Monochromatic k-edge-connection colorings of graphs ${ }^{1}$

Ping Li^{1}, Xueliang $\mathrm{Li}^{1,2}$
${ }^{1}$ Center for Combinatorics and LPMC, Nankai University
Tianjin 300071, China
${ }^{2}$ School of Mathematics and Statistics, Qinghai Normal University
Xining, Qinghai 810008, China
qdli_ping@163.com, lxl@nankai.edu.cn

Abstract

A path in an edge-colored graph G is called monochromatic if any two edges on the path have the same color. For $k \geq 2$, an edge-colored graph G is said to be monochromatic k-edge-connected if every two distinct vertices of G are connected by at least k edge-disjoint monochromatic paths, and G is said to be uniformly monochromatic k-edge-connected if every two distinct vertices are connected by at least k edge-disjoint monochromatic paths such that all edges of these k paths colored with a same color. We use $m c_{k}(G)$ and $u m c_{k}(G)$ to denote the maximum number of colors that ensures G to be monochromatic k-edge-connected and, respectively, G to be uniformly monochromatic k-edgeconnected. In this paper, we first conjecture that for any k-edge-connected graph $G, m c_{k}(G)=e(G)-e(H)+\left\lfloor\frac{k}{2}\right\rfloor$, where H is a minimum k-edge-connected spanning subgraph of G. We verify the conjecture for $k=2$. We also prove the conjecture for $G=K_{k+1}$ when $k \geq 4$ is even, and for $G=K_{k, n}$ when $k \geq 4$ is even, or when $k=3$ and $n \geq k$. When G is a minimal k-edge-connected graph, we give an upper bound of $m c_{k}(G)$, i.e., $m c_{k}(G) \leq k-1$, and $m c_{k}(G) \leq\left\lfloor\frac{k}{2}\right\rfloor$ when $G=K_{k, n}$. For the uniformly monochromatic k-edge-connectivity, we prove that for all $k, u m c_{k}(G)=e(G)-e(H)+1$, where H is a minimum k-edge-connected spanning subgraph of G.

Keywords: edge-coloring, monochromatic path, edge-connectivity, monochromatic k-edge connection number.
AMS subject classification (2010): 05C15, 05C40.

[^0]
1 Introduction

All graphs in this paper are simple and undirected. For a graph G, we use $V(G), E(G)$ to denote the vertex set and edge set of G, respectively, and $e(G)$ the number of edges of G. For all other terminology and notation not defined here we follow Bondy and Murty [1].

For a natural number r, we use $[r]$ to denote the set $\{1,2, \cdots, r\}$ of integers. Let $\Gamma: E(G) \rightarrow[r]$ be an edge-coloring of G that allows a same color to be assigned to adjacent edges. For two vertices u and v of G, a monochromatic uv-path is a uv-path of G whose edges are colored with a same color, and G is monochromatic connected if any two distinct vertices of G are connected by a monochromatic path. An edgecoloring Γ of G is a monochromatic connection coloring (MC-coloring) if it makes G monochromatic connected. The monochromatic connection number of a connected graph G, denoted by $m c(G)$, is the maximum number of colors that are needed in order to make G monochromatic connected. An extremal $M C$-coloring of G is an $M C$-coloring that uses $m c(G)$ colors.

The notion monochromatic connection coloring was introduced by Caro and Yuster in [4]. Many results have been obtained; see [3, 6, 10, 14]. For more knowledge on the monochromatic connections of graphs we refer to a survey paper [12]. Gonzlez-Moreno, Guevara, and Montellano-Ballesteros in [5] generalized the above concept to digraphs. Now we introduce the concept of monochromatic k-edge-connectivity of graphs. An edgecolored graph G is monochromatic k-edge-connected if every two distinct vertices are connected by at least k edge-disjoint monochromatic paths (allow some of the paths to have different colors). An edge-coloring Γ of G is a monochromatic k-edge-connection coloring ($M C_{k}$-coloring) if it makes G monochromatic k-edge-connected. The monochromatic k -edge-connection number, denoted by $m c_{k}(G)$, of a connected graph G is the maximum number of colors that are needed in order to make G monochromatic k-edge-connected. Since we can color all the edges of a k-edge-connected graph by distinct colors, $m c_{k}(G)$ is well-defined. An extremal $M C_{k}$-coloring of G is an $M C_{k}$-coloring that uses $m c_{k}(G)$ colors.

In an edge-colored graph G, we say that a subgraph H of G is induced by color i if H is induced by all the edges with a same color i of G. If a color i only color one edge of $E(G)$, then we call the color i is a trivial color, and the edge is a trivial edge; otherwise, we call the colors (edges) non-trivial. We call an extremal $M C_{k}$-coloring a good $M C_{k}$-coloring of G if the coloring has the maximum number of trivial edges.

Suppose that X is a proper vertex subset of G. We use $E(X)$ to denote the set of edges with both ends in X. For a graph G and $X \subset V(G)$, to shrink X is to delete all edges in
$E(X)$ and then merge the vertices of X into a single vertex. A partition of a vertex set V is to divide V into some mutual disjoint nonempty sets. Suppose $\mathcal{P}=\left\{V_{1}, \cdots, V_{s}\right\}$ is a partition of $V(G)$. Then G / \mathcal{P} is a graph obtained from G by shrinking every V_{i} into a single vertex.

An edge e of a k-edge-connected graph G is deletable if $G \backslash e$ is also a k-edge-connected graph. A k-edge-connected graph G is minimally k-edge-connected if none of its edges is deletable. A minimal k-edge-connected spanning subgraph of G is a k-edge-connected spanning graph of G that does not have any deletable edges. A minimum k-edgeconnected spanning subgraph of G is a minimal k-edge-connected spanning subgraph of G that has minimum number of edges. The next result was obtained by Mader.

Theorem 1.1 (Mader [13]). Let G be a minimally k-edge-connected graph of order n. Then

1. $e(G) \leq k(n-1)$.
2. every edge e of G is contained in a k-edge cut of G.
3. G has a vertex of degree k.

The following theorem was proved by Nash-Williams and Tutte independently.
Theorem 1.2 ([15] [16). A graph G has at least k edge-disjoint spanning trees if and only if $e(G / \mathcal{P}) \geq k(|G / \mathcal{P}|-1)$ for any vertex partition \mathcal{P} of $V(G)$.

We denote $\psi(G)=\min _{|\mathcal{P}| \geq 2} \frac{e(G / \mathcal{P})}{|G / \mathcal{P}|-1}$, and $\Psi(G)=\lfloor\psi(G)\rfloor$. Then the Nash-WilliamsTutte theorem can be restated as follows.

Theorem 1.3. A graph G has exactly k edge-disjoint spanning trees if and only if $\Psi(G)=k$.

If Γ is an extremal $M C_{k}$-coloring of G, then each color-induced subgraph is connected; otherwise we can recolor the edges of one of its components by a fresh color, and then the new coloring is also an $M C_{k}$-coloring of G, but then the number of colors is increased by one, which contradicts that Γ is extremal.

For the monochromatic k-edge-connection number of graphs, we conjecture that the following statement is true.

Conjecture 1.4. For a k-edge-connected graph G with $k \geq 2, m c_{k}(G)=e(G)-e(H)+$ $\left\lfloor\frac{k}{2}\right\rfloor$, where H is a minimum k-edge-connected spanning subgraph of G.

In Section 2, we will prove that the conjecture is true for $k=2$, and that it is also true for some special graph classes. We also give a lower bound of $m c_{k}(G)$ for $2 \leq k \leq \Psi(G)$, and an upper bound of $m c_{k}(G)$ for minimally k-edge-connected graphs with $k \geq 2$.

The following lemma seems easy, but it is useful for some proofs in Section 2.
Lemma 1.5. Suppose that G is a 2-edge-connected graph and H is a 2-edge-connected subgraph of G. Let S be subset of $E(G)$ whose ends are contained in $V(H)$ such that $S \cap E(H)=\emptyset$. Then $G \backslash S$ is also a 2-edge-connected graph.

Proof. We need to show that for any u, v in $G \backslash S$ there are at least two edge-disjoint paths connecting them. From the condition, there are two edge-disjoint $u v$-path P_{1}, P_{2} in G. Suppose a_{1} is the first vertex of $V\left(P_{1}\right)$ from u to v contained in $V(H)$, and a_{2} is the first vertex of $V\left(P_{2}\right)$ from u to v contained in $V(H)$ (if $u \in V(H)$, then $u=a_{1}=a_{2}$); suppose b_{1} is the last vertex from u to v contained in $V(H)$, and b_{2} is the last vertex of $V\left(P_{2}\right)$ from u to v contained in $V(H)$ (if $v \in V(H)$, then $v=b_{1}=b_{2}$). Let $L_{i}=u P_{i} a_{i}$ and $L_{i+2}=b_{i} P_{i} v, i=1,2$. Because each of L_{i} does not contain any edge of S and H is a 2-edge-connected graph, we have that $H \cup \bigcup_{i \in[4]} L_{i}$ is also a 2-edge-connected graph of $G \backslash S$. Therefore, there are two edge-disjoint $u v$-paths in $G \backslash S$.

In Section 3, we introduce other version of monochromatic k-edge-connection of graphs, i.e., uniformly monochromatic k-edge-connection of graphs, and get some results. For details we will state them there.

2 Results on the monochromatic k-edge-connection number

Theorem 2.1. Conjecture 1.4 is true when G and k satisfy one of the following conditions:

1. $k=2$, i.e., G is a 2-edge-connected graph.
2. $G=K_{k+1}$ where $k \geq 4$ is even.
3. $G=K_{k, n}$ where $k \geq 4$ is even, and $k=3$ and $n \geq k$.

We restate the first result of Theorem [2.1 as follows.
Theorem 2.2. Let G be a 2-edge-connected graph. Then $m c_{2}(G)=e(G)-e(H)+1$, where H is a minimum 2-edge-connected spanning subgraph of G.

The following is the proof of Theorem [2.2. For convenience, we abbreviate the term "monochromatic path" as "path" in the proof.

Let Γ be a good $M C_{2}$-coloring of G. Then we denote the set of non-trivial colors of Γ by $[r]$, and denote G_{i} as a subgraph induced by the color i; subject to above, let $p(\Gamma)=\sum_{i \in[r]} p\left(G_{i}\right)$ be maximum, where $p\left(G_{i}\right)$ is the number of non-cut edges of G_{i}. It is obvious that each of these edges is contained in some cycles of G_{i}.

Claim 2.3. Each G_{i} is either a 2-edge-connected graph or a tree.
Proof. Suppose that G_{i} is neither a 2-edge-connected graph nor a tree, i.e., G_{i} contains both non-trivial blocks and cut edges. Therefore we can choose a cut edge $e=u v \in$ $E\left(G_{i}\right)$ such that v belongs to a maximal 2-edge-connected subgraph B of G_{i} (actually, B is the union of some non-trivial blocks). Because B is a 2-edge-connected subgraph of G_{i}, each of its vertices belongs to a cycle. Let v be contained in a cycle C of B and $e^{\prime}=v w$ be an edge of C. Because e is a cut edge of G_{i}, there is just one $u w$-path in G_{i} (the uw-path is P). Therefore, there exists another uw-path P^{\prime}, which is colored differently from i.

If P^{\prime} is a path colored by j, then we can obtain a new coloring Γ^{\prime} of G from Γ by recoloring all edges of $G_{i}-e^{\prime}$ with j. We first prove that Γ^{\prime} is an $M C_{2}$-coloring of G, i.e., we need to prove that for any two vertices a, b of $V(G)$, there are at least two $a b$-paths under Γ^{\prime}. If at least one vertex of a, b does not belong to $V\left(G_{i}\right)$, then the two $a b$-paths are colored differently from i. Because we just change the color i, the two $a b$-paths are not affected; if both of a, b belong to $V\left(G_{i}\right)$ and at least one of them does not belong to $V(B)$, then we can choose a right $a b$-path such that it does not contain e^{\prime} (under Γ), and so there are at least two $a b$-paths under Γ^{\prime}; if both $a, b \in V(B)$, then the two $a b$-paths under Γ (call them L_{1}, L_{2}) belong to B. If e^{\prime} is not an edge of any L_{1}, L_{2}, then the two $a b$-paths are not affected. Otherwise, let $e^{\prime} \in E\left(L_{1}\right)$, and then $L=L_{1}-e^{\prime}+e+P^{\prime}$ is a trial connecting a, b. Because $E(L) \cap E\left(L_{2}\right)=\emptyset$, there are two ab-paths under Γ^{\prime}.

According to the above, Γ^{\prime} is an $M C_{2}$-coloring of G. If $j \in[r]$ is a non-trivial color, then the number of colors has not changed, but the number of trivial edges is increased by one, which contradicts that Γ is good; otherwise, if j is a trivial color, i.e., $u w$ is a trivial edge, then the new coloring Γ^{\prime} is a good $M C_{2}$-coloring (the number of colors and non-trivial edges have not changed), but compared to $p(\Gamma), p\left(\Gamma^{\prime}\right)$ is increased by one, which contradicts that $p(\Gamma)$ is maximum. Therefore, we have proved that G_{i} is either a 2-edge-connected graph or a tree.

By Claim [2.3, each G_{i} is either a 2-edge-connected graph or a tree. Suppose there are h trees and $s=k-h$ 2-edge-connected graphs. W.l.o.g., suppose that G_{1}, \cdots, G_{s} are s

2-edge-connected graphs and $G_{s+1}=T_{1}, \cdots, G_{k}=T_{h}$ are h trees. G_{i} colored by i and F_{j} colored by $s+j$. For convenience, we also call the color of $F_{j} j$ when there is no confusion.

Claim 2.4. For each G_{i} and T_{j}, let $e=u v \in E\left(G_{i}\right)$ and $e^{\prime}=x y \in E\left(T_{j}\right)$. Then at most one of u, v belongs to $V\left(T_{j}\right)$, and at most one of x, y belongs to $V\left(G_{i}\right)$.

Proof. We prove it by contradiction, i.e., suppose that there exist G_{i} and T_{j}, and there exist $e=u v \in E\left(G_{i}\right)$ and $e^{\prime}=x y \in E\left(T_{j}\right)$, such that either $u, v \in V\left(T_{j}\right)$ or $x, y \in V\left(G_{i}\right)$.

Case 1: Suppose $u, v \in V\left(T_{j}\right)$. Then we recolor $E\left(G_{i}\right)-e$ by j and keep the color of e. We now prove that the new coloring (call it Γ^{\prime}) is an extremal $M C_{2}$-coloring of G.
We denote the segment of $u T_{j} v$ by L. For any pair of vertices a, b of $V(G)$, if at least one vertex does not belong to $V\left(G_{i}\right)$, then the two $a b$-paths colored differently from i under Γ. Because we just change the color i, the two $a b$-paths are not affected; if $a, b \in V\left(G_{i}\right)$, because $G_{i}+L-e$ is also 2-edge-connected, then there are two $a b$-paths (with the same color j) under Γ^{\prime}. Therefore, Γ^{\prime} is an $M C_{2}$-coloring, and because the number of colors are not changed, Γ^{\prime} is still an extremal $M C_{2}$-coloring. However, the number of non-trivial edges is increased (e becomes a trivial edge), which contradicts that Γ is good.

Case 2: Suppose $x, y \in V\left(G_{i}\right)$. Then we recolor $E\left(T_{j}\right)-e^{\prime}$ with i and keep the color of e^{\prime}. We now prove that the new coloring (call it Γ^{\prime}) is an extremal $M C_{2}$-coloring of G.
For any vertices pair a, b of $V(G)$, if at least one of a, b does not belong to $V\left(T_{j}\right)$, then the two $a b$-paths colored differently from j. Because we just change the color j, the two $a b$-paths are not affected; if $a, b \in V\left(T_{j}\right)$ and at leat one of a, b does not belong $V\left(G_{i}\right)$, then there is just one $a b$-path of T_{j} and the other $a b$-paths colored differently from i under Γ. Because $G_{i} \cup\left(T_{j} \backslash e^{\prime}\right)$ is connected and all of them colored by i under Γ^{\prime}, there are two $a b$-paths under Γ^{\prime}; if both $a, b \in V\left(G_{i}\right)$, then there are two $a b$-paths (with the same color i) under Γ^{\prime}. Above all, Γ^{\prime} is an $M C_{2}$-coloring of G. Because the number of colors are not changed, Γ^{\prime} is an extremal $M C_{2}$-coloring of G. However, the number of non-trivial edges is increased (e^{\prime} becomes a trivial edge), which contradicts that Γ is good.

By Claim [2.4, for each edge $e^{\prime}=x y$ of a T_{j}, the other $x y$-paths belong to some T_{q}; for each edge $e=u v$ of a G_{i}, the other $u v$-paths belong to some G_{l}.

Claim 2.5. $h=0$, i.e., G_{i} is a 2-edge-connected graph for any $i \in[r]$.
Proof. If $h \neq 0$, for an edge $e_{1}=v_{1} u_{1} \in E\left(T_{1}\right)$, because $P_{1}=e_{1}=v_{1} u_{1}$ is the only $v_{1} u_{1}$-path of T_{1}, there exists another $v_{1} u_{1}$-path P_{2}, then $\left|P_{2}\right| \geq 2$ (because G is simple),
and therefore the color of P_{2} is non-trivial. By Claim 2.4, P_{2} belongs to some T_{j}, w.l.o.g., suppose $j=2$. Then $e_{1}+T_{2}$ contains a unique cycle C_{1}. Let $f_{1}=v_{1} u_{2}$ is a pendent edge of P_{2}, and $e_{2}=v_{2} u_{2}$ is the edge adjacent to f_{1} in P_{2}. Then there exists a $v_{2} u_{2^{-}}$ path P_{3} in T_{3} and $e_{2}+T_{3}$ contains a unique cycle C_{2}. Let $f_{2}=v_{2} u_{3}$ is a pendent edge of P_{3}, and $e_{3}=v_{3} u_{3}$ is the edge adjacent to f_{2} in P_{3}. By repeating the process, we get a series of trees T_{1}, T_{2}, \cdots, paths P_{1}, P_{2}, \cdots and edges $f_{1}=v_{1} u_{2}, f_{2}=v_{2} u_{3}, \cdots$, etc. Because there are at most $h<\infty$ trees, there is a T_{d} which is the first tree appearing before (w.l.o.g., suppose $T_{d}=T_{1}$), and the $v_{d-1} u_{d-1}$-path P_{d} is contained in $T_{d}=T_{1}$. Because there are at least two trees in this sequence, we have $d-1 \geq 2$. Then $f_{1} \in T_{2}, f_{2} \in T_{3}, \cdots, f_{d-2} \in T_{d-1} ; P_{2} \in T_{2}, P_{3} \in T_{3}, \cdots, P_{d} \in T_{d}=T_{1}$, etc. T_{1}, \cdots, T_{d-1} are different trees. Let $H=\bigcup_{i \in[d-1]} T_{i}$.

In order to complete the proof, we need to construct a 2-edge-connected subgraph T of H, a connected graph H^{\prime}, and an edge set B of H with $|B|=d-2$ below.

Case 1: $e_{1} \notin E\left(P_{d}\right)$.
We have already discussed above that $C_{1}=P_{2}+e_{1}, C_{2}=P_{3}+e_{2}, \cdots, C_{d-1}=P_{d}+e_{d-1}$. So, $T=C_{1}+C_{2}-e_{2}+C_{3}-e_{3}+\cdots+C_{d-1}-e_{d-1}=\bigcup_{i=1}^{d-1} C_{i}-B$ is a closed trail, where $B=\bigcup_{i=2}^{d-1} e_{i}$, see Fig. $1(1)$. Therefore, T is a 2-edge-connected graph. Because the ends of every edge in B belong to $V(T)$, we have that $H^{\prime}=\bigcup_{i \in[d-1]} T_{i} \backslash B$ is a connected graph.

Case 2: $e_{1} \in E\left(P_{d}\right)$.
Suppose F_{1}, F_{2} are two small trees of $T_{1} \backslash e_{1}$ and let $v_{1} \in V\left(F_{1}\right), u_{1} \in V\left(F_{2}\right)$. Then there is a $u_{d-1} v_{1}$-path L_{1} and a $v_{d-1} u_{1}$-path L_{2} (if u_{d-1} connects u_{1} and v_{d-1} connects v_{1}, the situation is similar). Let

$$
T^{\prime}=v_{1} e_{1} u_{1} P_{2} u_{2} P_{3} u_{3} \cdots P_{d-2} u_{d-2} P_{d-1} u_{d-1} L_{1} v_{1}
$$

and

$$
T^{\prime \prime}=u_{1} P_{2} u_{2} P_{3} u_{3} \cdots P_{d-2} u_{d-2} P_{d-1} v_{d-1} L_{2} u_{1} .
$$

It is obvious that both of T^{\prime} and $T^{\prime \prime}$ are closed trails and

$$
T^{\prime} \cap T^{\prime \prime}=u_{1} P_{2} u_{2} \cdots P_{d-2} u_{d-2} P_{d-1} v_{d-1}
$$

is a trail. Therefore, $T=T^{\prime} \cup T^{\prime \prime}=\bigcup_{i=1}^{d-1} C_{i}-B$ is a 2-edge-connected graph, where $B=\bigcup_{i=1}^{d-2} f_{i}$, see Fig $\mathbb{1}(2)$. Because the ends of each edge in B belong to $V(T), H^{\prime}=$ $\bigcup_{i \in[d-1]} T_{i} \backslash B$ is a connected graph.

In above two cases, T is a 2-edge-connected subgraph of H, and B is an edge set of H with $|B|=d-2$. We recolor each edges of $H-B$ by 1 and recolor each edge of B by different new colors, denote the new coloring of G by Γ^{\prime}. Then the total number of colors

Figure 1
is not changed, but the number of trivial colors is increased by $|B|=d-2 \geq 1$. In order to complete the proof by contradiction, we need to prove that Γ^{\prime} is an $M C_{2}$-coloring, i.e., we need to prove that for two distinct vertices x, y of G, there are 2 edge-disjoint $x y$-paths under Γ^{\prime}. There are three cases to discuss.
(I) At least one of x, y does not belong to $V(H)$. Then the two $x y$-paths do not belong to any T_{1}, \cdots, T_{d-1}. Because we just change the colors of T_{1}, \cdots, T_{d-1}, the two $x y$-paths are not affected from Γ to Γ^{\prime}.
(II) Both of x, y belong to $V(H)$, but at least one of them does not belong to $V(T)$.

If there is just one $x y$-path in H under Γ, then another $x y$-path will not be affected. Because H^{\prime} is connected, there are also two edge-disjoint $x y$-paths under Γ^{\prime}.
If there are two $x y$-paths L_{1}, L_{2} in H under Γ. Suppose a_{i} is the first vertex of L_{i} contained in $V(T)$ from x to y, and b_{i} is the last vertex of L_{i} contained in $V(T)$ from x to $y, i=1,2$. Let $Q_{i}=x L_{i} a_{i}$ and $Q_{i+2}=b_{i} L_{i} y, i=1,2$. Because T is a 2-edge-connected graph, $T \cup \bigcup_{i \in[4]} Q_{i}$ is also a 2-edge-connected graph, i.e., there are two edge-disjoint $x y$-paths under Γ^{\prime}.
(III) Both of x, y belong to $V(T)$. Then because T is a 2-edge-connected graph, there are two edge-disjoint $x y$-path under Γ^{\prime}.

Claim 2.6. $s=1$, i.e., all the non-trivial edges belong to G_{1}.
Proof. The proof is done by contradiction. If $s \geq 2$, by Claim 2.3, each G_{i} is a 2-
edge-connected graph. Thus, $V\left(G_{1}\right) \backslash V\left(G_{2}\right) \neq \emptyset$ and $V\left(G_{2}\right) \backslash V\left(G_{1}\right) \neq \emptyset$; for otherwise, w.l.o,g, suppose $V\left(G_{1}\right) \subseteq V\left(G_{2}\right)$. Recoloring all the edges of G_{1} by different new colors, then the new coloring is an $M C_{2}$-coloring of G but it has more colors than Γ, which contradicts that Γ is extremal.
Let $a \in V\left(G_{1}\right) \backslash V\left(G_{2}\right)$ and $b \in V\left(G_{2}\right) \backslash V\left(G_{1}\right)$. Suppose $G_{a}=\bigcup_{i \in c_{a}} G_{i}$ where $c_{a}=$ $\left\{i: a \in V\left(G_{i}\right)\right\}$. Let t be the minimum integer such that $V\left(G_{2}\right) \subseteq V\left(\bigcup_{j \in[t]} G_{i_{j}}\right)$ where $i_{j} \in c_{a}$. Then $t \leq\left|G_{2}\right|$. Recoloring the edges of each $G_{i_{j}}$ by i_{1}, and recoloring the edges of G_{2} by different new colors. Then the new coloring is an $M C_{2}$-coloring of G. Because $e\left(G_{2}\right) \geq\left|G_{2}\right| \geq t$, the number of colors is not decreased. However, the number of trivial colors is increased, which contradicts that Γ is good.

Claim 2.7. G_{1} is a minimum 2-edge-connected spanning subgraph of G.
Proof. Because $s=1$ and $h=0$, there is just one non-trivial color (call it 1). Then G_{1} is a 2-edge-connected spanning subgraph of G; for otherwise, there is a vertex $w \notin V\left(G_{1}\right)$, and then there is just one uw-path (which is a trivial path) for any $u \in V\left(G_{1}\right)$, a contradiction.
If G_{1} is not minimum, we can choose a minimum 2-edge-connected spanning subgraph H of G with $e\left(G_{1}\right)>e(H)$. Coloring each edge of H by a same color and coloring the other edges by trivial colors. Then the new coloring is an $M C_{2}$-coloring of G, but there are more colors than Γ, which contradicts that Γ is extremal.

Proof of Theorem 2.2. Actually, the theorem can be proved directly by Claims 2.5, 2.6 and 2.7. Because Γ is an extremal $M C_{2}$-coloring of G, and the non-trivial colorinducted subgraph is just G_{1}, which is a minimum 2-edge-connected spanning subgraph of G. So, $m c_{2}(G)=e(G)-e(H)+1$ where H is a minimum 2-edge-connected spanning subgraph of G.

We have proved that if Γ is a coloring of G in Theorem 2.2, then there is just one nontrivial color 1 and $H=G_{1}$ is a minimum 2-edge-connected spanning subgraph of G. If G has t blocks, then H also has t blocks, and each block is a minimum 2-edge-connected spanning subgraph of the corresponding block of G. Furthermore, the number of edges of H is greater than or equal to $n+t-1$ (equality holds if each block of H is a cycle). So, the following result is obvious.

Corollary 2.8. If G is a 2 -edge-connected graph with t blocks B_{1}, \cdots, B_{t}, then $m c_{2}(G)=$ $\sum_{i \in[t]} m c_{2}\left(B_{i}\right)-t+1$, and $m c_{2}(G) \leq e(G)-n-t+2$.

A cactus is a connected graph where every edge lies in at most one cycle. If G is a cactus without cut edges, then every edge lies in exactly one cycle. It is obvious that
G will have cut edge when deleting any edge, and so G is a minimal 2-edge-connected graph. A minimal k-edge-connected graph is also the minimum k-edge-connected spanning subgraph of itself, and this fact will not be declared again later.

Corollary 2.9. If G is a cactus without cut edge, then $m c_{2}(G)=1$.
We have proved the first result of Theorem 2.1. Next we will prove the remaining two results. Before this, we give an upper bound of $m c_{k}(G)$ for G being a minimal k-edge-connected graph. The following lemma is necessary for our later proof.

Lemma 2.10. Let G be a minimal k-edge-connected graph and Γ be an extremal $M C_{k}$ coloring of G (suppose $\mathrm{mc}_{k}(G)=t$), and let G_{i} be the subgraph induced by the edges of color $i, 1 \leq i \leq t$. Then each G_{i} is a spanning subgraph of G.

Proof. We prove it by contradiction. Suppose G_{i} is not a spanning subgraph of G. Let $v \notin V\left(G_{i}\right)$. Then for any $u \neq v$, none of the k edge-disjoint monochromatic $u v$-paths is colored by i. Let e be an edge colored by i. By Theorem 1.1, there exists an edge cut $C(G)$ such that $e \in C(G)$ and $|C(G)|=k$. Then $G \backslash C(G)$ has two components M_{1}, M_{2} (in fact, $C(G)$ is a bond of G). Let $v \in V\left(M_{1}\right)$ and some $w \in V\left(M_{2}\right)$. Then the k edge-disjoint monochromatic $v w$-paths are retained in $G \backslash e$. However, $C(G) \backslash e$ is an edge cut of $G \backslash e$ that separates v and w, and $|C(G) \backslash e|=k-1$, which contradicts that there are k edge-disjoint monochromatic $v w$-paths in $G \backslash e$.

Theorem 2.11. If G is a minimal k-edge-connected graph with $k \geq 2$, then $m c_{k}(G) \leq$ $k-1$.

Proof. We prove it by contradiction. Suppose $m c_{k}(H) \geq k$. Let Γ be an extremal $M C_{k}$-coloring of G. Then by Lemma 2.10, there are at least k edge-disjoint spanning subgraphs of G. Because there exists a vertex of G with degree k, there are exactly k edge-disjoint spanning subgraphs of G, denoted by G_{1}, \cdots, G_{k}. Because G is a minimal k-edge-connected graph, by Theorem 1.1, $e(G) \leq k(n-1)$, which allows all of G_{1}, \cdots, G_{k} to be spanning trees of G.

Because $k \geq 2$, there are at least two spanning trees G_{1}, G_{2}, and so $G_{1} \cup G_{2}$ is a 2-edge-connected spanning subgraph of G. Let $e=u v$ be an edge of G_{1} and let P_{1} be the $u v$-path of G_{2}. Suppose $e_{1}=u u_{1}$ and $e_{2}=v v_{1}$ are two terminal edges of P_{1}. Let P_{2} be the $u u_{1}$-path of G_{1} and let P_{3} be the $v v_{1}$-path of G_{1}.

Case 1: If one of P_{2} and P_{3} does not contain e, w.l.o.g., suppose P_{2} does not contain e. Then $T=u P_{2} u_{1} P_{1} v e u$ is a 2-edge-connected graph (in fact, T is a closed trail, see Fig 2(1)). Because $u, u_{1} \in V(T)$, by Lemma 1.5, $\left(G_{1} \cup G_{2}\right) \backslash e_{1}$ is a 2-edge-connected subgraph of G.

Case 2: If both P_{2} and P_{3} contain e, then $T=u e v P_{2} u_{1} P_{1} v_{1} P_{3} u$ is a 2-edge-connected graph (in fact, T is a closed trail, see Fig $2(2)$). Because $u, u_{1} \in V(T)$, by Lemma 1.5, $\left(G_{1} \cup G_{2}\right) \backslash e_{1}$ is a 2-edge-connected subgraph of G.

Figure 2

The coloring Γ^{\prime} obtained from Γ by assigning 1 to the edges of $G_{2} \backslash e_{1}$ and assigning a new color to e_{1}. From above two cases, $\left(G_{1} \cup G_{2}\right) \backslash e_{1}$ is a 2 -edge-connected spanning subgraph of G and G_{3}, \cdots, G_{k} are spanning subgraph of G. So, every two vertices are also connected by k monochromatic paths and the number of colors is not changed, i.e., Γ^{\prime} is also an extremal $M C_{k}$-coloring of G. While e is a single edge, that would contradict that each induced subgraph is spanning by Lemma 2.10.

Before proving the second result of Theorem [2.1, we introduce a well-known result.
Fact 2.12. $K_{2 n+1}$ can be decomposed into n edge-disjoint Hamiltonian cycles; $K_{2 n+2}$ can be decomposed into n edge-disjoint Hamiltonian cycles and a perfect matching.

Theorem 2.13. $m c_{2 n}\left(K_{2 n+1}\right)=n$ for $n \geq 2$.
Proof. By Fact 2.12, $K_{2 n+1}$ can be decomposed into n edge-disjoint Hamiltonian cycles C_{1}, \cdots, C_{n}. Color each C_{i} by $i \in[n]$, and then the coloring is an $M C_{2 n}$-coloring of $K_{2 n+1}$. So, $m c_{2 n}\left(K_{2 n+1}\right) \geq n$.

We need to prove that $m c_{2 n}\left(K_{2 n+1}\right) \leq n$ to complete our proof. The proof is done by contradiction. Suppose $m c_{2 n}\left(K_{2 n+1}\right)=t \geq n+1$. Let Γ be an extremal $M C_{2 n}$-coloring of $K_{2 n+1}$ and let G_{i} be the subgraph induced by all the edges with color $i, 1 \leq i \leq t$.

Because $K_{2 n+1}$ is a minimal $2 n$-edge-connected graph, by Lemma 2.10 we have that each G_{i} is a spanning subgraph of G. If $t \geq 2 n$, then

$$
n(2 n+1)=e\left(K_{2 n+1}\right)=e\left(\bigcup_{i \in[t]} G_{i}\right) \geq 2 t n \geq 4 n^{2}
$$

which is a contradiction. Otherwise, if $t<2 n$, then not every G_{i} is a spanning tree (for otherwise, every two vertices are just connected by $t<2 n$ monochromatic paths). To ensure that every two vertices are connected by at least $2 n$ monochromatic paths, there are at least $2 n-t G_{i}$ that are 2-edge-connected. Therefore, the number of edges of $\bigcup_{i \in[t]} G_{i}$ satisfies

$$
e\left(\bigcup_{i \in[t]} G_{i}\right) \geq(2 n+1)(2 n-t)+2(t-n) \cdot 2 n=t(2 n-1)+2 n \geq 2 n^{2}+3 n-1 .
$$

This contradicts that $\bigcup_{i \in[t]} G_{i}=K_{2 n+1}$ and $e\left(K_{2 n+1}\right)=n(2 n+1)$.
Before prove the third result of Theorem [2.1, we introduce another well-known result.
Fact 2.14. $K_{2 n, 2 n}$ can be decomposed into n Hamiltonian cycles and $K_{2 n+1,2 n+1}$ can be decomposed into n Hamiltonian cycles and a perfect matching.

Theorem 2.15. If $n \geq k \geq 3$, then $m c_{k}\left(K_{k, n}\right) \leq\left\lfloor\frac{k}{2}\right\rfloor$.
Proof. Let Γ be an extremal $M C_{k}$-coloring with t colors and let G_{i} be the subgraph of G induced by the edges with color i. Because $K_{k, n}$ is a minimal k-edge-connected graph, by Lemma 2.10 each G_{i} is a spanning subgraph of G. Let A, B be the bipartition (independent sets) of G with $|A|=n$ and $|B|=k$. Then each vertex in A has degree k.

We prove that $m c_{k}\left(K_{k, n}\right) \leq\left\lfloor\frac{k}{2}\right\rfloor$ by contradiction. Suppose $m c_{k}\left(K_{k, n}\right)=t \geq\left\lfloor\frac{k}{2}\right\rfloor+1$. For a vertex u of A, let $d_{G_{i}}(u)=r_{i}$. Then $\sum_{i \in[t]} r_{i}=k$ and each $r_{i} \geq 1$. Because every two vertices of A are connected by k edge-disjoint monochromatic paths, and the degree of every vertex in A is k, we have that for each $u \in A, d_{G_{i}}(u)=r_{i}$. Because $t \geq\left\lfloor\frac{k}{2}\right\rfloor+1$, there is a color i such that $d_{G_{i}}(u)=1$, i.e., all vertices of A are leaves of G_{i}. Because $K_{k, n}$ is a bipartite graph with bipartition A and B, G_{i} is a perfect matching if $n=k$, and G_{i} is the union of k stars if $n>k$, both of which contradict that G_{i} is a connected spanning subgraph of G. Therefore, $m c_{k}\left(K_{k, n}\right) \leq\left\lfloor\frac{k}{2}\right\rfloor$.

Corollary 2.16. Conjecture 1.4 is true for $G=K_{k, n}$, where k is even and $n \geq k \geq 4$; it is also true for $G=K_{3, n}$, where $k=3 \leq n$.

Proof. If $k=2 l$ is even, then we prove that $m c_{k}\left(K_{k, n}\right)=\left\lfloor\frac{k}{2}\right\rfloor=l$. Actually, we only need to construct an $M C_{k}$-coloring of $K_{k, n}$ with l colors. Let A_{1} be a subset of A with
k vertices and $A_{2}=A-A_{1}$, and let H be the subgraph of $K_{k, n}$ whose vertex set is $A_{1} \cup B$. Then $H=K_{k, k}$, and by Fact $2.14 H$ can be decomposed into l Hamiltonian cycles $\left\{C_{1}, \cdots, C_{l}\right\}$. Because the degree of each vertex in A_{2} is $k=2 l$, we mark each two edges incident with $v \in A_{2}$ with $i, 1 \leq i \leq l$. Let E_{i} be the edge set with mark i, and let $G_{i}=C_{i} \cup E_{i}$. It is obvious that G_{i} is a 2-edge-connected spanning graph of $K_{k, n}$. We color every edge of G_{i} by i, and then we find an $M C_{k}$-coloring of $K_{k, n}$ with l colors.

Because $K_{3, n}$ is a minimal 3 -edge-connected graph for $n \geq 3$, and an $M C_{3}$-coloring of $K_{3, n}$ assigns color 1 to all its edges, we have $m c_{3}\left(K_{3, n}\right) \geq 1$. By Theorem 2.15, $m c_{3}\left(K_{3, n}\right) \leq 1$, and thus $m c_{3}\left(K_{3, n}\right)=1$.

If $k \leq \Psi(G)$, then G is k-edge-connected. By Theorem 1.3, there are k edge-disjoint spanning trees T_{1}, \cdots, T_{k} of G and we color $E(G)$ such that each T_{i} is colored by i. Then any two vertices u, v are connected by at least k monochromatic $u v$-paths with different colors. So, we have the following result.

Corollary 2.17. For a graph G with $\Psi(G) \geq k \geq 2, \operatorname{mc}_{k}(G) \geq e(G)-k(n-2)$.

3 Results for uniformly monochromatic k-edge-connection number

The monochromatic k-edge-connected graph allows k edge-disjoint monochromatic paths between any two vertices of the graph. In this section, we generalize the concept of monochromatic k-edge-connection to uniformly monochromatic k-edge-connection, and get some results.

An edge-colored k-edge-connected graph G is uniformly monochromatic k-edge-connec ted if every two distinct vertices are connected by at least k edge-disjoint monochromatic paths of G such that all these k paths have the same color. Note that for different pairs of vertices the paths may have different colors. An edge-coloring Γ of G is a uniformly monochromatic k-edge-connection coloring ($U M C_{k}$-coloring) if it makes G uniformly monochromatically k-edge-connected. The uniformly monochromatic k-edge-connection number, denoted by $\operatorname{umc}_{k}(G)$, of a k-edge-connected graph G is the maximum number of colors that are needed in order to make G uniformly monochromatic k-edge-connected. An extremal $U M C_{k}$-coloring of G is an $U M C_{k}$-coloring that uses $u m c_{k}(G)$ colors. We call an extremal $U M C_{k}$-coloring a good $U M C_{k}$-coloring of G if the coloring has the maximum number of trivial edges. A uniformly monochromatic k-edge-connected graph is also a monochromatic connected graph when $k=1$.

Theorem 3.1. Let G be a k-edge-connected graph with $k \geq 2$. Then $\operatorname{umc}_{k}(G)=e(G)-$ $e(H)+1$, where H is a minimum k-edge-connected spanning subgraph of G.

We prove the theorem below. For convenience, we abbreviate "monochromatic uvpath" as "uv-path". Let Γ be a good $U M C_{k}$-coloring of G. Then, suppose that the number of non-trivial colors of Γ is t and denote the set of them by $[t]$. Let G_{i} be the subgraph of G induced by the edges with a non-trivial color $i, 1 \leq i \leq t$. Let $G^{\prime}=\bigcup_{i \in[t]} G_{i}$.
Claim 3.2. Each G_{i} is k-edge-connected.
Proof. Let π_{i} denote the set of pairs (u, v) such that there are at least k edge-disjoint $u v$-paths colored by $i \in[t]$. Therefore, any vertex pair (u, v) belongs to some π_{i}.

We first prove it by contradiction that each G_{i} is k-edge-connected.
Suppose that G_{i} is not a k-edge-connected graph. Then there exists a bond $C\left(G_{i}\right)$ with $\left|C\left(G_{i}\right)\right| \leq k-1$, and $G_{i} \backslash C\left(G_{i}\right)$ has two components M_{1} and M_{2}. Let $e=v u$ be an edge of $C\left(G_{i}\right), u \in V\left(M_{1}\right), v \in V\left(M_{2}\right)$. Then there are at most $|C(G)| \leq k-1$ edge-disjoint paths in G_{i} between u, v. Therefore there exists a $j \neq i$ of $[t]$ such that there are at least k edge-disjoint $u v$-paths of G_{j}.

Recolor edges of $G_{i}-e$ with j and keep the color of e, and denote the new coloring of G by Γ^{\prime}.

Because any non-trivial color $r \neq i$ is not changed. So, under Γ^{\prime}, any pair $(x, y) \in \pi_{r}$ also have at least k edge-disjoint $x y$-paths colored r. For any pair $(x, y)=\pi_{i}$, if any k edge-disjoint $x y$-paths (Note that P_{1}, \cdots, P_{k}) of G_{i} under Γ do not contain e. Then these k edge-disjoint $x y$-paths are retained. Otherwise, there is a path (Note that P_{1}) contains e. We choose a path P of G_{j} whose terminals are u, v. Then $T=\left(P_{1} \backslash e\right) \cup P$ is a trail between x, y and $E(T) \cap \bigcup_{l \neq 1} E\left(P_{l}\right)=\emptyset$. Let P^{\prime} be a $x y$-path of T. Then $P^{\prime}, P_{2}, \cdots, P_{k}$ are k edge-disjoint $x y$-paths colored by j (under Γ^{\prime}). Therefore, Γ^{\prime} is still an extremal $U M C_{k}$-coloring of G, but then e becomes to a trivial edge, which contradicts that Γ is good. So, each G_{i} is k-edge-connected.

By Claim 3.2, because $k \geq 2$, we have $e\left(G_{i}\right) \geq\left|G_{i}\right| \geq 3$. Denote $G_{x}=\bigcup_{x \in V\left(G_{i}\right)} G_{i}$, $F_{x}=G^{\prime}-G_{x}$.

Claim 3.3. Each G_{x} is a k-edge-connected spanning subgraph of G. Furthermore, $F_{x}=$ \emptyset.

Proof. If there is an $x \in V(G)$ such that G_{x} is not a spanning subgraph of G, then there is a vertex $y \in V(G) \backslash V\left(G_{x}\right)$. Because G is a simple graph and $k \geq 2$, any two vertices
are connected by at least one non-trivial path. It is obvious that there are no non-trivial $x y$-path, a contradiction. Therefore, G_{x} is a spanning subgraph of G.
Because each G_{i} is k-edge-connected, G_{x} is also k-edge-connected. Therefore, each G_{x} is a k-edge-connected spanning subgraph of G.
Now we prove that $F_{x}=\emptyset$. Otherwise, if $F_{x} \neq \emptyset$, then there is a $G_{j} \subseteq F_{x}$ and $\left|G_{j}\right| \geq 3$. Suppose that s is the minimum number such that $V\left(G_{j}\right) \subseteq \bigcup_{r \in[s]} G_{i_{r}}$, where $G_{i_{1}}, \cdots, G_{i_{s}}$ are contained in G_{x}. Then, $s \leq\left|G_{j}\right|$. Because $k \geq 2$, we have $e\left(G_{j}\right) \geq\left|G_{j}\right| \geq s$. We have obtained a new coloring Γ^{\prime} from Γ by recoloring each $G_{i_{1}}, \cdots, G_{i_{s}}$ by i_{1} and recoloring each edge of G_{j} by different new colors. Because $G^{*}=\bigcup_{r \in[s]} G_{i_{r}}$ is k-edge-connected graph, each pair (a, b) with $(a, b) \in\left\{\pi_{i_{1}}, \cdots, \pi_{i_{s}}, \pi_{j}\right\}$ has k-edge-disjoint $a b$-paths colored i_{1} under Γ^{\prime}. It is easy to check that Γ^{\prime} is a $U M C_{k}$-coloring. Then, the number of colors is not decreased, but the number of trivial colors is increased by at least $e\left(G_{j}\right) \geq 3$, which contradicts that Γ is good. So, $F_{x}=\emptyset$.

Claim 3.4. $t=1$ and G_{1} is a minimum k-edge-connected spanning subgraph of G.
Proof. Suppose $t \geq 2$. Then $V\left(G_{1}\right) \backslash V\left(G_{2}\right) \neq \emptyset$. Otherwise, if $V\left(G_{1}\right) \subseteq V\left(G_{2}\right)$, then $(u, v) \in \pi_{2}$ when $(u, v) \in \pi_{1}$. We can recolor all edges of G_{1} by fresh colors, and then the new coloring is also a $U M C_{k}$-coloring of G but the number of colors is increased, which contradicts that Γ is extremal. So, $V\left(G_{1}\right) \backslash V\left(G_{2}\right) \neq \emptyset$, and there is a vertex $a \in$ $V\left(G_{1}\right) \backslash V\left(G_{2}\right)$, i.e., $G_{2} \nsubseteq G_{a}, G_{2} \subseteq F_{a}$. By Claim 3.3, we have $F_{a}=\emptyset$, a contradiction. Therefore, $t=1$, and thus $G_{1}=G_{a}$ is a spanning subgraph of G.

In fact, G_{1} is a minimum k-edge-connected spanning subgraph of G; otherwise, there exists a minimum k-edge-connected spanning subgraph H of G such that $e(H)<e\left(G_{1}\right)$. Coloring each edge of H by 1 and coloring the other edges by some different new colors. Then the coloring is a $U M C_{k}$-coloring of G with more colors, which contradicts that Γ is extremal.

Proof of Theorem 3.1, We can prove Theorem 3.1 directly by Claim 3.4,
Because any k-edge-connected graph G has the minimum degree $\delta(G) \geq k$, by Theorem 1.1 we have that $\frac{1}{2} k n \leq e(H) \leq k(n-1)$, where H is a minimum k-edge-connected spanning subgraph of G.

Corollary 3.5. For a k-edge-connected graph G with $k \geq 2$, $e(G)-k(n-1)+1 \leq$ $u m c_{k}(G) \leq e(G)-\frac{1}{2} k n+1$.

By definition, a k-edge-connected graph G satisfies that $u m c_{k}(G) \leq m c_{k}(G)$. Therefore, $m c_{k}(G) \geq e(G)-e(H)+1$, where H is a k-edge-connected spanning subgraph of G. By this theorem, we also get a result: A graph contains a Hamiltonian cycle if and only if $u m c_{2}(G)=e(G)-n+1$.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] Q. Cai, X. Li, D. Wu, Erdős-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(1)(2017), 123-131.
[3] Q. Cai, X. Li, D. Wu, Some extremal results on the colorful monochromatic vertexconnectivity of a graph, J. Comb. Optim. 35(2018), 1300-1311.
[4] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(2011), 1786-1792.
[5] D. Gonzlez-Moreno, M. Guevara, J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340(4)(2017), 578-584.
[6] R. Gu, X. Li, Z. Qin, Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40(4)(2017), 1769-1779.
[7] H. Jiang, X. Li, Y. Zhang, Total monochromatic connection of graphs, Discrete Math. 340(2017), 175-180.
[8] H. Jiang, X. Li, Y. Zhang, More on total monochromatic connection of graphs, Ars Combin. 136(2018), 263-275.
[9] H. Jiang, X. Li, Y. Zhang, Erdős-Gallai-type results for total monochromatic connection of graphs, Discuss. Math. Graph Theory, in press.
[10] Z. Jin, X. Li, K. Wang, The monochromatic connectivity of some graphs, submitted, 2016.
[11] X. Li, D. Wu, The (vertex-)monochromatic index of a graph, J. Comb. Optim. 33(2017), 1443-1453.
[12] X. Li D. Wu, A survey on monochromatic connections of graphs, Theory \& Appl. Graphs 0(1)(2018), Art. 4 .
[13] W. Mader, A reduction methond for edge-connectivity in graphs, Adv. Graph Theory 3 (1978), 145-164.
[14] Y. Mao, Z. Wang, F. Yanling, C. Ye, Monochromatic connectivity and graph products, Discrete Math, Algorithm. Appl. 8(01)(2016), 1650011.
[15] C. St. J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc. 36(1961), 445-450.
[16] W. T. Tutte, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc. 36(1961), 221-230.

[^0]: ${ }^{1}$ Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.

