Extremal problems on saturation for the family of k-edge-connected graphs

Hui Lei, ${ }^{*}$ Suil O, \dagger Yongtang Shi, ${ }^{*}$ Douglas B. West ${ }^{\ddagger}$ Xuding Zhu ${ }^{\S}$

January 10, 2019

Abstract

Let \mathcal{F} be a family of graphs. A graph G is \mathcal{F}-saturated if G contains no member of \mathcal{F} as a subgraph but $G+e$ contains some member of \mathcal{F} whenever $e \in E(\bar{G})$. The saturation number and extremal number of \mathcal{F}, denoted $\operatorname{sat}(n, \mathcal{F})$ and $\operatorname{ex}(n, \mathcal{F})$ respectively, are the minimum and maximum numbers of edges among n-vertex \mathcal{F} saturated graphs. For $k \in \mathbb{N}$, let \mathcal{F}_{k} and \mathcal{F}_{k}^{\prime} be the families of k-connected and k-edgeconnected graphs, respectively. Wenger proved $\operatorname{sat}\left(n, \mathcal{F}_{k}\right)=(k-1) n-\binom{k}{2}$; we prove $\operatorname{sat}\left(n, \mathcal{F}_{k}^{\prime}\right)=(k-1)(n-1)-\left\lfloor\frac{n}{k+1}\right\rfloor\binom{ k-1}{2}$. We also prove $\operatorname{ex}\left(n, \mathcal{F}_{k}^{\prime}\right)=(k-1) n-\binom{k}{2}$ and characterize when equality holds. Finally, we give a lower bound on the spectral radius for \mathcal{F}_{k}-saturated and \mathcal{F}_{k}^{\prime}-saturated graphs.

Keywords: saturation number, extremal number, k-edge-connected, spectral radius AMS subject classification 2010: 05C15

1 Introduction

When \mathcal{F} is a family of graphs, a graph G is \mathcal{F}-saturated if (1) no subgraph of G belongs to \mathcal{F}, and (2) for any edge e in the complement \bar{G} of G, the graph obtained by adding e to G contains a subgraph that belongs to \mathcal{F} (our definition of "graph" prohibits loops and multiedges). The saturation number of \mathcal{F}, denoted $\operatorname{sat}(n, \mathcal{F})$, is the minimum number of

[^0]edges in an n-vertex \mathcal{F}-saturated graph. The extremal number $\operatorname{ex}(n, \mathcal{F})$ is the maximum number of edges in an n-vertex \mathcal{F}-saturated graph. When \mathcal{F} has only one graph F, we instead write $\operatorname{sat}(n, F)$ and $\operatorname{ex}(n, F)$, such as when F is K_{t}, the complete graph with t vertices.

Initiating the study of extremal graph theory, Turán [10] determined the extremal number ex $\left(n, K_{r+1}\right)$; the unique extremal graph is the n-vertex complete r-partite graph whose partsizes differ by at most 1. Saturation numbers were first studied by Erdős, Hajnal, and Moon [3]; they proved $\operatorname{sat}\left(n, K_{k+1}\right)=(k-1) n-\binom{k}{2}$. They also proved that equality holds only for the graph formed from a copy of K_{k-1} with vertex set S by adding $n-k+1$ vertices that each have neighborhood S. We call this the complete split graph $S_{n, k}$; note that $S_{n, k}$ has clique number k and no k-connected subgraph, and $S_{n, 2}$ is a star. For an excellent survey on saturation numbers, we refer the reader to Faudree, Faudree, and Schmitt [4].

In this paper, we study the relationship between saturation and edge-connectivity. For a given positive integer k, let \mathcal{F}_{k} be the family of k-connected graphs, and let \mathcal{F}_{k}^{\prime} be the family of k-edge-connected graphs. Wenger [11] determined $\operatorname{sat}\left(n, \mathcal{F}_{k}\right)$. Since K_{k+1} is a minimal k-connected graph, it is not surprising that $S_{n, k}$ is also an \mathcal{F}_{k}-saturated graph with fewest edges, but in fact the family of extremal graphs is much larger. A k-tree is any graph obtained from K_{k} by iteratively introducing a new vertex whose neighborhood in the previous graph consists of k pairwise adjacent vertices. Note that $S_{n, k}$ is a $(k-1)$-tree.

Theorem 1.1 (Wenger [11]). $\operatorname{sat}\left(n, \mathcal{F}_{k}\right)=(k-1) n-\binom{k}{2}$ when $n \geq k$. Furthermore, every ($k-1$)-tree with n vertices has this many edges and is \mathcal{F}_{k}-saturated.

For $n \geq k+1$, we determine $\operatorname{sat}\left(\mathcal{F}_{k}^{\prime}\right)$ and $\operatorname{ex}\left(\mathcal{F}_{k}^{\prime}\right)$. An \mathcal{F}_{1}^{\prime}-saturated graph has no edges, so henceforth we may assume $k \geq 2$. Let $\rho_{k}(n)=(k-1)(n-1)-\left\lfloor\frac{n}{k+1}\right\rfloor\binom{ k-1}{2}$. In Section 2, we construct for $n \geq k+1$ an \mathcal{F}_{k}^{\prime}-saturated graph with n vertices having $\rho_{k}(n)$ edges, proving $\operatorname{sat}\left(n, \mathcal{F}_{k}^{\prime}\right) \leq \rho_{k}(n)$. Using induction on n, in Section 3 we prove that if G is \mathcal{F}_{k}^{\prime}-saturated, then $\rho_{k}(n) \leq|E(G)| \leq(k-1) n-\binom{k}{2}$, where $E(G)$ denotes the edge set of a graph G. Since $S_{n, k}$ is also \mathcal{F}_{k}^{\prime}-saturated, the upper bound is sharp. Thus $\operatorname{sat}\left(n, \mathcal{F}_{k}^{\prime}\right)=\rho_{k}(n)$ and $\operatorname{ex}\left(n, \mathcal{F}_{k}^{\prime}\right)=(k-1) n-\binom{k}{2}$.

The spectral radius of a graph is the largest eigenvalue of its adjacency matrix. In Section 4, we give a lower bound on the spectral radius for \mathcal{F}_{k}-saturated and \mathcal{F}_{k}^{\prime}-saturated graphs. There is a long history of studying the relationship between eigenvalues and connectivity. The Laplacian matrix of G is the diagonal matrix of degrees minus the adjacency matrix. Fiedler [5] proved that the (vertex)-connectivity of a graph is at least the second smallest eigenvalue of its Laplacian matrix. This fundamental result has stimulated much additional research, such as $[2,8,9]$. It appears that for saturation problems the spectral radius is more relevant than the second smallest Laplacian eigenvalue.

Additional notation is as follows. For $v \in V(G)$, let $d_{G}(v)$ and $N_{G}(v)$ denote the degree and the neighborhood of v in G, respectively. For $A, B \subseteq V(G)$, let $\bar{A}=V(G)-A$, let $[A, B]$ be the set of edges with endpoints in A and B, and let $G[A]$ to denote the subgraph of G induced by A. Let $[k]=\{1,2, \ldots, k\}$.

Let K_{k+1}^{-}denote the graph obtained from K_{k+1} by deleting one edge; this graph is the unique smallest \mathcal{F}_{k}^{\prime}-saturated graph that is not a complete graph. The complete graphs with at most k vertices are trivially \mathcal{F}_{k}^{\prime}-saturated, since there are no edges to add. We therefore use nontrivial \mathcal{F}_{k}^{\prime}-saturated graph to mean an \mathcal{F}_{k}^{\prime}-saturated graph with at least $k+1$ vertices.

2 Construction

Recall that $\rho_{k}(n)=(k-1)(n-1)-\left\lfloor\frac{n}{k+1}\right\rfloor\binom{ k-1}{2}$ and that we restrict to $k \geq 2$ since \mathcal{F}_{1}^{\prime}-saturated graphs have no edges. In this section, for $n \geq k+1$, we construct an n vertex \mathcal{F}_{k}^{\prime}-saturated graph with $\rho_{k}(n)$ edges. Since every \mathcal{F}_{2}^{\prime}-saturated graph is a tree (and $\rho_{2}(n)=n-1$), we need only consider $k \geq 3$.

Definition 2.1. Fix $k \in \mathbb{N}$ with $k \geq 3$. For $n \in \mathbb{N}$ with $n>k$, let $t=\left\lfloor\frac{n}{k+1}\right\rfloor$ and $r=n-t(k+1)$. Let H_{i} be a copy of K_{k+1}^{-}using vertices $u_{i, 1}, \ldots, u_{i, k+1}$, with $u_{i, 1}$ and $u_{i, k+1}$ nonadjacent. Let $U_{i}=V\left(H_{i}\right)$ for $i \in[t]$. Let F_{t} be the graph obtained from the disjoint union $H_{1}+\cdots+H_{t}$ by adding the edge $u_{i, j} u_{i+1, j}$ for all i and j such that $i \in[t-1]$ and $j \in[k+1]-\{2, k\}$. Let $G_{k, n}$ be the graph obtained from F_{t} by adding new vertices w_{1}, \ldots, w_{r}, each having neighborhood $V\left(H_{t}\right)-\left\{u_{t, 1}, u_{t, k+1}\right\}$.

Figure 1: The graph $G_{k, n}$.

Proposition 2.2. For $n>k \geq 3$, the graph $G_{k, n}$ of Definition 2.1 is \mathcal{F}_{k}^{\prime}-saturated and has n vertices and $\rho_{k}(n)$ edges.

Proof. Since $n=t(k+1)+r$, the graph $G_{k, n}$ has n vertices.
In $G_{k, n}$, the vertices w_{1}, \ldots, w_{r} have degree $k-1$ and hence cannot lie in a k-edgeconnected subgraph. In F_{t}, the edges joining U_{i} and U_{i+1} form a cut of size $k-1$, so any k-edge-connected subgraph of $G_{k, n}$ is contained in just one copy of K_{k+1}^{-}. However, K_{k+1}^{-} has two vertices of degree $k-1$, leaving only $k-1$ other vertices. Hence $G_{k, n}$ has no k-edge-connected subgraph.

In F_{t}, there are $\left.t\left[\begin{array}{c}k+1 \\ 2\end{array}\right)-1\right]+(k-1)(t-1)$ edges. The added vertices w_{1}, \ldots, w_{r} contribute $r(k-1)$ more edges. Since $n=t(k+1)+r$, we compute

$$
\begin{aligned}
\left|E\left(G_{k, n}\right)\right| & =t\left[\binom{k+1}{2}-1\right]+(k-1)(t+r-1)=t \frac{k^{2}+3 k-4}{2}+(k-1)(r-1) \\
& =t \frac{(k-1)(k+4)}{2}+(k-1)(r-1)=(k-1)[t(k+1)+r-1]-t\binom{k-1}{2} \\
& =(k-1)(n-1)-t\binom{k-1}{2}=\rho_{k}(n) .
\end{aligned}
$$

Let $x y$ be an edge in the complement of $G_{k, n}$. It remains to show that the graph G^{\prime} obtained by adding $x y$ to $G_{k, n}$ has a k-edge-connected subgraph. Note that the subgraph of $G_{k, n}$ induced by $U_{t} \cup\left\{w_{1}, \ldots, w_{r}\right\}$ is the K_{k+1}-saturated graph $S_{k+r+1, k}$ of [3], so G^{\prime} contains K_{k+1} when x and y lie in this set. Similarly, if $x y$ is the one missing edge of H_{i}, then G^{\prime} again contains K_{k+1}. Hence we may assume that $x \in U_{i}$ with $1 \leq i<t$ and that $y \in\left\{w_{1}, \ldots, w_{r}\right\}$ or $y \in U_{j}$ with $i<j \leq t$. If $y \in\left\{w_{1}, \ldots, w_{r}\right\}$, then let $j=t+1$ and $U_{j}=\{y\}$, in order to combine cases. Let H^{\prime} be the subgraph of G^{\prime} induced by $\bigcup_{l=i}^{j} U_{l}$. To prove that H^{\prime} is k-edge-connected, we show that $H^{\prime}-S$ is connected, where S is a set of $k-1$ edges in H^{\prime}.

Suppose first that $H^{\prime}\left[U_{l}\right]-S$ is disconnected for some l with $i \leq l \leq j$ (this can only occur with $l \leq t$). Since $\kappa^{\prime}\left(H_{l}\right)=k-1$ for $l \in[t]$, this case requires $S \subseteq E\left(H^{\prime}\left[U_{l}\right]\right)$. In $H^{\prime}-S$, every vertex of U_{l} except $u_{l, 2}$ and $u_{l, k}$ has a neighbor in U_{l-1} when $l>i$ and in U_{l+1} when $l<j$. Also $u_{l, 2}$ and $u_{l, k}$ have degree k in H^{\prime} (or degree $k+1$ if in $\{x, y\}$), so in $H^{\prime}-S$ each has a neighbor in U_{l}. If one of them is the only neighbor of the other in $H^{\prime}-S$, then in $H^{\prime}-S$ it has an additional neighbor in U_{l}. Thus in $H^{\prime}-S$ each component of the subgraph induced by U_{l} has a neighbor in U_{l+1} if $l<j$ and a neighbor in U_{l-1} if $l>i$, so paths can reach U_{j} and U_{i}, at least one of which is connected.

Hence we may assume that $H^{\prime}\left[U_{l}\right]-S$ is connected for each l with $i \leq l \leq j$. With this reduction, for $i \leq l<j$ the subgraph induced by $U_{l} \cup U_{l+1}$ is also connected unless S consists of all $k-1$ edges joining U_{l} and U_{l+1}. If S is not any of these sets, then altogether $H^{\prime}-S$ is connected. If S consists of the $k-1$ edges joining U_{l} and U_{l+1}, then the subgraphs of $H^{\prime}-S$ induced by $U_{i} \cup \cdots \cup U_{l}$ and by $U_{l+1} \cup \cdots \cup U_{j}$ are connected, and the presence of $x y$ connects these two subgraphs.

By Proposition 2.2, $\operatorname{sat}\left(n, \mathcal{F}_{k}^{\prime}\right) \leq \rho_{k}(n)$. Thus $\operatorname{sat}\left(n, \mathcal{F}_{k}^{\prime}\right)$ is much smaller than $\operatorname{sat}\left(n, \mathcal{F}_{k}\right)$ when $n \geq 2(k+1)$. Indeed, $G_{k, n}$ is not \mathcal{F}_{k}-saturated. In particular, adding an edge joining $u_{1,1}$ to a vertex v outside U_{1} does not create a k-connected subgraph. Since $G_{k, n}$ has no k-edge-connected subgraph, it has no k-connected subgraph, so a k-connected subgraph H^{\prime} of the new graph G^{\prime} must contain the edge $u_{1,1} v$. Let $S=U_{1}-\left\{u_{1,2}, u_{1, k}\right\}$; note that $|S|=k-1$. Since H^{\prime} must have $k-1$ internally disjoint paths from v to $u_{1,1}$ in addition to the edge $v u_{1,1}$, and S is the set of vertices in U_{1} with neighbors outside U_{1}, all of S must also lie in $V\left(H^{\prime}\right)$. Since $d_{G}\left(u_{1, k+1}\right)=k$, we must also include $u_{1,2}$ and $u_{1, k}$ in $V\left(H^{\prime}\right)$. Now $H^{\prime}-S$ has $u_{1,2} u_{1, k}$ as an isolated edge.

3 Saturation and extremal number of \mathcal{F}_{k}^{\prime}

In this section, we show that if G is an \mathcal{F}_{k}^{\prime}-saturated n-vertex graph with $n \geq k+1$, then $|E(G)| \geq \rho_{k}(n)$. First, we investigate the properties of an \mathcal{F}_{k}^{\prime}-saturated graph.

Lemma 3.1. If G is \mathcal{F}_{k}^{\prime}-saturated and has more than k vertices, then $\kappa^{\prime}(G)=k-1$.
Proof. Since G has no k-edge-connected subgraph, $\kappa^{\prime}(G) \leq k-1$. If $\kappa^{\prime}(G)<k-1$, then G has an edge cut $[S, \bar{S}]$ of size less than $k-1$. Since $|V(G)|>k$, there are at least k pairs (x, y) with $x \in S$ and $y \in \bar{S}$. Hence there is such a pair (x, y) with $x y \notin E(G)$. Let G^{\prime} be the graph obtained by adding the edge $x y$ to G.

Since G has no k-edge-connected subgraph, any such subgraph of G^{\prime} must contain the edge $x y$. Hence it contains k edge-disjoint paths with endpoints x and y, by Menger's Theorem. Besides the edge $x y$, there must be at least $k-1$ with endpoints x and y that use edges of $[S, \bar{S}]$. This contradicts $|[S, \bar{S}]|<k-1$. Hence G^{\prime} has no k-edge-connected subgraph, and G cannot be \mathcal{F}_{k}^{\prime}-saturated.

Lemma 3.2. Assume $k \geq 3$, and let G be a \mathcal{F}_{k}^{\prime}-saturated graph with at least $k+2$ vertices. If S is a vertex subset in $V(G)$ such that $|[S, \bar{S}]|=k-1$ and $|S| \geq|\bar{S}|$, then $G[S]$ is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph, and $G[\bar{S}]$ is K_{1} or is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph.

Proof. First, we prove for $T \in\{S, \bar{S}\}$ that the induced subgraph $G[T]$ is a complete subgraph or is \mathcal{F}_{k}^{\prime}-saturated with at least $k+1$ vertices. When $G[T]$ is not complete, take $e \in E(\overline{G[T]})$, and let G^{\prime} be the graph obtained from G by adding e. Since G is \mathcal{F}_{k}^{\prime}-saturated, G^{\prime} contains a k-edge-connected subgraph H, and $e \in E(H)$. Since $|[T, \bar{T}]|=k-1$, no vertex of H lies in \bar{T}. Hence $H \subseteq G[T]$, which implies that $G[T]$ is \mathcal{F}_{k}^{\prime}-saturated. Since $G[T]$ is not complete, that requires $|T| \geq k+1$.

If $G[\bar{S}]$ is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph, then $G[S]$ is also, by $|S| \geq|\bar{S}|$ and the preceding paragraph. If $G[\bar{S}]=K_{1}$, then $|V(G)| \geq k+2$ and the preceding paragraph again
yields that $G[S]$ is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph. Hence it suffices to show that $G[\bar{S}]$ cannot be a complete graph with $|\bar{S}| \geq 2$.

By Lemma 3.1, $\delta(G) \geq k-1$. The vertex of \bar{S} incident to the fewest edges of $[S, \bar{S}]$ has degree at most $\left\lfloor\frac{k-1}{j}\right\rfloor+j-1$, where $j=|\bar{S}|$. Since $j \geq 2$, we thus have $j \geq k-1$.

If $j=k-1$, then $\delta(G) \geq k-1$ requires each vertex of \bar{S} to be incident to exactly one edge of the cut. Adding an edge across the cut then increases the degree of only one vertex of \bar{S} to k. Hence only that vertex can lie in H, which restricts its degree in H to 1 .

We may therefore assume $|\bar{S}|=k$, since $K_{k+1} \nsubseteq G$, and $|S| \geq k$. Since $|[S, \bar{S}]|=k-1$, some $v \in \bar{S}$ has degree only $k-1$ in G, and every vertex of \bar{S} has a nonneighbor in S. Choose $y \in \bar{S}$ with $y \neq v$, and choose $x \in S$ with $x y \notin E(G)$. Let G^{\prime} be the graph obtained by adding $x y$ to G. A k-edge-connected subgraph H of G^{\prime} must contain y but cannot contain v. If H has $i+1$ vertices in $\bar{S}-\{v\}$, then a vertex among these with least degree in H has degree at most $\left\lfloor\frac{k}{i+1}\right\rfloor+i$ in H. Since $i \leq k-2$ and $\delta(H) \geq k$, we have $i=0$.

Hence $V(H) \cap \bar{S}=\{y\}$ and all edges of $[S, \bar{S}]$ are incident to y. All vertices of \bar{S} other than y have degree $k-1$ in G. In this case let G^{\prime} be the graph obtained by adding $x v$ to G. Since vertices in the resulting k-edge-connected subgraph H must have degree at least k, the only vertices from \bar{S} that can be included are y and v. However, now $d_{H}(v)=2$, which prohibits such a subgraph H since $k \geq 3$.

Lemma 3.3. If G is an n-vertex \mathcal{F}_{k}^{\prime}-saturated graph with $n \geq k+1$, then G contains K_{k+1}^{-}.
Proof. We use induction on n, the number of vertices. The claim holds when $n=k+1$, since K_{k+1}^{-}is the only \mathcal{F}_{k}^{\prime}-saturated graph with $k+1$-vertices.

Now consider $n \geq k+2$. Since $\kappa^{\prime}(G)=k-1$ by Lemma 3.1, there exists $S \subseteq V(G)$ such that $|[S, \bar{S}]|=k-1$ and $|S| \geq|\bar{S}|$. By Lemma 3.2, $|S| \geq k+1$ and $G[S]$ is \mathcal{F}_{k}^{\prime}-saturated. By the induction hypothesis, $G[S]$ (and hence also G) contains K_{k+1}^{-}.

The lemmas allow us to prove the main result of this section.
Theorem 3.4. For $n \in \mathbb{N}$, with $t=\left\lfloor\frac{n}{k+1}\right\rfloor$,

$$
\operatorname{sat}\left(n, \mathcal{F}_{k}^{\prime}\right)=(k-1)(n-1)-t\binom{k-1}{2}
$$

with equality achieved for $k=1$ by \bar{K}_{n}, for $k=2$ by trees, and for $k \geq 3$ by $G_{k, n}$.
Proof. The claims for $k \leq 2$ are immediate. For $k \geq 3$, Proposition 2.2 yields the upper bound. For the lower bound, we use induction on n. When $n=k+1$, so $t=1$, the only \mathcal{F}_{k}^{\prime}-saturated n-vertex graph is K_{k+1}^{-}, which indeed has $(k-1) k-\binom{k-1}{2}$ edges.

For $n>k+1$, let G be a \mathcal{F}_{k}^{\prime}-saturated n-vertex graph. Since $\kappa^{\prime}(G)=k-1$ by Lemma 3.1, there exists $S \subseteq V(G)$ such that $|[S, \bar{S}]|=k-1$ and $|S| \geq|\bar{S}|$. By Lemma 3.2, $G[S]$ is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph and $G[\bar{S}]$ is K_{1} or is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph. Let $t^{\prime}=\left\lfloor\frac{|S|}{k+1}\right\rfloor$. By the induction hypothesis, $|E(G[S])| \geq(k-1)(|S|-1)-t^{\prime}\binom{k-1}{2}$.

If $G[\bar{S}]=K_{1}$, then $|S|=n-1$ and exactly $k-1$ edges lie outside $G[S]$. Hence $\mid E(G) \geq$ $(k-1)(n-1)-t^{\prime}\binom{k-1}{2}$. Since $t^{\prime} \in\{t, t-1\}$, the desired inequality holds.

Therefore, we may assume that $G[S]$ and $G[\bar{S}]$ are both nontrivial \mathcal{F}_{k}^{\prime}-saturated graphs. Let $t^{\prime \prime}=\left\lfloor\frac{|\bar{S}|}{k+1}\right\rfloor$. Note that $t^{\prime}+t^{\prime \prime} \leq t$. Using the induction hypothesis and adding the $k-1$ edges of the cut,
$|E(G)| \geq(k-1)(|S|+|\bar{S}|-2)+(k-1)-\left(t^{\prime}+t^{\prime \prime}\right)\binom{k-1}{2} \geq(k-1)(n-1)-t\binom{k-1}{2}$.
Hence $|E(G)| \geq \rho_{k}(n)$.
Next we determine the maximum number of edges in \mathcal{F}_{k}^{\prime}-saturated n-vertex graphs.
Theorem 3.5. If $n \geq k+1$, then $\operatorname{ex}\left(n, \mathcal{F}_{k}^{\prime}\right)=(k-1) n-\binom{k}{2}$. Furthermore, the n-vertex \mathcal{F}_{k}^{\prime}-saturated graphs with the most edges arise from $(n-1)$-vertex \mathcal{F}_{k}^{\prime}-saturated graphs with the most edges by adding one vertex with $k-1$ neighbors.

Proof. As we have noted, \mathcal{F}_{1}^{\prime}-saturated graphs have no edges and \mathcal{F}_{2}^{\prime}-saturated graphs are trees, so we may assume $k \geq 3$. We use induction on n; when $n=k+1$, the only \mathcal{F}_{k}^{\prime}-saturated n-vertex graph is K_{k+1}^{-}.

For $n>k+1$, let G be an \mathcal{F}_{k}^{\prime}-saturated n-vertex graph. As in Theorem 3.4, there exists $S \subseteq V(G)$ such that $|[S, \bar{S}]|=k-1$ and $|S| \geq|\bar{S}|$. By Lemma 3.2, $G[S]$ is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph and $G[\bar{S}]$ is K_{1} or is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph.

Applying the induction hypothesis, if $G[\bar{S}]=K_{1}$, then $|E(G)| \leq(k-1)(n-1)+(k-$ 1) $-\binom{k}{2}=(k-1) n-\binom{k}{2}$, with equality only under the claimed condition. On the other hand, if $[\bar{S}]$ is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph, then

$$
|E(G)| \leq(k-1)|S|-\binom{k}{2}+(k-1)|\bar{S}|-\binom{k}{2}+(k-1)=(k-1) n-(k+1)(k-1) .
$$

Since $k+1>k / 2$ when $k>0$, the upper bound in this case is strictly smaller than the claimed upper bound.

4 Spectral radius and \mathcal{F}_{k}^{\prime}-saturated graphs

In this section, we give sharp lower bounds on the spectral radius for \mathcal{F}_{k}^{\prime}-saturated graphs and for \mathcal{F}_{k}-saturated graphs. The spectral radius of a graph G, denoted $\lambda_{1}(G)$, is the
largest eigenvalue of the adjacency matrix of G. The following two lemmas are well-known in spectral graph theory.

Lemma 4.1 ([6]). If H is a subgraph of G, then $\lambda_{1}(H) \leq \lambda_{1}(G)$.
Lemma 4.2 ([1]). For any graph G,

$$
\frac{2|E(G)|}{|V(G)|} \leq \lambda_{1}(G) \leq \Delta(G)
$$

with equality if and only if G is regular.
For a vertex partition P of a graph G, with parts V_{1}, \ldots, V_{t}, the quotient matrix Q has (i, j)-entry $\frac{\left|\mid V_{i}, V_{j}\right] \mid}{\left|V_{i}\right|}$ when $i \neq j$ and $\frac{2 \mid E\left(G\left[V_{i}\right]| |\right.}{\left|V_{i}\right|}$ when $i=j$. Let $q_{i, j}$ denote the (i, j)-entry in Q. A vertex partition P with t parts is equitable if whenever $i, j \in[t]$ and $v \in V_{i}$, the number of neighbors of v in V_{j} is $q_{i, j}$.

Lemma 4.3 ([6]). If $\left\{V_{1}, \ldots, V_{t}\right\}$ is an equitable partition of $V(G)$, then $\lambda_{1}(G)=\lambda_{1}(Q)$, where Q is the quotient matrix for the partition.

Theorem 4.4. If G is a nontrivial \mathcal{F}_{k}^{\prime}-saturated graph, then $\lambda_{1}(G) \geq\left(k-2+\sqrt{k^{2}+4 k-4}\right) / 2$, with equality for K_{k+1}^{-}.

Proof. First we prove $\lambda_{1}\left(K_{k+1}^{-}\right)=\left(k-2+\sqrt{k^{2}+4 k-4}\right) / 2$. Let $V\left(K_{k+1}^{-}\right)=\left\{x_{1}, \ldots, x_{k+1}\right\}$, with $d\left(x_{1}\right)=d\left(x_{k+1}\right)=k-1$. The vertex partition of K_{k+1}^{-}given by $V_{1}=\left\{x_{1}, x_{k+1}\right\}$ and $V_{2}=\left\{x_{2}, \ldots, x_{k}\right\}$ is equitable. The corresponding quotient matrix Q is $\left(\begin{array}{cc}0 & 2 \\ k-1 & k-2\end{array}\right)$. By Lemma 4.3, $\lambda_{1}\left(K_{k+1}^{-}\right)=\lambda_{1}(Q)=\left(k-2+\sqrt{k^{2}+4 k-4}\right) / 2$.

For any nontrivial \mathcal{F}_{k}^{\prime}-saturated graph G, Lemma 3.3 yields $K_{k+1}^{-} \subseteq G$. By Lemma 4.1, $\lambda_{1}(G) \geq \lambda_{1}\left(K_{k+1}^{-}\right)$, as desired.

Theorem 4.5. If G is \mathcal{F}_{k}-saturated with n vertices, where $n \geq k+1$, then
$\lambda_{1}(G) \geq\left(k-2+\sqrt{k^{2}+4 k-4}\right) / 2$.
Proof. For $k=1$, the bound is 0 . Since \mathcal{F}_{1}-saturated graphs have no edges and hence all eigenvalues 0 , we may assume $k \geq 2$. When $n=k+1$, the only \mathcal{F}_{k}-saturated graph is K_{k+1}^{-}, whose spectral radius as computed in Theorem 4.4 is the claimed bound. Hence we may assume $n \geq k+2 \geq 4$.

By Theorem 1.1, $|E(G)| \geq(k-1) n-\binom{k}{2}$. By Lemma 4.2,

$$
\lambda_{1}(G) \geq \frac{2|E(G)|}{n} \geq \frac{2(k-1) n-2\binom{k}{2}}{n}=2(k-1)-\frac{k(k-1)}{n} .
$$

Thus it suffices to prove $2(k-1)-k(k-1) / n \geq\left(k-2+\sqrt{k^{2}+4 k-4}\right) / 2$.

For $k=2$, this reduces to $2-2 / n \geq \sqrt{2}$, which holds when $n \geq 4$. For $k=3$, it reduces to $4-6 / n \geq(1+\sqrt{17}) / 2$, which holds when $n \geq 5$.

For $k \geq 4$, since $k>\left(k-2+\sqrt{k^{2}+4 k-4}\right) / 2$, it suffices to prove $2(k-1)-\frac{k(k-1)}{n} \geq k$. We compute

$$
2(k-1)-\frac{k(k-1)}{n}-k \geq k-2-\frac{k(k-1)}{k+2}=\frac{k-4}{k+2} \geq 0 .
$$

This completes the proof.
For $t \geq 3$, let $\mathcal{F}_{d, t}$ be the family of d-regular simple graphs H with $\kappa^{\prime}(H) \leq t$. In [7], it was proved that the minimum of the second largest eigenvalue over graphs in $\mathcal{F}_{d, t}$ is the second largest eigenvalue of a smallest graph in $\mathcal{F}_{d, t}$. Theorems 4.4 and 4.5 similarly say that the minima of the spectral radius over \mathcal{F}-saturated graphs and over \mathcal{F}^{\prime}-saturated graphs are the spectral radii of the smallest graph in these families.

References

[1] A. Brouwer and W. Haemers, Spectra of Graphs, Springer, 2012.
[2] S.M. Cioabá, Eigenvalues and edge-connectivity of regular graphs. Linear Algebra Appl., 432 (2010), 458-470.
[3] P. Erdős, A. Hajnal, J.W. Moon, A problem in graph theory, Amer. Math. Monthly 71 (10)(1964), 1107-1110.
[4] J.R. Faudree, R.J. Faudree, J.R. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18 (2011), Dynamic Survey 19, 36 pages.
[5] M. Fiedler, Algebraic connectivity of graphs. Czech.Math.J 23 (1973), 298-305.
[6] C. Godsil, G.F. Royle, Algebraic Graph Theory, Springer, 2013.
[7] J. Hyun, S. O, J. Park, J. Park, and H. Yu, Tight spectral bounds for the edgeconnectivity in regular simple graphs (in preparation).
[8] S. Kirkland, J.J. Molitierno, M. Neumann and B.L. Shader, On graphs with equal algebraic and vertex connectivity, Linear Algebra Appl. 341 (2002), 45-56.
[9] S. O, Edge-connectivity in regular multigraphs from eigenvalues, Linear Algebra Appl. 491 (2016), 4-14.
[10] P. Turán, Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48 (1941), 436-452.
[11] P.S. Wenger, A note on the saturation number of the family of k-connected graphs, Discrete Math. 323 (2014), 81-83.

[^0]: *Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China; leihui0711@163.com, shi@nankai.edu.cn. Research supported by the National Natural Science Foundation of China and the Natural Science Foundation of Tianjin No.17JCQNJC00300.
 ${ }^{\dagger}$ Department of Applied Mathematics and Statistics, The State University of New York, Korea, Incheon, 21985; suil.o@sunykorea.ac.kr (corresponding author). Research supported by NRF-2017R1D1A1B03031758.
 ${ }^{\ddagger}$ Departments of Mathematics, Zhejiang Normal University, Jinhua, 321004 and University of Illinois, Urbana, IL 61801, USA; dwest@math.uiuc.edu. Research supported by Recruitment Program of Foreign Experts, 1000 Talent Plan, State Administration of Foreign Experts Affairs, China.
 ${ }^{\S}$ Department of Mathematics, Zhejiang Normal University, Jinhua, 321004; xdzhu@zjnu.edu.cn. Research supported in part by CNSF 00571319.

