Note on a variant of the Erdős-Ginzburg-Ziv problem

Chao Wang

Abstract

In [?], A. Bialostocki and M. Lotspeich introduced a function f(n,k) to study the relation between the number of residue classes modulo n present in a sequence $A = (a_1, \ldots, a_g)$ and the possibility to have a relation like $a_{i_1} + a_{i_2} + \cdots + a_{i_n} \equiv 0 \pmod{n}$. In this paper, the author obtained a formula for f(n,k) when n is big enough relative to k.

2000 Mathematics Subject Classification: Primary 11B50.

1 Introduction

P. Erdős, A. Ginzburg and A. Ziv [?] proved that from any sequence of integers of length 2n-1 one can extract a subsequence of length n whose sum is congruent to zero modulo n.

A. Bialostocki and P. Dierker [?] proved that if $A = (a_1, a_2, \ldots, a_{2n-2})$ is a sequence of integers of length 2n-2 and there are no indices i_1, \ldots, i_n belonging to $\{1, \ldots, 2n-2\}$ such that

$$a_{i_1} + a_{i_2} + \dots + a_{i_n} \equiv 0 \pmod{n},\tag{1}$$

then there are two residue classes modulo n such that n-1 of the a_i 's belong to one of the classes and the remaining n-1 a_i belong to the other class.

In order to study the relation between the number of classes present in a sequence $A = (a_1, \ldots, a_g)$ and the possibility to have a relation like (??), A. Bialostocki and M. Lotspeich [?] introduced the following function.

Definition 1.1 ([?]) Let n, k be positive integers, $1 \le k \le n$. We define f(n, k) to be the least integer g for which the following holds: If $A = (a_1, \ldots, a_g)$ is a sequence of integers of length g such that the number of a_i 's that are distinct modulo n is equal to k, then there are n indices i_1, \ldots, i_n belonging to $\{1, \ldots, g\}$ such that $a_{i_1} + \cdots + a_{i_n} \equiv 0 \pmod{n}$.

The Erdős-Ginzburg-Ziv theorem implies that f(n,k) exists and is not greater than 2n-1. It is easy to see that f(n,1)=n, f(n,2)=2n-1, $f(n,k) \ge n$, and

$$f(n,k) \le 2n - 2 \quad \text{for } 2 < k \le n.$$

For given n, we will formulate the problem and work in the context of \mathbb{Z}_n , the cyclic group of residue classes modulo n. Let us define f(n,k) in the following equivalent way.

Definition 1.2 ([?]) Let n, k be positive integers, $1 \le k \le n$. Denote by f(n, k) the least integer g for which the following holds: If $A = (a_1, \ldots, a_g)$ is a sequence of elements of \mathbb{Z}_n of length g such that the number of distinct a_i 's is equal to k, then there are n indices i_1, \ldots, i_n belonging to $\{1, \ldots, g\}$ such that $a_{i_1} + \cdots + a_{i_n} = 0$.

Notation. A sequence A = (0, 0, 1, 1, 1, 2, 3, 5) will also be denoted by $A = (0^2, 1^3, 2, 3, 5)$. The elements of \mathbb{Z}_n will be denoted by $0, 1, \ldots, n-1$. L. Gallardo, G. Grekos and J. Pihko [?] proved

Theorem 1.1 ([?]) Let n be a positive integer. Then f(n,n) = n if n is odd and f(n,n) = n + 1 if n is even.

Theorem 1.2 ([?]) Let $n \ge 5$ and $1 + n/2 < k \le n - 1$. Then f(n, k) = n + 2.

In this article, k and n will be positive integers. We prove the following theorems.

Theorem 1.3 If $k = 2m+1 \ge 3$ is odd, $n \ge \max\{4m^2-4, m(m+3)/2+2\}$, then

$$f(n,k) = 2n - m^2 - 1.$$

Theorem 1.4 If k = 2m is even, $n \ge \max\{4m(m-1)-4, m(m+1)/2+1\}$, then

$$f(n,k) = 2n - m(m-1) - 1.$$

2 Proofs

In order to prove Theorems ?? and ??, we need some preliminaries that appeared in [?].

Theorem 2.1 ([?]) Let $n \geq 2$ and $2 \leq k \leq \lfloor n/4 \rfloor + 2$, and let $(a_1, a_2, \ldots, a_{2n-k})$ be a sequence of length 2n - k in \mathbb{Z}_n . Suppose that for any n-subset I of $\{1, \ldots, 2n - k\}$, $\sum_{i \in I} a_i \neq 0$. Then one can rearrange the sequence as

$$(\underbrace{a,\ldots,a}_{v},\underbrace{b,\ldots,b}_{v},c_{1},\ldots,c_{2n-k-u-v}),$$

where $u \ge n - 2k + 3$, $v \ge n - 2k + 3$, $u + v \ge 2n - 2k + 2$ and a - b generates \mathbb{Z}_n .

In [?], Weidong Gao introduced the following two definitions.

Definition 2.1 ([?]) Let $S = (a_1, ..., a_k)$ be a sequence of elements in \mathbb{Z}_n . For any $b \in \mathbb{Z}_n$, we denote by b + S the sequence $(b + a_1, ..., b + a_k)$. For any $1 \le r \le k$, we define $\sum_r(S)$ to be the set of all elements in \mathbb{Z}_n which can be expressed as a sum over an r-term subsequence of S, i.e.,

$$\sum_{r} (S) = \{ a_{i_1} + \dots + a_{i_r} | 1 \le i_1 < \dots < i_r \le k \}.$$

Definition 2.2 ([?]) Let $S = (a_1, ..., a_m)$ and $T = (b_1, ..., b_m)$ be two sequences of elements in \mathbb{Z}_n with |S| = |T|. We say that S is equivalent to T (written as $S \sim T$) if there exist an integer c coprime to n, an element $x \in \mathbb{Z}_n$, and a permutation δ of $\{1, ..., m\}$ such that $a_i = c(b_{\delta(i)} - x)$ for every i = 1, ..., m. Clearly, " \sim " is an equivalence relation; and if $S \sim T$, then $0 \in \sum_n(S)$ if and only if $0 \in \sum_n(T)$.

With the above two definitions, Theorem ?? is equivalent to

Lemma 2.2 Let $n \ge 2$ and $2 \le k \le \lfloor n/4 \rfloor + 2$, and let $A = (a_1, a_2, \dots, a_{2n-k})$ be a sequence of length 2n - k in \mathbb{Z}_n . If $0 \notin \sum_n (A)$, then

$$A \sim (0^u, 1^v, c_1, \dots, c_{2n-k-u-v}),$$

where $u \ge n - 2k + 3$, $v \ge n - 2k + 3$, $u + v \ge 2n - 2k + 2$.

Proof of Theorem ??. Since $k = 2m + 1 \ge 3$, we have $m \ge 1$. Consider the sequence

$$E = (0^{n-m(m+3)/2-1}, 1^{n-m(m+1)/2}, \underbrace{2, 3, \dots, m}_{m-1}, \underbrace{n-m, n-m+1, \dots, n-1}_{m}),$$

which contains exactly k = 2m + 1 distinct elements of \mathbb{Z}_n and has

$$n - m(m+3)/2 - 1 + n - m(m+1)/2 + m - 1 + m = 2n - m^2 - 2$$

terms. Every n-term subsequence of E has non-zero sum, so

$$f(n,k) \ge 2n - m^2 - 1.$$

Suppose $E = (a_1, a_2, \dots, a_{2n-m^2-1})$ is a sequence containing exactly k distinct elements of \mathbb{Z}_n . Since $n \geq 4m^2 - 4 = 4(m^2 + 1) - 8$, from Lemma ??, we know that

$$E \sim (0^u, 1^v, c_1, c_2, \dots, c_q),$$

where $u \ge n - 2m^2 + 1$, $v \ge n - 2m^2 + 1$, $u + v \ge 2n - 2m^2$, all $c_i \ne 0, 1$. As E contains k distinct elements of \mathbb{Z}_n , we have $q \ge 2m - 1$, $u + v \le 2n - m^2 - 1 - (2m - 1) = 2n - m(m + 2)$.

Let $F = (0^u, 1^v, c_1, c_2, \dots, c_q)$. Suppose $0 \notin \sum_n(E)$. Then $0 \notin \sum_n(F)$.

It is easy to verify that $u+v \geq n$, so $n-v \leq u < u+1$. For each $1 \leq i \leq q$, if $n-v \leq c_i \leq u+1$, then $(0^{c_i-1}, 1^{n-c_i}, c_i)$ is an n-term subsequence of F which has zero sum, which is impossible, so $c_i > u+1$ or $c_i < n-v$. Without loss of generality, we can assume that c_1, \ldots, c_s are all greater than u+1, and c_{s+1}, \ldots, c_q are all less than n-v.

It is easy to see that $c_i + c_j \ge n + 2$, $1 \le i \ne j \le s$. Since

$$2n - c_i - c_j \leq 2n - 2(u+2)$$

$$= v + 2n - u - (u+v) - 4$$

$$\leq v + 2n - (n - 2m^2 + 1) - (2n - 2m^2) - 4$$

$$= v - (n - 4m^2 + 4) - 1 < v,$$

It follows that if $c_i + c_j \le n + u + 2$, then $(0^{c_i + c_j - n - 2}, 1^{2n - c_i - c_j}, c_i, c_j)$ is an n-term subsequence of F which has zero sum, so

$$c_i + c_j > n + u + 2, \qquad 1 \le i \ne j \le s. \tag{2}$$

Suppose that for some t > 1 we have proved

$$c_{i_1} + \dots + c_{i_{t-1}} > (t-2)n + u + (t-1), \quad 1 \le i_1, \dots, i_{t-1} \le s,$$

 i_1, \dots, i_{t-1} pairwise distinct. (3)

Then for every i_t such that $1 \le i_t \le s$ and $i_t \ne i_j, 1 \le j \le t - 1$,

$$c_{i_1} + \dots + c_{i_{t-1}} + c_{i_t} \geq (t-2)n + u + (t-1) + 1 + (u+2)$$

$$= (t-2)n + 2u + t + 2$$

$$\geq (t-2)n + 2(n-2m^2 + 1) + t + 2$$

$$= (t-1)n + (n-4m^2 + 4) + t$$

$$\geq (t-1)n + t, \tag{4}$$

and

$$tn - c_{i_1} - \dots - c_{i_{t-1}} - c_{i_t} \leq tn - [(t-2)n + u + (t-1) + 1] - (u+2)$$

$$= 2n - 2u - t - 2$$

$$= v + 2n - u - (u+v) - t - 2$$

$$\leq v + 2n - (n - 2m^2 + 1) - (2n - 2m^2) - t - 2$$

$$= v - (n - 4m^2 + 4) - (t - 1) < v.$$
 (5)

If
$$c_{i_1} + \dots + c_{i_{t-1}} + c_{i_t} \le (t-1)n + u + t$$
, then (??) and (??) show that
$$(0^{c_{i_1} + \dots + c_{i_t} - (t-1)n - t}, 1^{t_1 - c_{i_1} - \dots - c_{i_t}}, c_{i_1}, \dots, c_{i_t})$$

is an n-term subsequence of F which has zero sum, so

$$c_{i_1} + \dots + c_{i_t} > (t-1)n + u + t, \quad 1 \le i_1, \dots, i_t \le s, i_1, \dots, i_t$$
 pairwise distinct. (6)

So we have proved that (??) for each $1 \le t \le s$ by induction. In particular, letting t = s, we have

$$c_1 + c_2 + \dots + c_s > (s-1)n + u + s.$$
 (7)

On the other hand, it is easy to see that $c_{s+i}+c_{s+j} \leq n$, $1 \leq i \neq j \leq q-s$. Since

$$c_{i} + c_{j} - 2 \leq 2(n - v - 1) - 2$$

$$= u + 2n - v - (u + v) - 4$$

$$\leq u + 2n - (n - 2m^{2} + 1) - (2n - 2m^{2}) - 4$$

$$= u - (n - 4m^{2} + 4) - 1 < u,$$

It follows that if $c_{s+i}+c_{s+j} \ge n-v$, then $(0^{c_{s+i}+c_{s+j}-2}, 1^{n-c_{s+i}-c_{s+j}}, c_{s+i}, c_{s+j})$ is an *n*-term subsequence of F which has zero sum, so

$$c_{s+i} + c_{s+j} < n - v, \quad 1 \le i \ne j \le q - s.$$
 (8)

Suppose that for some t > 1 we have proved

$$c_{s+i_1} + \dots + c_{s+i_{t-1}} < n - v, \qquad 1 \le i_1, \dots, i_{t-1} \le q - s,$$

 i_1, \dots, i_{t-1} pairwise distinct. (9)

Then for every i_t such that $1 \le i_t \le q - s$ and $i_t \ne i_j, 1 \le j \le t - 1$,

$$c_{s+i_1} + \dots + c_{s+i_{t-1}} + c_{s+i_t} - t$$

$$\leq (n-v-1) + (n-v-1) - t$$

$$= 2n - 2v - t - 2$$

$$= u + 2n - v - (u+v) - t - 2$$

$$\leq u + 2n - (n-2m^2 + 1) - (2n - 2m^2) - t - 2$$

$$= u - (n - 4m^2 + 4) - (t - 1) < u.$$
(11)

If $c_{s+i_1} + \cdots + c_{s+i_{t-1}} + c_{s+i_t} \ge n - v$, then (??) and (??) show that

$$(0^{c_{s+i_1}+\cdots+c_{s+i_t}-t}, 1^{n-c_{s+i_1}-\cdots-c_{s+i_t}}, c_{s+i_1}, \cdots, c_{s+i_t})$$

is an n-term subsequence of F which has zero sum, so

$$c_{s+i_1} + \dots + c_{s+i_t} < n-v, \quad 1 \le i_1, \dots, i_t \le q-s, i_1, \dots, i_t$$
 pairwise distinct. (12)

So we have proved (??) for each $1 \le t \le q - s$ by induction. In particular, letting t = q - s, we have

$$c_{s+1} + c_{s+2} + \dots + c_q < n - v. (13)$$

The equality (??) is equivalent to

$$(n-c_1) + (n-c_2) + \cdots + (n-c_s) < n-u-s.$$

For $1 \le i \le s$, let $e_i = n - c_i$. Then $0 < e_i < n - u - 1$ and

$$e_1 + e_2 + \dots + e_s \le n - u - s - 1.$$
 (14)

For $1 \le i \le q - s$, let $d_i = c_{s+i}$. Then $1 < d_i < n - v$ and

$$d_1 + d_2 + \dots + d_{q-s} \le n - v - 1. \tag{15}$$

Suppose that $\{e_1, \ldots, e_s\}$ has w distinct elements. Then $\{d_1, \ldots, d_{q-s}\}$ has 2m-1-w distinct elements. From $(\ref{eq:starteq})$ and $(\ref{eq:starteq})$, we know that

$$e_1 + e_2 + \dots + e_s + d_1 + d_2 + \dots + d_{q-s} \le 2n - u - v - s - 2.$$
 (16)

But in fact,

$$(e_{1} + e_{2} + \dots + e_{s} + d_{1} + d_{2} + \dots + d_{q-s}) - (2n - u - v - s - 2)$$

$$\geq 1 + 2 + 3 + \dots + w + 1 \cdot (s - w) + 2 + 3 + \dots + (2m - w)$$

$$+ 2 \cdot (2n - m^{2} - 1 - u - v - s - (2m - 1 - w)) - (2n - u - v - s - 2)$$

$$\geq w(w + 1)/2 + s - w + (2m - w - 1)(2m - w + 2)/2 + 2n - 2m^{2}$$

$$-4m - u - v - s + 2w + 2$$

$$= 2n - u - v + w^{2} - 2mw + w - 3m + 1$$

$$\geq m(m + 2) + w^{2} - 2mw + w - 3m + 1$$

$$= (m - w - 1/2)^{2} + 3/4$$

$$> 0.$$

Contradiction! So $0 \in \sum_{n}(E)$, which means $f(n,k) \leq 2n - m^2 - 1$, and the proof is finished.

Proof of Theorem ??. The proof is similar to that of Theorem ??. We leave it to the interested reader.

Letting k = 2, 3, 4, 5, 6, we get the following corollary.

Corollary 2.3

$$f(n,2) = 2n - 1,$$
 $n \ge 2,$
 $f(n,3) = 2n - 2,$ $n \ge 4,$
 $f(n,4) = 2n - 3,$ $n \ge 4,$
 $f(n,5) = 2n - 5,$ $n \ge 12,$
 $f(n,6) = 2n - 7,$ $n > 20.$

Acknowledgements

I would like to thank Professor Gao Weidong for his helpful suggestions and comments.

References

- [1] A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110(1992), 1-8.
- [2] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv theorem, I, in: Sets, Graphs and Numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai 60, North-Holland, 1992, 97-117.
- [3] P. Erdős, A. Ginzburg and A. Ziv, *Theorem in the additive number theory*, Bull. Res. Council Israel Sect. F Math. Phys. 10(1961-1962), 41-43.
- [4] L. Gallardo, G. Grekos and J. Pihko, On a variant of the Erdős-Ginzburg-Ziv problem, Acta Arith. 89(1999), 331-336.
- [5] W. D. Gao, An addition theorem for finite cyclic groups, Discrete Math. 163(1997), 257-265.

Center for Combinatorics Nankai University Tianjin 300071 P.R. China

E-mail: wch2001@eyou.com