin. Theory Ser. A 123, 252-270 (2014)
[10] Füredi, Z., Jiang, T., Seiver, R.: Exact solution of the hypergraph Turán problem for k-uniform linear paths, Combinatorica 34, 299-322 (2014)
[11] Keevash, P.: Hypergraph Turán problems, Surveys in Combinatorics 2011, London Math. Soc. Lecture Note Ser. 392, Cambridge Univ. Press, Cambridge, 83-139 (2011)
[12] Kostochka, A., Mubayi, D., Verstraëte, J.: Turán problems and shadows I: Paths and cycles, J. Combin. Theory Ser. A 129, 57-79 (2015)
[13] Lan, Y., Shi, Y., Song, Z-X.: Extremal Theta-free planar graphs, arXiv:1711.01614
[14] Lan, Y., Shi, Y., Song, Z-X.: Extremal H-free planar graphs, Electron. J. Comb. 26(2019), 2.11.
[15] Turán, P.: Eine Extremalaufgabe aus der Graphentheorie, (Hungarian) Mat. Fiz. Lapok 48 436-452 (1941)

Appendix 1:

List of 18 graphs satisfying the three properties in Claim used in the proof of Theorem 1.5.

F_{1}

F_{4}

F_{16}

$$
F_{13}
$$

F_{17}

F_{18}

Appendix 2:

List of 200 graphs satisfying the three properties in Claim used in the proof of Theorem 1.6.

H_{156}

H_{132}

H_{137}

H_{142}

H_{157}

H_{158}

H_{159}

H_{160}

H_{196}

H_{168}

H_{170}

H_{183}
H_{184}

[^0]: *Corresponding author

