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Abstract
A signed graph � = (G, σ ) is obtained from a simple graph G by assigning to each
edge of G a sign + or −. Let A(�) denote the adjacency matrix of � and α(G) be the
independence number of G. We study the rank of A(�) and the independence number
α(G). We show that r(�)+2α(G) ≥ 2n−2d(G), where n is the order ofG and d(G)

is the dimension of the cycle space of G. Moreover, we obtain sharp lower bounds
for r(�) + α(G), r(�) − α(G), r(�)/α(G) and we characterize all corresponding
extremal graphs.

Keywords Rank of adjacency matrix · Signed graph · Underlying graph ·
Independence number

Mathematics Subject Classification 05C50

1 Introduction

The rank of the adjacency matrix of a graph is an important research topic in spec-
tral graph theory and has been a hot issue for scholars. Collatz and Sinogowitz [4]
first posed the open problem of characterizing all graphs satisfying that their rank
is smaller than their order. The problem has not been fully solved until now. Let
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G = (V (G), E(G)) be a simple graph. We can get some new kinds of graphs if we
add some properties to the edges E(G) (e.g., oriented graph, signed graph). A lot of
scholars pay attention to these new kinds of graph and have made some progresses in
these graphs.

For an oriented graph Gτ , Ma et al. [15] presented a relation between skew-rank of
anorientedgraph and the rankof its underlyinggraph.Huang et al. [9] established sharp
lower bounds on sr(Gτ )+2α(G), sr(Gτ )+α(G), sr(Gτ )−α(G) and sr(Gτ )/α(G)

of an oriented graph and characterized the corresponding extremal oriented graphs,
where sr(Gτ ) is the skew-rank ofGτ ,α(G) is the independence number ofG, whereas
we recently established sharp upper bounds for them in [11]. For more results and
comprehensive study of the skew-adjacency matrices of oriented graphs, we refer to
[1,3] a survey paper by Li and Lian [10].

Fan et al. [6] introduced the rank of signed graphs, and they characterized the rank
of signed graphs with pendant trees and the unicyclic signed graphs of order n with
rank 2, 3, 4 and 5, respectively. Fan et al. [5] characterized the signed graph of order
n with rank 2 or 3, and introduced a graph transformation which preserves the rank.
They also determined the unbalanced bicyclic signed graphs of order n with rank 3 or
4 and signed bicyclic graphs (including simple bicyclic graphs) of order n with rank
5. For more details, we refer to papers [8,13].

For a signed graph � = (G, α), Lu et al. [14] proved that r(G)− 2d(G) ≤ r(�) ≤
r(G) + 2d(G) for an unbalanced signed graph and characterized all corresponding
extremal graphs where r(G) is the rank of G, d(G) is the dimension of the cycle
space of G. In this paper, we first establish sharp lower bound on r(�) + 2α(G) for a
signed graph. We then apply the same fundamental idea to determine a lower bound
on r(�)+α(G), r(�)−α(G) and r(�)/α(G) and we characterize the corresponding
extremal signed graphs.

2 Notation and Definition

All graphs considered in this paper are finite, simple (i.e., have no multiple edges
and loops) and connected. For terminology and notation not defined here, we refer
to Bondy and Murty [2]. Let G be a simple graph of order n with vertex-set V (G)

and edge-set E(G). The adjacency matrix A(G) of G is an n × n symmetric matrix
(ai j )n×n such that ai j = 1 if the vertices i and j are adjacent in G, and ai j = 0,
otherwise. The rank r(G) of G means the rank of A(G).

Given a graphG, a signed graph� = (G, σ ) is obtained fromG by assigning to each
edge ofG a sign. Formally, a signed graph� = (G, σ ) consists of the underlying graph
G of �, and a sign function σ : E → {+,−}. The adjacency matrix associated with
�, written as A(�), is defined to be an n × n matrix (aσ

i j ) such that a
σ
i j = σ(viv j )ai j ,

where ai j is an element of the adjacency matrix A(G) of its underlying graph G.
An unsigned graph is considered an all-positive signed graph, in this case, replacing
matrix A(�) by matrix A(G). The rank r(�) of a signed graph � is defined as the rank
of A(�).

An induced subgraph H = (G ′, σ ) of� is a signed graph such thatG ′ is an induced
subgraph of G and each edge of H has the same sign as that in �. For an induced
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subgraph H of �, let � −H be the subgraph obtained from � by removing all vertices
of H and their incident edges. For W ⊆ V (�), � − W is the subgraph obtained from
� by removing all vertices in W and all incident edges.

Let C be a cycle of �. The sign σ(C) of C is the product of the signs of all edges.
The signed cycleC is said to be positive (or negative) if σ(C) = + (or σ(C) = −). As
the edge space E = E(G), we take the vector space {0, 1}E over F2, which we view
as the power set of E with symmetric differences as addition. We treat a cycle C ⊆ G
as an element of the edge space. The cycle space C = C(G) of G is the subspace of E
generated by the cycles in G. Denote by d(G) the dimension of the cycle space of G,
that is d(G) = |E(G)| − |V (G)| + c(G), where c(G) is the number of components
of G.

Denote by Pn,Cn, Sn and Kn a path, a cycle, a star and a complete graph of order
n, respectively. The set of neighbors of a vertex v in G is denoted by NG(v) or simply
N (v). A signed graph is called acyclic (resp. connected, bipartite) if its underlying
graph is acyclic (resp. connected, bipartite). A graph is called an empty graph if it has
no edges. We call v a cut-vertex of a connected graph � if � − v is disconnected.

A vertex of � is called a pendant vertex if it is adjacent to a unique vertex, and
the unique neighbor of a pendant vertex is called a quasi-pendant vertex. An induced
subgraph Cq of a graph � is called a pendant cycle if Cq is a cycle and is connected
to the rest of the graph by a single edge.

Two distinct edges in a graph G are independent if they do not share a common
end-vertex. Amatching is a set of pairwise independent edges ofG, while a maximum
matching of G is a matching with the maximum cardinality. The matching number of
G, denoted by α′(G), is the cardinality of amaximummatching ofG. Two vertices of a
graphG are said to be independent if they are not adjacent. A subset I of V (G) is called
an independent set if any two vertices of I are independent in G. An independent set
I is maximum if G has no independent set I ′ with |I ′| > |I |. The number of vertices
in a maximum independent set of G is called the independence number of G, denoted
by α(G).

3 Main Results

A block in G is a maximal subgraph with no cut-vertex. By contracting each 2-
connected block into a vertex we obtain an acyclic graph TG . LetWC denote the set of
vertices of TG that correspond to the cycles in G. Moreover, LG is the graph obtained
by deleting every 2-connected block. It is the subgraph induced by the vertices of G
that are not in any 2-connected block.

Now, we state our main results as follows.

Theorem 3.1 Let � = (G, σ ) be a signed simple, connected graph on n vertices.
Then,

r(�) + 2α(G) ≥ 2n − 2d(G). (1)

The equality in (1) holds if and only if the following conditions hold for �:
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Fig. 1 Graphs G, TG and �G

G TG LG

(i) the cycles (if any) of � are pairwise vertex-disjoint;
(ii) � is bipartite and a cycle C of � is positive if and only if its length |C | is a

multiple of 4;
(iii) α(TG) = α(LG) + d(G).

For example, if all cycles ofG in Fig. 1 are positive, since they all have orders that are
multiples 4, then � satisfies the three conditions of Theorem 3.1 and r(�)+ 2α(G) =
2n − 2d(G) holds with r(�) = 8, α(G) = 6, n = 12 and d(G) = 2.

Next, we will establish sharp lower bounds on r(�) + α(G), r(�) − α(G) and
r(�)/α(G).

Theorem 3.2 Let� = (G, σ ) be a signed simple, connected graph with n vertices and
m edges. Then,

r(�) + α(G) ≥ 4n − 2m −
√
n(n − 1) − 2m + 1

4
− 5

2
, (2)

with equality if and only if G ∼= Sn.

Theorem 3.3 Let� = (G, σ ) be a signed simple, connected graph with n vertices and
m edges. Then,

r(�) − α(G) ≥ 4n − 2m − 3

√
n(n − 1) − 2m + 1

4
− 7

2
, (3)

with equality if and only if G ∼= Sn.

Theorem 3.4 Let� = (G, σ ) be a signed simple, connected graph with n vertices and
m edges. Then,

r(�)

α(G)
≥ 4(2n − m − 1)√

4n(n − 1) − 8m + 1 + 1
− 2, (4)

with equality if and only if G ∼= Sn.

In order to give proofs for our main results, we need to do some preparations in the
next section.
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4 Preliminary Results

Some known results are listed in this section which will be used in the sequel.

Lemma 4.1 [17, Lemma 2.6] Let � be a signed graph.

(i) If H is an induced subgraph of �, then r(H) ≤ r(�);

(ii) If �1, �2, . . ., �t are all the components of �, then r(�) =
t∑

i=1
r(�i );

(iii) r(�) ≥ 0 with equality if and only if � is an empty graph.

Lemma 4.2 [16, Lemma 3.1] Let G be a graph and x ∈ V (G).

(i) d(G) = d(G − x) if x is not on any cycle of G;
(ii) d(G − x) ≤ d(G) − 1 if x lies on a cycle;
(iii) d(G − x) ≤ d(G) − 2 if x is a common vertex of distinct cycles;
(iv) If the cycles of G are pairwise vertex-disjoint, then d(G) is exactly the number

of cycles in G.

Lemma 4.3 [9, Lemma 1.8] Let G be a simple connected graph. Then,

(i) α(G) − 1 ≤ α(G − v) ≤ α(G) for any v ∈ V (G);
(ii) α(G − e) ≥ α(G) for any e ∈ E(G).

Lemma 4.4 [2] Let G be a bipartite graph with n vertices. Then,

α(G) + α′(G) = n.

The join of two disjoint graphs G1 and G2, denoted by G1 ∨ G2, is the graph
obtained from G1 ∪G2 by joining each vertex of G1 to each vertex of G2 by an edge.

Lemma 4.5 [7, Theorem 1] Let G be a simple connected graph with n vertices and m
edges. Then,

1

2

[
(2m + n + 1) −

√
(2m + n + 1)2 − 4n2

]
≤ α(G) ≤

√
n(n − 1) − 2m + 1

4
+ 1

2
.

The equality on the right-hand side holds if and only if G ∼= Kn−α(G) ∨ α(G)K1.

Note that any acyclic signed graph � switches to an all-positive, i.e., unsigned,
graph. So it is easy to obtain the following two lemmas.

Lemma 4.6 [6, Lemma 2.1] Let Pn be a signed path of order n. Then, r(Pn) = n if n
is even, and r(Pn) = n − 1 if n is odd.

Lemma 4.7 [12, Lemma 2.2] Let� = (G, σ ) be a signed acyclic graph with matching
number α′(G). Then,

r(�) = r(G) = 2α′(G).
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Lemma 4.8 [6, Lemma2.2]LetCn be a positive signed cycle of order n. Then, r(Cn) =
n − 2 if n ≡ 0 (mod 4), and r(Cn) = n otherwise. Let Cn be a negative signed cycle
of order n. Then, r(Cn) = n − 2 if n ≡ 2 (mod 4), and r(Cn) = n otherwise.

Lemma 4.9 [14, Lemma2.3]Let x be a vertex of�. Then, r(�)−2 ≤ r(�−x) ≤ r(�).

Lemma 4.10 [6, Lemma 2.4] Let y be a pendant vertex of �, and x be the neighbor
of y. Then,

r(�) = r(� − x − y) + 2.

Lemma 4.11 [9, Lemma 2.3] Let y be a pendant vertex of G with neighbor x. Then,

α(G) = α(G − x) = α(G − x − y) + 1.

Let T be a tree with at least one edge, and denote by T̃ the subtree obtained from
T by removing all the pendant vertices of T .

Lemma 4.12 [15, Lemma 4.2] Let T be a tree with at least one edge. Then,

(i) r(T̃ ) < r(T );
(ii) If r(T − D) = r(T ) for a subset D of V (T ), then there is a pendant vertex v

such that v /∈ D.

Denote by p(G) the number of pendant vertices of G.

Lemma 4.13 [9, Corollary 1.17] Let T be a tree with at least one edge. Then,

(i) α(T ) < α(T̃ ) + p(T );
(ii) If α(T ) = α(T − D) + |D| for a subset D of V (T ), then there is a pendant vertex

v such that v /∈ D.

Lemma 4.14

r(�) + 2α(G) ≥ 2n − 2d(G). (5)

Proof By induction on d(G). If d(G) = 0, then � is a signed tree, and the result
follows immediately from Lemmas 4.4 and 4.7.

Now suppose d(G) ≥ 1, and let x be a vertex on some cycle of G. By Lemma 4.2
(ii), we have

d(G − x) ≤ d(G) − 1. (6)

By the induction hypothesis, one has

r(� − x) + 2α(G − x) ≥ 2(n − 1) − 2d(G − x). (7)

By Lemmas 4.1 (i) and 4.3 (i), we have

r(� − x) ≤ r(�), α(G − x) ≤ α(G). (8)

From inequalities (6)–(8), we obtain the inequality (5). 
�
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Fig. 2 Graph in the proof of
Lemma 4.15

x

vy

For convenience, we call a graph � lower-optimal if it achieves the equality in
inequality (5). In the rest of this section, we aim to provide some fundamental char-
acterizations of lower-optimal signed graphs.

Lemma 4.15 Let � = (G, σ ) be a signed graph with d(G) ≥ 1 and x be a vertex
lying on a cycle of �. If � is lower-optimal, then

(i) r(�) = r(� − x);
(ii) α(G) = α(G − x);
(iii) d(G) = d(G − x) + 1;
(iv) � − x is lower-optimal;
(v) x lies on just one cycle of G and x is not a quasi-pendant vertex of G.

Proof The lower-optimality condition for � together with the proof of Lemma 4.14
forces equalities in (6)–(8). So we have (i)–(iv).

By (iii) and Lemma 4.2 (iii), we obtain that x lies on just one cycle of G, as
shown in Fig. 2. If x is a quasi-pendant vertex adjacent to a pendant vertex v, then by
Lemma 4.10, we have r(�) = r(� − x)+ 2, a contradiction to (i). This completes the
proof of (v). 
�

Lemma 4.16 [14, Theorem4.1]Let� = (G, σ )be a signedgraphandCq be apendant
cycle of � with x being the unique vertex of Cq of degree 3, and let H = � − Cq,
M = � − (Cq − x).

(i) If Cq is positive with order q ≡ 0 (mod 4), or Cq is negative with order
q ≡ 2 (mod 4), then r(�) = q − 2 + r(M);

(ii) If Cq is positive with order q ≡ 2 (mod 4), or Cq is negative with order
q ≡ 0 (mod 4), then r(�) = q + r(H);

(iii) If q is odd, then q − 1 + r(M) ≤ r(�) ≤ q + r(M).

Lemma 4.17 Let � = (G, σ ) be a signed graph and Cq be a pendant cycle of � with
x being the unique vertex of Cq of degree 3, and let H = � −Cq, M = � − (Cq − x).

(i) If Cq is positive with order q ≡ 0 (mod 4), or Cq is negative with order q ≡
2 (mod 4), then r(�) = q − 2 + r(M);

(ii) If Cq is positive with order q ≡ 2 (mod 4), or Cq is negative with order q ≡
0 (mod 4), or q is odd, then r(�) = q + r(H).

Proof When q is even, the results follow from Lemma 4.16. Now, we only need to
consider the case of q is odd.
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When q is odd, we assume that q = 2k − 1 (k ≥ 2) and x = v2k−1. The adjacency
matrix A(�) of � can be expressed as

A(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 aσ
12 aσ

1,2k−1

aσ
12 0 aσ

23 0 0

0 . . .
. . . aσ

(2k−3),(2k−2) 0 0
aσ
(2k−3),(2k−2) 0 aσ

(2k−2),(2k−1)

aσ
1,2k−1 0 ··· 0 aσ

(2k−2),(2k−1) 0 α 0 ··· 0

α

0

0 ... F
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where F = A(H),α ∈ {1,−1}. By some elementary row and column transformations,
we can show that A(�) is congruent to

A(�1) =

⎛
⎜⎜⎜⎝
A1

. . .

Ak−1
C

⎞
⎟⎟⎟⎠ ,

where

Ai =
(

0 a(2i−1),2i
a(2i−1),2i 0

)
, C =

⎛
⎜⎜⎜⎜⎜⎝

2b α 0 · · · 0
α

0 F
...

0

⎞
⎟⎟⎟⎟⎟⎠

,

i = 1, 2, . . . k − 1 and

b = (−1)k−1 a1,(2k−1)a23 . . . a(2k−2),(2k−1)

a12a34 . . . a(2k−3),(2k−2)
.

With the fact that Ai has rank 2 and r(C) = 1 + r(F) = 1 + r(H), we then have
r(�) = 2k − 2 + r(C) = q + r(H). 
�
Lemma 4.18 Let � = (G, σ ) be a signed graph and Cq be a pendant signed cycle
of � with x being the unique vertex of Cq of degree 3, and let H = � − Cq, M =
� − (Cq − x). If � is lower-optimal, then

(i) Cq is positive with order q ≡ 0 (mod 4), or Cq is negative with order q ≡
2 (mod 4);

(ii) r(�) = q − 2 + r(�1), α(G) = α(H) + q
2 ;
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(iii) both H and M are lower-optimal;
(iv) r(M) = r(H) and α(M) = α(H) + 1.

Proof (i) By contradiction, supposing that Cq is positive with order q ≡ 2 (mod 4) or
Cq is negative with order q ≡ 0 (mod 4), or q is odd, then by Lemma 4.17 we have

r(�) = q + r(H). (9)

Let δ = 0 for even q and δ = 1 for odd q. Note that x lies on the cycle Cq . So by
Lemma 4.15 (ii), we have

α(G) = α(G − x) = α(Pq−1) + α(H) = q − δ

2
+ α(H). (10)

Since Cq is a pendant cycle of G, we have

d(G) = d(M) + 1 = d(H) + 1. (11)

Note that |V (G)| = n and � is lower-optimal, we have

r(�) + 2α(G) = 2n − 2d(G). (12)

From (9)–(12), we have r(H) + 2α(H) = 2(n − q) − 2d(H) − 2 + δ, which is a
contradiction to (1).

(ii) Since x lies on a cycle of �, by Lemma 4.15 (i)–(ii) we have

r(�) = r(� − x) = r(Pq−1) + r(H) = q − 2 + r(H), (13)

α(G) = α(G − x) = α(Pq−1) + α(H) = q

2
+ α(H). (14)

(iii) Let x1 be on Cq such that it is adjacent to x . By applying Lemma 4.15 to �

(resp. G) and Lemma 4.10 (resp. Lemma 4.11) to � − x1 (resp. G − x1), we have

r(�) = r(� − x1) = q − 2 + r(M), (15)

α(G) = α(G − x1) = q − 2

2
+ α(M). (16)

From (11)–(12) and (13)–(14), we have r(H) + 2α(H) = 2(n − q) − 2d(H),
implying that H is lower-optimal.

Combining (11)–(12) and (15)–(16), one has r(M) + 2α(M) = 2(n − q + 1) −
2d(M), which implies that M is also lower-optimal.

(iv) Combining (13) and (15) yields r(M) = r(H), and equalities (14) and (16)
lead to α(M) = α(H) + 1. 
�
Lemma 4.19 Let y be a pendant vertex of � with neighbor x, and let H = � − x − y.
If � is lower-optimal, then

(i) x does not lie on any cycle of G;
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(ii) H is also lower-optimal.

Proof (i) Since x is a quasi-pendant vertex of �, Lemma 4.15 (v) states that x does
not lie on any cycle of �.

(ii) By Lemmas 4.10 and 4.11, we have

r(�) = r(H) + 2, α(G) = α(H) + 1. (17)

Since x does not lie on any cycle of G, by Lemma 4.2 (i) we have

d(G) = d(H). (18)

Equalities (17)–(18) together with the lower-optimality condition of � imply that
r(H) + 2α(H) = 2(n − 2) − 2d(H), i.e., H is lower-optimal. 
�
Lemma 4.20 If � is lower-optimal, then

(i) the cycles (if any) of � are pairwise vertex-disjoint;
(ii) � is bipartite and each cycle C has sign (−1)|C|/2;
(iii) α(G) = α(TG) + ∑

C∈C(G)
|V (C)|

2 − d(G).

Proof (i) If G contains cycles, then let x be a vertex on some cycle. By Lemma 4.15
(iii), we have d(G) = d(G−x)+1. By Lemma 4.2 (iii), x cannot be a common vertex
of distinct cycles. Hence, the cycles of � are pairwise vertex-disjoint. This completes
the proof of (i).

We will prove (ii)–(iii) by induction on the order n of G. The initial case n = 1 is
trivial.

Suppose that (ii) and (iii) hold for any lower-optimal signed graph of order smaller
than n, and suppose that � is a lower-optimal signed graph of order n ≥ 2.

If TG is empty graph, then � is a simple signed cycle Cq . By Lemma 4.8, (ii)
follows, and (iii) holds from the fact that α(Cq) = q

2 because q is even.
If TG has at least one edge, then TG contains at least one pendant vertex, say y.

Then, y is either a pendant vertex of G or y ∈ WC , in which case G contains a pendant
cycle. Now we consider both cases.

Case 1 G contains a pendant vertex y. In this case, let x be the neighbor of y in G
and let H = � − x − y. By Lemma 4.19, x is not a vertex on any cycle of G and H
is also lower-optimal. By the induction hypothesis, we have property (ii) for H since
all cycles of � also in H . Similarly, we have

d(G) = d(H). (19)

Since TH = TG − x − y, by Lemma 4.11 and (19) we have

α(G) = α(H) + 1 = α(TH ) +
∑

C∈C(H)

|V (C)|
2

− d(H) + 1

= α(TG) +
∑

C∈C(G)

|V (C)|
2

− d(G).
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Thus, (iii) holds.
Case 2 � has a pendant cycle Cq .
In this case, let x be the unique vertex of Cq of degree 3, H = � − Cq and

M = �−(Cq−x). It follows fromLemma4.18 (iii) thatM is lower-optimal. Applying
the induction hypothesis to M yields property (ii) for M . Applying Lemma 4.18 (i),
we have property (ii) for �. Thus, (ii) holds.

Combining Lemma 4.18 (ii), (iv) and assertion (d), we have

α(G) = α(M) + q

2
− 1 = α(TM ) +

∑
C∈C(M)

|V (C)|
2

+ q

2
− d(M) − 1. (20)

Since Cq is a pendant cycle of �, we have

d(G) = d(M) + 1. (21)

Note that TM ∼= TG and q
2 + ∑

C∈C(M)
|V (C)|

2 = ∑
C∈C(G)

|V (C)|
2 . Together with

(20)–(21), we have α(G) = α(TG) + ∑
C∈C(G)

|V (C)|
2 − d(G) as desired. 
�

5 Proofs of Our Main Results

With the above preparations, we are now ready to give the proofs of our main results
stated in Sect. 3.

5.1 Proof of Theorem 3.1

Proof Lemma 4.14 already established (1). We now characterize all the simple and
connected signed graphs � which attain the lower bound by considering the sufficient
and necessary conditions for the equality in (1).

Sufficiency:We proceed by induction on the order n of G to show that � is lower-
optimal if � satisfies the conditions (i)–(iii).

The n = 1 case is trivial. Suppose that any graph with order smaller than n which
satisfies (i)–(iii) is lower-optimal, and suppose that � is a signed graph with order
n ≥ 2 that satisfies (i)-(iii). Since the cycles (if any) of � are pairwise vertex-disjoint,
Lemma 4.2 states that G has exactly d(G) cycles, implying that |WC | = d(G).

If TG is an empty graph, it follows from (ii) that � is a positive cycle with order
q ≡ 0 (mod 4), or a negative cycle with order q ≡ 2 (mod 4), leading to the fact
that � is lower-optimal. So in what follows, we assume that TG has at least one edge.
Note that α(TG) = α(LG) + d(G) = α(TG − WC) + d(G). Then, by Lemma 4.13
(ii) there exists a pendant vertex of TG not in WC . Thus, G has at least one pendant
vertex, say y. Let x be the unique neighbor of y in G and H = � − x − y. Then, y is
also a pendant vertex of TG adjacent to x . By Lemma 4.11, we have

α(TG) = α(TG − x) = α(TG − x − y) + 1. (22)
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If x ∈ WC , then the graph LG ∪ (d(G)K1) can be obtained from (TG − x) ∪ K1 by
removing some edges. By Lemma 4.3 (ii), we get

α(LG) + d(G) ≥ α(TG − x) + 1. (23)

Now from (22)–(23), we have α(LG) ≥ α(TG −x)−d(G)+1 = α(TG)−d(G)+1, a
contradiction to (iii). Thus, x does not lie on any cycle of G. Then, y is also a pendant
vertex of LG adjacent to x and LH = LG − x − y. By Lemma 4.11, we have

α(LG) = α(LH ) + 1. (24)

Since x does not lie on any cycle of G, Lemma 4.2 (i) implies that

d(G) = d(H). (25)

Now from condition (iii) and (22), as well as (24)–(25), we have α(TH ) = α(LH )+
d(H). Also note that all cycles of G are cycles of H . We conclude that H satisfied
conditions (i)–(iii). By the induction hypothesis, we have

r(H) + 2α(H) = 2(n − 2) − 2d(H). (26)

Furthermore, it follows from Lemmas 4.10 and 4.11 that

r(�) = r(H) + 2, α(G) = α(H) + 1. (27)

By (25)–(27), we have r(�)+2α(G) = 2n−2d(G), implying that� is lower-optimal.
Necessity: Let � be lower-optimal. By Lemma 4.20, � satisfies (i) and (ii).
We proceed by induction on the order n ofG to prove (iii). The n = 1 case is trivial.

Suppose that (iii) holds for all lower-optimal signed graph of order smaller than n, and
suppose that � is lower-optimal signed graph of order n ≥ 2.

If TG is an empty graph, then� is a cycle of even order and (iii) follows immediately.
Now suppose TG has at least one edge. Then, TG has at least one pendant vertex,

say y. As in the proof of Lemma 4.20, either G contains y as a pendant vertex, or G
contains a pendant cycle.

Case 1 G has a pendant vertex y.
Let x be the neighbor of y in G and H = � − x − y. By Lemma 4.19, x is not on

any cycle of G and H is also lower-optimal. Applying the induction hypothesis to H
yields

α(TH ) = α(LH ) + d(H). (28)

Since x dose not lie on any cycle of G, Lemma 4.2 (i) states that

d(G) = d(H). (29)
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Note that y is also a pendant vertex of TG (resp. LG ) adjacent to x and TH = TG−x−y
(resp. LH = LG − x − y). Then, by Lemma 4.11 we have

α(TG) = α(TH ) + 1, α(LG) = α(LH ) + 1. (30)

From (28)–(30), we have α(TG) = α(LG) + d(G), as desired.
Case 2 G has a pendant cycle Cq .
Let x be the unique vertex of Cq of degree 3, and H = � − Cq . By Lemma 4.18

(iii), H is lower-optimal.
Applying the induction hypothesis to H yields

α(TH ) = α(LH ) + d(H). (31)

From Lemma 4.18 (ii), we have

α(G) = α(H) + q

2
. (32)

Note that C(G) = C(H) ∪ Cq . Together with (32) and Lemma 4.20 (iii), we have

α(TG) = α(H) + q

2
−

∑
C∈C(G)

|V (C)|
2

+ d(G) = α(H) −
∑

C∈C(H)

|V (C)|
2

+ d(G).

(33)

Since H is lower-optimal, Lemma 4.20 (iii) states that

α(TH ) = α(H) −
∑

C∈C(H)

|V (C)|
2

+ d(H). (34)

Since Cq is a pendant cycle of G, we have

d(G) = d(H) + 1. (35)

Combining (33)–(35) yields

α(TG) = α(TH ) + 1. (36)

Note that LG ∼= LH . Then, the required equality α(TG) = α(LG) + d(G) follows
from (31) and (35)–(36). This completes the proof. 
�

5.2 Proofs of Theorems 3.2, 3.3 and 3.4

By Theorem 3.1 and Lemma 4.5, we can obtain the proofs of Theorems 3.2, 3.3
and 3.4, easily. So we only give the proof of Theorem 3.2 and omit the other proofs.
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The proof of Theorem 3.2 Note that for a given simple connected graph G with
|V (G)| = n and |E(G)| = m, by (1) and Lemma 4.5 we have

r(�) + α(G) = r(�) + 2α(G) − α(G) ≥ 4n − 2m −
√
n(n − 1) − 2m + 1

4
− 5

2
,

as stated in (2).
Now, we prove the sufficient and necessary conditions for equality in (2).
Sufficiency: If n = 1, we have G ∼= K1, and then (2) holds, trivially. If n ≥ 2, we

have G ∼= Sn , and we obtain r(�) = 2, α(G) = n − 1. Together with the fact that
m = n − 1, we have the equality in (2).

Necessity: Combining Theorem 3.1 and Lemma 4.5, the equality in (2) holds if
and only if � is lower-optimal and G ∼= Kn−α(G) ∨ α(G)K1. Note that the cycles
(if any) of � are pairwise vertex-disjoint, and each cycle Cq of � is positive with
order q ≡ 0 (mod 4), or negative with order q ≡ 2 (mod 4). So n − α(G) = 1 and
α(G) = n − 1, which implies G ∼= Sn . This completes the proof. 
�
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