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Abstract

We give a fast elementary algorithm to get a small numbern1 for an admissibleq-proper-
hypergeometric identity∑

k

F(n, k) = G(n), n ≥ n0

such that we can prove the identity by checking its correctness forn (n0 ≤ n ≤ n1). For example,
we getn1 = 191 for theq-Vandermonde-Chu identity,n1 = 70 for a finite version of Jacobi’s triple
product identity andn1 = 209 for an identity due to L.J. Rogers.
c© 2003 Published by Elsevier Science Ltd.
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1. Introduction and definitions

The idea that one can prove a hypergeometric identity by checking a finite number of
special cases was presented byZeilbergerin 1982.

In 1996, Yen (1996)first gave an estimate of such a number forq-hypergeometric
identities, as a polynomial of degree 24 in the parameters ofF(n, k). Although she gave a
specific a priori formula, her estimate is very large and is not a practical-sized computation
(Petkovšek et al., 1996, p. 70).

Here we give a fast elementary algorithm to get a small numbern1 for an admissible
q-proper-hypergeometric identity∑

k

F(n, k) = G(n), n ≥ n0 (1.1)
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whereG(n) is aq-hypergeometric term, such that we can prove the identity by checking
its correctness forn (n0 ≤ n ≤ n1). This makes the idea of proving theq-hypergeometric
identities by simply checking them for finite initial values much closer to practice from
theory. However, in general proving theq-hypergeometric identities by checking them for
n1 initial values is still slower than proving them byq-Zeilberger algorithm.

This idea is implemented by proving that both sides of the identity satisfy the same
recurrence, and by giving both an estimate of the order of the recurrence and an estimate
of the integerm1 such that the leading coefficient of the recurrence does not vanish, when
n ≥ m1.

Let K be a computable field of characteristic zero,q is transcendental overK , L =
K (q1/2), and we are considering polynomials inK [qn,q1/2], K [qn,qk,q1/2], L[qn] or
L[qn,qk], and rational functions inL(qn) or L(qn,qk).

In this paper, we prove that the left-hand sidel (n) and the right-hand sider (n) of the
identity (1.1)satisfy the same recurrence of the form

l (n)= c1(qn)l (n − 1)+ c2(qn)l (n − 2)+ · · · + cJ(qn)l (n − J)

c0(qn)
,

r (n)= c1(qn)r (n − 1)+ c2(qn)r (n − 2)+ · · · + cJ(qn)r (n − J)

c0(qn)
,

whereci (qn) ∈ L[qn]. At the same time, we give both an estimate ofJ which is the order
of the recurrence, and an estimate ofm1 such thatc0(qn) �= 0 for all n ≥ m1. Then it is
clear that we can prove the identity by checking its correctness forn ∈ {n0, . . . ,n1}, where
n1 ≥ max{J, m1}.

An upper bound of the orderJ was given byWilf and Zeilberger (1992), and it is very
small.

In the next section we generalize Sister Celine’s technique and obtain an upper bound of
the degree inq1/2 in the coefficients of the recurrence for the left-hand side of the identity.
Next, with the elimination method and with a similar observation for the polynomial in
K [qn,q1/2] by Yen (1996,Proposition 3.1), we get the same recurrence for the two sides
of the identity, andm1 such that the leading coefficient of the recurrence is not equal to
zero for alln > m1. The algorithm and a fast implementation of it are shown inSection 3.
We present three examples in the final section.

In the following, we introduce some definitions and notations forq-series.

Definition 1.1. For anya ∈ L and any integern, let thenth q-factorial ofa be given by

(a; q)n :=



(1 − a)(1 − aq) · · · (1 − aqn−1) for n > 0;
1 for n = 0;

1

(aqn; q)−n
for n < 0.

Definition 1.2. A term F(n, k) in the discrete variablesn andk is q-hypergeometric if
F(n + 1, k)/F(n, k) and F(n, k + 1)/F(n, k) are both rational functions belonging to
L(qn,qk).



B.-Y. Zhang / Journal of Symbolic Computation 35 (2003) 293–303 295

Definition 1.3. A term F(n, k) is q-proper-hypergeometric if

F(n, k) = P(qn,qk)

∏p
s=1(csqβs; q)asn+bsk∏h
r=1(wr qδr ; q)ur n+vr k

ξkqan2+bnk+ck2+dk+en, (1.2)

whereP(qn,qk) ∈ K [qn,qk,q1/2], p andh are positive integers,as, bs, ur , vr , βs, δr are
integers,a, b, c, d, ande are integers or half integers, andcs, wr , ξ ∈ K .

The definitions ofF(n, k) of the form(1.2)being well-defined at a point(n, k), and of
F(n, k) satisfying ak-free recurrence for some (n0, k0) are the same as the definitions in
Yen (1996).

Owing to the definition of admissibleq-hypergeometric termsF(n, k) in
Wilf and Zeilberger (1992), we can obtain a non-trivial recurrence forf (n) := ∑

k F(n, k)
from a non-trivialk-free recurrence forF(n, k). We proceed to give this definition.

For a fixed integern, let B(n) = [a(n),b(n)] denote a maximal interval of integer
values ofk for which F(n, k) is well-defined and non-zero. Just outside the intervalB(n)
we suppose that there are intervalsα(n) ≤ k < a(n) andb(n) < k ≤ β(n) in which F is
well-defined and is equal to 0. We call the intervalB(n) the natural support ofF .

Definition 1.4. An admissibleq-hypergeometric termF(n, k) is one in which for all
sufficiently largen there is a natural supportB(n) such thatB(n) is compact and

B(n) ⊆ B(n + 1) ⊆ B(n + 2) ⊆ · · · (n > n0)

and such that the intervals of zero values which surroundB(n) satisfy

β(n − j ) ≥ b(n)+ I and α(n − j ) ≤ a(n)− I

for 0 ≤ j ≤ J andn > n0, whereI and J are the orders of ak-free recurrence thatF
satisfies.

2. The coefficients of the recurrence

Wilf and Zeilberger (1992)prove the existence of a non-trivialk-free recurrence for
q-proper-hypergeometric terms and give an upper bound of the order of the recurrence
with Sister Celine’s technique. In the following we generalize Sister Celine’s technique
and give an upper bound of the degree inq1/2 in the coefficients of thek-free recurrence.

We rewrite thek-free recurrence forF(n, k)

I∑
i=0

J∑
j =0

α(i , j ,n)
F(n − j , k − i )

F(n, k)
= 0

as

I∑
i=0

J∑
j =0

α(i , j ,n)
Dij (n, k)

D(n, k)
= 0 (2.1)



296 B.-Y. Zhang / Journal of Symbolic Computation 35 (2003) 293–303

where α(i , j ,n) ∈ K [qn,q1/2], D(n, k) ∈ L(qn,qk) is the common denominator,
Dij (n, k) ∈ K [qn,qk,q1/2], such thatDij (n, k)/D(n, k) = F(n − j , k − i )/F(n, k).

Let

Dqk := max{degqk Di j (n, k), i = 0, . . . , I , j = 0, . . . , J}
Dq1/2 := max{degq1/2 Dij (n, k), i = 0, . . . , I , j = 0, . . . , J}
Dqn := max{degqn Di j (n, k), i = 0, . . . , I , j = 0, . . . , J}.

Theorem 2.1. Let F(n, k) be a q-proper-hypergeometric term, then there exist positive
integers I , J , M, T , andβ(i , j ,m, t) ∈ K which are not all zero for i = 0, . . . , I ;
j = 0, . . . , J , m= 0, . . . ,M, t = 0, . . . , T , such that the recurrence

I∑
i=0

J∑
j =0

M∑
m=0

T∑
t=0

β(i , j ,m, t)qt/2qmnF(n − j , k − i ) = 0 (2.2)

holds at every point(n, k) at which F(n, k) �= 0 and all of the values of F that occur in
(2.2)are well-defined. Furthermore, when(I + 1)(J + 1) > 2(Dqk + 1)+ 1, T is at most
Dq1/2 and M is at most2(Dqk + 1)Dqn.

Proof. SinceF(n, k) �= 0, we divide both sides of(2.2)by it and get

I∑
i=0

J∑
j =0

M∑
m=0

T∑
t=0

β(i , j ,m, t)qt/2qmn F(n − j , k − i )

F(n, k)
= 0.

We rewrite it in the form(2.1)

I∑
i=0

J∑
j =0

M∑
m=0

T∑
t=0

β(i , j ,m, t)qt/2qmn Di j (n, k)

D(n, k)
= 0.

We generalize Sister Celine’s technique to zero the coefficients of all the powers of
qt/2qmnqlk that appear in the numerator of the left-hand side of the formula above. This
gives at most(Dqk +1)(Dqn + M +1)(Dq1/2 + T +1) linear equations, and the number of
the variablesβ(i , j ,m, t) is (I + 1)(J + 1)(M + 1)(T + 1). From the knowledge of linear
algebra, we know that a non-trivial solution exists if

(I + 1)(J + 1)(M + 1)(T + 1) > (Dqk + 1)(Dqn + M + 1)(Dq1/2 + T + 1). (2.3)

We claim that(2.3) holds when(I + 1)(J + 1) > 2(Dqk + 1) + 1, T = Dq1/2 and
M = 2(Dqk + 1)Dqn .

If M = 2(Dqk + 1)Dqn , then

(2(Dqk + 1)+ 1)(M + 1) > 2(Dqk + 1)(Dqn + M + 1),

and if T = Dq1/2, then

2(T + 1) > (Dq1/2 + T + 1),
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so we get

(2(Dqk + 1)+ 1)(M + 1)(T + 1) > (Dqk + 1)(Dqn + M + 1)(Dq1/2 + T + 1).

And from (I + 1)(J + 1) > 2(Dqk + 1)+ 1, it is clear that(2.3)holds, which completes
the proof of the theorem.�

Note that the condition(I + 1)(J + 1) > 2(Dqk + 1)+ 1 is always reached ifI , J are
large enough.

Using the same method as in the proof ofWilf and Zeilberger (1992,Theorems 3.2B
and 3.2C) and from(2.2), we can obtain a non-trivial recurrence for the left-hand side
f (n) := ∑

k F(n, k) of the identity(1.1)

a0(q
n) f (n)+ a1(q

n) f (n − 1)+ · · · + aJ(q
n) f (n − J) = 0, (2.4)

where the coefficientsai (qn) ∈ K [qn,q1/2]. At the same time, fromTheorem 2.1, the
degree inq1/2 in ai (qn) is at mostDq1/2.

For the right sideG(n) of (1.1), it is easy to see that it satisfies a recurrence of order 1.
In the following we will use the elimination method to prove a theorem which not only

gets the same recurrence for the two sides of the identity but also gives the numberm1.
First we proceed to introduce the concept of the linear recurrence operator in

Petkovšek and Zeilberger (1996). We define

N : Ng(n) = g(n − 1).

Let

A :=
J∑

j =0

aj (q
n)N j ,

so(2.4)can be rewritten asAf (n) = 0.
BecauseG(n) is aq-hypergeometric term, we have

G(n)

G(n − 1)
= r (qn)

s(qn)
,

wherer (qn), s(qn) ∈ K [qn,q1/2]. Let

B := s(qn)− r (qn)N,

so BG(n) = 0.
The following proposition varying slightly fromYen (1996,Proposition 3.1) gives a

condition for the non-vanishing of the polynomialP(qn) in terms of the degree inq1/2

in P(qn).

Proposition 2.2. Let P(qn) ∈ K [qn,q1/2] be a non-zero polynomial, m be the maximal
degree in q1/2 in P(qn), then P(qn) is not equal to zero for all n> �m/2�.

The proof of the above proposition is analogous to the proof ofYen (1996,Proposi-
tion 3.1), we omit it here.
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Theorem 2.3. Let A be a linear recurrence operator of order J(J ≥ 1) which has
coefficients in K[qn,q1/2] and B be a linear recurrence operator of order1 which also has
coefficients in K[qn,q1/2], the maximal degree in q1/2 in the coefficients of A is DA

q1/2, the

maximal degrees in q1/2 and qn in the coefficients of B are DB
q1/2 and DB

qn respectively, then

there exist linear recurrence operators C of order J+1, P and Q which have coefficients in
L[qn], such that C= P A = QB, and the coefficient of N0 in C is not equal to zero for all

n > max

{(
J

2

)
DB

qn + �(J DB
q1/2 + DA

q1/2)/2� + 1, J

}
. (2.5)

Proof. Let

A =
J∑

j =0

a0
j (q

n)N j , B = b0(q
n)+ b1(q

n)N,

we eliminateNJ with A andB, and have

A1 := q(J−1)DB
qnb1(q

n−J+1)A − q(J−1)DB
qn a0

J(q
n)NJ−1B

=
J−1∑
j =0

q(J−1)DB
qnb1(q

n−J+1)a0
j (q

n)N j − q(J−1)DB
qna0

J(q
n)b0(q

n−J+1)NJ−1.

It is clear that the order ofA1 is at most J − 1, the coefficients ofA1 belong
to K [qn,q1/2], and the maximal degree inq1/2 in the coefficients ofA1 is at most
2(J − 1)DB

qn + DB
q1/2 + DA

q1/2.

Let A1 = ∑J−1
j =0 a1

j (q
n)N j , we useA1 andB to eliminateNJ−1, then

A2 := q(J−2)DB
qnb1(q

n−J+2)A1 − q(J−2)DB
qna1

J−1(q
n)NJ−2B

= q(J−1)DB
qnq(J−2)DB

qnb1(q
n−J+1)b1(q

n−J+2)A

− (q(J−1)DB
qnq

(J−2)DB
qnb1(q

n−J+2)a0
J(q

n)NJ−1

+ q
(J−2)DB

qna1
J−1(q

n)NJ−2)B.

We also have that the order ofA2 is at mostJ − 2, the coefficients ofA2 belong to
K [qn,q1/2], the maximal degree inq1/2 in the coefficients ofA2 is at most 2(J −1)DB

qn +
2(J − 2)DB

qn + 2DB
q1/2 + DA

q1/2.

So we can do it until the order ofAJ is 0, and have

AJ := b1(q
n)AJ−1 − aJ−1

1 (qn)B =

J−1∏

j =0

q j D B
qn b1(q

n− j )


 A

−

J−1∑

j =0


 j∏

i=0

qi D B
qn





 j −1∏

h=0

b1(q
n−h)


 aJ− j −1

j +1 (qn)N j


 B, (2.6)

whereaJ− j −1
j +1 (qn) is the coefficient ofAJ− j −1 for j = 0, . . . , J − 1.
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Similarly, AJ belongs toK [qn,q1/2], the maximal degree inq1/2 in AJ is at most
2
(J

2

)
DB

qn + J DB
q1/2 + DA

q1/2.

For AJ andB, we have

A′ := aJ
0 (q

n−1)B − b1(q
n)N AJ = aJ

0 (q
n−1)b0(q

n), (2.7)

so we get

aJ
0 (q

n)A′ − aJ
0 (q

n−1)b0(q
n)AJ = 0. (2.8)

ReplacingA′ andAJ in (2.8)with (2.6)and(2.7), we get

(aJ
0 (q

n)b1(q
n)N + aJ

0 (q
n−1)b0(q

n))


J−1∏

j =0

q
j D B

qn b1(q
n− j )


 A

=

(aJ

0 (q
n)b1(q

n)N + aJ
0 (q

n−1)b0(q
n))

J−1∑
j =0


 j∏

i=0

qi D B
qn




×

 j −1∏

h=0

b1(q
n−h)


 aJ− j −1

j +1 (qn)N j + aJ
0 (q

n)aJ
0 (q

n−1)


 B.

Let

C := (aJ
0 (q

n)b1(q
n)N + aJ

0 (q
n−1)b0(q

n))


J−1∏

j =0

q j D B
qn b1(q

n− j )


 A,

P := (aJ
0 (q

n)b1(q
n)N + aJ

0 (q
n−1)b0(q

n))


J−1∏

j =0

q
j D B

qn b1(q
n− j )


 ,

Q := (aJ
0 (q

n)b1(q
n)N + aJ

0 (q
n−1)b0(q

n))

×
J−1∑
j =0


 j∏

i=0

qi D B
qn





 j −1∏

h=0

b1(q
n−h)


 aJ− j −1

j +1 (qn)N j + aJ
0 (q

n)aJ
0 (q

n−1),

then

C = P A = QB.

It is easy to see that the order ofC is J + 1, and the coefficients ofC, P andQ belong
to L[qn].

The coefficient ofN0 in C is

aJ
0 (q

n−1)b0(q
n)a0

0(q
n)

J−1∏
j =0

q j D B
qn b1(q

n− j ).
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FromProposition 2.2, aJ
0 (q

n) is not equal to zero for all

n >

(
J

2

)
DB

qn + �(J DB
q1/2 + DA

q1/2)/2�,

so it is easy to see thataJ
0 (q

n−1) is not equal to zero for all

n >

(
J

2

)
DB

qn + �(J DB
q1/2 + DA

q1/2)/2� + 1.

Similarly, we have

b0(qn) �= 0, for all n > �DB
q1/2/2�,

a0
0(q

n) �= 0, for all n > �DA
q1/2/2�,

b1(qn− j ) �= 0, for all n > �DB
q1/2/2� + j .

So all the factors of the coefficient ofN0 in C are not equal to zero for all

n > max

{(
J

2

)
DB

qn + �(J DB
q1/2 + DA

q1/2)/2� + 1, J

}
,

which completes the proof of the theorem.�

3. The algorithm

In this section we introduce the elementary algorithm in detail and give a fast
implementation.

1. Fix trial values ofI andJ, sayI = J = 1.

2. Simplify
∑I

i=0
∑J

j =0
F(n− j ,k−i )

F(n,k) to the form
∑I

i=0
∑J

j =0
Di j (n,k)
D(n,k) and compute Dqk .

3. If (I + 1)(J + 1) ≤ 2(Dqk + 1)+ 1, increaseI by 1 or increaseJ by 1, go to step 2;
otherwise, compute Dq1/2 andJ.

4. Simplify G(n)/G(n − 1), and compute the maximal degrees inqn andq1/2 in the
numerator and the denominator, denoted byDB

qn andDB
q1/2 respectively.

5. Let DA
q1/2 := Dq1/2, from (2.5)of Theorem 2.3, outputn1.

Comparing this algorithm with Sister Celine’s algorithm (seePetkovšek et al., 1996,
p. 59), we avoid the time consuming aspects of getting the linear equations and solving the
equations in Sister Celine’s algorithm; in our algorithm, the time consuming computing is

simplifying
∑

i j
F(n− j ,k−i )

F(n,k) to the form
∑

i j
Di j (n,k)
D(n,k) for obtaining Dqk and Dq1/2. In the

following, we show a fast method to get Dqk and Dq1/2.

Let x+ := max{x,0}, φ(i , j ) = −2aj − ib andψ(i , j ) = aj2 + bi j + ci2 − id − je.
Then

F(n − j , k − i )

F(n, k)

= P(qn− j ,qk−i )

P(qn,qk)

∏
r (wr qδr +ur n+vr k−ur j −vr i ; q)ur j +vr i∏
s(csqβs+asn+bsk−as j −bsi ; q)as j +bsi

ξ−i qφ(i, j )n+ψ(i, j )

qk(bj+2ci)
.
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By a similar case analysis (seeYen, 1996,p. 8), we have

F(n − j , k − i )

F(n, k)
= D∗

i j (n, k)

D∗(n, k)
,

where

D∗
i j (n, k)= P(qn− j ,qk−i )ξ−i qφ(i, j )n+ψ(i, j )qk(b+ J+2c+ I −bj−2ci)

×
∏

r

(wr qδr +ur n+vr k−ur j −vr i ; q)(ur j +vr i )+

× (wr qδr +ur n+vr k+(−ur j −vr i )+; q)(−ur )+ J+(−vr )+ I −(−ur j −vr i )+

×
∏

s

(csq
βs+asn+bsk; q)(−as j −bsi )+

× (csq
βs+asn+bsk−(as)

+ J−(bs)
+ I ; q)(as)+ J+(bs)+ I −(as j +bsi )+, (3.1)

and

D∗(n, k)= P(qn,qk)qk(b+ J+2c+ I )
∏

r

(wr qδr +ur n+vr k; q)(−ur )+ J+(−vr )+ I

×
∏

s

(csq
βs+asn+bsk−(as)

+ J−(bs)
+ I ; q)(as)+ J+(bs)+ I .

We cannot guaranteeD∗
i j (n, k) ∈ K [qn,qk,q1/2], but we haveD∗

i j (n, k) is the Laurent

polynomial inqn,qk andq1/2. Hence

Dij (n, k) = D∗
i j (n, k)(q

n)−dqn (qk)
−dqk (q1/2)

−dq1/2

D(n, k) = D∗(n, k)(qn)−dqn (qk)
−dqk (q1/2)

−dq1/2

wheredqn,dqk anddq1/2 are the lowest degrees (including negative exponents) ofqn,qk

andq1/2 in
∑

i j D∗
i j (n, k) respectively.

Thus

Dqk = θqk − dqk, Dq1/2 = θq1/2 − dq1/2,

whereθqk andθq1/2 are the maximal degrees ofqk andq1/2 in
∑

i j D∗
i j (n, k) respectively.

From formula(3.1), we can getθqk, θq1/2,dqk anddq1/2 quite quickly. Consequently, we
can obtain Dqk and Dq1/2 quickly.

We have implemented this algorithm in Maple, in the next section we give some
examples.

4. Examples

As our first example, we computen1 for theq-Vandermonde-Chu identity

∑
k

qk2
(

n

k

)2

q
=

(
2n

n

)
q
.
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The identity can be expressed in the form

∑
k

qk2 (q; q)2n
(q; q)2k(q; q)2n−k

= (q; q)2n

(q; q)2n
.

Hencea = b = d = e = 0, c = 1, P(qn,qk) = 1, p = 2,as = 1,bs = 0 andβs = 1
for s ∈ {1,2},h = 4,u1 = u2 = 1, v1 = v2 = −1,u3 = u4 = 0, v3 = v4 = 1, and
wr = cr = 1 andδr = 1 for r ∈ {1,2,3,4}. We input these parameters to the Maple
program, obtainI = 6, J = 7 and getn1 = 191.

Next, we computen1 for a finite version of Jacobi’s triple product identity.
It is well known (see e.g.Andrews, 1976) that Jacobi’s triple product identity

∞∑
k=−∞

q(
k
2)xk =

∞∏
j =1

(1 − q j )(1 + x−1q j )(1 + xqj −1)

can be deduced, for instance, as a limiting casen → ∞ of the following finite variant of
theq-binomial formula

∑
k

(
2n

n + k

)
q
q(

k
2)xk = (−x−1q; q)n(−x; q)n.

We express the identity in the form

∑
k

(q; q)2n

(q; q)n+k(q; q)n−k
qk2/2−k/2xk = (−x−1q; q)n(−x; q)n.

Hencea = 0,b = 0, c = 1/2,d = −1/2,e = 0, P(qn,qk) = 1, p = 1,a1 = 2,b1 =
0, c1 = 1, β1 = 1, andh = 2,u1 = 1, v1 = 1,u2 = 1, v2 = −1, w1 = w2 = 1, δ1 =
δ2 = 1. We input these parameters to the Maple program, obtainI = 5, J = 4 and get
n1 = 70.

Finally, we computen1 for an identity due to L.J. Rogers

∑
k

(−1)k(q; q)nqk(3k−1)/2

(q; q)n+k(q; q)n−k
= 1.

This identity is a finite version of Euler’s pentagonal number theorem.
Hencea = 0,b = 0, c = 3/2,d = −1/2,e = 0, P(qn,qk) = 1, p = 1,a1 = 1,b1 =

0, c1 = 1, β1 = 1, andh = 2,u1 = 1, v1 = 1,u2 = 1, v2 = −1, w1 = w2 = 1, δ1 =
δ2 = 1. We input these parameters to the Maple program, obtainI = 8, J = 9 and get
n1 = 209.
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