Available online at www.sciencedirect.com
science doirect.
DISCRETE
MATHEMATICS

Note

A simple proof of Dixon's identity

Victor J.W. Guo*
Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, People's Republic of China

Received 8 October 2002; received in revised form 13 February 2003; accepted 23 February 2003

Abstract

We present another simple proof of Dixon's identity.
(c) 2003 Elsevier Science B.V. All rights reserved.

Keywords: Dixon; Identity; Polynomial

Dixon [1] established the following famous identity

$$
\begin{equation*}
\sum_{k=-a}^{a}(-1)^{k}\binom{a+b}{a+k}\binom{b+c}{b+k}\binom{c+a}{c+k}=\frac{(a+b+c)!}{a!b!c!} \tag{1}
\end{equation*}
$$

where a, b, c are nonnegative integers (for short proofs, cf. [2,3]).
In this note, we give another simple proof of (1) in its polynomial version.
Theorem 1. Let m, r be nonnegative integers, and x an indeterminate. Then

$$
\begin{equation*}
\sum_{k=0}^{2 r}(-1)^{k}\binom{m+2 r}{m+k}\binom{x}{k}\binom{x+m}{m+2 r-k}=(-1)^{r}\binom{x}{r}\binom{x+m+r}{m+r} . \tag{2}
\end{equation*}
$$

Here and in what follows:

$$
\binom{x}{r}=\frac{x(x-1) \cdots(x-r+1)}{r!} .
$$

Proof. Denote the left-hand side of (2) by $P(x)$. We want to show that

$$
P(x)=0 \quad \text { for }-m-r \leqslant x<r .
$$

[^0](i) $x=0,1, \ldots, r-1$, we have $0 \leqslant x<k$ or $0 \leqslant x<2 r-k$. Hence, $\binom{x}{k}=0$ or $\binom{x+m}{m+2 r-k}=0$.
(ii) $x=-m,-m+1, \ldots,-1$, we have $0 \leqslant x+m<m \leqslant m+2 r-k$. So, $\binom{x+m}{m+2 r-k}=0$.
(iii) $x=-m-r,-m-r+1, \ldots,-m-1$. Set $x=-p-1$, where $p=m, m+1, \ldots, m+$ $r-1$. Then,
\[

$$
\begin{aligned}
P(-p-1) & =\sum_{k=0}^{2 r}(-1)^{m-k}\binom{m+2 r}{m+k}\binom{p+k}{k}\binom{p+2 r-k}{m+2 r-k} \\
& =\sum_{k=-m}^{2 r}(-1)^{m-k}\binom{m+2 r}{m+k}\binom{p+k}{p}\binom{p+2 r-k}{p-m} \\
& =0 .
\end{aligned}
$$
\]

The last identity holds because $\binom{p+k}{p}\binom{p+2 r-k}{p-m}$ is a polynomial in k of degree $2 p-m<m+2 r$, and we have

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} k^{i}=0, \quad 0 \leqslant i<n,
$$

which is well-known.
Moreover, $P(r)$ has only one nonzero term $(-1)^{r}\binom{m+2 r}{m+r}$. Thus, $P(x)$ coincides with $(-1)^{r}\binom{x}{r}\binom{x+m+r}{m+r}$ at $m+2 r+1$ values of x. Hence they must be identical. This completes the proof.

Set $m+2 r=a+b, x=b+c, x+m=c+a$ in Theorem 1. Then multiplying (2) by $(-1)^{b}$, and changing k to $b+k$, we obtain the form (1).

Acknowledgements

This work was done under the auspices of the National " 973 " Project on Mathematical Mechanization, and the National Science Foundation of China. The author thanks a referee for helpful suggestions to improve the clarity of the manuscript.

References

[1] A.C. Dixon, Summation of a certain series, Proc. London Math. Soc. 35 (1) (1903) 285-289.
[2] S.B. Ekhad, A very short proof of Dixon's theorem, J. Combin. Theory, Ser. A 54 (1990) 141-142.
[3] I. Gessel, D. Stanton, Short proofs of Saalschütz's and Dixon's theorems, J. Combin. Theory, Ser. A 38 (1985) 87-90.

[^0]: * Tel.: 86-2223502180; fax: +86-2223509272.

 E-mail address: jwguo@eyou.com (V.J.W. Guo).

