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Abstract

A path in an edge-colored graph G is called monochromatic if any two edges
on the path have the same color. For k ≥ 2, an edge-colored graph G is said
to be monochromatic k-edge-connected if every two distinct vertices of G are
connected by at least k edge-disjoint monochromatic paths, and G is said to
be uniformly monochromatic k-edge-connected if every two distinct vertices are
connected by at least k edge-disjoint monochromatic paths such that all edges
of these k paths colored with a same color. We use mck(G) and umck(G) to
denote the maximum number of colors that ensures G to be monochromatic
k-edge-connected and, respectively, G to be uniformly monochromatic k-edge-
connected. In this paper, we first conjecture that for any k-edge-connected graph
G, mck(G) = e(G) − e(H) + ⌊k2⌋, where H is a minimum k-edge-connected span-
ning subgraph of G. We verify the conjecture for k = 2. We also prove the
conjecture for G = Kk+1 when k ≥ 4 is even, and for G = Kk,n when k ≥ 4 is
even, or when k = 3 and n ≥ k. When G is a minimal k-edge-connected graph,
we give an upper bound of mck(G), i.e., mck(G) ≤ k−1, and mck(G) ≤ ⌊k2⌋ when
G = Kk,n. For the uniformly monochromatic k-edge-connectivity, we prove that
for all k, umck(G) = e(G) − e(H) + 1, where H is a minimum k-edge-connected
spanning subgraph of G.

Keywords: edge-coloring, monochromatic path, edge-connectivity, monochro-
matic k-edge connection number.
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1 Introduction

All graphs in this paper are simple and undirected. For a graph G, we use V (G), E(G)

to denote the vertex set and edge set of G, respectively, and e(G) the number of edges of

G. For all other terminology and notation not defined here we follow Bondy and Murty

[1].

For a natural number r, we use [r] to denote the set {1, 2, · · · , r} of integers. Let

Γ : E(G) → [r] be an edge-coloring of G that allows a same color to be assigned to

adjacent edges. For two vertices u and v of G, a monochromatic uv-path is a uv-path

of G whose edges are colored with a same color, and G is monochromatic connected

if any two distinct vertices of G are connected by a monochromatic path. An edge-

coloring Γ of G is a monochromatic connection coloring (MC-coloring) if it makes G

monochromatic connected. The monochromatic connection number of a connected graph

G, denoted by mc(G), is the maximum number of colors that are needed in order to

make G monochromatic connected. An extremal MC-coloring of G is an MC-coloring

that uses mc(G) colors.

The notion monochromatic connection coloring was introduced by Caro and Yuster

in [4]. Many results have been obtained; see [3, 6, 10, 14]. For more knowledge on the

monochromatic connections of graphs we refer to a survey paper [12]. Gonzlez-Moreno,

Guevara, and Montellano-Ballesteros in [5] generalized the above concept to digraphs.

Now we introduce the concept of monochromatic k-edge-connectivity of graphs. An edge-

colored graphG is monochromatic k-edge-connected if every two distinct vertices are con-

nected by at least k edge-disjoint monochromatic paths (allow some of the paths to have

different colors). An edge-coloring Γ of G is a monochromatic k-edge-connection coloring

(MCk-coloring) if it makes G monochromatic k-edge-connected. The monochromatic k-

edge-connection number, denoted by mck(G), of a connected graph G is the maximum

number of colors that are needed in order to make G monochromatic k-edge-connected.

Since we can color all the edges of a k-edge-connected graph by distinct colors, mck(G)

is well-defined. An extremal MCk-coloring of G is an MCk-coloring that uses mck(G)

colors.

In an edge-colored graph G, we say that a subgraph H of G is induced by color i

if H is induced by all the edges with a same color i of G. If a color i only color one

edge of E(G), then we call the color i is a trivial color, and the edge is a trivial edge;

otherwise, we call the colors (edges) non-trivial. We call an extremal MCk-coloring a

good MCk-coloring of G if the coloring has the maximum number of trivial edges.

Suppose thatX is a proper vertex subset of G. We use E(X) to denote the set of edges

with both ends in X . For a graph G and X ⊂ V (G), to shrink X is to delete all edges in
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E(X) and then merge the vertices of X into a single vertex. A partition of a vertex set

V is to divide V into some mutual disjoint nonempty sets. Suppose P = {V1, · · · , Vs} is

a partition of V (G). Then G/P is a graph obtained from G by shrinking every Vi into

a single vertex.

An edge e of a k-edge-connected graph G is deletable if G\e is also a k-edge-connected

graph. A k-edge-connected graph G is minimally k-edge-connected if none of its edges

is deletable. A minimal k-edge-connected spanning subgraph of G is a k-edge-connected

spanning graph of G that does not have any deletable edges. A minimum k-edge-

connected spanning subgraph of G is a minimal k-edge-connected spanning subgraph of

G that has minimum number of edges. The next result was obtained by Mader.

Theorem 1.1 (Mader [13]). Let G be a minimally k-edge-connected graph of order n.

Then

1. e(G) ≤ k(n− 1).

2. every edge e of G is contained in a k-edge cut of G.

3. G has a vertex of degree k.

The following theorem was proved by Nash-Williams and Tutte independently.

Theorem 1.2 ([15] [16]). A graph G has at least k edge-disjoint spanning trees if and

only if e(G/P) ≥ k(|G/P| − 1) for any vertex partition P of V (G).

We denote ψ(G) = min|P|≥2
e(G/P)
|G/P|−1

, and Ψ(G) = ⌊ψ(G)⌋. Then the Nash-Williams-

Tutte theorem can be restated as follows.

Theorem 1.3. A graph G has exactly k edge-disjoint spanning trees if and only if

Ψ(G) = k.

If Γ is an extremalMCk-coloring of G, then each color-induced subgraph is connected;

otherwise we can recolor the edges of one of its components by a fresh color, and then

the new coloring is also anMCk-coloring of G, but then the number of colors is increased

by one, which contradicts that Γ is extremal.

For the monochromatic k-edge-connection number of graphs, we conjecture that the

following statement is true.

Conjecture 1.4. For a k-edge-connected graph G with k ≥ 2, mck(G) = e(G)− e(H)+

⌊k
2
⌋, where H is a minimum k-edge-connected spanning subgraph of G.
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In Section 2, we will prove that the conjecture is true for k = 2, and that it is also true

for some special graph classes. We also give a lower bound of mck(G) for 2 ≤ k ≤ Ψ(G),

and an upper bound of mck(G) for minimally k-edge-connected graphs with k ≥ 2.

The following lemma seems easy, but it is useful for some proofs in Section 2.

Lemma 1.5. Suppose that G is a 2-edge-connected graph and H is a 2-edge-connected

subgraph of G. Let S be subset of E(G) whose ends are contained in V (H) such that

S ∩ E(H) = ∅. Then G\S is also a 2-edge-connected graph.

Proof. We need to show that for any u, v in G\S there are at least two edge-disjoint

paths connecting them. From the condition, there are two edge-disjoint uv-path P1, P2

in G. Suppose a1 is the first vertex of V (P1) from u to v contained in V (H), and a2 is

the first vertex of V (P2) from u to v contained in V (H) (if u ∈ V (H), then u = a1 = a2);

suppose b1 is the last vertex from u to v contained in V (H), and b2 is the last vertex of

V (P2) from u to v contained in V (H) (if v ∈ V (H), then v = b1 = b2). Let Li = uPiai
and Li+2 = biPiv, i = 1, 2. Because each of Li does not contain any edge of S and H is

a 2-edge-connected graph, we have that H ∪
⋃

i∈[4] Li is also a 2-edge-connected graph

of G\S. Therefore, there are two edge-disjoint uv-paths in G\S.

In Section 3, we introduce other version of monochromatic k-edge-connection of graphs,

i.e., uniformly monochromatic k-edge-connection of graphs, and get some results. For

details we will state them there.

2 Results on the monochromatic k-edge-connection

number

Theorem 2.1. Conjecture 1.4 is true when G and k satisfy one of the following condi-

tions:

1. k = 2, i.e., G is a 2-edge-connected graph.

2. G = Kk+1 where k ≥ 4 is even.

3. G = Kk,n where k ≥ 4 is even, and k = 3 and n ≥ k.

We restate the first result of Theorem 2.1 as follows.

Theorem 2.2. Let G be a 2-edge-connected graph. Then mc2(G) = e(G) − e(H) + 1,

where H is a minimum 2-edge-connected spanning subgraph of G.
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The following is the proof of Theorem 2.2. For convenience, we abbreviate the term

“monochromatic path” as “path” in the proof.

Let Γ be a good MC2-coloring of G. Then we denote the set of non-trivial colors

of Γ by [r], and denote Gi as a subgraph induced by the color i; subject to above, let

p(Γ) = Σi∈[r]p(Gi) be maximum, where p(Gi) is the number of non-cut edges of Gi. It

is obvious that each of these edges is contained in some cycles of Gi.

Claim 2.3. Each Gi is either a 2-edge-connected graph or a tree.

Proof. Suppose that Gi is neither a 2-edge-connected graph nor a tree, i.e., Gi contains

both non-trivial blocks and cut edges. Therefore we can choose a cut edge e = uv ∈

E(Gi) such that v belongs to a maximal 2-edge-connected subgraph B of Gi (actually,

B is the union of some non-trivial blocks). Because B is a 2-edge-connected subgraph

of Gi, each of its vertices belongs to a cycle. Let v be contained in a cycle C of B and

e′ = vw be an edge of C. Because e is a cut edge of Gi, there is just one uw-path in

Gi (the uw-path is P ). Therefore, there exists another uw-path P ′, which is colored

differently from i.

If P ′ is a path colored by j, then we can obtain a new coloring Γ′ of G from Γ by

recoloring all edges of Gi−e
′ with j. We first prove that Γ′ is anMC2-coloring of G, i.e.,

we need to prove that for any two vertices a, b of V (G), there are at least two ab-paths

under Γ′. If at least one vertex of a, b does not belong to V (Gi), then the two ab-paths

are colored differently from i. Because we just change the color i, the two ab-paths are

not affected; if both of a, b belong to V (Gi) and at least one of them does not belong to

V (B), then we can choose a right ab-path such that it does not contain e′ (under Γ), and

so there are at least two ab-paths under Γ′; if both a, b ∈ V (B), then the two ab-paths

under Γ (call them L1, L2) belong to B. If e′ is not an edge of any L1, L2, then the two

ab-paths are not affected. Otherwise, let e′ ∈ E(L1), and then L = L1 − e′ + e+ P ′ is a

trial connecting a, b. Because E(L) ∩ E(L2) = ∅, there are two ab-paths under Γ′.

According to the above, Γ′ is an MC2-coloring of G. If j ∈ [r] is a non-trivial color,

then the number of colors has not changed, but the number of trivial edges is increased

by one, which contradicts that Γ is good; otherwise, if j is a trivial color, i.e., uw is a

trivial edge, then the new coloring Γ′ is a good MC2-coloring (the number of colors and

non-trivial edges have not changed), but compared to p(Γ), p(Γ′) is increased by one,

which contradicts that p(Γ) is maximum. Therefore, we have proved that Gi is either a

2-edge-connected graph or a tree.

By Claim 2.3, each Gi is either a 2-edge-connected graph or a tree. Suppose there are

h trees and s = k− h 2-edge-connected graphs. W.l.o.g., suppose that G1, · · · , Gs are s

5



2-edge-connected graphs and Gs+1 = T1, · · · , Gk = Th are h trees. Gi colored by i and

Fj colored by s + j. For convenience, we also call the color of Fj j when there is no

confusion.

Claim 2.4. For each Gi and Tj, let e = uv ∈ E(Gi) and e′ = xy ∈ E(Tj). Then at

most one of u, v belongs to V (Tj), and at most one of x, y belongs to V (Gi).

Proof. We prove it by contradiction, i.e., suppose that there exist Gi and Tj , and there

exist e = uv ∈ E(Gi) and e
′ = xy ∈ E(Tj), such that either u, v ∈ V (Tj) or x, y ∈ V (Gi).

Case 1: Suppose u, v ∈ V (Tj). Then we recolor E(Gi)− e by j and keep the color of

e. We now prove that the new coloring (call it Γ′) is an extremal MC2-coloring of G.

We denote the segment of uTjv by L. For any pair of vertices a, b of V (G), if at least

one vertex does not belong to V (Gi), then the two ab-paths colored differently from

i under Γ. Because we just change the color i, the two ab-paths are not affected; if

a, b ∈ V (Gi), because Gi + L − e is also 2-edge-connected, then there are two ab-paths

(with the same color j) under Γ′. Therefore, Γ′ is an MC2-coloring, and because the

number of colors are not changed, Γ′ is still an extremal MC2-coloring. However, the

number of non-trivial edges is increased (e becomes a trivial edge), which contradicts

that Γ is good.

Case 2: Suppose x, y ∈ V (Gi). Then we recolor E(Tj)− e′ with i and keep the color

of e′. We now prove that the new coloring (call it Γ′) is an extremal MC2-coloring of G.

For any vertices pair a, b of V (G), if at least one of a, b does not belong to V (Tj),

then the two ab-paths colored differently from j. Because we just change the color j,

the two ab-paths are not affected; if a, b ∈ V (Tj) and at leat one of a, b does not belong

V (Gi), then there is just one ab-path of Tj and the other ab-paths colored differently

from i under Γ. Because Gi ∪ (Tj\e
′) is connected and all of them colored by i under Γ′,

there are two ab-paths under Γ′; if both a, b ∈ V (Gi), then there are two ab-paths (with

the same color i) under Γ′. Above all, Γ′ is an MC2-coloring of G. Because the number

of colors are not changed, Γ′ is an extremal MC2-coloring of G. However, the number

of non-trivial edges is increased (e′ becomes a trivial edge), which contradicts that Γ is

good.

By Claim 2.4, for each edge e′ = xy of a Tj , the other xy-paths belong to some Tq; for

each edge e = uv of a Gi, the other uv-paths belong to some Gl.

Claim 2.5. h = 0, i.e., Gi is a 2-edge-connected graph for any i ∈ [r].

Proof. If h 6= 0, for an edge e1 = v1u1 ∈ E(T1), because P1 = e1 = v1u1 is the only

v1u1-path of T1, there exists another v1u1-path P2, then |P2| ≥ 2 (because G is simple),
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and therefore the color of P2 is non-trivial. By Claim 2.4, P2 belongs to some Tj, w.l.o.g.,

suppose j = 2. Then e1 + T2 contains a unique cycle C1. Let f1 = v1u2 is a pendent

edge of P2, and e2 = v2u2 is the edge adjacent to f1 in P2. Then there exists a v2u2-

path P3 in T3 and e2 + T3 contains a unique cycle C2. Let f2 = v2u3 is a pendent edge

of P3, and e3 = v3u3 is the edge adjacent to f2 in P3. By repeating the process, we

get a series of trees T1, T2, · · · , paths P1, P2, · · · and edges f1 = v1u2, f2 = v2u3, · · · ,

etc. Because there are at most h < ∞ trees, there is a Td which is the first tree

appearing before (w.l.o.g., suppose Td = T1), and the vd−1ud−1-path Pd is contained in

Td = T1. Because there are at least two trees in this sequence, we have d− 1 ≥ 2. Then

f1 ∈ T2, f2 ∈ T3, · · · , fd−2 ∈ Td−1; P2 ∈ T2, P3 ∈ T3, · · · , Pd ∈ Td = T1, etc. T1, · · · , Td−1

are different trees. Let H =
⋃

i∈[d−1] Ti.

In order to complete the proof, we need to construct a 2-edge-connected subgraph T

of H , a connected graph H ′, and an edge set B of H with |B| = d− 2 below.

Case 1: e1 /∈ E(Pd).

We have already discussed above that C1 = P2+e1, C2 = P3+e2, · · · , Cd−1 = Pd+ed−1.

So, T = C1 + C2 − e2 + C3 − e3 + · · · + Cd−1 − ed−1 =
⋃d−1

i=1 Ci − B is a closed trail,

where B =
⋃d−1

i=2 ei, see Fig.1(1). Therefore, T is a 2-edge-connected graph. Because the

ends of every edge in B belong to V (T ), we have that H ′ =
⋃

i∈[d−1] Ti\B is a connected

graph.

Case 2: e1 ∈ E(Pd).

Suppose F1, F2 are two small trees of T1\e1 and let v1 ∈ V (F1), u1 ∈ V (F2). Then

there is a ud−1v1-path L1 and a vd−1u1-path L2 (if ud−1 connects u1 and vd−1 connects

v1, the situation is similar). Let

T ′ = v1e1u1P2u2P3u3 · · ·Pd−2ud−2Pd−1ud−1L1v1

and

T ′′ = u1P2u2P3u3 · · ·Pd−2ud−2Pd−1vd−1L2u1.

It is obvious that both of T ′ and T ′′ are closed trails and

T ′ ∩ T ′′ = u1P2u2 · · ·Pd−2ud−2Pd−1vd−1

is a trail. Therefore, T = T ′ ∪ T ′′ =
⋃d−1

i=1 Ci − B is a 2-edge-connected graph, where

B =
⋃d−2

i=1 fi, see Fig.1(2). Because the ends of each edge in B belong to V (T ), H ′ =⋃
i∈[d−1] Ti\B is a connected graph.

In above two cases, T is a 2-edge-connected subgraph of H , and B is an edge set of

H with |B| = d− 2. We recolor each edges of H−B by 1 and recolor each edge of B by

different new colors, denote the new coloring of G by Γ′. Then the total number of colors
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Figure 1

is not changed, but the number of trivial colors is increased by |B| = d−2 ≥ 1. In order

to complete the proof by contradiction, we need to prove that Γ′ is an MC2-coloring,

i.e., we need to prove that for two distinct vertices x, y of G, there are 2 edge-disjoint

xy-paths under Γ′. There are three cases to discuss.

(I) At least one of x, y does not belong to V (H). Then the two xy-paths do not belong

to any T1, · · · , Td−1. Because we just change the colors of T1, · · · , Td−1, the two xy-paths

are not affected from Γ to Γ′.

(II) Both of x, y belong to V (H), but at least one of them does not belong to V (T ).

If there is just one xy-path in H under Γ, then another xy-path will not be affected.

Because H ′ is connected, there are also two edge-disjoint xy-paths under Γ′.

If there are two xy-paths L1, L2 in H under Γ. Suppose ai is the first vertex of Li

contained in V (T ) from x to y, and bi is the last vertex of Li contained in V (T ) from x to

y, i = 1, 2. Let Qi = xLiai and Qi+2 = biLiy, i = 1, 2. Because T is a 2-edge-connected

graph, T ∪
⋃

i∈[4]Qi is also a 2-edge-connected graph, i.e., there are two edge-disjoint

xy-paths under Γ′.

(III) Both of x, y belong to V (T ). Then because T is a 2-edge-connected graph, there

are two edge-disjoint xy-path under Γ′.

Claim 2.6. s = 1, i.e., all the non-trivial edges belong to G1.

Proof. The proof is done by contradiction. If s ≥ 2, by Claim 2.3, each Gi is a 2-

8



edge-connected graph. Thus, V (G1)\V (G2) 6= ∅ and V (G2)\V (G1) 6= ∅; for otherwise,

w.l.o,g, suppose V (G1) ⊆ V (G2). Recoloring all the edges of G1 by different new colors,

then the new coloring is an MC2-coloring of G but it has more colors than Γ, which

contradicts that Γ is extremal.

Let a ∈ V (G1)\V (G2) and b ∈ V (G2)\V (G1). Suppose Ga =
⋃

i∈ca
Gi where ca =

{i : a ∈ V (Gi)}. Let t be the minimum integer such that V (G2) ⊆ V (
⋃

j∈[t]Gij ) where

ij ∈ ca. Then t ≤ |G2|. Recoloring the edges of each Gij by i1, and recoloring the edges

of G2 by different new colors. Then the new coloring is an MC2-coloring of G. Because

e(G2) ≥ |G2| ≥ t, the number of colors is not decreased. However, the number of trivial

colors is increased, which contradicts that Γ is good.

Claim 2.7. G1 is a minimum 2-edge-connected spanning subgraph of G.

Proof. Because s = 1 and h = 0, there is just one non-trivial color (call it 1). Then G1 is

a 2-edge-connected spanning subgraph of G; for otherwise, there is a vertex w /∈ V (G1),

and then there is just one uw-path (which is a trivial path) for any u ∈ V (G1), a

contradiction.

If G1 is not minimum, we can choose a minimum 2-edge-connected spanning subgraph

H of G with e(G1) > e(H). Coloring each edge of H by a same color and coloring the

other edges by trivial colors. Then the new coloring is an MC2-coloring of G, but there

are more colors than Γ, which contradicts that Γ is extremal.

Proof of Theorem 2.2: Actually, the theorem can be proved directly by Claims 2.5,

2.6 and 2.7. Because Γ is an extremal MC2-coloring of G, and the non-trivial color-

inducted subgraph is just G1, which is a minimum 2-edge-connected spanning subgraph

of G. So, mc2(G) = e(G)− e(H) + 1 where H is a minimum 2-edge-connected spanning

subgraph of G. �

We have proved that if Γ is a coloring of G in Theorem 2.2, then there is just one non-

trivial color 1 and H = G1 is a minimum 2-edge-connected spanning subgraph of G. If

G has t blocks, then H also has t blocks, and each block is a minimum 2-edge-connected

spanning subgraph of the corresponding block of G. Furthermore, the number of edges

of H is greater than or equal to n + t− 1 (equality holds if each block of H is a cycle).

So, the following result is obvious.

Corollary 2.8. If G is a 2-edge-connected graph with t blocks B1, · · · , Bt, thenmc2(G) =∑
i∈[t]mc2(Bi)− t + 1, and mc2(G) ≤ e(G)− n− t+ 2.

A cactus is a connected graph where every edge lies in at most one cycle. If G is a

cactus without cut edges, then every edge lies in exactly one cycle. It is obvious that
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G will have cut edge when deleting any edge, and so G is a minimal 2-edge-connected

graph. A minimal k-edge-connected graph is also the minimum k-edge-connected span-

ning subgraph of itself, and this fact will not be declared again later.

Corollary 2.9. If G is a cactus without cut edge, then mc2(G) = 1.

We have proved the first result of Theorem 2.1. Next we will prove the remaining

two results. Before this, we give an upper bound of mck(G) for G being a minimal

k-edge-connected graph. The following lemma is necessary for our later proof.

Lemma 2.10. Let G be a minimal k-edge-connected graph and Γ be an extremal MCk-

coloring of G (suppose mck(G) = t), and let Gi be the subgraph induced by the edges of

color i, 1 ≤ i ≤ t. Then each Gi is a spanning subgraph of G.

Proof. We prove it by contradiction. Suppose Gi is not a spanning subgraph of G. Let

v /∈ V (Gi). Then for any u 6= v, none of the k edge-disjoint monochromatic uv-paths

is colored by i. Let e be an edge colored by i. By Theorem 1.1, there exists an edge

cut C(G) such that e ∈ C(G) and |C(G)| = k. Then G\C(G) has two components

M1,M2 (in fact, C(G) is a bond of G). Let v ∈ V (M1) and some w ∈ V (M2). Then the

k edge-disjoint monochromatic vw-paths are retained in G\e. However, C(G)\e is an

edge cut of G\e that separates v and w, and |C(G)\e| = k − 1, which contradicts that

there are k edge-disjoint monochromatic vw-paths in G\e.

Theorem 2.11. If G is a minimal k-edge-connected graph with k ≥ 2, then mck(G) ≤

k − 1.

Proof. We prove it by contradiction. Suppose mck(H) ≥ k. Let Γ be an extremal

MCk-coloring of G. Then by Lemma 2.10, there are at least k edge-disjoint spanning

subgraphs of G. Because there exists a vertex of G with degree k, there are exactly k

edge-disjoint spanning subgraphs of G, denoted by G1, · · · , Gk. Because G is a minimal

k-edge-connected graph, by Theorem 1.1, e(G) ≤ k(n−1), which allows all of G1, · · · , Gk

to be spanning trees of G.

Because k ≥ 2, there are at least two spanning trees G1, G2, and so G1 ∪ G2 is a

2-edge-connected spanning subgraph of G. Let e = uv be an edge of G1 and let P1 be

the uv-path of G2. Suppose e1 = uu1 and e2 = vv1 are two terminal edges of P1. Let P2

be the uu1-path of G1 and let P3 be the vv1-path of G1.

Case 1: If one of P2 and P3 does not contain e, w.l.o.g., suppose P2 does not contain

e. Then T = uP2u1P1veu is a 2-edge-connected graph (in fact, T is a closed trail, see

Fig.2(1)). Because u, u1 ∈ V (T ), by Lemma 1.5, (G1 ∪ G2)\e1 is a 2-edge-connected

subgraph of G.

10



Case 2: If both P2 and P3 contain e, then T = uevP2u1P1v1P3u is a 2-edge-connected

graph (in fact, T is a closed trail, see Fig.2(2)). Because u, u1 ∈ V (T ), by Lemma 1.5,

(G1 ∪G2)\e1 is a 2-edge-connected subgraph of G.

Figure 2

The coloring Γ′ obtained from Γ by assigning 1 to the edges of G2\e1 and assigning

a new color to e1. From above two cases, (G1 ∪ G2)\e1 is a 2-edge-connected spanning

subgraph of G and G3, · · · , Gk are spanning subgraph of G. So, every two vertices are

also connected by k monochromatic paths and the number of colors is not changed, i.e.,

Γ′ is also an extremalMCk-coloring of G. While e is a single edge, that would contradict

that each induced subgraph is spanning by Lemma 2.10.

Before proving the second result of Theorem 2.1, we introduce a well-known result.

Fact 2.12. K2n+1 can be decomposed into n edge-disjoint Hamiltonian cycles; K2n+2

can be decomposed into n edge-disjoint Hamiltonian cycles and a perfect matching.

Theorem 2.13. mc2n(K2n+1) = n for n ≥ 2.

Proof. By Fact 2.12, K2n+1 can be decomposed into n edge-disjoint Hamiltonian cycles

C1, · · · , Cn. Color each Ci by i ∈ [n], and then the coloring is an MC2n-coloring of

K2n+1. So, mc2n(K2n+1) ≥ n.

We need to prove that mc2n(K2n+1) ≤ n to complete our proof. The proof is done by

contradiction. Suppose mc2n(K2n+1) = t ≥ n+ 1. Let Γ be an extremal MC2n-coloring

of K2n+1 and let Gi be the subgraph induced by all the edges with color i, 1 ≤ i ≤ t.

11



Because K2n+1 is a minimal 2n-edge-connected graph, by Lemma 2.10 we have that

each Gi is a spanning subgraph of G. If t ≥ 2n, then

n(2n+ 1) = e(K2n+1) = e(
⋃

i∈[t]

Gi) ≥ 2tn ≥ 4n2,

which is a contradiction. Otherwise, if t < 2n, then not every Gi is a spanning tree

(for otherwise, every two vertices are just connected by t < 2n monochromatic paths).

To ensure that every two vertices are connected by at least 2n monochromatic paths,

there are at least 2n− t Gi that are 2-edge-connected. Therefore, the number of edges

of
⋃

i∈[t]Gi satisfies

e(
⋃

i∈[t]

Gi) ≥ (2n+ 1)(2n− t) + 2(t− n) · 2n = t(2n− 1) + 2n ≥ 2n2 + 3n− 1.

This contradicts that
⋃

i∈[t]Gi = K2n+1 and e(K2n+1) = n(2n+ 1).

Before prove the third result of Theorem 2.1, we introduce another well-known result.

Fact 2.14. K2n,2n can be decomposed into n Hamiltonian cycles and K2n+1,2n+1 can be

decomposed into n Hamiltonian cycles and a perfect matching.

Theorem 2.15. If n ≥ k ≥ 3, then mck(Kk,n) ≤ ⌊k
2
⌋.

Proof. Let Γ be an extremal MCk-coloring with t colors and let Gi be the subgraph

of G induced by the edges with color i. Because Kk,n is a minimal k-edge-connected

graph, by Lemma 2.10 each Gi is a spanning subgraph of G. Let A,B be the bipartition

(independent sets) of G with |A| = n and |B| = k. Then each vertex in A has degree k.

We prove that mck(Kk,n) ≤ ⌊k
2
⌋ by contradiction. Suppose mck(Kk,n) = t ≥ ⌊k

2
⌋ + 1.

For a vertex u of A, let dGi
(u) = ri. Then

∑
i∈[t] ri = k and each ri ≥ 1. Because every

two vertices of A are connected by k edge-disjoint monochromatic paths, and the degree

of every vertex in A is k, we have that for each u ∈ A, dGi
(u) = ri. Because t ≥ ⌊k

2
⌋+1,

there is a color i such that dGi
(u) = 1, i.e., all vertices of A are leaves of Gi. Because

Kk,n is a bipartite graph with bipartition A and B, Gi is a perfect matching if n = k,

and Gi is the union of k stars if n > k, both of which contradict that Gi is a connected

spanning subgraph of G. Therefore, mck(Kk,n) ≤ ⌊k
2
⌋.

Corollary 2.16. Conjecture 1.4 is true for G = Kk,n, where k is even and n ≥ k ≥ 4;

it is also true for G = K3,n, where k = 3 ≤ n.

Proof. If k = 2l is even, then we prove that mck(Kk,n) = ⌊k
2
⌋ = l. Actually, we only

need to construct an MCk-coloring of Kk,n with l colors. Let A1 be a subset of A with

12



k vertices and A2 = A − A1, and let H be the subgraph of Kk,n whose vertex set is

A1 ∪ B. Then H = Kk,k, and by Fact 2.14 H can be decomposed into l Hamiltonian

cycles {C1, · · · , Cl}. Because the degree of each vertex in A2 is k = 2l, we mark each

two edges incident with v ∈ A2 with i, 1 ≤ i ≤ l. Let Ei be the edge set with mark

i, and let Gi = Ci ∪ Ei. It is obvious that Gi is a 2-edge-connected spanning graph of

Kk,n. We color every edge of Gi by i, and then we find an MCk-coloring of Kk,n with l

colors.

Because K3,n is a minimal 3-edge-connected graph for n ≥ 3, and an MC3-coloring

of K3,n assigns color 1 to all its edges, we have mc3(K3,n) ≥ 1. By Theorem 2.15,

mc3(K3,n) ≤ 1, and thus mc3(K3,n) = 1.

If k ≤ Ψ(G), then G is k-edge-connected. By Theorem 1.3, there are k edge-disjoint

spanning trees T1, · · · , Tk of G and we color E(G) such that each Ti is colored by i.

Then any two vertices u, v are connected by at least k monochromatic uv-paths with

different colors. So, we have the following result.

Corollary 2.17. For a graph G with Ψ(G) ≥ k ≥ 2, mck(G) ≥ e(G)− k(n− 2).

3 Results for uniformly monochromatic

k-edge-connection number

The monochromatic k-edge-connected graph allows k edge-disjoint monochromatic

paths between any two vertices of the graph. In this section, we generalize the concept

of monochromatic k-edge-connection to uniformly monochromatic k-edge-connection,

and get some results.

An edge-colored k-edge-connected graph G is uniformly monochromatic k-edge-connec

ted if every two distinct vertices are connected by at least k edge-disjoint monochromatic

paths of G such that all these k paths have the same color. Note that for different pairs

of vertices the paths may have different colors. An edge-coloring Γ of G is a uniformly

monochromatic k-edge-connection coloring (UMCk-coloring) if it makes G uniformly

monochromatically k-edge-connected. The uniformly monochromatic k-edge-connection

number, denoted by umck(G), of a k-edge-connected graph G is the maximum number of

colors that are needed in order to make G uniformly monochromatic k-edge-connected.

An extremal UMCk-coloring of G is an UMCk-coloring that uses umck(G) colors. We

call an extremal UMCk-coloring a good UMCk-coloring of G if the coloring has the

maximum number of trivial edges. A uniformly monochromatic k-edge-connected graph

is also a monochromatic connected graph when k = 1.
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Theorem 3.1. Let G be a k-edge-connected graph with k ≥ 2. Then umck(G) = e(G)−

e(H) + 1, where H is a minimum k-edge-connected spanning subgraph of G.

We prove the theorem below. For convenience, we abbreviate “monochromatic uv-

path” as “uv-path”. Let Γ be a good UMCk-coloring of G. Then, suppose that the

number of non-trivial colors of Γ is t and denote the set of them by [t]. Let Gi be

the subgraph of G induced by the edges with a non-trivial color i, 1 ≤ i ≤ t. Let

G′ =
⋃

i∈[t]Gi.

Claim 3.2. Each Gi is k-edge-connected.

Proof. Let πi denote the set of pairs (u, v) such that there are at least k edge-disjoint

uv-paths colored by i ∈ [t]. Therefore, any vertex pair (u, v) belongs to some πi.

We first prove it by contradiction that each Gi is k-edge-connected.

Suppose that Gi is not a k-edge-connected graph. Then there exists a bond C(Gi)

with |C(Gi)| ≤ k − 1, and Gi\C(Gi) has two components M1 and M2. Let e = vu be

an edge of C(Gi), u ∈ V (M1), v ∈ V (M2). Then there are at most |C(G)| ≤ k − 1

edge-disjoint paths in Gi between u, v. Therefore there exists a j 6= i of [t] such that

there are at least k edge-disjoint uv-paths of Gj .

Recolor edges of Gi − e with j and keep the color of e, and denote the new coloring

of G by Γ′.

Because any non-trivial color r 6= i is not changed. So, under Γ′, any pair (x, y) ∈ πr
also have at least k edge-disjoint xy-paths colored r. For any pair (x, y) = πi, if any

k edge-disjoint xy-paths (Note that P1, · · · , Pk) of Gi under Γ do not contain e. Then

these k edge-disjoint xy-paths are retained. Otherwise, there is a path (Note that P1)

contains e. We choose a path P of Gj whose terminals are u, v. Then T = (P1\e) ∪ P

is a trail between x, y and E(T ) ∩
⋃

l 6=1E(Pl) = ∅. Let P ′ be a xy-path of T . Then

P ′, P2, · · · , Pk are k edge-disjoint xy-paths colored by j (under Γ′). Therefore, Γ′ is still

an extremal UMCk-coloring of G, but then e becomes to a trivial edge, which contradicts

that Γ is good. So, each Gi is k-edge-connected.

By Claim 3.2, because k ≥ 2, we have e(Gi) ≥ |Gi| ≥ 3. Denote Gx =
⋃

x∈V (Gi)
Gi,

Fx = G′ −Gx.

Claim 3.3. Each Gx is a k-edge-connected spanning subgraph of G. Furthermore, Fx =

∅.

Proof. If there is an x ∈ V (G) such that Gx is not a spanning subgraph of G, then there

is a vertex y ∈ V (G)\V (Gx). Because G is a simple graph and k ≥ 2, any two vertices
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are connected by at least one non-trivial path. It is obvious that there are no non-trivial

xy-path, a contradiction. Therefore, Gx is a spanning subgraph of G.

Because each Gi is k-edge-connected, Gx is also k-edge-connected. Therefore, each

Gx is a k-edge-connected spanning subgraph of G.

Now we prove that Fx = ∅. Otherwise, if Fx 6= ∅, then there is a Gj ⊆ Fx and |Gj | ≥ 3.

Suppose that s is the minimum number such that V (Gj) ⊆
⋃

r∈[s]Gir , where Gi1 , · · · , Gis

are contained in Gx. Then, s ≤ |Gj|. Because k ≥ 2, we have e(Gj) ≥ |Gj| ≥ s. We have

obtained a new coloring Γ′ from Γ by recoloring each Gi1 , · · · , Gis by i1 and recoloring

each edge of Gj by different new colors. Because G∗ =
⋃

r∈[s]Gir is k-edge-connected

graph, each pair (a, b) with (a, b) ∈ {πi1 , · · · , πis, πj} has k-edge-disjoint ab-paths colored

i1 under Γ′. It is easy to check that Γ′ is a UMCk-coloring. Then, the number of colors

is not decreased, but the number of trivial colors is increased by at least e(Gj) ≥ 3,

which contradicts that Γ is good. So, Fx = ∅.

Claim 3.4. t = 1 and G1 is a minimum k-edge-connected spanning subgraph of G.

Proof. Suppose t ≥ 2. Then V (G1)\V (G2) 6= ∅. Otherwise, if V (G1) ⊆ V (G2), then

(u, v) ∈ π2 when (u, v) ∈ π1. We can recolor all edges of G1 by fresh colors, and then

the new coloring is also a UMCk-coloring of G but the number of colors is increased,

which contradicts that Γ is extremal. So, V (G1)\V (G2) 6= ∅, and there is a vertex a ∈

V (G1)\V (G2), i.e., G2 * Ga, G2 ⊆ Fa. By Claim 3.3, we have Fa = ∅, a contradiction.

Therefore, t = 1, and thus G1 = Ga is a spanning subgraph of G.

In fact, G1 is a minimum k-edge-connected spanning subgraph of G; otherwise, there

exists a minimum k-edge-connected spanning subgraph H of G such that e(H) < e(G1).

Coloring each edge of H by 1 and coloring the other edges by some different new colors.

Then the coloring is a UMCk-coloring of G with more colors, which contradicts that Γ

is extremal.

Proof of Theorem 3.1: We can prove Theorem 3.1 directly by Claim 3.4. �

Because any k-edge-connected graph G has the minimum degree δ(G) ≥ k, by Theo-

rem 1.1 we have that 1
2
kn ≤ e(H) ≤ k(n− 1), where H is a minimum k-edge-connected

spanning subgraph of G.

Corollary 3.5. For a k-edge-connected graph G with k ≥ 2, e(G) − k(n − 1) + 1 ≤

umck(G) ≤ e(G)− 1
2
kn + 1.

By definition, a k-edge-connected graph G satisfies that umck(G) ≤ mck(G). There-

fore, mck(G) ≥ e(G)− e(H) + 1, where H is a k-edge-connected spanning subgraph of

G. By this theorem, we also get a result: A graph contains a Hamiltonian cycle if and

only if umc2(G) = e(G)− n+ 1.
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