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Abstract

A weighted composite digraph is obtained from some weighted digraph by replacing each vertex
with a weighted digraph. In this paper, we give a beautiful combinatorial proof of the formula for
forest volumes of composite digraphs obtained by Kelmans et al. [DIMACS Technical Report 2000-
03, 2000]. Moreover, a generalization of this formula is present.
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1. Introduction

The composite graphG(Hi, ..., H,) is obtained from the graplG on [n] by
replacing each vertekby a graphH;. It is a generalization of multipartite graph, whose
complexity was studied by Knuth [8] and Kelmans [6]. The number of spanning trees
of G(Hy, ..., H,) was obtained by Pak and Postnikov [9]. These papers generalized the
encoding of Prifer [10]. Recently, Kelmans et al. [7] investigated the tree and forest
volumes of weighted digraphs with algebraic methods, and deduced a nice formula for
forest volumes of composite weighted digraphs.

To give a combinatorial interpretation of Kelmans—Pak—Postnikov’s formula, we notice
that the composite digraph can always be obtained from a series of digraph-substitutions.
This fact discloses the essence of a composite digraph. Based on it, we construct a bijection
between two sets related to oriented trees. The bijection uses the ideas of Joyal [5] and
Goulden and Jackson [3], who independently constructed an elegant encoding for bi-rooted
trees. The Joyal encoding was also used by Stanley [§2kiE)lu and Remmel [1,2], and
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Guo [4] in their approaches to bipartite or multipartite trees. Although a bijective proof
of Kelmans—Pak—Postnikov’s formula may be given by using the Prifer code, the proof
applying the Joyal code is much more simple and straightforward.

We introduce the concept of thigiented tree volumef a weighted digraph, and obtain
a formula for oriented tree volumes of weighted composite digraphs, which is equivalent
to Kelmans—Pak—Postnikov's formula. Moreover, a generalized form of this formula is
present.

2. Notation and ter minology

A directed graplor simply adigraph G is a graphG with each edgev endowed with
a direction fromu to v or v to u. The edge set and vertex set@fare denoted by (G)
and E(G), respectively. The edge (or called arc) with direction frero v is denoted by
(u, v), and we callz theinitial vertexandv thefinal vertex The outdegreef a vertexw,
denoted deg(v), is the number of edges ¢f with initial vertexv. Similarly, theindegree
of v, denoted deg(v), is the number of edges with final vertex An oriented tree(or
in-tree) with root v is a digraph?’ with v as one of its vertices, such that there is a unique
directed path from any vertaxto v. The set of spanning oriented trees®fis denoted
by SHG).

A weighted digraplG is a digraphG, such that each edgeof G is associated with an
indeterminate, (or an element of a commutative ring).

For each vertex of a weighted digrapli7, we associate an indeterminate Let T be
a spanning oriented tree 6f. Define theweightw (T') andoriented weighto(T') of T by

o) =[] xgeg @t IT (2.1)
veV(T) ecE(T)

_ ded; (v)

o(T) := l_[ Xy ER l_[ te, (2.2)
veV(T) ecE(T)

wheret, is the weight of the edge Then define thé&ree volumef (x, t) andoriented tree
volumefg (x, 1) of G to be the polynomials in the variableés,),cv(c) and(te).ce(c) by

fot.n:= > o), (2.3)
TeSHG)

fot.n:= > &). (2.4)
TeSAG)

Let G = (V, E) be a weighted digraplt; = {G,: v e V} andH = {H,: v € V} be two
families of disjoint weighted digraphs such thfé§ is a subgraph o€, for everyv € V.
We construct a new digraphi = G(G, H) as follows:
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(l) V()= UveV V(Gy);
(i) E(N)=Uyey E(Gy) U{(x,y): x e V(Hy,), y € V(H,), and(u,v) € E(G)};
(iii) for x € V(H,), y € V(H,), and(u, v) € E(G), the edgdx, y) is endowed with the
Weightt(x,y) = tu,v)-

We call I" thecomposition ofG through(G, H). Denote byG (H) = G(H, H).

If G, = Gi, H, = H1, and G, = H, = {v} for v # u, thenG (G, H) is denoted by
G[G1, H1,u], and we callG[G1, H1, u] a substitution of(G1, H1) into G in place ofu.
WhenV (Hy) = V(G1), G[G1, H1, u] is denoted bYG[G1, u].

Let G be a weighted digraph, we construct a weighted digi@plas follows:

(i) V(G*)=V(G)U=x,wherex ¢ V(G);
(i) E(G*)=E(G)U{(v,%): veV(G)};
(iii) each edgguv, %) is weighted by, .) = 1.

We call G* theconeof G. For convenience, we also writg* for the cone ofG with the
new vertexx.
Now define thdorest volumef G (H) to be the tree volume of the digragh(H)*.

Theorem 2.1 (Kelmans et al. [7, Theorem 11.2))/e have

foyr(x, 1) = for(x, )| xy=hy(x) l_[ Srr (X, D) v =x, g0 (x.1)s (2.5)

veV
whereh, (x) = ZueV(Hv) x, andg,(x,1) = Z(U’a)eE(G) ha (X)), a)-

We will prove the above theorem in the last section.

3. The complete bipartitedigraph

LetR={1,2,....r},S={r+1,r+2,...,r+s,andletk’;? be the complete bipartite
digraph with vertex set partitioned in® U S, and for anyi € R andj € S, the arcq, j)
and(j, i) are weighted by ;y = p; andz; ;) = q;, respectively.

Lemma 3.1. We have

f[(r{’;q (x,)=p1--prlgaxa+---+ err)57l(xr+l +ee xr+s)ril
c(x1q1/p1t X g/ Pr A Xrp1 o Xrs). 3.1)

We will give a bijective proof of Lemma 3.1. The bijection established here is a little
different from Eecidlu and Remmel [1] and the second solution of Stanley [12, pp. 125—
126].

The following definitions and lemma play an important role.
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Definition 3.2. An elementa; is called aleft-to-right maximumof a permutation
aiaz---ay, if a; > aj foreveryj <i.

Let S, denote the set of all permutationsprj := {1, 2, ..., n}. Itis well known that a
permutation can be written as a product of its distinct cycles.

Definition 3.3. A standard representatioof a permutation is a product of its distinct cycles
satisfying that

(a) each cycle is written with its largest element first, and
(b) the cycles are written in increasing order of their largest element.

Definition 3.4. For a permutatiosr, we definep (i) to be the permutation obtained from
7 by writing it in standard form and erasing the parentheses.

Lemma 3.5 (cf. Stanley [11, Proposition 1.3.1]Jhe mapp : &, — &, defined above is a
bijection. If r € &,, hask cycles, therp () hask left-to-right maxima.

Example 3.6. For 7 = 24718635 with standard form = (412)(6)(73)(85), we have
¢ () = 41267385 with left-to-right maxima, 4, 7, 8.

Note thatp 1 (or ¢) is well-defined for any permutatiom = aay- - -ax over[n] for
k < n. Forinstance, ift = 517249, them~1(r) = (51)(724)(9).

Proof of Lemma3.1. RecallthatR ={1,2,...,r}andS={1,2,...,s'} ={r+1,r+2,
...,r +s}. We linearly orderR andS by 1<2<.---<rand 1 <2 <.-.- </,
respectively, and we would not compare the elements betResnd S.

Supposel” € Sp K7y with rootv. There is a unique directed path= aibiazbz - - -
amb,, from vy to v, wherevg=1if ve R, andvg =1 if v € S. By Lemma 3.5, we
obtaing~1(n’) = Ci---C,fromn’ =biby---by—1, Wheree is defined in Definition 3.4
andCy, ..., C, are cycles. Then defin€; to be the cycle obtained froidi; by replacing
eachb; with b;a;;1. Specifically, the cycIeC,/{ = (bibi41---b;) corresponds taC; =
(biaij+1biv1aiv2---bjaji1).

Let D, be the disjoint union of the directed cycl€s, ..., C,. When we remove all the
edges of the path, we obtain a disjoint union of oriented trees. Merge these oriented trees
and D, by identifying vertices with the same label. Then we obtain a weighted digraph
0,(T) by endowing each are with initial (respectively, final) vertex € R with weight
t. = p; (respectivelys, = g;). Itis clear thav, : T +— 0,(T) is a bijection.

If v € R, then we define theveightof 6, (T) by

aO.D)=qv || - [] 50 @),

ecE@B,(T))  ieRUS
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AAAAA = A R

6 12 13 6 12 13 10 8
9 12 13 9 12 13

Fig. 1. The two cases for Lemma 3.1.

while if v € S, then we define theveightof 6, (T") by

B0 =prxy  [] te- J] 707

ecE@,(T))  ieRUS

It is easy to seas(T) = w(0,(T)), and @(6,(T)) is a term in the expansion of
P pr(qxr + -+ @rx) T g + - 4 Xeag) "Ivuge/py if v € R, OF @ term in
P pr(@ixi+ -+ @) T 4 X)) Ty ifv e S,

The lemma follows by summing overall O

Examples for = 5, s = 8 are shown in Fig. 1.

4. Thebijectionsfor substituted digraphs

The substituted digraph plays an important part in composite digraphs. We modify
the bijection in the argument of Lemma 3.1 to count oriented tree volumes of weighted
substituted digraphs. The key idea is to visualize each small tree as a vertex, and a spanning
oriented tree of a weighted substituted digraph is then something like a bipartite oriented
tree.

Let H be a subgraph of.. DefineSp(G, H) to be the set of spanning oriented trees of
G with rootin H, and denote by

fo.nx, =Y &)

TeSpG,H)

Lemma4.1l. LetG, G1 be disjoint weighted digraph$/1 € V(G1), andu € V(G). We
have

FG1G 1, Houl, GlHLu (%, 1) = [ (X, )| vymhy(x) - Jeums (6, D) =g, (x.0)> (4.1)

wherehi(x) =, ey, Xv @Ndgu(x, 1) =3, e p(G) Xolw.v)-
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Proof. Let G2 = G \ {u} and H> be the set of vertices such thatu, v) € E(G), and let
2 be the set of four-tuplegs, 7>, w®, w®@) such that

() T1 € SpG1U HY) andTz € SpG);
(i) w® andw®@ are words orH; and H», respectively;
(iii) |w™| =deg, () and|w®| = degy, (x) — 1.

We want to construct a bijection betweBpG[G1, H1, u], G[H1, u]), ands2.

First linearly orderH; andV (G2), respectively.

Supposd’ is a spanning oriented tree 61 G 1, Hy, u] with rootr in G[H1, u]. Deleting
the edges of" betweenH; andG,, we obtain weighted oriented foregts and F», which
are contained inG1 and G, respectively. The oriented tree iy or F» with root v is
denoted byR,, and the root sets df; and F» are denoted by/1 and M», respectively.

If r € M1, then we definayg to be minM», while if r € M», then we defineyg to
be minM1. Assume that is the first vertex on the path frony to r in 7 such that
r1 € V(R)).

We may obtain an oriented trég from Fy by adding the vertex, and edgesv, *)
(v € M1), each weighted by 1. To obtain the oriented tfeérom F», we add the vertex.
If r € M1, then we add edge®, u) (v € M>) with weights inG, while if € M, then we
add edgesv, u) (v € M2\ {r}) and (u, r1) with weights inG. It remains to find out the
wordsw® andw@.

Identifying eachR, with v in T, we obtain a weighted oriented tr&€ rooted atr.
Assume that the directed path fromp to r in 77 is 7 = p1p2--- panm, and p;, < pi, <
.-+ < p;, are all the left-to-right maxima opo2pas - - - pom—2. Letay = p;,—1 (L <k < ¥),
andas11 = pau—1.

For any vertex # vo, r of T’, let D(v) denote the vertex such that

(ak,2) € E(T), ifv=a11 1<k <Y,
(v,z) € E(T), otherwise

Write M1\ {vo, 7} = {u1,u2,...,uq} and Mz \ {vo,r} = {v1, v2,..., v5} in increasing
order. Put

w® — {D(Ul)D(vz) -D(vg)r1, if re My,
D)D) ---D(y), i re My,

w® = D(u1)D(uz) - - D(uy).

Itis clear thajw®| = deg, (u) and|w®| = degy, (x) — 1.

The procedure fron®2 to Sp(G[G1, H1, u], G[H1, u]) is as follows:

Given T = (T1, To, wV, w@) € 2. Deleting the vertices andu of T1 and T», we
get oriented forest# and F», respectively. The oriented tree i or F» with rootv is
denoted byR,, and the root sets af; and F» are denoted by/; and M, respectively.
Suppose the root df; is r'.
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If »' = u, then we definep to be minM», r1 the entry in the last position ab™?, and
r the root of the oriented tree iR that containg1. Otherwise,(u, r1) € E(T») for some
vertexry, we denote = r’, and definag to be minM;.

Write M1\ {vo, r} = {u1,uz,...,ug} and Mz \ {vo, r} = {v1, v2, ..., vs} in increasing
order. For the wordsv® andw@, if we identify each letter (vertex) with the root of
the oriented tree irFy or F» that contains it, then we obtain wordg? andw® on M,
and M», respectively. By the definition of2, we have|w®| = s + 1 or s, according to
r' =u or not, andw®| = ¢. Regard the following function

V1, ..., Us, UL, ..y lg
Do= (w(l) 7D @ w(z))
1 2> s 1 > q

as a digraph o, U M>, such that deg(vo) = deg' () = 0. We may recover the oriented
treeT’ = 6,"1(Do) with rootr by Lemma 3.1.
Let

V1, ..., Us, UL, ..., Ug
b=l o o @ o)
1 wg T wyT L wy
Assume that the path fromp to r in 77 isw = p1p2- - - pom, andp;, < pi, <+ < pj,
are all the left-to-right maxima opaps--- pom—2. Let ar = pj,—1 (1 <k < ¢), and

ar+1 = p2m—1- We now connect all the oriented treesfinor F» by drawing the following
edges:

o (ar, D(ary1) (1< k <€), and(pam-1,71);
e (v,D(v)),forve V(T')\{a1,az,...,a¢+1,7}.

Finally, endow the above edges with weightsdpG1, H1, u]. Thus we obtain a spanning
oriented treel” of G[G1, H1, u] with rootr (in G[H1, u]).

Itis not difficult to see that the above two procedures are inverse to each other, therefore
we obtain a bijection betweeB8pG[G1, H1, u], G[H1,u]) and £2. We now define the
weightof 7 = (T1, To, w®, w?@) € 2 by

~ _ 1-deg. (x) —degd, (u)
o(T) = o(T)®(T2)xy Yox, 2 1_[ Xk - 1_[ Xol(u,v)-

kew® vew®?

It is straightforward to see that the above bijectibmr- T is weight-preserving, that is,
o(T) = o(T). Clearly,o(T) is a term of fG(G,, 1y .u), GLHy.u1(X), While o(T) is a term in
the expansion offg (x, t)lx”=2veH1 x - fomy (%, t)lx*=2veH2 Xty 1NIS completes the
proof of (4.1). O

Examples for Lemma 4.1 are given in Figs. 2-5, whéfe= {1',2,...,14} =
{12,13,...,25} andN = {1, 2, ..., 11} is the set of vertices adjacent#an G. We leave
out labels of those vertices ivi(G1) \ Hy or V(G>) \ N. But the root is labeled by if
necessary.
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w®D =1620,2113, w® =11635,238

Fig. 2. Example for Lemma 4.1 in the case H.

1 4 6
w® =16,20,21,13, w@ =116,3,528
iI:TL T2
18 12 23 15 14 24 17
T/

4 6 81215171823

D=
162021116 3 5 2

Iz
Iz

1 4 6 8
; : 4 6 81215171823
12151446 8 1 4
18 12 23 15 14 24 17

014(T")

Fig. 3. Explanation ofv™ andw@ in Fig. 2.
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w® =162013, w@=1135,7,23

Fig. 4. Example for Lemma 4.1 in the case V(G>).

1 4 6 r
w® =16,20,13, w®@ =113,57,23
i]: T, 1o
18 12 23 15 21 24 17
T/
14 61517182123
D=
@ 162013113 5 7 2

)

1 4 6 r
; : 14 61517182123
121521 4r 1 6 4 r
18 12 23 15 21 24 17

6r(T")

Fig. 5. Explanation ofv™ andw @ in Fig. 4.
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Note that, in the proof of Lemma 4.1, the bijectine (71, T2, w, w@) transforms
the root of T into the root of 7> when it belongs tdV (G2), and vice versa. Hence we
actually prove the following assertion:

Lemma 4.2. Let G, G1 be disjoint weighted digraph€;o a subgraph ofG, u € V(G),
andHy C V(Gy). If u € V(Gp), then we have

J61G1, 1y, GolHy,u1 (6, 1) = [, Go (¥, Dlxu=hy(x) - for0m (X, Dlra=gur)s  (4:2)

while ifu ¢ V(Gg), we have
fG1G1, Hu),Go (X, 1) = fG, Go (X s ) lxumy (x) * Jeaum; (%, D lx,=gu(x.0)» (4.3)

whereh1(x) = ZveHl Xy, andg, (x, 1) = Z(u’v)eE(G) Xol(u,v)-

5. Theblossoming theorem

In the previous section, we obtain a formula for counting the oriented tree volume of
a substituted digraph. By using Lemmas 4.1, 4.2, and a series of substitutions of digraphs
and variables, we can deduce the main theorem of this paper.

Theorem 5.1 (The blossoming theoremlet G = (V, E) be a weighted digraph, and let
G=1{G,: veV}, H={H,: veV} be two families of disjoint weighted digraphs such
that H, is a subgraph ot5, for everyv € V. We have

fow 1. e 0 = fo (. Dlh=n, x [ | fo,oms @ Dleimg,eys  (5.1)

veV

whereh, (x) = Zuev(Hv) xy andgy(x,1) = Z(v’a)eE(G) ha(X)t.q). IN particular,

foarx 1) = f(h, )|h,=h, (x) X l_[ SHr(X, 1) x, =g, (x.0)- (5.2)

veV
Proof. LetV ={vq, v2, ..., v,}. We introduce the following notation:
Gi:={Gy: 1<i <K U{({vj).0): k+1<j <n},
Hi o= {Hy: 1<i <k}U{({v;),0): k+1<j <n),
hy@)= Y x, ifvefvr,... ul,

AP (x) = ueV(Hy)
Xy, otherwise
gW(x, 1) = Z O Oty YV € V(G).

(v,a)eE(G)
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By the definition of composite digraphs, it is easy to see

GGk, Hi) = G(Gr—1, Hk—DIG vy, Hyy, vi], G(Hi) = G(Hr—1)[Hy,, vl

As we call(G,,, H,,) aflower, the process froli = G(Go, Ho) t0 G(G, H) = G(Gp. Hy)
is something like blossoming, and any linear ordering/¢t>) leads to the same result
G =G(G,H). Hence, it is proper to call the following proof tidossoming algorithm

By Lemma 4.2, fok < m, we have

660,61 = 16 G126 (6 Dl =hoy () X Gy 05, (601, _ 0 -

It follows that

[6(Gu 1,6 (H (X Dz, =hy, (), k+1<i<n

= J6(Gr1.Hi—1).G(Hy—1) > DLy, =hy, (00, k<i<n X [G Utz (6, Dlr=gy (x.0)-

By iteration of the above equation, we have

f6@. 1), cHy(x. 1)
= G(Ga Hu).GH, (X, 1)
= f6(Gy 1, Hn1),G(Hn_1) X Dy, =hy, (x) X JGo,uHE (X, D)|x,=g,, (x,1)
= [6(Gr-2.H1-2.6 (Mo (%2 Dy =hy (0).n=1<<n (X 1)

X fG,,_yuHg (6 Dlr=g, @) X [6,,ulz (¥, Dlx=g,, ()

= f6(Go,Ho),G (Ho) X Dy, =hy, (), 1<i<n X l_[ va/.UHI’f]_(X,t)lx*=gvj(x,t)
1<j<n

= fo (h, ) hymhy(x) X l_[ Je,umr(x, )| x,=g, (x,0)-

veV
This completes the proof of (5.1).0
An illustration of the blossoming process is shown in Fig. 6, where the directed

connection ofH; and H; (or j) is meant that every vertex df; is connected to every
vertex of H; (or the vertex;j) with the same direction and weight as the edge

Proof of Theorem 2.1. The proof follows from (5.2) by replacing with G* andH with
‘H U {x}, and the following obvious relations:

]FG(H)*(X, 1) = fory(x,1) - Xy,

Fo+ (. D lxymhy (x) = f6+ (X, D) xymho(x) * X o
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.
71

Fig. 6. The blossoming procedure.

Itis less obvious to see that (2.5) also leads to (5.2) by comparing the terms independent
of x, on both sides of (2.5). Thus they are in fact equivalent to each other.

For a (weighted) graplés, G* is understood to be an undirected graph, and the tree
volume fg(x, t) is defined as (2.3), whet®pG) denotes the set of spanning treesGf
Eq. (5.2) has many conclusions, we would mention the following:

Corollary5.2. LetG = (V, E) be a weighted graph, and &t = {H,: v € V} be a family
of disjoint weighted graphs. Then

for(x,t) = fo(h, lpy=h,x) X l_[ Sar (s D) x=g,(x.0)5

veV
whereh, (x) = ZueV(Hv) Xy andgy(x, 1) = Z(U,Q)EE(G) ha(X)tw,a)-

Corollary 5.3 (Kelmans [6, Theorem 11]).et H, be the empty graph o, vertices. Then

foou () = foMlh=ne ] (e00)"

veV(G)

where fg (x) = fg(x, )|1,=1.
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Corollary 5.4 (Pak and Postnikov [9])The number of spanning trees@fHy, . .., H,) is
equal to

|Hy|

( > ]"[|Hv|degf<”>l) [1. AitHDg@y ™),

TeSpG)veV veV i=1

where f; (H,) is the number of forests iff, with i roots andg(v) = Z(M)eE |H,|.
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