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Abstract

We give a fast elementary algorithm to get a small numbgrfor an admissibleg-proper-
hypergeometric identity

ZF(n, k) = G(n), n>ngp
k

such that we can prove the identity by checking its correctness iag < n < nq). For example,
we getnq = 191 for theg-Vandermonde-Chu identitp; = 70 for a finite version of Jacobi’s triple
product identity anchy = 209 for an identity due to L.J. Rogers.
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1. Introduction and definitions

The idea that one can prove a hypergeometric identity by checking a finite number of
special cases was presentedZsjibergerin 1982

In 1996, Yen (1996)first gave an estimate of such a number éphypergeometric
identities, as a polynomial of degree 24 in the parameteFsnf k). Although she gave a
specific a priori formula, her estimate is very large and is not a practical-sized computation
(Petkowsek et al., 1996p. 70).

Here we give a fast elementary algorithm to get a small numbpéor an admissible
g-proper-hypergeometric identity

Z F(n, k) = G(n), n>nop (1.1)
K
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whereG(n) is ag-hypergeometric term, such that we can prove the identity by checking
its correctness fon (ng < n < n1). This makes the idea of proving tigehypergeometric
identities by simply checking them for finite initial values much closer to practice from
theory. However, in general proving tiiehypergeometric identities by checking them for
ny initial values is still slower than proving them loyZeilberger algorithm.

This idea is implemented by proving that both sides of the identity satisfy the same
recurrence, and by giving both an estimate of the order of the recurrence and an estimate
of the integem; such that the leading coefficient of the recurrence does not vanish, when
n>mj.

Let K be a computable field of characteristic zegois transcendental ovdf, L =
K (q¥/2), and we are considering polynomialskiq", g%/2], K[g", g%, q¥/4], L[gq"] or
L[g", g, and rational functions it.(q") or L(g", g¥).

In this paper, we prove that the left-hand side) and the right-hand side(n) of the
identity (1.1)satisfy the same recurrence of the form

a@)ln-=1+c@n-2)+---+cy@)h-J)

co(@M) ’
a@rin—=H+c@Hri—2)+---+cy@Hr(n-J

co(@") ’
wherec; (q") € L[g"]. At the same time, we give both an estimatelafhich is the order
of the recurrence, and an estimatenof such thaico(q") # 0 for alln > my. Then it is
clear that we can prove the identity by checking its correctness éofny, . . ., n1}, where
Ny > max{J, my}.

An upper bound of the ordel was given bywilf and Zeilberger (1992)and it is very
small.

In the next section we generalize Sister Celine’s technique and obtain an upper bound of
the degree im/2 in the coefficients of the recurrence for the left-hand side of the identity.
Next, with the elimination method and with a similar observation for the polynomial in
K[q", g%/?] by Yen (1996 Proposition 3.}, we get the same recurrence for the two sides
of the identity, andn; such that the leading coefficient of the recurrence is not equal to
zero for alln > m;. The algorithm and a fast implementation of it are show8eation 3
We present three examples in the final section.

In the following, we introduce some definitions and notationgjf@eries.

I(n) =

r(n) =

Definition 1.1. For anya € L and any integen, let thenth g-factorial ofa be given by

l-a)l—aqg)---(1—ag"™ 1) forn>0;
(@ qn 1= 1 . forn=0;

- - forn < 0.
@g"; q)-n

Definition 1.2. A term F(n, k) in the discrete variables andk is q-hypergeometric if
F(n+ 1,k)/F(n, k) andF(n,k + 1)/F(n, k) are both rational functions belonging to
L@", g").
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Definition 1.3. Aterm F(n, k) is g-proper-hypergeometric if

F(n,k = P@", q )Hs—l(qu  Dasn ook ek arksonks o sdken (1.2)
Hr 1 (wr Q%5 Qup ok

whereP(q", g*) € K[q", g¥, g%/2], p andh are positive integerss, bs, Ur, vr, Bs, 5 are
integersa, b, ¢, d, ande are integers or half integers, ang wy, £ € K.

The definitions ofF (n, k) of the form(1.2) being well-defined at a poirih, k), and of
F(n, k) satisfying ak-free recurrence for somad, ko) are the same as the definitions in
Yen (1996)

Owing to the definition of admissibleg-hypergeometric termsF(n,k) in
Wilf and Zeilberger (1992)we can obtain a non-trivial recurrence fofn) := >, F(n, k)
from a non-trivialk-free recurrence foF (n, k). We proceed to give this definition.

For a fixed integen, let B(n) = [a(n), b(n)] denote a maximal interval of integer
values ofk for which F(n, k) is well-defined and non-zero. Just outside the inteBal)
we suppose that there are intervals) < k < a(n) andb(n) < k < g(n) in which F is
well-defined and is equal to 0. We call the interB%h) the natural support of.

Definition 1.4. An admissibleg-hypergeometric ternt(n, k) is one in which for all
sufficiently largen there is a natural suppo(n) such thatB(n) is compact and

B(n) € Bn+1) < Bnh+2)<--- (n > np)
and such that the intervals of zero values which surrdBirg satisfy
pn—j=bm+1 and a(m—j)=<a®-I

for0 < j < Jandn > ng, wherel andJ are the orders of &-free recurrence thet
satisfies.

2. The coefficients of therecurrence

Wilf and Zeilberger (1992prove the existence of a non-trivikifree recurrence for
g-proper-hypergeometric terms and give an upper bound of the order of the recurrence
with Sister Celine’s technique. In the following we generalize Sister Celine’s technique
and give an upper bound of the degreg ¥ in the coefficients of th&-free recurrence.

We rewrite thek-free recurrence foF (n, k)

ZZ“(' i, n) F(n k) )=O

i=0 j=0
as

D k
ZZ“(' j,n) DJ(:] k)) = (2.1)

i=0 j=0



296 B.-Y. Zhang / Journal of Symbolic Computation 35 (2003) 293-303

wherea(, j,n) € K[g",q¥?3], D(n,k) € L(q",q¥) is the common denominator,
Dij (n, k) € KIg", g%, g¥/2], such thaDjj (n, k)/D(n, k) = F(n— j,k—i)/F(n, k).
Let

Dqk :=max{deg1k Dij(n,k), i =0,...,1, j=0,...,3J}
Dqi2 := max{degql/z Dijj(n,k), i =0,...,1,j=0,...,J}
Dgn :=max{degqn Dij(n,k), i =0,...,1, j=0,...,J}

Theorem 2.1. Let F(n, k) be a q-proper-hypergeometric term, then there exist positive
integers 1, J, M, T, ang3(, j, m,t) € K which are not all zero fori= 0,...,1;

j=0,...,3,m=0,...,M,t=0,..., T, such that the recurrence
| J M T
ZZZZ/% j.m g 2g™FMn - j.k—i)=0 (2.2)
i=0 j=0m=0t=0

holds at every poin¢n, k) at which Kn, k) # 0 and all of the values of F that occur in
(2.2) are well-defined. Furthermore, whéh+ 1)(J + 1) > 2D+ + 1L, T is at most
D12 and M is at MOSE(Dyk + 1) Dgn.

Proof. SinceF (n, k) # 0, we divide both sides qB.2) by it and get

ZZZZﬂ(I i, m, t)g/%gmn F(n F(,i I|(<)_|) .

i=0 j=0m=01t=0

We rewrite it in the form(2.1)

Djj (n, k
ZZZZIB(I i, m, Hgt/2gmn DIJ(E]nk)) _

i=0 j=0m=0 t=0

We generalize Sister Celine’s technique to zero the coefficients of all the powers of
q'/2g™ng'® that appear in the numerator of the left-hand side of the formula above. This
gives at most Dgk +1)(Dgn + M +1)(Dgr2 +T +1) linear equations, and the number of
the variableg(, j, m,t)is (I +1)(J +1)(M + 1)(T 4+ 1). From the knowledge of linear
algebra, we know that a non-trivial solution exists if

T+DA+DM+ (T +1) > (Dgk + D(Dgn + M + (D2 + T + 1). (2.3)

We claim that(2.3) holds when(l + 1)(J + 1) > 2(Dg + 1) +1, T = Dgy2 and
M = 2(Dgk + 1) Dgn.
If M= 2(Dgk + 1) Dgn, then

(2(Dgk +1) + 1)(M + 1) > 2(Dgx + 1)(Dgn + M + 1),
andifT = Dyu/2, then

2(T+1) > (Dge+T+1),
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SO we get
(Z(Dqk + 1) + 1)(M + 1)(T + 1) > (Dqk + 1)(an + M —+ 1)(Dq1/2 +T + 1)

And from(l + 1)(J+1) > 2(Dge +1) + 1, it is clear tha(2.3) holds, which completes
the proof of the theorem.

Note that the conditiodl + 1)(J + 1) > 2Dk +1) +1 is always reached if, J are
large enough.

Using the same method as in the proof\iif and Zeilberger (1992Theorems 3.2B
and 3.20 and from(2.2), we can obtain a non-trivial recurrence for the left-hand side
f(n) := )", F(n, k) of the identity(1.1)

ao(@M f(m +a@Hf(n—1+---+ay@)f(n—-J) =0, (2.4)
where the coefficients; (q") € K[q", q%/?]. At the same time, fronTheorem 2.1the
degree im¥2in a;(q") is at mostD /2.

For the right sideG(n) of (1.1), it is easy to see that it satisfies a recurrence of order 1.

In the following we will use the elimination method to prove a theorem which not only
gets the same recurrence for the two sides of the identity but also gives the namber

First we proceed to introduce the concept of the linear recurrence operator in
Petkowsek and Zeilberger (1996)Ve define

N: Ngn) =g(nh—-1).

Let

J
A= aj(@"N],
j=0
so(2.4)can be rewritten aé\f (n) = 0.
Becausds(n) is ag-hypergeometric term, we have
Gn)  r(@@"
Gin—-1  s@M)’

wherer ("), s(@") € K[q", g%/?]. Let
B:=s(@") —r@"N,

soBG(n) = 0.

The following proposition varying slightly fronYen (1996 Proposition 3.1 gives a
condition for the non-vanishing of the polynomialqg") in terms of the degree ig'/?
in P(g").

Proposition 2.2. Let P(q") € K[q", ql/z] be a non-zero polynomial, m be the maximal
degree in ¢/2in P(g"), then Rq") is not equal to zero for all n~ [m/2].

The proof of the above proposition is analogous to the proofesf (1996 Proposi-
tion 3.1), we omit it here.
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Theorem 2.3. Let A be a linear recurrence operator of order(J > 1) which has
coefficients in Kq", g%/?] and B be a linear recurrence operator of ordewhich also has
coefficients in Kq", q/2], the maximal degree in'¢? in the coefficients of A is fg/z, the

maximal degrees in¥§? and " in the coefficients of B ared‘?g/z and D n respectlvely, then

there exist linear recurrence operators C of ordet 1, P and Q WhICh have coefficientsin
L[g"], such that C= P A= QB, and the coefficient of Nin C is not equal to zero for all

J
n> max{ (2) n+ L(J Dql/2 ql/2)/2J +1, J} (2.5)
Proof. Let
J
A=>"al@"N), B =bo(@") +bi(@"N,

i=0
we eliminateN? with A andB, and have
AL .= q0UG (I +h A — g0 DOG

-1
q(J l)Dq b (qn J+l)a0(qn)Nj

i=0

qnaO(q )NJ lB

(J l)anaJ(q )bo(qn J+1)NJ l

It is clear that the order ofAl is at mostJ — 1, the coefficients ofAl belong
to K[q", ql/z], and the maximal degree i9? in the coefficients ofAl is at most
2(3 - 1)D§ + DB, + DA

ql/2:
Let Al = Z al(q”)NJ we useAl andB to eliminateN? 1, then
B
AZ: q(\] Z)Dq b (qn J+2)Al (J_Z)anail]_,]_(qn)NJizB

q(\] 1)anq('~]_2)anb (qnf\]+l)b (qan‘l’Z)A

(q('-] l)anq(J Z)Dq b (qn -J+2)a (q )NJ -1

J-2)DB,
+q77?Pal_ (N 2B,

We also have that the order @€ is at mostJ — 2, the coefficients ofA2 belong to

KIq", /2], the maximal degree ig"/ in the coefficients oA% is at most 2] — 1) D +
2(J -2)Dgh + 2Dql/2 + Dql/z.

So we can do it until the order &%’ is 0, and have

-1
B .
Al :i=by (@A —a) Tt gMB = [ [] q'Pa"by g™y | A
j=0

-1\ [i-t
SUTTa® | [ [Tbu@™™ | &) @mni | B, (2.6)
j=0 \i=0 h=0

wherea? J ~(g") is the coefficient oA’ i—1for j = 0,...,J — 1.

J+l
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S|m|larly, A’ belongs toK [q", q¥/?], the maximal degree in%/? in A’ is at most
2( ) n+J Dql/2 + Dc?l/z-

For AJ andB, we have

A :=2a3(q" B —bi(@HNA’ = a3 (q" Hbo(q", 2.7)
So we get
a3 (@A —ag(q" Hbo(qM A’ = 0. (2.8)

ReplacingA’ and A’ in (2.8)with (2.6)and(2.7), we get

J-1 .
(33 (@Mba(@"N + a5 (" Hbo(a") (H g% m(q””) A
j=0

((ao (@Mb1(@MN + ad (@ Hbo(q" ))Z (Hq'D )
(Hb1<q” “) T AN + ad@Mag @ ))B

Let

= (8 (@"b1@N + a3 (q" Hbo(q") (H o/ Perby (g™ J))
j=0

= (a9 (@Mb1(qMN + a3 (q"Hbo(@") (H q/Pe by J))

j=0
Q:=(a3(@Mbi(@™N + ag (@ Hbo(q™)

-1/
x Y (]‘[q'Df?") (]‘[ b1(q"" “)) T T AMNT +ag@Mag @,
j=0 \i=0
then

C=PA=QB.

It is easy to see that the order@fis J + 1, and the coefficients &, P andQ belong
to L[g"].
The coefficient oNC in C is

-1 _
ag @ Hbo@Mad@™ [ a' P bi(q™ ).
j=0
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FromProposition 2.2ag (g™ is not equal to zero for all
J A
n> 2 B+ L(J Dq1/2 + Dql/z)/zJ,
so it is easy to see thag (q"1) is not equal to zero for all

J
n> (2) n+ [(J in/z q1/2)/2J +1

Similarly, we have
bo(g™ # 0, foralln > D8 ,/2],
ad@™ #0, foralin > [Dg /2],
b1 (q"1) # 0, foralln > LD 1/2/2J + .

So all the factors of the coefficient &f° in C are not equal to zero for all

J
n> max{ (2) n 4 [(J Dq1/2 q1/2)/2J +1, J}

which completes the proof of the theoreni.]

3. Thealgorithm

In this section we introduce the elementary algorithm in detail and give a fast
implementation.

1. Fix trial values offt andJ, sayl = J = 1.

2. simplify Y1 _o °7_o FLED 1o the formY)_o 377 T and compute R

3. If (I +1)(J+1) <2(Dgk +1) +1, increase by 1 orincreasd by 1, go to step 2;
otherwise, compute &2 andJ.

4. Simplify G(n)/G(n — 1), and compute the maximal degreesythandq?/? in the
numerator and the denominator, denoted:lﬁ( and Dqu/2 respectively.

5. Let Dé*l/z := Dg12, from (2.5) of Theorem 2.3outputn;.

Comparing this algorithm with Sister Celine’s algorithm (d&etkowsek et al., 1996,
p. 59, we avoid the time consuming aspects of getting the linear equations and solving the
equations in Sister Celine’s algorithm; in our algorithm, the time consuming computing is
simplifying Y, %ﬁ') to the formy_; DD”((nnk)) for obtaining Qx and Dyvz. In the
following, we show a fast method to geE;Dand DRVS
Letx™ := maxx, 0}, ¢(i, j) = —2aj —ibandy (i, j) = aj2+bij +ci2—id — je.
Then
Fin—j,k—1)
Fn, k) - -
P(qn j qk |)1—[ (wr q5r+urn+vrk Ur j—uri. o) T q¢>(|,J)n+W('sJ)
= P, q k) HS(CSq/Bs+asn+bsk asj— bsl’ A)agj +be qk(bj+2ci)




B.-Y. Zhang / Journal of Symbolic Computation 35 (2003) 293-303 301

By a similar case analysis (s&¥en, 1996 p. 8), we have

Fin—j,k—i) Djk
F(n, k) - D*(n, k)’

where

D (n, k) = P(qn—j , qk—i )é_i q¢(i,j)n+1ﬁ(i,j)qk(b+\]+2c+l —bj—2ci)

S +Urn+uvr K—Ur j—vri .
x [ JCwrgPr ek it ) i+
r
8¢ +Ur N+vr K+ (—ur j—ori) T,
x (wy @ U CU =IO ) g ot = j—uri

X l_[(quﬂS+aSn+bsk; Q) (—asj —bsi)*
S

_ +7_ +
x (Cgqfstasthsk=(@s)" ) ~(bs) L) (a9 3o 1 —(asj b+ (3.1)

and
+ +
D*(n, k) — P(qn’ qk)qk(b J+2c™1) H(qu8r+urn+vrk; Q)(—u,)+J+(—v,)+l
r
X l_[(qu/‘3s+asr\+bsk*(as)Jr~]*(bs)+I
S

We cannot guarante®;; (n, k) € K[q", a¥, g%/2], but we haveD}; (n, k) is the Laurent
polynomial ing", g andq'/2. Hence

5 @ (as)+ I +(bs) H1 -

Dij (n. k) = Dj; (n. k) (@") %" (q) "% (q1/2) k2
D(n, k) = D*(n, k) (@™~ (q) "% (q1/2) "2
wheredgn, dyx anddgi2 are the lowest degrees (including negative exponentg) af¥
andg'/2in 3_;; Df (n, k) respectively.
Thus
Dqk = 9qk — qu, in/z = 9q1/2 — dqi/z,

whereggk and62 are the maximal degrees @f andgq'/2 in Zij D;’Jf (n, k) respectively.
From formula(3.1), we can gefigk, 012, dgk anddgi2 quite quickly. Consequently, we
can obtain [« and Dy12 quickly.
We have implemented this algorithm in Maple, in the next section we give some
examples.

4. Examples

As our first example, we computg for theg-Vandermonde-Chu identity

(1), (7).
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The identity can be expressed in the form

g @GDF @ Dan
el CH R R FN CHE)E

Hencea=b=d=e=0,c=1P@@", g =1, p=2,as=1bs=0andss = 1
forse{1,2,h=4u1=u=1Lvi=v2=-1Luz=uUs4 =0v3 =14 =1, and
wr = ¢ = 1ands, = 1forr e {1, 2,3, 4}. We input these parameters to the Maple
program, obtain =6, J =7 and geh; = 191.

Next, we comput@; for a finite version of Jacobi’s triple product identity.

Itis well known (see e.gAndrews, 197%that Jacobi’s triple product identity

3 q@x = TJa-ah@+x g +xg b
k=—o00 j=1

can be deduced, for instance, as a limiting aase oo of the following finite variant of
theqg-binomial formula

2n k
G yk — (—x—1q- .
Xk:<n-i-|()qqzx = (X770 Dn(=X; Dn.

We express the identity in the form

Z (d; P2n K2/2-k/2yk

= (—x1 ; —X; .
— (0: Dok D (X4 (= @

Hencea = 0,b=0,c=1/2,d = -1/2,e=0,P(q",q) =L p=1a = 2, by =
Ocp=1p=1,andh=2,u1 =1,vi =L ux=LLv=—-1Lw =wr=17§8 =
82 = 1. We input these parameters to the Maple program, olbtain5, J = 4 and get
ny = 70.

Finally, we compute; for an identity due to L.J. Rogers

(=D(@: Qg /2
Xk: (@ Dnk(@: Dok

This identity is a finite version of Euler’s pentagonal number theorem.

Hencea=0,b=0,c=3/2,d=—-1/2,e=0,P(@", g =1, p=1a;=1b; =
Ocp=1p=1,andh=2,u1 =1,vi =L uy=LLv=—-1Lw =wr=17§8 =
82 = 1. We input these parameters to the Maple program, olhtain8, J = 9 and get
ny = 209.
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