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Abstract

For a set C of cycles of a connected graph G we define 7'(G, C) as the graph with one vertex
for each spanning tree of G, in which two trees R and S are adjacent if R US contains exactly
one cycle and this cycle lies in C. We give necessary conditions and sufficient conditions for
T(G,C) to be connected.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The tree graph of a connected graph G is the graph 7(G) whose vertices are the
spanning trees of G, in which two trees R and S are adjacent if S can be obtained
from R by deleting an edge r of R and adding another edge s of S. In [2] Cummins
proved that 7(G) is Hamiltonian and therefore connected, and in [5] Holzmann and
Harary proved the analogue result for matroids.

Later, two variations of the tree graph were studied: The adjacency tree graph T,(G)
and the leaf-exchange tree graph T;(G) which are spanning subgraphs of 7(G). Let R
and S be adjacent trees in 7(G) and r and s be edges of G such that S=(R—7)+s. In
T,(G), R and S are adjacent only if » and s are adjacent edges of G, whereas in 7;(G),
R and S are adjacent only if » and s are leaf edges of R and S, respectively. Zhang
and Chen [6] proved that if G is a connected graph, not necessarily simple but with
no loops, then 7,(G) is p-connected, where p is the dimension of the cycle space of
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G, and Heinrich and Liu [4] proved that 7,(G) is 2p-connected for any simple graph
G. In [3], Harary et al. proved that 7;(G) is connected for every 2-connected graph G,
and in [1] Broersma and Li characterized those graphs for which 7;(G) is connected.

For any set of cycles C of a connected graph G we define 7(G, C) as the spanning
subgraph of 7(G), in which two trees R and S are adjacent if they are adjacent in
T(G) and the unique cycle o contained in RU S lies in C. In this article, we present
necessary conditions and sufficient conditions for 7(G, C) to be connected.

Throughout this article we shall denote with the same characters graphs and their
sets of edges. The symmetric difference 6 At of two cycles ¢ and t of a graph G is
the subgraph of G induced by the edge set (g U 1)\(g N 7).

2. Necessary conditions

For any graph G we denote by I'(G) the cycle space of G, and for any set
C of cycles of G we denote by SpanC the subspace of I'(G) spanned by C. A
cycle g is cyclically spanned by C if there are cycles 71,72,...,7, € C such that
0 =11ATA--- A1y, and for j=1,2,...,m, 1A, A--- At; is a cycle of G.

Lemma 2.1. Let C be a set of cycles of a connected graph G and let Qqy,Qy,...,0,
be a path in T(G,C) with length n > 1. For i = 1,2,...,n, denote by 1; the unique
cycle contained in Q;— U Q;. If ¢ is a cycle of G such that ¢ C Qo + e for some
e € Q,, then a is cyclically spanned by {t1,72,...,T,}.

Proof. If n =1, then e€ Q; and o C Qyp U Q; which implies ¢ = ;. We proceed by
induction assuming n > 1 and that the result holds for any path in 7(G, C) with length
less than n.

Case 1: ec Q, for some ¢ < n.

Since Qo, Oy,...,0; is a path in T(G,C) with length t <n, 6 C Oy +e and e€ Q,,
then by induction ¢ is cyclically spanned by {zy,72,...,7;}.

Case 2: ¢ C Q; + e for some ¢ > 1.

Since Oy, Os+1,-..,0y 1s a path in 7(G,C) with length n — ¢t <n, 0 C Q; + e and
e € 0,, then by induction ¢ is cyclically spanned by {t,11,7/12,---5Tn}-

Case 3: 0 £ Q;,+e fort=1,2,....nand e ¢ Q, for t =0,1,...,n— 1.

Let a and b be the edges of G such that Q; is obtained from Q, by deleting
a and adding b. Clearly a,b€ 1), and since ¢ is contained in Qy + e but not in
O1+e=((Qyo—a)+b)+e, then a also lies in o.

Since 0 C Qg +e and 11 C QpU Oy, then s Ut C (QoU Q1) +e=(0) +a)+e.
Since a € 6 N 1y, then oAt C Q) +e.

In this case Q1,»,...,0, is a path in T(G, C) with length n—1, cAt; C Q;+e and
e€0,. By induction o¢At; is cyclically spanned by {t2,73,...,7,}. Since
0 = (0At;)A1, then ¢ is cyclically spanned by {7y,12,...,7,}. O

Theorem 2.2. Let C be a set of cycles of a connected graph G. If T(G,C) is con-
nected, then C spans the cycle space of G.
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Proof. Let ¢ be any cycle of G and e be an edge of . Let R and S be span-
ning trees of G such that ¢ C R+ e and e€S. Since T(G,C) is connected, there
is a path R = Qy,01,...,0, = § connecting R and S in 7(G,C). By Lemma 2.1,
o € Span{ty,12,...,7,}, where for i =1,2,...,n, 7, € C is the unique cycle of G con-
tained in Q;_; UQ;. O

Consider the complete graph G with vertex set {u1,uz,u3,us}. Let C consist of the
cycles ujuruzug, ujurus and ujuqus. The set C is a basis of the cycle space of G,
nevertheless the path ujusuyuy is an isolated vertex in T(G,C). This shows that the
condition on Theorem 2.2 is not a sufficient condition for 7(G, C) to be connected.

3. Sufficient conditions

A unicycle of a connected graph G is a connected spanning subgraph of G that
contains exactly one cycle.

Let C be a set of cycles of a connected graph G. A cycle ¢ of G satisfies property
A* (with respect to C) if for any unicycle U of G containing ¢ there are two cycles
7,0 € C contained in U + e for some edge e of G such that ¢ = tAv.

Lemma 3.1. Let C be a set of cycles of a connected graph G and ¢ be a cycle of G
satisfying property A*. The graph T(G,C) is connected if and only if T(G,C U{a})
is connected.

Proof. Clearly 7(G,C U {c}) is connected whenever T(G, C) is connected.

Let R and S be spanning trees of G, adjacent in 7(G,C U {c}) and w€ C U {a}
be the unique cycle contained in RUS. If we€ C, then R and S are also adjacent in
7(G,C).

Suppose now w=¢. Since ¢ satisfies property 4* and RUS is a unicycle of G that
contains g, there are two cycles 7,0 € C contained in (RUS) + e for some edge e of
G such that ¢ = tAv.

Let @ and b be the edges of ¢ such that S = (R —a)+ b. Four cases are considered.

Case 1: act\v and b€ v\t.

Let O be the spanning tree of G obtained from R by deleting the edge a and adding
the edge e. Since S=(Q—e)+b, both pairs of trees R and Q and Q and S are adjacent
in T(G).

Since 1 C (RUS)+e=(R+b)+e and b & 1, then 1 C R+ e =R U Q; therefore R
and Q are adjacent in T(G,{1}).

Since v C(RUS)+e=(S+a)+e and a € v, then v C S+ e=S5 U Q; therefore S
and Q are adjacent in T(G, {v}).

In this case R and S are connected in T(G,{t,v}) C T(G,C) by a path of length
two.

Case 2: bet\v and a€v\1.

Interchange 7 and v in Case 1.

Case 3: a,bet\v.
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Let ¢ be an edge in v\t and let Oy = (R —¢) + e and O, = (S — ¢) + e. Since
0, = (01 —a) + b, all three pairs R and Q;, O; and O, and O, and S are adjacent in
7(G).

Since v C(RUS)+e=(R+b)+e and b & v, then v C R+ e =R U Qy; therefore
R and Q; are adjacent in T(G, {v}).

Since 1 C(RUS)+e=(01UQ2)+c and ¢ & 7, then T C O U Qy; therefore O,
and O, are adjacent in T(G, {t}).

Since v C(RUS)+e=(S+a)+eand a & v, then v C S+ e= 0, US; therefore
0, and S are adjacent in T(G,{v}).

In this case, R and S are connected in 7(G,{t,v}) C T(G,C) by a path of length
three.

Case 4: a,bcv\t.

Interchange t and v in Case 3. [J

Let G be a connected graph. For any set C of cycles of G, we define the closure
clg(C) of C in G as the set of cycles obtained from C by recursively adding new
cycles of G that satisfy property A4* until no such cycle remains.

Theorem 3.2. For any connected graph G and any set C of cycles of G, the closure
of Cin G is well defined.

Proof. Suppose the result is false and let C' and C” be two different sets of cycles
of G obtained from C by recursively adding new cycles of G that satisfy property A4*
until no such cycle remains. Let ¢1,0,,...,0, and t1,12,...,7, denote the sequences
of cycles added to C while obtaining C’ and C”, respectively.

Without loss of generality we assume C’ C C” and let o, be the first cycle in the

sequence 4y, 07,...,0, which is not in C”. Let D = C U {a1,02,...,04_1}; since oy
satisfies property A4* with respect to D and D C C”, then o, satisfies property 4* with
respect to C”” which is not possible since C” is A*-closed and o, ¢ C”. [

Theorem 3.3. Let C be a set of cycles of a connected graph G. The graph T(G,C)
is connected if and only if T(G,clg(C)) is connected.

Proof. Let 0;,0,...,0, be the sequence of cycles added to C while obtaining c/¢(C).
Set Co=C and for i=0,1,...,n—1, let C;;; =C; U{0;y1}. Clearly C, =cls(C) and
by Lemma 3.1, T(G, C;) is connected if and only if 7(G, C;y;) is connected. [

A set of cycles C of a connected graph G is A*-dense in G if clg(C) is the set of
all cycles of G.

Corollary 3.4. If C is a A*-dense set of cycles in a connected graph G, then T(G,C)
is connected.

Proof. If C is A*-dense, then T(G,clg(C)) = T(G) which is always connected. By
Theorem 3.3, T(G,C) is connected. [
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We know no example of a connected graph G and a set of cycles C of G such that
T(G,C) is connected but C is not A4*-dense in G.

4. A*-dense sets of cycles

In this section, we present two examples of sets of cycles which are A4*-dense.

Theorem 4.1. For any 2-connected plane graph G, the set C of internal faces of G
is A*-dense in G.

Proof. Let ¢ be a cycle of G and £ be the number of edges of G contained in the
interior of ¢. If k=0, then 6 € C C ¢l5(C). We proceed by induction assuming &k > 1
and that if o is a cycle of G whose interior contains fewer than k& edges of G, then
aeclg(C).

Let U be a unicycle of G containing ¢. For each vertex w of G let U, be the
minimal path contained in U that connects w to ¢ and denote by w(c) the unique
vertex of U,, that lies in o.

Since £k > 1 and G is 2-connected, there is an edge e = uv of G, contained in the
interior of ¢, such that u(¢)+# v(g). Let L and R the two paths contained in g, joining
u(g) and v(o) and let 1=(U,UU,UL)+e and v=(U,UU,UR)+e. Since u(c) # v(a),
then U, and U, are disjoint paths and therefore T and v are cycles of G contained in
U + e. Moreover, since G is a plane graph and e is contained in the interior of o, all
edges of U, U U, are also contained in the interior of o; this implies that the interiors
of 7 and v are contained in the interior of ¢ and therefore contain fewer than k& edges
of G. By induction 7 and v must be in c/g(C).

Since o =LUR=(U,UU,UL)+ e)A(U,U U, UR)+ e) =1Av, then ¢ satisfies
property 4™ with respect to c/g(C) and therefore o € clg(C). O

Corollary 4.2. If C is the set of internal faces of a 2-connected plane graph G, then
T(G,C) is connected.

Theorem 4.3. Let e = uv be an edge of a 2-connected graph G. If C, is the set of
cycles of G that contain the edge e, then C, is A*-dense in G.

Proof. For every path L in G we denote by /(L) the length of L. Assume the result
is false and for each cycle o of G, not in c/g(C,), let L, and R, be disjoint paths of
G connecting u and v to «, respectively, and such that /(L,) < I/(L), or I(L,)=I(L)
and /(R,) < I(R) for any pair L and R of disjoint paths of G that connect u and v to
o, respectively.

Choose o€TI'(G)\clg(C,) such that I(L,) <I(L,), or [(L,) = I(L,) and
I(R;) < I(R,) for any cycle ae€I'(G)\c/g(C.). Let u = ug,uy,...,u, be the
path L, and v = v, vy,...,v, be the path R,.
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Let U be a unicycle of G containing ¢. As in Theorem 4.1, for each vertex w of G
let U,, be the minimal path contained in U that connects w to ¢ and denote by w(o)
the unique vertex of U, that lies in .

Case 1: u(o)#v(o).

Denote by A4 and B the two paths contained in ¢ joining u(c¢) and v(c) and let
1=(U,UU,UAd)+e and v = (U, U U, UB) + e. Since u(c)#v(o), then U, and U,
are disjoint paths and therefore t and v are cycles of G contained in U + e. Since the
edge e belongs to both cycles 7 and v, then 7,v € C, and since tAv=((U,UU,UA)+
e)A(U, UU,UB)+¢e)=A4AUB =g, then ¢ satisfies property 4* with respect to C
which is a contradiction.

Case 2: u(o) =v(0).

Since L, and R, are disjoint paths, either u, #u(c) or v, # v(o).

Subcase 2.1: u, #u(a).

Since u,(0)=u, # u(o)=uy(c), there is an edge f=u;u;, in L, such that u;(¢)=u(o)
and u;;1(c) #u(o). In this case let t=(U,,UU,,.,, U0)+ f and v=(U,,UU,, UR)+ 1,
where Q and R are the two paths contained in o, joining u;(¢) and u; (o). Since U,
and U,,, are disjoint paths, 7 and v are cycles of G.

Since u = ug,uy,...,u; is a path in G, with length i < n = I(L;), joining u to both
cycles t and v, then I(L;) < I(L;) and [(L,) < I(L;). By the choice of a4, both cycles
7 and v are in ¢/g(C,). Since 7 and v are contained in U + f and o = tAv, then ¢
satisfies property A* with respect to ¢/g(C,) which is a contradiction.

Subcase 2.2: u, = u(g) and vy, # v(0).

Since v,,(0)=v,, # v(a)=v¢(0), there is an edge g=v;v;;; in R, such that v;(c)=0v(c)
and v;y1(0) # v(o). In this case, let t=(U,,UU,,, UQ)+g and v=(U,,UU,,, UR)+g,
where Q and R are the two paths contained in ¢, joining v;(¢) and v;1 (o). Since U,,
and U, are disjoint paths, 7 and v are cycles of G.

Since u, = u(o) = v(c) = vi(c), then u, lies in U, C v Nv. This implies that
u = uy,uy,...,u, is a path of length n = /(L) that joins u to t and to v. Therefore,
I(L;) < I(Ly) and I(Ly) < I(Ly). Since v=vy,vy,...,0; is a path in G, with length i < m,
joining v to both cycles 7 and v, then /(R;) < i <m=I(R,) and I(R,)) <i <m=I[(R;).
By the choice of g, both cycles T and v must be in ¢/g(C,). Since t and v are contained
in U + ¢ and ¢ = tAv, then ¢ satisfies property 4* with respect to ¢l/(C,) which,
again, is a contradiction. [J

Corollary 4.4. Let e be an edge of a 2-connected graph G. If C, is the set of cycles
of G that contain the edge e, then T(G,C) is connected.

5. The basis graph of a binary matroid

A binary matroid is a matroid M such that for any two circuits 7 and v, the symmetric
difference TAv contains a circuit. A matroid is loopless if it has no circuit consisting
of a single element.

The basis graph of a binary matroid M is the graph B(M) whose vertices are the
basis of M, in which two basis R and S are adjacent if S can be obtained from R by
deleting an element » of R and adding an another element s of S.
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For any set C of circuits of a binary matroid M, we define a graph B(M,C) in
which two basis R and S are adjacent if they are adjacent in B(M) and the unique
circuit of M contained in RU S lies in C.

A unicircuit of a loopless binary matroid M is a set obtained from a basis of M by
adding a new element. Let C be a set of circuits of a loopless binary matroid M. A
circuit ¢ of M satisfies property A* (with respect to C) if for any unicircuit U of M
containing o, there are two circuits 7,v € C contained in U + e for some element e of
M such that ¢ = tAv.

As for a set of cycles in a graph, we can define the closure c/);(C) of a set of
circuits C in a loopless binary matroid M as the set of circuits of M obtained from C
by adding new circuits of M that satisfy property 4* until no such circuit remains. A
set of circuits C is A*-dense in M if cly(C) contains every circuit of M.

The following results can be proved in an analogous way as the corresponding results
for graphs.

Theorem 5.1. Let C be a set of circuits of a loopless binary matroid M. If B(M,C)
is connected, then C spans the circuit space of M.

Theorem 5.2. If C is a A*-dense set of circuits in a loopless binary matroid M, then
B(M, C) is connected.

Let F be graph and X be a set of vertices of F'; we denote by F[X] the subgraph
of F induced by X. For any disjoint sets X and Y of vertices of F let [X, Y] denote
the set of edges of F joining a vertex in X with a vertex in Y. A bond of a connected
graph F is a set [X,X] such that both graphs F[X] and F[X] are connected, where
X =VFE)\X.

Another example of a A4*-dense set of circuits worth to mention is the following:
Let G be a 2-connected graph and M(G) be the cographic matroid of G, where the
circuits are the bonds of G and the basis are the complements of the spanning trees
of G.

Let vy,vy,...,v, denote the vertices of G and for i = 1,2,...,n let 1; be the set of
edges incident with v;. Since G is 2-connected, t; is a bond of G for i=1,2,...,n; let
C ={11,72,...,74}. The graph B(M(G),C) is isomorphic to the leaf exchange graph
T:;(G) and therefore it is connected. We claim that C is A*-dense in M(G). Moreover,
the set C, = {t1,72,..., 741} is A*-dense in M(G).

Proof of claim. Let ¢=[X,X] be any bond of G and assume without loss of generality
that v, € X. If [X| =1, then o € C, C clyG)(C,). We proceed by induction assuming
|X| > 1 and that if « = [¥,Y] is any bond of G with v, €Y and |Y| < |X|, then
o€ clucy(Cn).

Let U be a unicircuit of M(G) containing ¢ and let B be a basis of M(G) such that
U =BU {x} for some edge x of G. Then U = T + x for some edge x of T, where T
is the spanning tree of G such that B=T7. Since ¢ C T +x, then x is the only edge of
T contained in ¢ and therefore T[X] and T[X] are spanning trees of G[X] and G[X],
respectively.
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For each edge c€ ¢ let u. denote the end of ¢ in X. Since G is 2-connected and
|X| > 1, there are two edges a,b€ o such that u,#u,. Let P be the unique path
contained in 7[X] that joins u, and u; and let e be any edge of P.

Let X, and X, denote the sets of vertices in X which are connected in 7[X] — e to
u, and to up, respectively and let t=[X,, X UX,] and v=[X,, X UX,]. Since X UX,=2X,,
XUX,=X, and T[X,], T[X;], (T[X]UT[X,])+a and (T[X]UT[X,])+ b are spanning
trees of G[X,], G[X;], G[X UX,] and G[X UX,], respectively, then t and v are bonds
of G.

Since 7 = [X,, X UXy] = [Xo. X] U [X0, X3], [XeuX] C 0 € T 4 x and [X,,Xp] C
T[X]+e C T+e, then 1 C (T +x)+e=U +e. Analogously v C U +e. By induction
7,0 € cly)(Cp), since |X,| < |X| and |X;| < |X|. Notice that

A = [Xo, X UX,]ALX,, X UX,]
= ([ X X1 U [Xa, X DA([X5, X T U [X5, X, ])
= [Xao X] U [X, X ]
= [X, U Xp, X]
= [X.X]
—o,

hence o satisfies property A* with respect to cly)(C,) and therefore
gc CZM(G)(Cn). 1
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