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Abstract

Given a family F , a graph is F-free if it does not contain any graph in F as a subgraph.
We continue to study the topic of “extremal” planar graphs initiated by Dowden [J. Graph
Theory 83 (2016) 213–230], that is, how many edges can an F-free planar graph on n vertices
have? We define exP (n,F) to be the maximum number of edges in an F-free planar graph
on n vertices. Dowden obtained the tight bounds exP (n,C4) ≤ 15(n − 2)/7 for all n ≥ 4 and
exP (n,C5) ≤ (12n − 33)/5 for all n ≥ 11. In this paper, we continue to promote the idea
of determining exP (n,F) for certain classes F . Let Θk denote the family of Theta graphs on
k ≥ 4 vertices, that is, graphs obtained from a cycle Ck by adding an additional edge joining
two non-consecutive vertices. The study of exP (n,Θ4) was suggested by Dowden. We show
that exP (n,Θ4) ≤ 12(n − 2)/5 for all n ≥ 4, exP (n,Θ5) ≤ 5(n − 2)/2 for all n ≥ 5, and then
demonstrate that these bounds are tight, in the sense that there are infinitely many values of n
for which they are attained exactly. We also prove that exP (n,C6) ≤ exP (n,Θ6) ≤ 18(n− 2)/7
for all n ≥ 6.
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1 Introduction

All graphs considered in this paper are finite and simple. We use Pk and Ck to denote the path

and cycle on k vertices, respectively. Let F be a family of graphs. A graph is F-free if it does not

contain any graph in F as a subgraph. When F = {F} we write F -free. One of the best known

results in extremal graph theory is Turán’s Theorem [12], which gives the maximum number of

edges that a Kk-free graph on n vertices can have. The celebrated Erdős-Stone Theorem [4] then

extends this to the case when Kk is replaced by an arbitrary graph H, showing that the maximum

number of edges possible is (1 + o(1))
(
χ(H)−2
χ(H)−1

)
n, where χ(H) denotes the chromatic number of

H. This latter result has been called the “fundamental theorem of extremal graph theory” [1].

Turán-type problems when host graphs are hypergraphs are notoriously difficult. A large quantity
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of work in this area has been carried out in determining the maximum number of edges in a k-

uniform hypergraph on n vertices without containing k-uniform linear paths and cycles (see, for

example, [6, 7, 10]). Surveys on Turán-type problems of graphs and hypergraphs can be found in

[5] and [9].

Recently, Dowden [3] initiated the study of Turán-type problems when host graphs are planar

graphs, i.e., how many edges can an F-free planar graph on n vertices have? The planar Turán

number of F , denoted exP (n,F), is the maximum number of edges in an F-free planar graph on

n vertices. When F = {F} we write exP (n, F ). Dowden [3] observed that it is straightforward to

determine the exact values of exP (n,H) when H is a complete graph or non-planar graph; he also

obtained the tight bounds exP (n,C4) ≤ 15(n − 2)/7 for all n ≥ 4 and exP (n,C5) ≤ (12n − 33)/5

for all n ≥ 11. Recently, Lan, Shi and Song observed in [11] that planar Turán numbers are closely

related to planar anti-Ramsey numbers. The planar anti-Ramsey number of F , denoted arP (n,F),

is the maximum number of colors in an edge-coloring of a plane triangulation T (which is not

F-free) on n vertices such that T contains no rainbow copy of any F ∈ F . When F = {F} we

write arP (n, F ). The study of planar anti-Ramsey numbers was initiated by Horňák, Jendrol′,

Schiermeyer and Soták [8] (under the name of rainbow numbers). The following result is observed

in [11].

Proposition 1.1 ([11]) Given a planar graph H and a positive integer n ≥ |H|,

1 + exP (n,H) ≤ arP (n,H) ≤ exP (n,H),

where H = {H − e : e ∈ E(H)}.

In this paper, we continue to promote the idea of determining exP (n,F) for certain classes F .

This paper focuses on the family of Theta graphs, where a graph on at least 4 vertices is a Theta

graph if it can be obtained from a cycle by adding an additional edge joining two non-consecutive

vertices. For integer k ≥ 4, let Θk be the family of non-isomorphic Theta graphs on k vertices.

Note that the only graph in Θ4 is isomorphic to K4 minus one edge, and Θ5 has only one graph. By

abusing notation, we also use Θ4 and Θ5 to denote the only graph in Θ4 and Θ5, respectively. Note

that the study of exP (n,Θ4) was suggested by Dowden [3]. We need to introduce more notation.

For a graph G, we will use V (G) to denote the vertex set, E(G) the edge set, |G| the number of

vertices, e(G) the number of edges, δ(G) the minimum degree and G the complement of G. For a

vertex x ∈ V (G), we will use NG(x) to denote the set of vertices in G which are adjacent to x. We

define dG(x) = |NG(x)|. Given vertex sets A,B ⊆ V (G), the subgraph of G induced on A, denoted

G[A], is the graph with vertex set A and edge set {xy ∈ E(G) : x, y ∈ A}. We denote by B\A the

set B−A and G\A the subgraph of G induced on V (G)\A, respectively. We say that A is complete

to (resp. anti-complete to) B if for every a ∈ A and every b ∈ B, ab ∈ E(G) (resp. ab /∈ E(G)).
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If A = {a}, we simply say a is complete to (resp. anti-complete to) B, and write B\a and G\a,

respectively. The join G + H (resp. union G ∪ H) of two vertex disjoint graphs G and H is the

graph having vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy |x ∈ V (G), y ∈ V (H)}.
(resp. E(G) ∪ E(H)). For a positive integer t, we use tH to denote disjoint union of t copies of

a graph H. Given two isomorphic graphs G and H, we may (with a slight but common abuse of

notation) write G = H. A graph H is a spanning subgraph of a graph G if H is a subgraph of G

with V (H) = V (G). For any positive integer k, let [k] := {1, 2, . . . , k}.

We state and prove our main results in Section 2.

2 Planar Turán number of Theta graphs

In this section, using the method developed in [3], we study planar Turán numbers of Θk when

k ∈ {4, 5, 6}. The study of exP (n,Θ4) was suggested by Dowden [3]. Our technique relies heavily

on Euler’s formula. We need to introduce more notation that shall be used in this section only.

An F-free planar graph G on n vertices with the largest possible number of edges is called

extremal for n and F . If F = {F}, then we simply say G is extremal for n and F . Given a plane

graph G and integers i, j ≥ 3, an i-face in G is a face of size i; and let: Ei,j denote the set of

edges in G that each belong to one i-face and one j-face (and belong to two i-faces when i = j); Ei

denote the set of edges in G that each belong to at least one i-face; and fi denote the number of

i-faces in G. Let ei,j := |Ei,j |, ei := |Ei|, and f :=
∑

i fi. Given three positive integers a, b and c,

we use a ≡ b(mod c) to denote a and b have the same remainder when divided by c. We will make

use of the following observation.

Observation 2.1 Let G be a plane graph on n ≥ 3 vertices with e(G) ≥ 2. For all i ≥ 3,

(a) ei,i ≤ ei ≤ e(G),

(b) ifi = ei + ei,i,

(c)
∑

i≥3 ei −
∑

3≤i<j ei,j = e(G), and

(d) every face in G is bounded by a cycle if G is 2-connected.

We begin with F = Θ4 and prove that exP (n,Θ4) ≤ 12(n− 2)/5 for all n ≥ 4 and then

demonstrate that this bound is tight, in the sense that there are infinitely many values of n for

which it is attained exactly.

Theorem 2.2 exP (n,Θ4) ≤ 12(n− 2)/5 for all n ≥ 4, with equality when n ≡ 12(mod 20).

Proof. Let G be a Θ4-free plane graph on n ≥ 4 vertices. We shall proceed the proof by

induction on n. The statement is trivially true when n = 4 because any Θ4-free plane graph on
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four vertices has at most four edges. So we may assume that n ≥ 5. Next assume that there

exists a vertex u ∈ V (G) with dG(u) ≤ 2. By the induction hypothesis, e(G\u) ≤ 12(n − 3)/5

and so e(G) = e(G\u) + dG(u) ≤ 12(n − 3)/5 + 2 < 12(n − 2)/5, as desired. So we may assume

that δ(G) ≥ 3. Then each component of G has at least five vertices because G is Θ4-free. By the

induction hypothesis, we may further assume that G is connected. Then G has no face of size at

most two because G is simple. Hence

2e(G) =
∑
i≥3

ifi ≥ 3f3 + 4
∑
i≥4

fi = 3f3 + 4(f − f3) = 4f − f3, (1)

which implies that f ≤ (2e(G) + f3)/4. Note that E3,3 = ∅ else G would contain Θ4 as a sub-

graph, a contradiction. Thus e3 = 3f3 by Observation 2.1(b). This, together with e3 ≤ e(G) and

f ≤ (2e(G) + f3)/4, implies that f ≤ 7e(G)/12. By Euler’s formula, n− 2 = e(G)− f ≥ 5e(G)/12.

Hence e(G) ≤ 12(n− 2)/5, as desired.

(a) (b)

Figure 1: Construction of Gk.

From the proof above, we see that equality in e(G) ≤ 12(n− 2)/5 is achieved for n if and only

if equalities hold both in (1) and in e3 ≤ e(G). This implies that e(G) = 12(n − 2)/5 for n if and

only if G is a connected Θ4-free plane graph on n vertices such that each edge in G belongs to one

3-face and one 4-face. We next construct such an extremal graph for n and Θ4. Let n = 20k + 12

for some integer k ≥ 0. Let G0 be the graph depicted in Figure 1(a), we then construct Gk on n

vertices recursively for all k ≥ 1 via the illustration given in Figure 1(b): the entire graph Gk−1

is placed into the center quadrangle of Figure 1(b), and the entire G0 is then placed between the

two given bold quadrangles of Figure 1(b) (in such a way that these are identified with the bold

quadrangles of Figure 1(a)). One can check that Gk is Θ4-free with n = 20k + 12 vertices and

12(n− 2)/5 edges for all k ≥ 0.
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We next prove that exP (n,Θ5) ≤ 5(n− 2)/2 and then demonstrate that this bound is tight, in

the sense that there are infinitely many values of n for which it is attained exactly.

Theorem 2.3 exP (n,Θ5) ≤ 5(n− 2)/2 for all n ≥ 5, with equality when n ≡ 50(mod 120).

Proof. Let G be a Θ5-free plane graph on n ≥ 5 vertices. We show by induction on n that

e(G) ≤ 5(n− 2)/2. The statement is trivially true when n = 5 because any Θ5-free plane graph

on five vertices has at most seven edges. So we may assume that n ≥ 6. Next assume that there

exists a vertex u ∈ V (G) with dG(u) ≤ 2. By the induction hypothesis, e(G\u) ≤ 5(n − 3)/2 and

so e(G) = e(G\u) + dG(u) ≤ 5(n − 3)/2 + 2 < 5(n − 2)/2, as desired. So we may assume that

δ(G) ≥ 3. Assume next that G is disconnected. Let G1, . . . , Gs, Gs+1, . . . , Gs+t be all components

of G such that |G1| = · · · = |Gs| = 4 and 5 ≤ |Gs+1| ≤ · · · ≤ |Gs+t|, where s ≥ 0 and t ≥ 0 are

integers with s + t ≥ 2 and 4s + |Gs+1| + · · · + |Gs+t| = n. Then e(Gi) = 6 for all i ∈ [s] because

δ(G) ≥ 3, and e(Gj) ≤ 5(|Gj | − 2)/2 for all j ∈ {s + 1, . . . , s + t} by the induction hypothesis.

Therefore,

e(G) ≤ 6s+
5(|Gs+1|+ · · ·+ |Gs+t| − 2t)

2

=
5(n− 2)

2
− (8(s+ t) + 2t− 10)

2
<

5(n− 2)

2
,

as desired. So we may further assume that G is connected.

Since G is a connected plane graph on n ≥ 6 vertices, we see that G has no face of size at most

two. Hence

2e(G) = 3f3 + 4f4 +
∑
i≥5

ifi ≥ 3f3 + 4f4 + 5(f − f3 − f4) = 5f − 2f3 − f4, (2)

which implies that f ≤ (2e(G) + 2f3 + f4)/5. Note that no 3-face in G has its three edges in E3,3

because G is Θ5-free and n ≥ 6. It follows that e3,3 ≤ f3. By Observation 2.1(b),

3f3 = e3 + e3,3 ≤ e3 + f3 and so f3 ≤ e3/2. (3)

It is worth noting that a 4-face and a 3-face in G cannot have exactly one edge in common,

else G would contain Θ5 as a subgraph. Since δ(G) ≥ 3, we see that a 4-face and a 3-face in G

cannot have exactly two edges in common. Hence, every 4-face and every 3-face in G have no

edge in common and so E3,4 = ∅. Thus, e3 + e4 ≤ e(G). By Observation 2.1(a,b), e4,4 ≤ e4 and

4f4 = e4 + e4,4. It follows that

4f4 ≤ 2e4 ≤ 2(e(G)− e3) and so f4 ≤ (e(G)− e3)/2. (4)
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(a) (b)

Figure 2: Construction of Gk.

Now with the last inequalities in (3) and (4), and the fact that f ≤ (2e(G) + 2f3 + f4)/5 and

e3 ≤ e(G), we obtain f ≤ 3e(G)/5. By Euler’s formula, n − 2 = e(G) − f ≥ 2e(G)/5. Hence

e(G) ≤ 5(n− 2)/2, as desired.

From the proof above, we see that equality in e(G) ≤ 5(n − 2)/2 is achieved for n if and only

if equalities hold in (2), (3) and (4) and in e3 ≤ e(G). This implies that e(G) = 5(n − 2)/2 for n

if and only if G is a connected Θ5-free plane graph on n vertices satisfying: each 3-face in G has

exactly two edges in E3,3; each edge in G belongs to either one 3-face and one 5-face or two 3-faces.

We next construct such an extremal plane graph for n and Θ5. Let n = 120k+ 50 for some integer

k ≥ 0. Let G0 be the graph depicted in Figure 2(a), we then construct Gk of order n recursively for

all k ≥ 1 via the illustration given in Figure 2(b): the entire graph Gk−1 is placed into the center

pentagon of Figure 2(b), and the entire G0 is then placed between the two given bold pentagons of

Figure 2(b) (in such a way that these are identified with the bold pentagons of Figure 2(a)). One

can check that Gk is Θ5-free with n = 120k + 50 vertices and 5(n− 2)/2 edges for all k ≥ 0.

Finally, we prove an upper bound for exP (n,Θ6) in Theorem 2.4. Figure 3 illustrates all

possible graphs for which equality in Theorem 2.4 is attained when n = 9. However, we shall see

in Corollary 2.5 that equality is not possible for all n ≥ 10.

Theorem 2.4 exP (n,Θ6) ≤ 18(n− 2)/7 for all n ≥ 6, with equality when n = 9.

Proof. Let G be an extremal plane graph for Θ6 and n ≥ 6. We shall prove that e(G) ≤
18(n− 2)/7 by induction on n. When n = 6, we show that e(G) ≤ 10. Suppose that e(G) ≥ 11.
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Figure 3: All possible graphs achieving equality in Theorem 2.4 and Corollary 2.5 when n = 9.

Then G is isomorphic to either a plane triangulation on six vertices or a plane triangulation on

six vertices with one edge removed. Note that all plane triangulations on 6 vertices are depicted

in Figure 4. It is easy to check that G has a Hamiltonian cycle and so G contains a graph in

Θ6 as subgraph, a contradiction. Hence, e(G) ≤ 10 < 18(n− 2)/7 when n = 6. So we may

assume that n ≥ 7. Next assume that there exists a vertex u ∈ V (G) with dG(u) ≤ 2. By the

induction hypothesis, e(G\u) ≤ 18(n − 3)/7 and so e(G) = e(G\u) + dG(u) ≤ 18(n − 3)/7 + 2 <

18(n − 2)/7, as desired. So we may assume that δ(G) ≥ 3. Assume next that G is disconnected.

Then each component of G has exactly four, five or at least six vertices because δ(G) ≥ 3. Let

G1, . . . , Gr, Gr+1, . . . , Gr+s, Gr+s+1, . . . , Gr+s+t be all components of G such that

|G1| = · · · = |Gr| = 4, |Gr+1| = · · · = |Gr+s| = 5, and 6 ≤ |Gr+s+1| ≤ · · · ≤ |Gr+s+t|,

where r, s, t ≥ 0 are integers with r + s + t ≥ 2 and 4r + 5s + |Gr+s+1| + · · · + |Gr+s+t| = n.

Since G is an extremal plane graph for Θ6, we see that e(Gi) = 6 for all i ∈ [r] and e(Gj) = 9

for all j ∈ {r + 1, . . . , r + s}. By the induction hypothesis, e(Gk) ≤ 18(|Gk| − 2)/7 for all k ∈
{r + s+ 1, . . . , r + s+ t}. Therefore,

e(G) ≤ 6r + 9s+
18(|Gr+s+1|+ · · ·+ |Gr+s+t| − 2t)

7

=
18(n− 2)

7
− (27(r + s+ t) + 3r + 9t− 36)

7

<
18(n− 2)

7
,

as desired. So we may assume that G is connected.

Figure 4: All plane triangulations on 6 vertices.
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Next assume that G contains a cut-vertex, say u. Let H be a smallest component of G\u, and

let G1 := G[V (H) ∪ {u}] and G2 := G\V (H). Then |G1| ≤ |G2| and |G1| + |G2| = n + 1. Since

δ(G) ≥ 3, we see that 4 ≤ |G1| ≤ |G2|. Assume first that |G2| ≤ 5. Then e(Gi) ≤ 3|Gi| − 6 for all

i ∈ {1, 2}. Hence, e(G) = e(G1)+e(G2) ≤ 3(|G1|+ |G2|)−12 = 3n−9 ≤ 18(n−2)/7 because n ≤ 9,

with equality when both G1 and G2 are isomorphic to K5 minus one edge, and so G is isomorphic

to the graphs depicted in Figure 3. Assume next that |G2| ≥ 6. Then e(G2) ≤ 18(|G2| − 2)/7 by

the induction hypothesis. Note that e(G1) ≤ 3|G1| − 6 when |G1| ≤ 5 and e(G1) ≤ 18(|G1| − 2)/7

when |G1| ≥ 6 by the induction hypothesis. Therefore, when |G1| ≤ 5,

e(G) = e(G1) + e(G2) ≤ 3|G1| − 6 +
18(n+ 1− |G1| − 2)

7

=
18(n− 2)

7
− (24− 3|G1|)

7
<

18(n− 2)

7
;

when |G1| ≥ 6,

e(G) = e(G1) + e(G2) ≤
18(|G1|+ |G2| − 4)

7
<

18(n− 2)

7
.

So we may assume that G is 2-connected. By Observation 2.1(d) and the fact that δ(G) ≥ 3, each

face in G is bounded by a cycle.

Figure 5: Three possible configurations of H with v2v3 ∈ E4,4 ∪ E3,5.

Assume next that E4,4 ∪E3,5 6= ∅. Let v2v3 ∈ E4,4 ∪E3,5. Since δ(G) ≥ 3, let F1 and F2 be the

two faces of G having v2v3 in common such that the size of F1 is at least the size of F2. Then G must

contain a plane subgraph H isomorphic to the graphs depicted in Figure 5(a,b) when v2v3 ∈ E4,4,

and in Figure 5(c) when v2v3 ∈ E3,5, because G is Θ6-free. Let H1 and H2 be the induced plane

subgraphs of G with boundary v1, v2, v5 and v1, v3, v4, respectively. Then |H1| + |H2| = n + 1,

and |Hi| ≥ 6 for all i ∈ [2] because G is Θ6-free, 2-connected and δ(G) ≥ 3. By the induction

hypothesis, e(Hi) ≤ 18(|Hi| − 2)/7 for all i ∈ [2]. Thus,

e(G) = e(H1) + e(H2) + |{v2v3}| < 18(n− 2)/7.

We may now further assume that E4,4 ∪ E3,5 = ∅. Then e4,4 = 0 and e3,5 = 0.
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It is easy to see that G is not a plane triangulation and so
∑

i≥4 fi ≥ 0. We next show that∑
i≥5 fi 6= 0. Suppose

∑
i≥5 fi = 0. Then f3 + f4 = f and f4 > 0. Note that e4,4 = 0. It follows

that every edge of a 4-face of G belongs to E3,4, and so G contains a Θ6 subgraph, a contradiction.

Thus
∑

i≥5 fi 6= 0. We may further assume that the outer face of G is neither a 3-face nor a 4-face.

Then

2e(G) = 3f3 + 4f4 + 5f5 +
∑
i≥6

ifi

≥ 3f3 + 4f4 + 5f5 + 6(f − f3 − f4 − f5)

= 6f − 3f3 − 2f4 − f5, (5)

which implies that 6f ≤ 2e(G) + 3f3 + 2f4 + f5.

Figure 6: All possible configurations of HF , where all dashed edges are in E3,3, and no solid edges
are in E3,3.

We next find an upper bound for each of f3, f4 and f5. To get an upper bound for f3, we first

show that 5e3,3 ≤ 6f3. Let F be a 3-face in G with |E(F ) ∩ E3,3| ≥ 1. Clearly, |E(F ) ∩ E3,3| ≤ 3.

Since G is Θ6-free and the outer face of G is not a 3-face, there exists a plane subgraph HF of G

with |HF | ≤ 5 such that F is a face (not the outer face) of HF ; all faces of HF , except the outer face

of HF and any face of HF that is not a face in G, are 3-faces; and no edges on the boundary of the

outer face of HF and any face of HF that is not a face in G are in E3,3. The possible configurations

of HF are shown in Figure 6. When HF is isomorphic to the graph depicted in Figure 6(b), HF

contains six edges in E3,3 and five 3-faces of G. From all possible configurations of HF , we see that

e3,3 ≤ 6f3/5. Hence,

3f3 = e3 + e3,3 ≤ e3 + 6f3/5, and so f3 ≤ 5e3/9. (6)

To get an upper bound for f4, we next show that 4f4 ≤ 2(e(G)− e3). By Observation 2.1(b,c),

4f4 = e4 and e(G) ≥ e3 + e4 − e3,4. (7)

We next show that e3,4 ≤ e(G)− e3.

This is trivially true when e3,4 = 0. Assume that e3,4 6= 0. Let F and F ′ be a 4-face and a

3-face in G, respectively, such that F and F ′ share an edge in common. We may assume that F

9



has vertices v1, v2, v3, v4 in order and F ′ has vertices v1, v4, v5 in order. Note that F and F ′ are not

outer face in G. Observe that if vivi+1 belongs to E3,4 for any i ∈ {1, 2, 3}, then vivi+1 belongs to

the 4-face F and the 3-face with vertices vi, vi+1, v5 in order, else G would not be Θ6-free. Since

n ≥ 7, there exists some k ∈ {1, 2, 3} such that vkvk+1 /∈ E3,4. Then vkvk+1 ∈ E4,j for some j ≥ 5

because e4,4 = 0. We next show that F has at most two edges in E3,4. Suppose |E(F ) ∩E3,4| = 3.

We may assume that k = 2. Then v1v2, v3v4 ∈ E3,4. Thus v1v2 belongs to the 4-face F and the

3-face with vertices v1, v2, v5 in order; and v3v4 belongs to the 4-face F and the 3-face with vertices

v3, v4, v5 in order. Since G is Θ6-free, we see that v5v2 ∈ E3,j for some j ≥ 6, v5v3 ∈ E3,j for some

j ≥ 6, and v2v3 ∈ E4,j for some j ≥ 6. But then G + v2v4 is Θ6-free, contrary to the choice of G.

Thus F has at most two edges in E3,4, and so F has at least two edges not in E3. This holds for

each 4-face in G. Hence, e3,4 ≤ e(G)− e3.

By (7),

4f4 = e4 ≤ e(G)− e3 + e3,4 ≤ 2(e(G)− e3). (8)

Note that e3,5 = 0. By Observation 2.1(a), e5,5 ≤ e5 ≤ e(G)− e3. By Observation 2.1(b),

5f5 = e5 + e5,5 ≤ 2(e(G)− e3). (9)

Combining e3 ≤ e(G) with the upper bounds on f3, f4, f5 given in (6), (8), (9), we have

6f ≤ 2e(G) + 3f3 + 2f4 + f5

≤ 2e(G) + 5e3/3 + (e(G)− e3) + 2(e(G)− e3)/5

= 17e(G)/5 + 4e3/15

≤ 11e(G)/3.

It follows that f ≤ 11e(G)/18. By Euler’s formula, n − 2 ≥ e(G) − f ≥ 7e(G)/18. Hence

e(G) ≤ 18(n− 2)/7, as desired.

Corollary 2.5 Let K−5 be the graph obtained from K5 by deleting one edge. Then

(a) exP (n,Θ6 ∪ {K−5 }) ≤ 12(n− 2)/5 for all n ≥ 7.

(b) exP (n,Θ6) < 18(n− 2)/7 for all n ≥ 10.

Proof. To prove (a), let G be an extremal plane graph for n ≥ 7 and Θ6 ∪ {K−5 }. We prove that

e(G) ≤ 12(n−2)/5 by induction on n. Since G is Θ6-free, by Theorem 2.4, e(G) ≤ b18(n−2)/7c =

12(n − 2)/5 when n = 7. So we may assume that n ≥ 8. Similar to the proof of Theorem 2.4,

we see that e3,3 ≤ f3, because G is K−5 -free and so no HF is isomorphic to the graphs depicted in
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Figure 6(b, c). By Observation 2.1(b), f3 ≤ e3/2. This, together with the upper bounds for f4, f5

given in (8) and (9), implies that

6f ≤ 2e(G) + 3f3 + 2f4 + f5

≤ 2e(G) + 3e3/2 + e(G)− e3 + 2(e(G)− e3)/5

= 17e(G)/5 + e3/10

≤ 7e(G)/2.

It follows that f ≤ 7e(G)/12. By Euler’s formula, n − 2 ≥ e(G) − f ≥ 5e(G)/12. Hence

e(G) ≤ 12(n− 2)/5.

Figure 7: An example of constructing the graph G′ from a graph G.

To prove (b), let G be an extremal plane graph for Θ6 and n ≥ 10. By Theorem 2.4, e(G) ≤
18(n− 2)/7. Suppose e(G) = 18(n− 2)/7. By Corollary 2.5(a), G is not K−5 -free. From the proof

of Theorem 2.4, we see that equality in e(G) ≤ 18(n− 2)/7 is achieved for n if and only if all the

equalities hold in (5), (6), (8), (9) and in e3 ≤ e(G). This implies that e(G) = 18(n− 2)/7 for n if

and only if G is a 2-connected Θ6-free plane graph on n vertices satisfying: G consists entirely of

K−5 ’s and 6-faces, no two K−5 ’s share an edge, and no two 6-faces have an edge in common. Let G′

be the graph obtained from G by deleting the two vertices not on the outer face in each HF = K−5 ,

an example is shown in Figure 7. Then G′ consists of 3-faces and 6-faces such that each edge of G′

belongs to one 3-face and one 6-face. Clearly, G′ is 2-connected because G is 2-connected. Let f ′i

be the number of i-faces in G′. Let f ′ =
∑

i≥1 f
′
i . Then 3f ′3 = e(G′) = 6f ′6 and f ′ = f ′3 + f ′6. Thus

|G′| − 2 = e(G′) − f ′ = e(G′)/2 and so e(G′) = 2|G′| − 4, which implies that δ(G′) ≤ 3. Since G′

is 2-connected, we have δ(G′) ≥ 2. Note that each vertex of G′ must have even degree because the

adjacent faces are alternatively of size 3 and size 6. Thus δ(G′) = 2. Let v ∈ V (G′) be a vertex of

degree two in G′. Let u1vu2 and u1vu2u3u4u5 be the vertices in order on the boundary of the two

adjacent faces containing v, respectively. Then G′[{u1, v, u2, u3, u4, u5}] contains a graph in Θ6 as

a subgraph. Thus G is not Θ6-free, a contradiction.

It is worth noting that every C6-free graph is certainly Θ6-free. Hence, exP (n,C6) ≤ exP (n,Θ6).

Corollary 2.6 follows immediately from Theorem 2.4.

Corollary 2.6 exP (n,C6) ≤ 18(n− 2)/7 for all n ≥ 6, with equality when n = 9.
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[4] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946)

1087–1091.

[5] Z. Füredi, Turán type problems, “Surveys in Combinatorics”, London Math. Soc. Lecture Note

Ser. 166, Cambridge Univ. Press, Cambridge, 1991, pp. 253–300.
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