
Recurrent Sequences and Schur Functions

Qing-Hu Hou1 and Yan-Ping Mu

Center for Combinatorics

The Key Laboratory of Pure Mathematics and Combinatorics of

Ministry of Education

Nankai University, Tianjin 300071, P.R. China

E-mail: hqh@public.tpt.tj.cn

myphb@eyou.com

Abstract

We show that some classical determinants in the theory of symmetric

functions can be interpreted in terms of recurrent sequences. Conversely

we generalize determinantal expressions of Schur functions, by taking sev-

eral recurrent sequences having same characteristic polynomial, or by pro-

longing sequences to negative indices. Finally, we give some recurrent se-

quences associated to plethysm of symmetric functions, for example with

characteristic polynomial having roots the same powers of the roots of the

original characteristic polynomial.
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1 Introduction and Notation

A sequence T = {Tn}n≥0 is (linear, homogenous) recurrent of order k if there
exists constants c1, . . . , ck such that, for n ≥ k (we normalized the coefficient of
Tn to 1),

Tn + c1Tn−1 + · · · + ckTn−k = 0.

The polynomial xk + c1x
k−1 + · · · + ck is called the characteristic polynomial

of the recurrent sequence. Factorizing it totally, we can write the character-
istic polynomial as R(x,A) =

∏

a∈A
(x − a), where A is the “alphabet” of the

roots. One can now interpret functions of the Tn’s as symmetric functions in A.
The interplay of the theory of symmetric functions and the theory of recurrent
sequences provides us a powerful tool (cf. [3] and [4]).

In this paper, we shall mostly treat the case of determinants whose entries
are elements of different recurrent sequences having same characteristic poly-
nomial. First we show that such determinants are proportional to Schur func-
tions. Thus, one can use symmetric functions to manipulate such determinants,
and vice versa. As an application, we derive some determinantal formulas in
the theory of symmetric functions, some classical and some others new (The-
orem 2.2, Corollaries 2.4 and 3.2). Noting that recurrent sequences can be
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extended to negative indices, we then obtain new determinantal expressions of
Schur functions, by prolonging the sequence of complete functions to negative
indices (Proposition 4.6). Finally, we exhibit recurrent sequences with char-
acteristic polynomials

∏
(x − ah1

1 · · · ahn

n ), where product on all permutations
[h1, . . . , hn] of a given vector (Theorem 5.1). The coefficients of such charac-
teristic polynomials can be interpreted as plethysm of elementary symmetric
functions with monomial functions.

We first need some conventions. We shall follow [4] rather than [5].
Let A,B be two alphabets, the complete symmetric function Si(A −B), the

elementary symmetric function Λi(A−B) and the power sum ψi(A) are defined
by

∑

i≥0

Si(A − B)zi =

∏

b∈B
(1 − bz)

∏

a∈A
(1 − az)

,

∑

i≥0

Λi(A − B)zi =

∏

a∈A
(1 + az)

∏

b∈B
(1 + bz)

,

and
ψi(A) =

∑

a∈A

ai.

We extend the definition by putting Si(A) = Λi(A) = 0 for i < 0. With these
conventions,

R(x,A) =

k∑

i=0

Si(−A)xk−i =

k∑

i=0

(−1)iΛi(A)xk−i.

We use the exponential notation mk to denote the vector (m,m, . . . ,m) ∈
Z

k. For any I = (i1, . . . , in), J = (j1, . . . , jn) ∈ N
n, SJ/I(A) denote the skew

Schur functions on the alphabet A defined by

SJ/I(A) =
∣
∣Sjs−ir+s−r(A)

∣
∣
1≤r,s≤n

.

When I = 0n, they are called Schur functions and one writes SJ (A) instead of
SJ/0n(A).

In the following, we will fix a positive integer k and an alphabet A of order k.

2 Recurrent Sequences and Schur Functions

Let T (i) = {T
(i)
n }n≥0 (1 ≤ i ≤ k) be k recurrent sequences with the same

characteristic polynomial R(x,A). We denote by M(A) the following matrix

M(A) :=










T
(1)
0 T

(1)
1 T

(1)
2 · · ·

T
(2)
0 T

(2)
1 T

(2)
2 · · ·

· · · · · · · · · · · ·

T
(k)
0 T

(k)
1 T

(k)
2 · · ·










.
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For any J = (j1, . . . , jk) ∈ Nk, let MJ(A) be the sub-matrix of M(A) taken on
columns j1 + 1, j2 + 2, . . . , jk + k.

The following lemma is immediate.

Lemma 2.1 Let T (i) = {T
(i)
n }n≥0 (1 ≤ i ≤ k) be k recurrent sequences with the

same characteristic polynomial R(x,A). Then, T (1), T (2), . . . , T (k) are linearly

independent if and only if

∆ := det(M0k (A)) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
0 T

(1)
1 · · · T

(1)
k−1

T
(2)
0 T

(2)
1 · · · T

(2)
k−1

...
... · · ·

...

T
(k)
0 T

(k)
1 · · · T

(k)
k−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

6= 0.

Now, we have

Theorem 2.2 Let T (i) = {T
(i)
n }n≥0 (1 ≤ i ≤ k) be k recurrent sequences with

the same characteristic polynomial R(x,A). For any J ∈ Nk, we have

det(MJ(A)) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
j1

T
(1)
j2+1 · · · T

(1)
jk+(k−1)

T
(2)
j1

T
(2)
j2+1 · · · T

(2)
jk+(k−1)

...
... · · ·

...

T
(k)
j1

T
(k)
j2+1 · · · T

(k)
jk+(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= SJ (A) · ∆.

Especially, when T (1), T (2), . . . , T (k) are linearly independent, we have

SJ(A) = det(MJ(A))/∆.

Proof. Let S(A) be the infinite matrix

S(A) =










S0(A) S1(A) S2(A) · · ·

S−1(A) S0(A) S1(A) · · ·

S−2(A) S−1(A) S0(A) · · ·

· · · · · · · · · · · ·










and SJ(A) be the sub-matrix of S(A) taken on columns j1 +1, j2 +2, . . . , jk +k.

Consider the product M(A)S(−A)SJ (A). Since T
(i)
0 , T

(i)
1 , . . . (1 ≤ i ≤ k) are

recurrent sequences with characteristic polynomial R(x,A), the elements in n-th
column of M(A)S(−A) are all null for n > k. Hence,

det
(
M(A)S(−A)SJ(A)

)
= det

(
M(A)S(−A)

)

k×k
det

(
SJ(A)k×k

)
,
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where Mk×k denote the k × k sub-matrix of M taken on the first k rows and k
columns. Therefore,

detMJ(A) = det(M(A)SJ (∅))

= det
(
M(A)S(−A)SJ(A)

)

= det
(
M(A)S(−A)

)

k×k
· det SJ(A)k×k

= detM(A)k×k · det S(−A)k×k · det SJ (A)k×k

= ∆ · SJ(A).

As a corollary, we derived the classical definition of Schur functions (see [5,
Section 1.3] and [8, Section 7.15]).

Corollary 2.3 Let V (A) be infinite Vandermonde matrix

V (A) :=







1 a1 a2
1 · · ·

1 a2 a2
2 · · ·

· · · · · · · · · · · ·
1 ak a2

k · · ·







and VJ (A) be the determinant of the sub-matrix of V (A) taken on columns

j1 + 1, j2 + 2, . . . , jk + k. For any J ∈ N
k, we have

VJ (A) = SJ(A)V0k (A).

If all elements of A are distinct, V0k (A) 6= 0 and hence,

SJ (A) = VJ (A)/V0k (A).

Proof. Clearly, for any a ∈ A,

an + S1(−A)an−1 + · · · + Sn(−A) = Sn(a− A) = 0, n ≥ k.

Hence, 1, a, a2, . . . is a recurrent sequence with characteristic polynomialR(x,A).
By Theorem 2.2, we get the result immediately.

Corollary 2.4 Let T = {Tn}n≥0 be a recurrent sequence with characteristic

polynomial R(x,A). For any I, J ∈ Nk, we have

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Ti1+j1 Ti1+j2+1 · · · Ti1+jk+(k−1)

Ti2+j1+1 Ti2+j2+2 · · · Ti2+jk+k

...
... · · ·

...

Tik+j1+(k−1) Tik+j2+k · · · Tik+jk+2(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= SI(A) · SJ(A) ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T0 T1 · · · Tk−1

T1 T2 · · · Tk

...
... · · ·

...

Tk−1 Tk · · · T2(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Proof. By Theorem 2.2, we have

SI(A) · SJ(A) · det(Tr+s−2)1≤r,s≤k

= SI(A) · det(Tr+(s+js)−2)1≤r,s≤k

= SI(A) · det(T(r+jr)+s−2)1≤r,s≤k

= det(T(r+jr)+(s+is)−2)1≤r,s≤k

= det(Tir+js+(r+s−2))1≤r,s≤k

Corollary 2.5 We have

det(ψir+js+r+s−2(A))1≤r,s≤k = SI(A)SJ (A) det(ψr+s−2(A))1≤r,s≤k .

Proof. Since 1, a, a2, . . . (a ∈ A) are recurrent sequences with characteristic
polynomial R(x,A), so does their sum ψ0(A), ψ1(A), . . .. This fact also results
from the formulas of Newton relating power sums and elementary symmetric
functions, which first appeared in Newton’s book Arithmetica universalis. (See
also [6, 10].)

Notice also that det(ψr+s−2(A))1≤r,s≤k is the discriminant of A, i.e. the
square of the Vandermonde V0k (A).

Corollary 2.6 Let I, J be two vectors in Nk and � = rk ⊆ I, then

SI−�(A)SJ+�(A) = SI(A)SJ (A),

where J + � = [j1 + r, . . . , jk + r], I − � = [i1 − r, . . . , ik − r].
Especially,

SJ+�(A) = SJ(A) · S�(A) = SJ(A) · (Λk(A))r .

Proof. Expanding Sm(A − A) = 0,m > 0, one sees that {S−k+1+n(A)}n≥0

is a recurrent sequence with characteristic polynomial R(x,A). Taking Tn =
S−k+1+n(A) in Corollary 2.4, we reach the conclusion.

Remark. More generally, the factorization lemma given in [4, Prop 9] implies
that

SI−�(A)SJ+�(A − B) = SI(A − B)SJ (A),

and
SJ+�(A − B) = SJ (A)S�(A − B),

where � = mk, m being the order of B.

3 Mixed Determinants

Theorem 3.1 Let X be an arbitrary m × (m + k) matrix and Y, Z be k ×
(m+ k) matrices such that each row is a recurrent sequence with characteristic
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polynomial R(x,A). Write X = [X1, X2], Y = [Y1, Y2] and Z = [Z1, Z2] such

that X2, Y1, Z1 are square matrices. If
∣
∣
∣
∣

X1 X2

Z1 Z2

∣
∣
∣
∣
6= 0,

we have det(Z1) 6= 0 and
∣
∣
∣
∣

X1 X2

Y1 Y2

∣
∣
∣
∣

/
∣
∣
∣
∣

X1 X2

Z1 Z2

∣
∣
∣
∣
= det(Y1)/ det(Z1)

is independent of X.

Proof. Write

[
A B
0 C

]

=








S0(−A) S1(−A) · · · Sm+k−1(−A)
0 S0(−A) · · · Sm+k−2(−A)

· · · · · ·
... · · ·

0 0 · · · S0(−A)







,

where A,B and C are k × k, k ×m and m×m matrices respectively.
Noting that each row of Y is a recurrent sequence with characteristic poly-

nomial R(x,A), we have
∣
∣
∣
∣

X1 X2

Y1 Y2

∣
∣
∣
∣

=

∣
∣
∣
∣

X1 X2

Y1 Y2

∣
∣
∣
∣
·

∣
∣
∣
∣

A B
0 C

∣
∣
∣
∣

=

∣
∣
∣
∣

X1A X1B +X2C
Y1A 0

∣
∣
∣
∣

= − det(X1B +X2C) det(Y1A).

Similarly, ∣
∣
∣
∣

X1 X2

Z1 Z2

∣
∣
∣
∣
= − det(X1B +X2C) det(Z1A).

By hypothesis, det(X1B +X2C) 6= 0 and det(Z1A) 6= 0. Hence,
∣
∣
∣
∣

X1 X2

Y1 Y2

∣
∣
∣
∣

/
∣
∣
∣
∣

X1 X2

Z1 Z2

∣
∣
∣
∣
= det(Y1)/ det(Z1).

Combining Theorems 2.2 and 3.1, we have

Corollary 3.2 Let T = {Tn}n≥0 be a recurrent sequence with characteristic

polynomial R(x,A). Suppose that

W :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 1 x1 2 · · · x1 m+k

...
... · · ·

...

xm 1 xm 2 · · · xm m+k

T0 T1 · · · Tm+(k−1)

T1 T2 · · · Tm+k

...
... · · ·

...

Tk−1 Tk · · · Tm+2(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

6= 0.
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Then, for any I ∈ Nk we have

1

W
·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x1 1 x1 2 · · · x1 m+k

...
... · · ·

...

xm 1 xm 2 · · · xm m+k

Ti1 Ti1+1 · · · Ti1+m+(k−1)

Ti2+1 Ti2+2 · · · Ti2+m+k

...
... · · ·

...

Tik+(k−1) Tik+k · · · Tik+m+2(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= SI(A),

and thus, the left-hand side is independent of x11, x12, · · · , xm m+k.

Remark. As pointed by Lascoux, Corollary 3.2 can also be derived from the
factorization lemma already mentionned. In fact, one can take the rows of the
matrix X to be successive powers of x1, x2, .., xm, and the recurrent sequence to
be Sn(A − B), with B of order less than k. Now, subtracting X = {x1, . . . , xm}
in the last k columns, one transforms it into ([4, Lemma 8])

SI+�(A − B − X) = SI(A)S�(A − B − X)

with � = (m+ k − 1)k, which is a special case of the factorization lemma.

4 Sequences with Negative Indices

In this section, we will assume that all elements of A are non-zero.

Lemma 4.1 (Wronski) Let A∨ = {1/a : a ∈ A} and

β = (−1)k−1Λk(A∨) = (−1)k−1/
∏

a∈A

a.

Then the sequence

Sn = βS−n−k(A∨), n < 0 & Sn = Sn(A), n ≥ 0,

i.e.,

. . . , βS3(A∨), βS2(A∨), βS1(A∨), β, 0, 0, . . . , 0
︸ ︷︷ ︸

k−1

, 1, S1(A), S2(A), . . .

is a recurrent sequence with characteristic polynomial R(x,A).

This lemma is due to Wronski [9]; see Lascoux [4] for more informations about
Wronski and symmetric functions.
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For I, J ∈ Zk, define

∆I,J :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Sik+j1 Sik+j2+1 · · · Sik+jk+k−1

Sik−1+j1−1 Sik−1+j2 · · · Sik−1+jk+k−2

...
... · · ·

...

Si1+j1−(k−1) Si1+j2−(k−2) · · · Si1+jk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

We shall write ∆J instead of ∆0k,J .
∆I,J can be seen as the extension of Schur functions to negative indices.

This extension is needed when interpreting Schur functions as characters of the
linear group rather than of the symmetric group.

For I = (i1, i2, . . . , ik), J = (j1, j2, . . . , jk) ∈ Zk, define

−I = (−i1, . . . ,−ik), Iω = (ik, ik−1, . . . , i1) and ∆J/I = ∆−Iω,J .

Noting that columns of ∆J can be seen as elements of recurrent sequences
with the same characteristic polynomial R(x,A), by Theorem 2.2, we have

Lemma 4.2 For m ∈ Z and J ∈ Zk, ∆J+mk = ∆J · (Λk(A))m.

Proposition 4.3 For any I, J ∈ Nk and I ⊆ � = rk,

∆J = SJ(A), ∆(J+�)/I = S(J+�)/I(A),

and

∆−J = SJω (A∨).

Proof. From the definition of Sn, it’s easy to see that

∆J = SJ(A), ∆(J+�)/I = S(J+�)/I(A).
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Moreover,

SJω (A∨) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Sjk(A∨) Sjk−1+1(A∨) · · · Sj1+k−1(A∨)

Sjk−1(A∨) Sjk−1(A∨) · · · Sj1+k−2(A∨)

...
... · · ·

...

Sjk−(k−1)(A∨) Sjk−1−(k−2)(A∨) · · · Sj1(A∨)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Sj1(A∨) Sj2−1(A∨) · · · Sjk−(k−1)(A∨)

Sj1+1(A∨) Sj2(A∨) · · · Sjk−(k−2)(A∨)

...
... · · ·

...

Sj1+(k−1)(A∨) Sj2+(k−2)(A∨) · · · Sjk(A∨)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

βk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S−j1−k S−j2−k+1 · · · S−jk−1

S−j1−k−1 S−j2−k · · · S−jk−2

...
... · · ·

...

S−j1−2k+1 S−j2−2k+2 · · · S−jk−k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
1

βk
∆−J+(−k)k

=
1

βk
(Λk(A))−k∆−J = ∆−J .

Proposition 4.3 allows us to transform Theorem 2.2 into:

Theorem 4.4 Let T (i) = {T
(i)
n }n∈Z (1 ≤ i ≤ k) be k recurrent sequences with

the same characteristic polynomial R(x,A). For any J ∈ Zk, we have

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
j1

T
(1)
j2+1 · · · T

(1)
jk+(k−1)

T
(2)
j1

T
(2)
j2+1 · · · T

(2)
jk+(k−1)

...
... · · ·

...

T
(k)
j1

T
(k)
j2+1 · · · T

(k)
jk+(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
0 T

(1)
1 · · · T

(1)
(k−1)

T
(2)
0 T

(2)
1 · · · T

(2)
(k−1)

...
... · · ·

...

T
(k)
0 T

(k)
1 · · · T

(k)
(k−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

· ∆J .
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Proof. Taking M ∈ N sufficient large such that J + � ∈ Nk,� = Mk, we have

det(T
(r)
js+s−1)1≤r,s≤k = SJ+�(A) det(T

(r)
−M+s−1)1≤r,s≤k

= ∆J+� det(T
(r)
−M+s−1)1≤r,s≤k

= S�(A)∆J det(T
(r)
−M+s−1)1≤r,s≤k

= ∆J det(T
(r)
s−1)1≤r,s≤k

Corollary 2.4 can be transformed into:

Corollary 4.5 Let T = {Tn}n∈Z be a recurrent sequence with characteristic

polynomial R(x,A). For any I, J ∈ Zk, we have

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Tik+j1 Tik+j2+1 · · · Tik+jk+k−1

Tik−1+j1−1 Tik−1+j2 · · · Tik−1+jk+k−2

...
... · · ·

...

Ti1+j1−(k−1) Ti1+j2−(k−2) · · · Ti1+jk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= ∆I · ∆J ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T0 T1 · · · Tk−1

T−1 T0 · · · Tk−2

...
... · · ·

...

T−k+1 T−k+2 · · · T0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Taking Tn = Sn in Corollary 4.5, we have

Proposition 4.6
1. For any I, J ∈ Zk, let � = mk ∈ Zk, then one has :

∆I,J = ∆I · ∆J = ∆J,I and ∆� · ∆−� = 1.

2. For any I, J ∈ Nk,

∆J/I = SJ(A)SI(A
∨),

Especially, for I ⊆ � = rk

S(J+�)/I(A) = SJ (A)S�/I(A).

For example, for k = 3, the following determinants, corresponding to J =
[−1, 1, 4], [−2, 0, 3], [−3,−1, 2], are proportional to the Schur function S0,2,5(A),
up to a power of β = Λ3(A∨).

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S4(A) S5(A) S6(A)

1 S1(A) S2(A)

1
Λ3(A) 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S3(A) S4(A) S5(A)

0 1 S1(A)

S1(A∨)
Λ3(A)

1
Λ3(A) 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

S2(A) S3(A) S4(A)

0 0 1

S2(A∨)
Λ3(A)

S1(A∨)
Λ3(A)

1
Λ3(A)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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5 Recurrent Sequences and Plethysm

Since the beginning of the theory of polynomials, one has looked at transforma-
tions of the type

∏

a∈A
(x−a) →

∏

a∈A
(x−a2), or more generally,

∏

a∈A
(x−a) →

∏

a∈A
(x − ar), for fixed r, and tried to describe the coefficients of the trans-

formed polynomial in terms of those of the original one. Following Littlewood,
this transformation is called plethysm (with a power sum) [5].

We shall consider here plethysm with a monomial function (more generally,
we allow negative exponents).

Let A = {a1, a2, . . . , ak} be an alphabet of order k, with all ai 6= 0, and
let H ∈ Zk. Define AH to be the alphabet whose letters are all the different
monomials obtained by permutation from ah1

1 · · ·ahk

k , i.e.

A
H = {ar1

1 a
r2

2 · · ·ark

k : (r1, r2, . . . , rk) is a permutation of H}

Suppose T (i) = {T
(i)
n }n∈Z (1 ≤ i ≤ k) be k recurrent sequences with the

same characteristic polynomial R(x,A). For any I, J ∈ Zk, denote

UJ/I =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
j1−i1

T
(1)
j2−i1+1 · · · T

(1)
jk−i1+(k−1)

T
(2)
j1−i2−1 T

(2)
j2−i2

· · · T
(2)
jk−i2+(k−2)

· · · · · · · · · · · ·

T
(k)
j1−ik−(k−1) T

(k)
j2−ik−(k−2) · · · T

(k)
jk−ik

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Now we have

Theorem 5.1 Let A be of order k, and I, J,H belong to Zk. Then the se-

quence {U(J+nH)/I}n∈Z is a recurrent sequence with characteristic polynomial

R(x,AH).

Proof. Firstly, we consider the case that all elements of A are distinct.
By Theorem 4.4,

U(J+nH)/I = ∆J+nH ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
−i1

T
(1)
−i1+1 · · · T

(1)
−i1+(k−1)

T
(2)
−i2−1 T

(2)
−i2

· · · T
(2)
−i2+(k−2)

· · · · · · · · · · · ·

T
(k)
−ik−(k−1) T

(k)
−ik−(k−2) · · · T

(k)
−ik

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Hence, we only need to prove the assertion holds for ∆J+nH . Similarly to

11



Corollary 2.3, we have ∆J+nH = VJ+nH (A)/V0k (A). Now,

VJ+nH(A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

aj1+nh1

1 aj2+nh2+1
1 · · · a

jk+nhk+(k−1)
1

aj1+nh1

2 aj2+nh2+1
2 · · · a

jk+nhk+(k−1)
2

· · · · · · · · · · · ·

aj1+nh1

k aj2+nh2+1
k · · · a

jk+nhk+(k−1)
k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∑

σ∈Sk

(−1)inv(σ)a(J+nH+ρ)σ

=
∑

σ∈Sk

(−1)inv(σ)a(J+ρ)σ

(aHσ

)n.

where aJ denote aj1
1 a

j2
2 · · · ajk

k , Sk is the permutation group on {1, 2, . . . , k},
inv(σ) is the inversion number of permutation σ, and

(j1, j2, . . . , jk)σ = (jσ(1), jσ(2), . . . , jσ(k)), ρ = (0, 1, . . . , k − 1).

Noting that {(aHσ

)n}n∈Z are recurrent sequences with characteristic poly-
nomial R(x,AH), so does their linear combination VJ+nH (A).

Since ∆J/I , multiplied by some power of Λk(A), is a polynomial, the assertion
remains true when the elements of A are not all distinct.

Corollary 5.2 Suppose 0 < m ≤ k, I, J,H ∈ Zm, then {W(J+nH)/I}n∈Z is a

recurrent sequence with characteristic polynomial R(x,AH+

), where

WJ/I =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T
(1)
j1−i1

T
(1)
j2−i1+1 · · · T

(1)
jm−i1+(m−1)

T
(2)
j1−i2−1 T

(2)
j2−i2

· · · T
(2)
jm−i2+(m−2)

· · · · · · · · · · · ·

T
(m)
j1−im−(m−1) T

(m)
j2−im−(m−2) · · · T

(m)
jm−im

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

and H+ = (0, . . . , 0, h1, . . . , hm) is the embedment of H in Zk.

Proof. Let I+, J+ be the embedment of I, J respectively. Take Theorem 5.1
with I+, J+, H+ and the recurrent sequences being

T (i)
n =







Sn−k 1 ≤ i ≤ k −m,

T
(i−k+m)
n k −m < i ≤ k.

Suppose {an}n∈Z is a sequence which satisfies a linear recurrence of order k.
In [2, 7], it has been shown that for any h and b the subsequences {ahn+b}n∈Z

also satisfy a linear recurrence of order k. In fact, it is the case that taking
m = 1 and H = h, I = 0, J = b in Corollary 5.2.
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TakingH = (1, 1, . . . , 1) ∈ Zm in Corollary 5.2, we derive that {W(J+nm)/I}n∈Z

satisfy a linear recurrence of order
(

k
m

)
, which is Proposition 4.3 in [3].

Write er = (0, . . . , 0
︸ ︷︷ ︸

r−1

, 1, 0, . . . , 0) ∈ Nk. For 0 ≤ α < k, let

Jα = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

α

,−α).

By Theorem 5.1, {∆Jα+nek
}n∈Z is a recurrent sequence with characteristic poly-

nomial R(x,A). When n ≥ 0, ∆Jα+nek
is the hook function S1α,n−α(A).

Furthermore,
∆Jα+nek

= (−1)α∆nek−α
, n ∈ Z

and for n ≥ 0,

∆nek−α
= Snek−α

(A) and ∆−nek−α
= Sneα+1

(A∨).

They are the entries of the n-th power of the companion matrix of the polynomial
R(x,A) (see [1, 4]):










Λ1(A) −Λ2(A) · · · (−1)k−2Λk−1(A) (−1)k−1Λk(A)

1 0 · · · 0 0

. . .
...

0 0 · · · 1 0










.
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