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Abstract

Given a graph H , the k-colored Gallai-Ramsey number grk(K3 : H) is defined to be the
minimum integer n such that every k-coloring (using all k colors) of the complete graph on
n vertices contains either a rainbow triangle or a monochromatic copy of H . Recently, Fox
et al. [J. Fox, A. Grinshpun, and J. Pach. The Erdős-Hajnal conjecture for rainbow triangles.
J. Combin. Theory Ser. B, 111:75-125, 2015.] conjectured the value of the Gallai-Ramsey numbers
for complete graphs. We verify this conjecture for the first open case, where H = K4.

1 Introduction

In this work, we consider colorings of only the edges of graphs. Providing a general bound on the
classical Ramsey numbers, a classical result of Erdős and Szekeres is stated as follows.

Theorem 1 ([5]). Every graph on n vertices contains either a clique or an independent set of order
at least 1

2 logn.

Although many years have passed since this result and some small improvements have been made,
this fundamentally still stands as one of the best general bounds on Ramsey numbers. When certain
subgraphs are forbidden, it was conjectured by Erdős and Hajnal that this result could be greatly
strengthened.

Conjecture 2 ([4]). For any fixed graph H, there exists a number ǫ = ǫ(H) > 0 such that, every
graph on n vertices which does not contain H as an induced subgraph, contains either a clique or an
independent set of order at least nǫ.

There have been many results related to this conjecture, particularly proving special cases for a
fixed graph H . For a list of these, we refer to the recent survey [2]. Erdős and Hajnal also proposed
the following multicolored version of this conjecture.

∗School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China. liaozhx5@mail.sysu.edu.cn Research
partially supported by the Startup Fund of One Hundred Talent Program of SYSU.

†Department of Mathematics, Clayton State University, Morrow, GA 30260, USA. dr.colton.magnant@gmail.com
Academy of Plateau Science and Sustainability, Xining, Qinghai 810008, China.

‡Department of Information Science, Nihon University, Tokyo, Japan. asaito@chs.nihon-u.ac.jp Research partly
supported by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C) 25330017 and
17K00018.

§Technische Universität Bergakademie Freiberg, Institut für Diskrete Mathematik und Algebra, 09596 Freiberg, Ger-
many. Ingo.Schiermeyer@tu-freiberg.de Part of this research was done during the author’s stay at Nihon University.
Financial support is gratefully acknowledged.

¶Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China. shi@nankai.edu.cn Yongtang
Shi was partially supported by National Natural Science Foundation of China, Natural Science Foundation of Tianjin
(No. 17JCQNJC00300), The China-Slovenia Bilateral Project “Some topics in modern graph theory” (No. 12-6)

1



Conjecture 3 ([4]). For every fixed k-coloring χ of a complete graph, there is an ǫ = ǫ(χ) > 0 such
that, every k-coloring of a complete graph on n vertices without a copy of χ, contains a set of order
at least nǫ which uses only k − 1 colors.

Even more specifically, Hajnal conjectured the following special case.

Conjecture 4 ([12]). There is an ǫ > 0 such that, every 3-coloring of a complete graph on n vertices
without a rainbow triangle, contains a set of order at least nǫ which uses only 2 colors.

Fox et al. proved this conjecture in the following stronger form.

Theorem 5 ([6]). Every rainbow triangle free 3-coloring of a complete graph of order n contains a
set of order Ω(n1/3 log2 n) which uses only 2 colors, and this bound is tight up to a constant factor.

In their proof, Fox et al. used the following result of Gallai, which provides a strong structure on
edge-colorings of complete graphs containing no rainbow triangle.

Theorem 6 ([1, 9, 11]). In any edge-coloring of a complete graph with no rainbow triangle, there
exists a partition of the vertices into at least two parts (called a Gallai partition or G-partition for
short) such that, there are at most two colors on the edges between the parts, and only one color on
the edges between each pair of parts.

In light of this result, we say that a colored complete graph with no rainbow triangle is a Gallai
coloring (or G-coloring for short).

Closely related to their results, Fox et al. also posed a conjecture about monochromatic complete
graphs. In order to concisely state their conjecture, we make the following definition. Given a graph
H , the (k-colored) Gallai-Ramsey number grk(K3 : H) is defined to be the minimum integer n such
that every k-coloring (using all k colors) of the complete graph on n vertices contains either a rainbow
triangle or a monochromatic copy of H .

We refer to the survey of rainbow generalizations of Ramsey Theory [7, 8] for more information
on this topic and results involving Gallai-Ramsey numbers.

Recall that the Ramsey number r(p, q) is the minimum integer n such that, for every coloring of
the edges of the complete graph on n vertices, using red and blue, there is either a red clique of order
p, or a blue clique of order q. In particular, we write r(p) = r(p, p). We are now able to state the
conjecture.

Conjecture 7 ([6]). For k ≥ 1 and p ≥ 3,

grk(K3 : Kp) =

{

(r(p)− 1)k/2 + 1 if k is even,

(p− 1)(r(p) − 1)(k−1)/2 + 1 if k is odd.

The case where p = 3 was actually verified in 1983 by Chung and Graham [3]. A simplified proof
was given by Gyárfás et al. [10].

Theorem 8 ([3, 10]). For k ≥ 1,

grk(K3 : K3) =

{

5k/2 + 1 if k is even,

2 · 5(k−1)/2 + 1 if k is odd.

In this paper, we prove the following result, the first open case of Conjecture 7.

Theorem 9. For k ≥ 1,

grk(K3 : K4) =

{

17k/2 + 1 if k is even,

3 · 17(k−1)/2 + 1 if k is odd.
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2 Proof of Theorem 9

Define the refined k-colored Gallai-Ramsey number grk(K3 : H1, H2, . . . , Hk) to be the minimum
number of vertices n such that, every k-coloring of the complete graph on n vertices contains either a
rainbow triangle, or a copy of Hi in color i, for some i. Since we will generally be working only with
K4 and K3, for an integer s with 0 ≤ s ≤ k, we use the following shorthand notation

grk(K3 : sK4, (k − s)K3) = grk(K3 : K4,K4, . . . ,K4,K3,K3, . . . ,K3)

where we look for K4 in any of the first s colors or K3 in any of the remaining k − s colors.
In order to prove Theorem 9, we actually prove the following refined version. Theorem 9 follows

as a corollary to Theorem 10 by choosing s = k.

Theorem 10. Let k ≥ 1, and s be an integer with 0 ≤ s ≤ k. Then

grk(K3 : sK4, (k − s)K3) = g(k, s)

where

g(k, s) =































17s/2 · 5(k−s)/2 + 1 if s and (k − s) are both even,

2 · 17s/2 · 5(k−s−1)/2 + 1 if s is even and (k − s) is odd,

3 · 17(k−1)/2 + 1 if s = k and s is odd,

8 · 17(s−1)/2 · 5(k−s−1)/2 + 1 if s and (k − s) are both odd,

16 · 17(s−1)/2 · 5(k−s−2)/2 + 1 if s < k, and s is odd, and (k − s) is even.

For the sake of notation, we define the functions gj for j ∈ {1, 2, . . . , 5} to be

g1(k, s) = 17s/2 · 5(k−s)/2,

g2(k, s) = 2 · 17s/2 · 5(k−s−1)/2,

g3(k, s) = 3 · 17(k−1)/2,

g4(k, s) = 8 · 17(s−1)/2 · 5(k−s−1)/2,

g5(k, s) = 16 · 17(s−1)/2 · 5(k−s−2)/2,

where by convention, g3(k, s) is defined only for s = k.

Proof. We first prove the lower bound of Theorem 10 by construction. For this construction, we will
use the sharpness examples from classical Ramsey results. For i, j ∈ {3, 4}, let Hi,j be a sharpness
example of order r(i, j) − 1. In particular, |H4,4| = 17, |H4,3| = 8, and |H3,3| = 5. We construct our
sharpness example by taking blow-ups of these graphs, that is, replacing each vertex with a particular
graph and replacing each edge with a complete bipartite graph in the same color.

Let G0 be a single vertex and we iteratively construct G-colored graphsGi using i colors forbidding
the appropriate monochromatic subgraphs for the first i colors in the statement. By induction,
suppose we have constructed Gi. If i = k, then the construction is completed. Otherwise, we
consider the following cases.

• If i ≤ s− 2, construct Gi+2 by making 17 copies of Gi and inserting each in place of a vertex
in a blow-up of H4,4 using colors i+ 1 and i+ 2.

• If i = s−1 and k = s, then construct Gi+1 by making 3 copies of Gi and inserting each in place
of a vertex in a blow-up of K3 using color i+ 1.

• If i = s−1 and k > s, then construct Gi+2 by making 8 copies of Gi and inserting each in place
of a vertex in a blow-up of H4,3 using colors i+ 1 and i+ 2.
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• If i ≥ s and i = k− 1, then construct Gi+1 by making 2 copies of Gi and inserting each in place
of a vertex in a blow-up of K2 using color i+ 1.

• If i ≥ s and i ≤ k− 2, then construct Gi+2 by making 5 copies of Gi and inserting each in place
of a vertex in a blow-up of H3,3 using colors i+ 1 and i+ 2.

Note that, if k is even, then we successively obtain the graphs G0, G2, G4, . . . , Gk; and if k is odd,
then we successively obtain the graphs G0, G2, G4, . . . , Gk−1, Gk. In particular, i is always even in
the above five iterative procedures. By construction, it is clear that Gk is a G-coloring and it contains
no copy of K4 in any of the first s colors and no copy of K3 in any of the remaining k− s colors. The
order of Gk then follows the theorem statement as

|Gk| =































g1(k, s) if s and (k − s) are both even,

g2(k, s) if s is even and (k − s) is odd,

g3(k, s) if s = k and s is odd,

g4(k, s) if s and (k − s) are both odd,

g5(k, s) if s < k, and s is odd, and (k − s) is even.

For the upper bound, we prove the desired result by induction on k+ s. The case k = 1 is trivial,
and the case k = 2 follows from the classical Ramsey numbers r(3, 3) = 6, r(4, 3) = 9 and r(4, 4) = 18.
The case s = 0 is Theorem 8. Now let 0 < s ≤ k with k ≥ 3, and suppose that Theorem 10 holds for
all k′ + s′ < k + s. Let G be a G-colored complete graph on g(k, s) vertices and suppose G contains
no monochromatic copy of K4 in any of the first s colors and no monochromatic copy of K3 in any
of the remaining k − s colors. By Theorem 6, there is a G-partition of the vertices of G such that,
there is only one color on all edges between each pair of parts, and there are only two colors in total
on all edges between the parts. Choose a G-partition with the smallest number of parts, let t ≥ 2
be the number of parts in this G-partition, and let Gi be the parts of this partition for 1 ≤ i ≤ t.
Let red and blue be the two colors between the parts. Choosing one vertex wi from each part Gi

of the partition yields a 2-colored reduced graph R of G by setting R = G[{w1, w2, . . . , wt}]. Since
r(4, 4) = 18, we know that t ≤ 17 so there are at most seventeen parts in the partition. We first
suppose t ∈ {2, 3}.

Claim 11. If t ∈ {2, 3}, then the desired result holds.

Proof. If t = 3, then the G-partition is a blow-up of a triangle using at most 2 colors, say with at
least two red edges and perhaps one blue edge. Then there is a part Gi of the G-partition with all
edges to the other parts being red. This means that G can be G-partitioned into Gi and G \ Gi,
contradicting the assumption that the G-partition of G was chosen with t as small as possible. Note
here that we identify the graph G with its vertex set V (G) whenever no confusion arises. Hence, we
may assume t = 2. Suppose the color on the edges between the two parts of the partition is red.

If red is one of the last k − s colors (so s < k), then to avoid creating a red triangle, there can
be no red edge within either part. By induction, this means that both parts of the G-partition have
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order at most grk−1(K3 : sK4, (k − s− 1)K3)− 1, and we get

|G| ≤ 2[grk−1(K3 : sK4, (k − s− 1)K3)− 1]

=































4 · 17s/2 · 5(k−s−2)/2 if s and (k − s) are both even,

2 · 17s/2 · 5(k−s−1)/2 if s is even and (k − s) is odd,

6 · 17(k−2)/2 if s = k − 1 and s is odd,

32 · 17(s−1)/2 · 5(k−s−3)/2 if s < k − 1, and s and (k − s) are both odd,

16 · 17(s−1)/2 · 5(k−s−2)/2 if s is odd and (k − s) is even

<



















g1(k, s) + 1 if s and (k − s) are both even,

g2(k, s) + 1 if s is even and (k − s) is odd,

g4(k, s) + 1 if s and (k − s) are both odd,

g5(k, s) + 1 if s is odd and (k − s) is even

= g(k, s),

for a contradiction.
If red is one of the first s colors, then to avoid creating a red K4 in G, there cannot be a red edge

in both parts so suppose there is at least one red edge in G1. Then there are no red edges in G2 and
there is certainly no red triangle in G1, meaning that by induction, we get

|G| = |G1|+ |G2|

≤ [grk(K3 : (s− 1)K4, (k − s+ 1)K3)− 1] + [grk−1(K3 : (s− 1)K4, (k − s)K3)− 1]

=































































































8 · 17(k−2)/2 + 3 · 17(k−2)/2

if s = k and k is even,

8 · 17(s−2)/2 · 5(k−s)/2 + 16 · 17(s−2)/2 · 5(k−s−2)/2

if s < k and s and (k − s) are both even,

16 · 17(s−2)/2 · 5(k−s−1)/2 + 8 · 17(s−2)/2 · 5(k−s−1)/2

if s is even and (k − s) is odd,

2 · 17(k−1)/2 + 17(k−1)/2

if s = k and s is odd,

17(s−1)/2 · 5(k−s+1)/2 + 2 · 17(s−1)/2 · 5(k−s−1)/2

if s and (k − s) are both odd

2 · 17(s−1)/2 · 5(k−s)/2 + 17(s−1)/2 · 5(k−s)/2

if s < k, and s is odd, and (k − s) is even

<































g1(k, s) + 1 if s and (k − s) are both even,

g2(k, s) + 1 if s is even and (k − s) is odd,

g3(k, s) + 1 if s = k and k is odd,

g4(k, s) + 1 if s and (k − s) are both odd

g5(k, s) + 1 if s < k, and s is odd, and (k − s) is even

= g(k, s),

for a contradiction, completing the proof of Claim 11.

By Claim 11, we may assume 4 ≤ t ≤ 17. Let

Vr = {wi ∈ V (R) : Gi contains a red edge},

Vb = {wi ∈ V (R) : Gi contains a blue edge},
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and t = p2 + p1 + p0, where

p2 = |Vr ∩ Vb|, p1 = |Vr△Vb|, p0 = |V (R) \ (Vr ∪ Vb)|.

For each vertex wi ∈ V (R), let dr(wi) and db(wi) denote its red and blue degrees respectively
within R. Then d(wi) = dr(wi) + db(wi) = t − 1. Since we chose a G-partition with the smallest
number of parts, we immediately see the following fact.

Fact 1. For all wi ∈ V (R), we have dr(wi), db(wi) ≥ 1.

If wi, wj ∈ Vr and wiwj is a red edge in R, then by taking a red edge from each of Gi and Gj , we
clearly have a red K4. A similar observation holds for blue, and thus we have the following fact.

Fact 2. The induced subgraph R[Vr] is a blue clique, and R[Vb] is a red clique.

Clearly if wi is in a red triangle in R, and wi ∈ Vr, then G contains a red K4. A similar observation
holds for blue. Thus we have the following fact.

Fact 3. If wi is in a red triangle in R, then wi /∈ Vr. If wi is in a blue triangle in R, then wi /∈ Vb.

We now consider cases based on where red and blue are in the list relative to the first s colors.

Case 1. Red and blue are both among the latter k − s colors.

This means that in G, there is no red triangle or blue triangle, which implies s < k. Since
r(3, 3) = 6, we have 4 ≤ t ≤ 5. By Fact 1, it follows that Gi contains no red edges and no blue edges
for every i. This means that Gi is colored with k−2 colors available and within Gi, and there is no K4

in one of the first s colors, and no K3 in one of the remaining k− s− 2 colors. Since k− s ≡ k− s− 2
(mod 2) and gj(k − 2, s)/gj(k, s) =

1
5 for j ∈ {1, 2, 4, 5}, we have

g(k − 2, s)− 1

g(k, s)− 1
≤ max

{

gj(k − 2, s)

gj(k, s)
: j ∈ {1, 2, 4, 5}

}

=
1

5
.

Then by the induction hypothesis, we obtain

|Gi| ≤ grk−2(K3 : sK4, (k − s− 2)K3) = g(k − 2, s)− 1

and

|G| =
t

∑

i=1

|Gi| ≤
t

∑

i=1

(

g(k − 2, s)− 1
)

≤
t

∑

i=1

1

5

(

g(k, s)− 1
)

=
t

5

(

g(k, s)− 1
)

≤ g(k, s)− 1,

a contradiction, completing the proof of Case 1.

Case 2. Red is among the first s colors while blue is among the remaining k − s colors.

This means that in G, there is no red K4 or blue triangle, which again implies s < k. By Fact 1,
no Gi can have any blue edge in this case, implying that |Vb| = 0, p2 = |Vr ∩ Vb| = 0, and p1 = |Vr |.
Since r(4, 3) = 9, we have 4 ≤ t ≤ 8. We first prove a key inequality for |G|.
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First suppose Gi contains no red edges. Then Gi is colored with k− 2 colors available and within
Gi, there is no K4 in one of the first s− 1 colors, and no K3 in one of the remaining k− s− 1 colors.
On the other hand, by the definition of g(k, s), if k 6= s, we have

g(k − 2, s− 1)− 1

g(k, s)− 1
=







































































g4(k − 2, s− 1)

g1(k, s)
=

8

5 · 17
if s and k − s are both even,

g1(k − 2, s− 1)

g4(k, s)
=

1

8
if s and k − s are both odd,

g2(k − 2, s− 1)

g5(k, s)
=

1

8
if s < k, and s is odd, and k − s is even,

g5(k − 2, s− 1)

g2(k, s)
=

16

2 · 5 · 17
if s is even, and k − s is odd, and k − s ≥ 3,

g3(k − 2, s− 1)

g2(k, s)
=

3

2 · 17
if s is odd and k − s = 1

≤
1

8
.

Therefore we have, by the induction hypothesis,

|Gi| ≤ grk−2(K3 : (s− 1)K4, (k − s− 1)K3) ≤ g(k − 2, s− 1)− 1 ≤
1

8

(

g(k, s)− 1
)

(1)

Next suppose Gi contains at least one red edge. Then Gi is colored with k − 1 colors available
and within Gi, there is no K4 in one of the first s− 1 colors (which excludes red), and no K3 in one
of the remaining k − s colors (which includes red, by Fact 1). Therefore since

g5(k − 1, s− 1)

g1(k, s)
=

16

5 · 17
<

5

16
,

g4(k − 1, s− 1)

g2(k, s)
=

8

2 · 17
<

5

16
,

g2(k − 1, s− 1)

g4(k, s)
=

2

8
, and

g1(k − 1, s− 1)

g5(k, s)
=

5

16
,

we get, by induction

|Gi| ≤ grk−1(K3 : (s− 1)K4, (k − s)K3)− 1 ≤
5

16
[g(k, s)− 1] . (2)

Therefore by Inequalities (1) and (2), we get the key inequality

|G| ≤

(

p1
5

16
+ p0

1

8

)

[g(k, s)− 1] . (3)

Therefore, if we show that

p1
5

16
+ p0

1

8
≤ 1, (4)

then we obtain the contradiction |G| < g(k, s). Thus for the remainder of Case 2, it suffices to prove
Inequality (4).

Claim 12. p1 = |Vr| ≤ 2.

Proof. If p1 = |Vr| ≥ 3, then by Fact 2, R[Vr], and thus G, contains a blue triangle, which is a
contradiction.
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If t ≤ 5, then with Claim 12, we get

p1
5

16
+ p0

1

8
=

2t+ 3p1
16

≤ 1,

as required. We may therefore assume t ≥ 6. First, assume t ∈ {7, 8}.

Claim 13. If t ∈ {7, 8}, then p1 = |Vr | = 0.

Proof. In order to prove Claim 13, we show that every vertex wi ∈ V (R) is contained in a red triangle,
from which the claim follows from Fact 3. Indeed, suppose that wi is not in a red triangle. Then
since there is no blue triangle, dr(wi) ≤ 2 because otherwise the red neighborhood of wi either has a
red edge or contains a blue triangle. By the same logic, since there is no red K4 and no blue triangle,
we get db(wi) ≤ 3. This means that

d(wi) = dr(wi) + db(wi) ≤ 5

so t ≤ 6, a contradiction, completing the proof of Claim 13.

By Claim 13, we get

p1
5

16
+ p0

1

8
=

t

8
≤ 1.

Finally, let t = 6.

Claim 14. If t = 6, then p1 = |Vr| ≤ 1.

Proof. If every wi is contained in a red triangle, then the claim follows from Fact 3. Thus without
loss of generality, suppose w1 is not contained in a red triangle. Since there is no blue triangle, we
have dr(w1) = 2 and db(w1) = 3. Let w2 and w3 be the neighbors of w1 via red edges, and w4, w5

and w6 be the neighbors of w1 via blue edges. By assumption, w2w3 is blue and since there is no blue
triangle, we see that the set {w4, w5, w6} induces a red triangle. Since there is no red K4, each of w2

and w3 cannot have three red edges to {w4, w5, w6}. If w2 and w3 each have exactly two red edges to
{w4, w5, w6}, then w1 is the only vertex that is not in a red triangle, so Fact 3 implies p1 = |Vr| ≤ 1.
Thus, at least one of w2 or w3 has at most one red edge to {w4, w5, w6} so there are at most 3 red
edges between {w2, w3} and {w4, w5, w6}. Since there is no blue triangle, there are also at most three
blue edges between {w2, w3} and {w4, w5, w6}. Putting these two facts together, we see that there
are exactly three edges of each color between {w2, w3} and {w4, w5, w6}.

Without loss of generality, assume that w2w4, w3w5, and w3w6 are red and the remaining edges
between the two sets are blue. Then each of {w3, w4, w5, w6} is contained in a red triangle, leaving
behind only w1 and w2 not in any red triangles. Since the edge w1w2 is red and there is no red K4,
at most one of G1 or G2 can contain any red edges. This shows that p1 = |Vr | ≤ 1, completing the
proof of Claim 14.

By Claim 14, we get

p1
5

16
+ p0

1

8
=

12 + 3p1
16

≤
15

16
< 1,

thus completing the proof of Case 2.

Case 3. Red and blue are both among the first s colors.

This means that in G, there is no red K4 or blue K4. Recall that 4 ≤ t ≤ 17. We first derive a
similar inequality to Inequality (3) in Case 2.

First suppose Gi contains no red and no blue edges. This means that Gi is colored with k − 2
colors available and within Gi, there is no K4 in one of the first s− 2 colors, and no K3 in one of the
remaining k − s colors. We have

gj(k − 2, s− 2)− 1

gj(k, s)− 1
=

1

17
,
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for all j ∈ {1, 2, . . . , 5} which, by induction, means that

|Gi| ≤ grk−2(K3 : (s− 2)K4, (k − s)K3)− 1 =
1

17
[g(k, s)− 1] . (5)

Next suppose Gi contains no blue edges but contains red edges. This means that Gi is colored
with k−1 colors available and within Gi, there is no K4 in one of the first s−2 colors (which excludes
red), and no K3 in one of the remaining k − s+ 1 colors (which includes red, by Fact 1). Since

g2(k − 1, s− 2)

g1(k, s)
=

g5(k − 1, s− 2)

g4(k, s)
=

2

17
,

g1(k − 1, s− 2)

g2(k, s)
=

g4(k − 1, s− 2)

g5(k, s)
=

5/2

17
, and

g4(k − 1, k − 2)

g3(k, k)
=

8/3

17
,

we see that, by induction

|Gi| ≤ grk−1(K3 : (s− 2)K4, (k − s+ 1)K3)− 1 ≤
8/3

17
[g(k, s)− 1] . (6)

The same inequality holds if Gi contains no red edges but contains blue edges.
Finally suppose Gi contains both red and blue edges. This means that Gi is colored with all k

colors available and within Gi, there is no K4 in one of the first s− 2 colors (which excludes both red
and blue), and no K3 in one of the remaining k − s+ 2 colors (which includes both red and blue, by

Fact 1). Since gj(k, s− 2)/gj(k, s) =
5
17 for j ∈ {1, 2, 4, 5} and g5(k, k − 2)/g3(k, k) =

16/3
17 , we have

g(k,s−2)−1
g(k,s)−1 ≤ 16/3

17 and

|Gi| ≤ grk(K3 : (s− 2)K4, (k − s+ 2)K3)− 1 ≤
16/3

17
[g(k, s)− 1]. (7)

Combining Inequalities (5), (6) and (7), we obtain the key inequality

|G| ≤

(

p2
16/3

17
+ p1

8/3

17
+ p0

1

17

)

[g(k, s)− 1] .

As in Case 2, if we can show that

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
≤ 1, (8)

then we will arrive at a contradiction that |G| < g(k, s). Thus for the remainder of the proof, it
suffices to show Inequality (8).

Next we derive two facts. Within the red neighborhood of wi inR, there can be no red triangle since
otherwise we would have a redK4 in G. There can also be no blueK4 within this neighborhood so that
means the red neighborhood of wi (and similarly the blue neighborhood) has at most r(4, 3)− 1 = 8
vertices. Formally, we obtain the following fact.

Fact 4. For all wi ∈ V (R), we have dr(wi), db(wi) ≤ 8.

If dr(wi) ≥ 4 for some wi ∈ V (R), then the red neighborhood of wi certainly must contain at least
one red edge since otherwise, if all edges were blue, we would have a blue K4. Thus wi is in a red
triangle in R. A similar observation holds with the roles of red and blue switched. Thus from Fact
3, we obtain the following fact.

Fact 5. If dr(wi) ≥ 4 then wi /∈ Vr, and if db(wi) ≥ 4 then wi /∈ Vb.

Next, we prove two claims.
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Claim 15. p2 = |Vr ∩ Vb| ≤ 1.

Proof. If we have wi, wj ∈ Vr ∩ Vb, then by Fact 2, wi, wj ∈ Vr implies that the edge wiwj is blue in
R, while wi, wj ∈ Vb implies that wiwj is red. This is a contradiction.

Claim 16. |Vr|+ |Vb| ≤ 4.

Proof. Suppose first that there is a vertex wi ∈ Vr ∩ Vb. Then by Fact 3, wi is contained in neither a
red triangle nor a blue triangle within R. By Fact 2, any vertex of Vr \ {wi} must be a blue neighbor
of wi in R, and since the blue neighborhood of wi induces a red clique in R, again Fact 2 implies that
there can only be at most one vertex in Vr \ {wi}. This means that |Vr| ≤ 2, and similarly, |Vb| ≤ 2.

Thus, we may assume Vr ∩ Vb = ∅. We next claim that |Vr| ≤ 3 and |Vb| ≤ 3. If |Vr| ≥ 4, then by
Fact 2, the subgraph of R induced on the vertices of Vr contains a blue K4, a contradiction. Thus
|Vr| ≤ 3, and symmetrically |Vb| ≤ 3.

Now suppose that |Vr| = |Vb| = 3. If there exists a vertex wi ∈ Vr with at least two red neighbors
in Vb, then by Fact 2, wi is in a red triangle in R, and this contradicts Fact 3. Thus, there can be at
most one red edge from each vertex in Vr to Vb, and similarly, at most one blue edge from each vertex
in Vb to Vr, for a total of at most 6 edges. But R has 9 edges between Vr and Vb, a contradiction.
Finally suppose |Vr | = 3 and |Vb| = 2. Then again, there can be at most one red edge from each
vertex of Vr to Vb, and at most one blue edge from each vertex of Vb to Vr, for a total of at most 5
edges, while R has 6 edges between Vr and Vb, another contradiction. Symmetrically we cannot have
|Vr| = 2 and |Vb| = 3, thus completing the proof of Claim 16.

We now consider subcases based on the value of t.

Subcase 3.1. 13 ≤ t ≤ 17.

By Fact 4, we have dr(wi), db(wi) ≤ 8 so this means that db(wi), dr(wi) ≥ 4 for all wi ∈ V (R).
This means that Gi contains no red or blue edges for all i. Thus p2 = p1 = 0, p0 = t, and

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
=

t

17
≤ 1,

as required.

Subcase 3.2. 4 ≤ t ≤ 10.

By Claim 15, we have p2 ≤ 1. First suppose p2 = 1. Then if t ≥ 8, every vertex wi ∈ V (R)
must have at least 4 edges in one color and, by Fact 5, every set Gi is missing either red or blue,
contradicting the assumption that p2 = 1. Thus, we have 4 ≤ t ≤ 7. By Claim 16, since p2 = 1, we
have p1 = |Vr|+ |Vb| − 2p2 ≤ 2. Thus,

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
=

13/3 + 5p1/3 + t

17
≤

44/3

17
< 1.

Next suppose p2 = 0 so by Claim 16, p1 ≤ 4. This means that

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
=

5p1/3 + t

17
≤

50/3

17
< 1.

Subcase 3.3. t ∈ {11, 12}.

Note that p2 = 0 by Fact 5, since for all i, either dr(wi) ≥ 4 or db(wi) ≥ 4. If dr(wi), db(wi) ≥ 4
for all i, then by Fact 5, we know that p1 = 0, and so p0 = t. We get

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
=

t

17
≤

12

17
< 1.
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Thus by Fact 4, we may assume that there is a vertex in V (R), without loss of generality, say w1 with
(dr(w1), db(w1), t) ∈ {(7, 3, 11), (8, 2, 11), (8, 3, 12)}. Let H and F be the subgraphs of R induced on
the red and blue neighborhoods of w1, so (|H |, |F |, t) ∈ {(7, 3, 11), (8, 2, 11), (8, 3, 12)}.

If there is a vertex in H with at least 4 incident red edges within H , then all edges among those
red neighbors must be blue, making a blue K4 for a contradiction. This means that every vertex of H
has at most 3 incident red edges within H , and so at least |H | − 4 ≥ 3 incident blue edges within H .
If a vertex v ∈ V (H) is not contained in a blue triangle within H , then there is a red triangle among
the blue neighbors of v in H which, together with w1, form a red K4 for a contradiction. This means
that every vertex in H is contained in a blue triangle in H , and so by Fact 3, for each wi ∈ V (H),
we have wi /∈ Vb.

Similarly, if there is a vertex in H with at least 6 incident blue edges within H , then there is
either a red or a blue triangle among those blue neighbors (by r(3, 3) = 6), which would make a red
or blue K4 in R, a contradiction. Thus, each vertex in H has at least |H | − 6 ≥ 1 incident red edge
within H , meaning that every vertex in H is contained in a red triangle in R. Thus by Fact 3, for
each wi ∈ V (H), we have wi /∈ Vr .

With w /∈ (Vr ∪ Vb) for all w ∈ V (H), we get that p0 ≥ |H |. If (dr(w1), db(w1), t) = (|H |, |F |, t) =
(8, 2, 11), then p0 ≥ |H | = 8 and p1 = 11− p0 ≤ 3. We get

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
=

11 + 5p1/3

17
≤

16

17
< 1.

Otherwise, we have (dr(w1), db(w1), t) = (|H |, |F |, t) ∈ {(7, 3, 11), (8, 3, 12)}. If there is a blue
edge within F , then w1 is contained in a blue triangle and w1 was already in a red triangle (using any
red edge within H) so in this case, we get w1 /∈ (Vr ∪ Vb) by Fact 3, and so p0 ≥ |H |+ 1. Otherwise
F induces a red triangle. In order to avoid creating a red K4, each vertex in H has at least one
blue edge to F , meaning that there are a total of at least |H | ≥ 7 blue edges between H and F . By
the pigeonhole principle, there is a vertex u ∈ V (F ) with at least 3 blue edges to H . If those blue
neighbors of u in H contain no blue edges, then they, along with w1, induce a red K4 so there must
be a blue edge so u is contained in both a red triangle and a blue triangle. Thus u /∈ (Vr ∪ Vb) by
Fact 3, again implying that p0 ≥ |H |+ 1. Thus p1 ≤ t− |H | − 1 = 3, and we get

p2
16/3

17
+ p1

8/3

17
+ p0

1

17
=

5p1/3 + t

17
≤ 1,

completing the proof of this subcase, and the proof of Case 3.
This completes the proof of Theorem 10.

References

[1] K. Cameron and J. Edmonds. Lambda composition. J. Graph Theory, 26(1):9–16, 1997.
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