Note
 On a tree graph defined by a set of cycles

Xueliang Lia ${ }^{\text {a }}$, Víctor Neumann-Lara ${ }^{\text {b }}$, Eduardo Rivera-Campoc ${ }^{\text {c }}$,
${ }^{\text {a }}$ Center for Combinatorics, Nankai University, People's Republic of China
${ }^{\mathrm{b}}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Mexico
${ }^{\text {c }}$ Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa, Mexico

Received 30 January 2002; received in revised form 21 January 2003; accepted 7 February 2003

Abstract

For a set C of cycles of a connected graph G we define $T(G, C)$ as the graph with one vertex for each spanning tree of G, in which two trees R and S are adjacent if $R \cup S$ contains exactly one cycle and this cycle lies in C. We give necessary conditions and sufficient conditions for $T(G, C)$ to be connected.

(C) 2003 Elsevier B.V. All rights reserved.

Keywords: Tree graph; Cycle space; Δ^{*}-dense

1. Introduction

The tree graph of a connected graph G is the graph $T(G)$ whose vertices are the spanning trees of G, in which two trees R and S are adjacent if S can be obtained from R by deleting an edge r of R and adding another edge s of S. In [2] Cummins proved that $T(G)$ is Hamiltonian and therefore connected, and in [5] Holzmann and Harary proved the analogue result for matroids.

Later, two variations of the tree graph were studied: The adjacency tree graph $T_{a}(G)$ and the leaf-exchange tree graph $T_{l}(G)$ which are spanning subgraphs of $T(G)$. Let R and S be adjacent trees in $T(G)$ and r and s be edges of G such that $S=(R-r)+s$. In $T_{a}(G), R$ and S are adjacent only if r and s are adjacent edges of G, whereas in $T_{l}(G)$, R and S are adjacent only if r and s are leaf edges of R and S, respectively. Zhang and Chen [6] proved that if G is a connected graph, not necessarily simple but with no loops, then $T_{a}(G)$ is ρ-connected, where ρ is the dimension of the cycle space of

[^0]G, and Heinrich and Liu [4] proved that $T_{a}(G)$ is 2ρ-connected for any simple graph G. In [3], Harary et al. proved that $T_{l}(G)$ is connected for every 2 -connected graph G, and in [1] Broersma and Li characterized those graphs for which $T_{l}(G)$ is connected.

For any set of cycles C of a connected graph G we define $T(G, C)$ as the spanning subgraph of $T(G)$, in which two trees R and S are adjacent if they are adjacent in $T(G)$ and the unique cycle σ contained in $R \cup S$ lies in C. In this article, we present necessary conditions and sufficient conditions for $T(G, C)$ to be connected.

Throughout this article we shall denote with the same characters graphs and their sets of edges. The symmetric difference $\sigma \Delta \tau$ of two cycles σ and τ of a graph G is the subgraph of G induced by the edge set $(\sigma \cup \tau) \backslash(\sigma \cap \tau)$.

2. Necessary conditions

For any graph G we denote by $\Gamma(G)$ the cycle space of G, and for any set C of cycles of G we denote by $\operatorname{Span} C$ the subspace of $\Gamma(G)$ spanned by C. A cycle σ is cyclically spanned by C if there are cycles $\tau_{1}, \tau_{2}, \ldots, \tau_{m} \in C$ such that $\sigma=\tau_{1} \Delta \tau_{2} \Delta \cdots \Delta \tau_{m}$ and for $j=1,2, \ldots, m, \tau_{1} \Delta \tau_{2} \Delta \cdots \Delta \tau_{j}$ is a cycle of G.

Lemma 2.1. Let C be a set of cycles of a connected graph G and let $Q_{0}, Q_{1}, \ldots, Q_{n}$ be a path in $T(G, C)$ with length $n \geqslant 1$. For $i=1,2, \ldots, n$, denote by τ_{i} the unique cycle contained in $Q_{i-1} \cup Q_{i}$. If σ is a cycle of G such that $\sigma \subset Q_{0}+e$ for some $e \in Q_{n}$, then σ is cyclically spanned by $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$.

Proof. If $n=1$, then $e \in Q_{1}$ and $\sigma \subset Q_{0} \cup Q_{1}$ which implies $\sigma=\tau_{1}$. We proceed by induction assuming $n>1$ and that the result holds for any path in $T(G, C)$ with length less than n.

Case 1: $e \in Q_{t}$ for some $t<n$.
Since $Q_{0}, Q_{1}, \ldots, Q_{t}$ is a path in $T(G, C)$ with length $t<n, \sigma \subset Q_{0}+e$ and $e \in Q_{t}$, then by induction σ is cyclically spanned by $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{t}\right\}$.

Case 2: $\sigma \subset Q_{t}+e$ for some $t \geqslant 1$.
Since $Q_{t}, Q_{t+1}, \ldots, Q_{n}$ is a path in $T(G, C)$ with length $n-t<n, \sigma \subset Q_{t}+e$ and $e \in Q_{n}$, then by induction σ is cyclically spanned by $\left\{\tau_{t+1}, \tau_{t+2}, \ldots, \tau_{n}\right\}$.

Case 3: $\sigma \nsubseteq Q_{t}+e$ for $t=1,2, \ldots, n$ and $e \notin Q_{t}$ for $t=0,1, \ldots, n-1$.
Let a and b be the edges of G such that Q_{1} is obtained from Q_{0} by deleting a and adding b. Clearly $a, b \in \tau_{1}$, and since σ is contained in $Q_{0}+e$ but not in $Q_{1}+e=\left(\left(Q_{0}-a\right)+b\right)+e$, then a also lies in σ.

Since $\sigma \subset Q_{0}+e$ and $\tau_{1} \subset Q_{0} \cup Q_{1}$, then $\sigma \cup \tau_{1} \subset\left(Q_{0} \cup Q_{1}\right)+e=\left(Q_{1}+a\right)+e$. Since $a \in \sigma \cap \tau_{1}$, then $\sigma \Delta \tau_{1} \subset Q_{1}+e$.

In this case $Q_{1}, Q_{2}, \ldots, Q_{n}$ is a path in $T(G, C)$ with length $n-1, \sigma \Delta \tau_{1} \subset Q_{1}+e$ and $e \in Q_{n}$. By induction $\sigma \Delta \tau_{1}$ is cyclically spanned by $\left\{\tau_{2}, \tau_{3}, \ldots, \tau_{n}\right\}$. Since $\sigma=\left(\sigma \Delta \tau_{1}\right) \Delta \tau_{1}$, then σ is cyclically spanned by $\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$.

Theorem 2.2. Let C be a set of cycles of a connected graph G. If $T(G, C)$ is connected, then C spans the cycle space of G.

Proof. Let σ be any cycle of G and e be an edge of σ. Let R and S be spanning trees of G such that $\sigma \subset R+e$ and $e \in S$. Since $T(G, C)$ is connected, there is a path $R=Q_{0}, Q_{1}, \ldots, Q_{n}=S$ connecting R and S in $T(G, C)$. By Lemma 2.1, $\sigma \in \operatorname{Span}\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$, where for $i=1,2, \ldots, n, \tau_{i} \in C$ is the unique cycle of G contained in $Q_{i-1} \cup Q_{i}$.

Consider the complete graph G with vertex set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Let C consist of the cycles $u_{1} u_{2} u_{3} u_{4}, u_{1} u_{2} u_{4}$ and $u_{1} u_{4} u_{3}$. The set C is a basis of the cycle space of G, nevertheless the path $u_{1} u_{3} u_{2} u_{4}$ is an isolated vertex in $T(G, C)$. This shows that the condition on Theorem 2.2 is not a sufficient condition for $T(G, C)$ to be connected.

3. Sufficient conditions

A unicycle of a connected graph G is a connected spanning subgraph of G that contains exactly one cycle.

Let C be a set of cycles of a connected graph G. A cycle σ of G satisfies property Δ^{*} (with respect to C) if for any unicycle U of G containing σ there are two cycles $\tau, v \in C$ contained in $U+e$ for some edge e of G such that $\sigma=\tau \Delta v$.

Lemma 3.1. Let C be a set of cycles of a connected graph G and σ be a cycle of G satisfying property Δ^{*}. The graph $T(G, C)$ is connected if and only if $T(G, C \cup\{\sigma\})$ is connected.

Proof. Clearly $T(G, C \cup\{\sigma\})$ is connected whenever $T(G, C)$ is connected.
Let R and S be spanning trees of G, adjacent in $T(G, C \cup\{\sigma\})$ and $\omega \in C \cup\{\sigma\}$ be the unique cycle contained in $R \cup S$. If $\omega \in C$, then R and S are also adjacent in $T(G, C)$.

Suppose now $\omega=\sigma$. Since σ satisfies property Δ^{*} and $R \cup S$ is a unicycle of G that contains σ, there are two cycles $\tau, v \in C$ contained in $(R \cup S)+e$ for some edge e of G such that $\sigma=\tau \Delta v$.
Let a and b be the edges of σ such that $S=(R-a)+b$. Four cases are considered.
Case 1: $a \in \tau \backslash v$ and $b \in v \backslash \tau$.
Let Q be the spanning tree of G obtained from R by deleting the edge a and adding the edge e. Since $S=(Q-e)+b$, both pairs of trees R and Q and Q and S are adjacent in $T(G)$.

Since $\tau \subset(R \cup S)+e=(R+b)+e$ and $b \notin \tau$, then $\tau \subset R+e=R \cup Q$; therefore R and Q are adjacent in $T(G,\{\tau\})$.

Since $v \subset(R \cup S)+e=(S+a)+e$ and $a \notin v$, then $v \subset S+e=S \cup Q$; therefore S and Q are adjacent in $T(G,\{v\})$.

In this case R and S are connected in $T(G,\{\tau, v\}) \subset T(G, C)$ by a path of length two.

Case 2: $b \in \tau \backslash v$ and $a \in v \backslash \tau$.
Interchange τ and v in Case 1 .
Case 3: $a, b \in \tau \backslash v$.

Let c be an edge in $\nu \backslash \tau$ and let $Q_{1}=(R-c)+e$ and $Q_{2}=(S-c)+e$. Since $Q_{2}=\left(Q_{1}-a\right)+b$, all three pairs R and Q_{1}, Q_{1} and Q_{2} and Q_{2} and S are adjacent in $T(G)$.

Since $v \subset(R \cup S)+e=(R+b)+e$ and $b \notin v$, then $v \subset R+e=R \cup Q_{1}$; therefore R and Q_{1} are adjacent in $T(G,\{v\})$.

Since $\tau \subset(R \cup S)+e=\left(Q_{1} \cup Q_{2}\right)+c$ and $c \notin \tau$, then $\tau \subset Q_{1} \cup Q_{2}$; therefore Q_{1} and Q_{2} are adjacent in $T(G,\{\tau\})$.

Since $v \subset(R \cup S)+e=(S+a)+e$ and $a \notin v$, then $v \subset S+e=Q_{2} \cup S$; therefore Q_{2} and S are adjacent in $T(G,\{v\})$.

In this case, R and S are connected in $T(G,\{\tau, v\}) \subset T(G, C)$ by a path of length three.

Case 4: $a, b \in v \backslash \tau$.
Interchange τ and v in Case 3 .
Let G be a connected graph. For any set C of cycles of G, we define the closure $c l_{G}(C)$ of C in G as the set of cycles obtained from C by recursively adding new cycles of G that satisfy property Δ^{*} until no such cycle remains.

Theorem 3.2. For any connected graph G and any set C of cycles of G, the closure of C in G is well defined.

Proof. Suppose the result is false and let C^{\prime} and $C^{\prime \prime}$ be two different sets of cycles of G obtained from C by recursively adding new cycles of G that satisfy property Δ^{*} until no such cycle remains. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ and $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ denote the sequences of cycles added to C while obtaining C^{\prime} and $C^{\prime \prime}$, respectively.
Without loss of generality we assume $C^{\prime} \subsetneq C^{\prime \prime}$ and let σ_{k} be the first cycle in the sequence $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ which is not in $C^{\prime \prime}$. Let $D=C \cup\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k-1}\right\}$; since σ_{k} satisfies property Δ^{*} with respect to D and $D \subset C^{\prime \prime}$, then σ_{k} satisfies property Δ^{*} with respect to $C^{\prime \prime}$ which is not possible since $C^{\prime \prime}$ is Δ^{*}-closed and $\sigma_{k} \notin C^{\prime \prime}$.

Theorem 3.3. Let C be a set of cycles of a connected graph G. The graph $T(G, C)$ is connected if and only if $T\left(G, c l_{G}(C)\right)$ is connected.

Proof. Let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ be the sequence of cycles added to C while obtaining $c l_{G}(C)$. Set $C_{0}=C$ and for $i=0,1, \ldots, n-1$, let $C_{i+1}=C_{i} \cup\left\{\sigma_{i+1}\right\}$. Clearly $C_{n}=c l_{G}(C)$ and by Lemma 3.1, $T\left(G, C_{i}\right)$ is connected if and only if $T\left(G, C_{i+1}\right)$ is connected.

A set of cycles C of a connected graph G is Δ^{*}-dense in G if $c l_{G}(C)$ is the set of all cycles of G.

Corollary 3.4. If C is a Δ^{*}-dense set of cycles in a connected graph G, then $T(G, C)$ is connected.

Proof. If C is Δ^{*}-dense, then $T\left(G, c l_{G}(C)\right)=T(G)$ which is always connected. By Theorem 3.3, $T(G, C)$ is connected.

We know no example of a connected graph G and a set of cycles C of G such that $T(G, C)$ is connected but C is not Δ^{*}-dense in G.

4. Δ^{*}-dense sets of cycles

In this section, we present two examples of sets of cycles which are Δ^{*}-dense.

Theorem 4.1. For any 2-connected plane graph G, the set C of internal faces of G is Δ^{*}-dense in G.

Proof. Let σ be a cycle of G and k be the number of edges of G contained in the interior of σ. If $k=0$, then $\sigma \in C \subset c l_{G}(C)$. We proceed by induction assuming $k \geqslant 1$ and that if α is a cycle of G whose interior contains fewer than k edges of G, then $\alpha \in \operatorname{cl}_{G}(C)$.

Let U be a unicycle of G containing σ. For each vertex w of G let U_{w} be the minimal path contained in U that connects w to σ and denote by $w(\sigma)$ the unique vertex of U_{w} that lies in σ.

Since $k \geqslant 1$ and G is 2 -connected, there is an edge $e=u v$ of G, contained in the interior of σ, such that $u(\sigma) \neq v(\sigma)$. Let L and R the two paths contained in σ, joining $u(\sigma)$ and $v(\sigma)$ and let $\tau=\left(U_{u} \cup U_{v} \cup L\right)+e$ and $v=\left(U_{u} \cup U_{v} \cup R\right)+e$. Since $u(\sigma) \neq v(\sigma)$, then U_{u} and U_{v} are disjoint paths and therefore τ and v are cycles of G contained in $U+e$. Moreover, since G is a plane graph and e is contained in the interior of σ, all edges of $U_{u} \cup U_{v}$ are also contained in the interior of σ; this implies that the interiors of τ and v are contained in the interior of σ and therefore contain fewer than k edges of G. By induction τ and v must be in $c l_{G}(C)$.

Since $\sigma=L \cup R=\left(\left(U_{u} \cup U_{v} \cup L\right)+e\right) \Delta\left(\left(U_{u} \cup U_{v} \cup R\right)+e\right)=\tau \Delta v$, then σ satisfies property Δ^{*} with respect to $c l_{G}(C)$ and therefore $\sigma \in c l_{G}(C)$.

Corollary 4.2. If C is the set of internal faces of a 2 -connected plane graph G, then $T(G, C)$ is connected.

Theorem 4.3. Let $e=u v$ be an edge of a 2-connected graph G. If C_{e} is the set of cycles of G that contain the edge e, then C_{e} is Δ^{*}-dense in G.

Proof. For every path L in G we denote by $l(L)$ the length of L. Assume the result is false and for each cycle α of G, not in $c l_{G}\left(C_{e}\right)$, let L_{α} and R_{α}, be disjoint paths of G connecting u and v to α, respectively, and such that $l\left(L_{\alpha}\right)<l(L)$, or $l\left(L_{\alpha}\right)=l(L)$ and $l\left(R_{\alpha}\right) \leqslant l(R)$ for any pair L and R of disjoint paths of G that connect u and v to α, respectively.

Choose $\sigma \in \Gamma(G) \backslash c l_{G}\left(C_{e}\right)$ such that $l\left(L_{\sigma}\right)<l\left(L_{\alpha}\right)$, or $l\left(L_{\sigma}\right)=l\left(L_{\alpha}\right)$ and $l\left(R_{\sigma}\right) \leqslant l\left(R_{\alpha}\right)$ for any cycle $\alpha \in \Gamma(G) \backslash \operatorname{cl}_{G}\left(C_{e}\right)$. Let $u=u_{0}, u_{1}, \ldots, u_{n}$ be the path L_{σ} and $v=v_{0}, v_{1}, \ldots, v_{m}$ be the path R_{σ}.

Let U be a unicycle of G containing σ. As in Theorem 4.1, for each vertex w of G let U_{w} be the minimal path contained in U that connects w to σ and denote by $w(\sigma)$ the unique vertex of U_{w} that lies in σ.

Case 1: $u(\sigma) \neq v(\sigma)$.
Denote by A and B the two paths contained in σ joining $u(\sigma)$ and $v(\sigma)$ and let $\tau=\left(U_{u} \cup U_{v} \cup A\right)+e$ and $v=\left(U_{u} \cup U_{v} \cup B\right)+e$. Since $u(\sigma) \neq v(\sigma)$, then U_{u} and U_{v} are disjoint paths and therefore τ and v are cycles of G contained in $U+e$. Since the edge e belongs to both cycles τ and v, then $\tau, v \in C_{e}$ and since $\tau \Delta v=\left(\left(U_{u} \cup U_{v} \cup A\right)+\right.$ $e) \Delta\left(\left(U_{u} \cup U_{v} \cup B\right)+e\right)=A \cup B=\sigma$, then σ satisfies property Δ^{*} with respect to C which is a contradiction.

Case 2: $u(\sigma)=v(\sigma)$.
Since L_{σ} and R_{σ} are disjoint paths, either $u_{n} \neq u(\sigma)$ or $v_{m} \neq v(\sigma)$.
Subcase 2.1: $u_{n} \neq u(\sigma)$.
Since $u_{n}(\sigma)=u_{n} \neq u(\sigma)=u_{0}(\sigma)$, there is an edge $f=u_{i} u_{i+1}$ in L_{σ} such that $u_{i}(\sigma)=u(\sigma)$ and $u_{i+1}(\sigma) \neq u(\sigma)$. In this case let $\tau=\left(U_{u_{i}} \cup U_{u_{i+1}} \cup Q\right)+f$ and $v=\left(U_{u_{i}} \cup U_{u_{i+1}} \cup R\right)+f$, where Q and R are the two paths contained in σ, joining $u_{i}(\sigma)$ and $u_{i+1}(\sigma)$. Since $U_{u_{i}}$ and $U_{u_{i+1}}$ are disjoint paths, τ and v are cycles of G.

Since $u=u_{0}, u_{1}, \ldots, u_{i}$ is a path in G, with length $i<n=l\left(L_{\sigma}\right)$, joining u to both cycles τ and v, then $l\left(L_{\tau}\right)<l\left(L_{\sigma}\right)$ and $l\left(L_{v}\right)<l\left(L_{\sigma}\right)$. By the choice of σ, both cycles τ and v are in $c l_{G}\left(C_{e}\right)$. Since τ and v are contained in $U+f$ and $\sigma=\tau \Delta v$, then σ satisfies property Δ^{*} with respect to $c l_{G}\left(C_{e}\right)$ which is a contradiction.

Subcase 2.2: $u_{n}=u(\sigma)$ and $v_{m} \neq v(\sigma)$.
Since $v_{m}(\sigma)=v_{m} \neq v(\sigma)=v_{0}(\sigma)$, there is an edge $g=v_{i} v_{i+1}$ in R_{σ} such that $v_{i}(\sigma)=v(\sigma)$ and $v_{i+1}(\sigma) \neq v(\sigma)$. In this case, let $\tau=\left(U_{v_{i}} \cup U_{v_{i+1}} \cup Q\right)+g$ and $v=\left(U_{v_{i}} \cup U_{v_{i+1}} \cup R\right)+g$, where Q and R are the two paths contained in σ, joining $v_{i}(\sigma)$ and $v_{i+1}(\sigma)$. Since $U_{v_{i}}$ and $U_{v_{i+1}}$ are disjoint paths, τ and v are cycles of G.

Since $u_{n}=u(\sigma)=v(\sigma)=v_{i}(\sigma)$, then u_{n} lies in $U_{v_{i}} \subset \tau \cap v$. This implies that $u=u_{0}, u_{1}, \ldots, u_{n}$ is a path of length $n=l\left(L_{\sigma}\right)$ that joins u to τ and to v. Therefore, $l\left(L_{\tau}\right) \leqslant l\left(L_{\sigma}\right)$ and $l\left(L_{v}\right) \leqslant l\left(L_{\sigma}\right)$. Since $v=v_{0}, v_{1}, \ldots, v_{i}$ is a path in G, with length $i<m$, joining v to both cycles τ and v, then $l\left(R_{\tau}\right) \leqslant i<m=l\left(R_{\sigma}\right)$ and $l\left(R_{v}\right) \leqslant i<m=l\left(R_{\sigma}\right)$. By the choice of σ, both cycles τ and v must be in $c l_{G}\left(C_{e}\right)$. Since τ and v are contained in $U+g$ and $\sigma=\tau \Delta v$, then σ satisfies property Δ^{*} with respect to $c l_{G}\left(C_{e}\right)$ which, again, is a contradiction.

Corollary 4.4. Let e be an edge of a 2-connected graph G. If C_{e} is the set of cycles of G that contain the edge e, then $T(G, C)$ is connected.

5. The basis graph of a binary matroid

A binary matroid is a matroid M such that for any two circuits τ and v, the symmetric difference $\tau \Delta v$ contains a circuit. A matroid is loopless if it has no circuit consisting of a single element.

The basis graph of a binary matroid M is the graph $B(M)$ whose vertices are the basis of M, in which two basis R and S are adjacent if S can be obtained from R by deleting an element r of R and adding an another element s of S.

For any set C of circuits of a binary matroid M, we define a graph $B(M, C)$ in which two basis R and S are adjacent if they are adjacent in $B(M)$ and the unique circuit of M contained in $R \cup S$ lies in C.

A unicircuit of a loopless binary matroid M is a set obtained from a basis of M by adding a new element. Let C be a set of circuits of a loopless binary matroid M. A circuit σ of M satisfies property Δ^{*} (with respect to C) if for any unicircuit U of M containing σ, there are two circuits $\tau, v \in C$ contained in $U+e$ for some element e of M such that $\sigma=\tau \Delta v$.

As for a set of cycles in a graph, we can define the closure $c l_{M}(C)$ of a set of circuits C in a loopless binary matroid M as the set of circuits of M obtained from C by adding new circuits of M that satisfy property Δ^{*} until no such circuit remains. A set of circuits C is Δ^{*}-dense in M if $c l_{M}(C)$ contains every circuit of M.

The following results can be proved in an analogous way as the corresponding results for graphs.

Theorem 5.1. Let C be a set of circuits of a loopless binary matroid M. If $B(M, C)$ is connected, then C spans the circuit space of M.

Theorem 5.2. If C is a Δ^{*}-dense set of circuits in a loopless binary matroid M, then $B(M, C)$ is connected.

Let F be graph and X be a set of vertices of F; we denote by $F[X]$ the subgraph of F induced by X. For any disjoint sets X and Y of vertices of F let $[X, Y]$ denote the set of edges of F joining a vertex in X with a vertex in Y. A bond of a connected graph F is a set $[X, \bar{X}]$ such that both graphs $F[X]$ and $F[\bar{X}]$ are connected, where $\bar{X}=V(F) \backslash X$.

Another example of a Δ^{*}-dense set of circuits worth to mention is the following: Let G be a 2-connected graph and $M(G)$ be the cographic matroid of G, where the circuits are the bonds of G and the basis are the complements of the spanning trees of G.

Let $v_{1}, v_{2}, \ldots, v_{n}$ denote the vertices of G and for $i=1,2, \ldots, n$ let τ_{i} be the set of edges incident with v_{i}. Since G is 2 -connected, τ_{i} is a bond of G for $i=1,2, \ldots, n$; let $C=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right\}$. The graph $B(M(G), C)$ is isomorphic to the leaf exchange graph $T_{l}(G)$ and therefore it is connected. We claim that C is Δ^{*}-dense in $M(G)$. Moreover, the set $C_{n}=\left\{\tau_{1}, \tau_{2}, \ldots, \tau_{n-1}\right\}$ is Δ^{*}-dense in $M(G)$.

Proof of claim. Let $\sigma=[X, \bar{X}]$ be any bond of G and assume without loss of generality that $v_{n} \in \bar{X}$. If $|X|=1$, then $\sigma \in C_{n} \subset c l_{M(G)}\left(C_{n}\right)$. We proceed by induction assuming $|X|>1$ and that if $\alpha=[Y, \bar{Y}]$ is any bond of G with $v_{n} \in \bar{Y}$ and $|Y|<|X|$, then $\alpha \in c l_{M(G)}\left(C_{n}\right)$.

Let U be a unicircuit of $M(G)$ containing σ and let B be a basis of $M(G)$ such that $U=B \cup\{x\}$ for some edge x of G. Then $U=\bar{T}+x$ for some edge x of T, where T is the spanning tree of G such that $B=\bar{T}$. Since $\sigma \subset \bar{T}+x$, then x is the only edge of T contained in σ and therefore $T[X]$ and $T[\bar{X}]$ are spanning trees of $G[X]$ and $G[\bar{X}]$, respectively.

For each edge $c \in \sigma$ let u_{c} denote the end of c in X. Since G is 2 -connected and $|X|>1$, there are two edges $a, b \in \sigma$ such that $u_{a} \neq u_{b}$. Let P be the unique path contained in $T[X]$ that joins u_{a} and u_{b} and let e be any edge of P.

Let X_{a} and X_{b} denote the sets of vertices in X which are connected in $T[X]-e$ to u_{a} and to u_{b}, respectively and let $\tau=\left[X_{a}, \bar{X} \cup X_{b}\right]$ and $v=\left[X_{b}, \bar{X} \cup X_{a}\right]$. Since $\bar{X} \cup X_{b}=\overline{X_{a}}$, $\bar{X} \cup X_{a}=\overline{X_{b}}$ and $T\left[X_{a}\right], T\left[X_{b}\right],\left(T[\bar{X}] \cup T\left[X_{a}\right]\right)+a$ and $\left(T[\bar{X}] \cup T\left[X_{b}\right]\right)+b$ are spanning trees of $G\left[X_{a}\right], G\left[X_{b}\right], G\left[\bar{X} \cup X_{a}\right]$ and $G\left[\bar{X} \cup X_{b}\right]$, respectively, then τ and v are bonds of G.

Since $\tau=\left[X_{a}, \bar{X} \cup X_{b}\right]=\left[X_{a}, \bar{X}\right] \cup\left[X_{a}, X_{b}\right],\left[X_{a}, \bar{X}\right] \subset \sigma \subset \bar{T}+x$ and $\left[X_{a}, X_{b}\right] \subset$ $\overline{T[X]}+e \subset \bar{T}+e$, then $\tau \subset(\bar{T}+x)+e=U+e$. Analogously $v \subset U+e$. By induction $\tau, \nu \in c l_{M(G)}\left(C_{n}\right)$, since $\left|X_{a}\right|<|X|$ and $\left|X_{b}\right|<|X|$. Notice that

$$
\begin{aligned}
\tau \Delta v & =\left[X_{a}, \bar{X} \cup X_{b}\right] \Delta\left[X_{b}, \bar{X} \cup X_{a}\right] \\
& =\left(\left[X_{a}, \bar{X}\right] \cup\left[X_{a}, X_{b}\right]\right) \Delta\left(\left[X_{b}, \bar{X}\right] \cup\left[X_{b}, X_{a}\right]\right) \\
& =\left[X_{a}, \bar{X}\right] \cup\left[X_{b}, \bar{X}\right] \\
& =\left[X_{a} \cup X_{b}, \bar{X}\right] \\
& =[X, \bar{X}] \\
& =\sigma,
\end{aligned}
$$

hence σ satisfies property Δ^{*} with respect to $c l_{M(G)}\left(C_{n}\right)$ and therefore $\sigma \in c l_{M(G)}\left(C_{n}\right)$.

References

[1] H.J. Broersma, X. Li, The connectivity of the leaf-exchange spanning tree graph of a graph, Ars Combin. 43 (1996) 225-231.
[2] R.L. Cummins, Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory CT-13 (1966) 82-90.
[3] F. Harary, R.J. Mokken, M.J. Plantholt, Interpolation theorem for diameters of spanning trees, IEEE Trans. Circuits Systems 30 (7) (1983) 429-432.
[4] K. Heinrich, G. Liu, A lower bound on the number of spanning trees with k endvertices, J. Graph Theory 12 (1) (1988) 95-100.
[5] C.A. Holzmann, F. Harary, On the tree graph of a matroid, SIAM J. Appl. Math. 22 (1972) 187-193.
[6] F.J. Zhang, Z. Chen, Connectivity of (adjacency) tree graphs, J. Xinjiang Univ. Natur. Sci. 3 (4) (1986) $1-5$.

[^0]: ${ }^{1}$ Part of the research was done while this author was on sabbatical leave at the Universitat Politècnica de Catalunya with grants by MECD (Spain) and CONACYT (Mexico).

 E-mail address: erc@xanum.uam.mx (E. Rivera-Campo).

