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Abstract. We present a technique of deriving basic hypergeometric identi-
ties from their specializations with a fewer number of parameters by using the
classical Cauchy identity on the expansion of the power of x in terms of the
q-binomial coefficients. We call method the Cauchy augmentation. Despite
its simple appearance, the Cauchy identity plays a marvelous role for param-
eter augmentation. For example, from the Euler identity one can reach the
q-Gauss summation formula by using the Cauchy augmentation twice. This
idea also applies to Jackson’s 2φ1 to 3φ1 transformation formula. Moreover,
we obtain a transformation formula analogous to Jackson’s formula.
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1. Introduction

We will follow the standard notation on q-series [1, 5], and we always assume
|q| < 1. The q-shifted factorials (a; q)n and (a; q)∞ are defined as

(a; q)n =

{
1, if n = 0,

(1− a)(1− qa) · · · (1− qn−1a), if n ≥ 1,

(a; q)∞ = (1− a)(1− qa)(1− q2a) · · · .

The basic hypergeometric series rφs involved in this paper obeys the general
definition:

rφs

[
a1, a2, . . . , ar

b1, . . . , b2

; q; z

]
=

∞∑
n=0

(a1; q)n(a2; q)n · · · (ar; q)n

(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)nq(

n
2)

]1+s−r

zn,
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where q 6= 0 when r > s + 1. The q-binomial coefficients, or the Gauss
coefficients, are given by

[
n

k

]
=

(q; q)n

(q; q)k(q; q)n−k

.

One of the most classical identities in q-series is Euler’s identity:

1

(t; q)∞
=

∞∑
n=0

1

(q; q)n

tn, |t| < 1, |q| < 1. (1.1)

The following polynomials

Pn(x, y) = (x− y)(x− qy) · · · (x− qn−1y), (1.2)

are called the Cauchy polynomials [2], and a homogeneous difference operator
is introduced in [2] for the study of these polynomials and various versions
of q-binomial theorems.

Another classical q-series identity is the q-binomial theorem due to Cauchy:

∞∑
n=0

Pn(x, y)

(q; q)n

tn =
(yt; q)∞
(xt; q)∞

, |xt| < 1, |q| < 1. (1.3)

Note that when setting y = 0 and x = 1, the Cauchy identity reduces
to Euler’s identity. Usually, the Cauchy identity is stated for x = 1 where
Pn(1, y) becomes the q-shifted factorial. On the other hand, the special
Cauchy polynomials

Pn(x, 1) = (x− 1)(x− q) · · · (x− qn−1)

is of considerable importance because of the following identity often at-
tributed to Cauchy:

xn =
n∑

k=0

[
n

k

]
(x− 1)(x− q) · · · (x− qk−1). (1.4)

A less straightforward summation formula beyond Euler (1.1) and Cauchy
(1.3) is Heine’s q-analogue of the Gauss 2F1 summation formula:

2φ1(a, b; c; q, c/ab) =
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

, |c/ab| < 1. (1.5)

As one can see in this paper, the Cauchy identity (1.3) is in fact a special-
ization of the q-Gauss summation formula (1.5).
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The objective of this paper is show how one can obtain a general formula
for its specialization. Such an approach by using exponential operators is
called parameter augmentation in [3, 4]. It is a little surprising that the
Cauchy identity (1.4) plays a marvelous role for parameter augmentation.
We will give several classical examples as well as a probably new transfor-
mation formula to demonstrate how to implement this idea, and we call this
technique the Cauchy augmentation.

2. From Euler to Gauss

Our first step is to show how to use the Cauchy identity (1.4) for parameter
augmentation. Applying the Cauchy identity to Euler’s identity, we imme-
diately obtain the Cauchy identity in q-series form (1.3). Substituting t by
tx in (1.1), we get

1

(tx; q)∞
=

∞∑
n=0

1

(q; q)n

(tx)n

=
∞∑

n=0

1

(q; q)n

tn
n∑

k=0

[
n

k

]
Pn(x, 1) (by Cauchy (1.4))

=
∞∑

n=0

n∑

k=0

Pk(x, 1)

(q; q)k(q; q)n−k

tn

=
∞∑

k=0

Pk(x, 1)

(q; q)k

tk
∞∑

n=k

1

(q; q)n−k

tn−k

=
1

(t; q)∞

∞∑

k=0

Pk(x, 1)

(q; q)k

tk. (by Euler (1.1))

It follows that ∞∑

k=0

Pk(x, 1)

(q; q)k

tk =
(t; q)∞
(tx; q)∞

. (2.1)

Setting x → x/y and t → ty in (2.1), we obtain the Cauchy identity (1.3).

The above idea of Cauchy augmentation, namely, expanding xn by the
Cauchy identity and exchanging the order of summations, can go much fur-
ther. Using the Cauchy augmentation one more time, we arrive at the q-
Gauss summation formula. Notice the following basic relations

Pn(x, y) = Pk(x, y) Pn−k(x, qky), 0 ≤ k ≤ n. (2.2)

(a; q)∞ = (a; q)k (qka; q)∞, k ≥ 0. (2.3)
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From the Cauchy identity (1.3), we get

(btx; q)∞
(atx; q)∞

=
∞∑

n=0

Pn(a, b)

(q; q)n

(xt)n

=
∞∑

n=0

Pn(a, b)

(q; q)n

n∑

k=0

[
n

k

]
Pk(x, 1)tn (by Cauchy (1.4))

=
∞∑

k=0

Pk(x, 1)Pk(a, b)

(q; q)k

tk
∞∑

n=k

Pn−k(a, qkb)

(q; q)n−k

tn−k (by (2.2))

=
∞∑

k=0

Pk(x, 1)Pk(a, b)

(q; q)k

tk
(qkbt; q)∞
(at; q)∞

(by Cauchy (1.3))

=
(bt; q)∞
(at; q)∞

∞∑

k=0

Pk(x, 1)Pk(a, b)

(bt; q)k(q; q)k

tk (by (2.3))

=
(bt; q)∞
(at; q)∞

2φ1(b/a, 1/x; bt; q, atx).

It follows that

2φ1(b/a, 1/x; bt; q, atx) =
(at; q)∞
(bt; q)∞

(btx; q)∞
(atx; q)∞

. (2.4)

Setting bt → c, b/a → a and 1/t → b in (2.4), we obtain Heine’s q-analogue
of the Gauss summation formula (1.5).

3. From Euler to 1φ1

The dual form or the inverse form of Euler’s identity (1.1) states

(t; q)∞ =
∞∑

n=0

(−1)nq(
n
2)

(q; q)n

tn, (3.1)

or one can write it as (t; q)∞ = 0φ0(−;−; q; t). Applying the Cauchy augmen-
tation to Euler’s identity (3.1), one obtains the following summation formula
for 1φ1 [5, p. 21]:

1φ1(a; c; q, c/a) =
(c/a; q)∞
(c; q)∞

. (3.2)
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Here is the proof by the Cauchy augmentation:

(cx; q)∞ =
∞∑

n=0

(−1)nq(
n
2)

(q; q)n

(cx)n (by Euler (3.1))

=
∞∑

n=0

(−1)nq(
n
2)

(q; q)n

cn

n∑

k=0

[
n

k

]
Pk(x, 1) (by Cauchy (1.4))

=
∞∑

k=0

Pk(x, 1)(−1)kq(
k
2)

(q; q)k

ck

∞∑

n=k

(−1)n−kq(
n−k

2 )

(q; q)n−k

(qkc)n−k

=
∞∑

k=0

Pk(x, 1)(−1)kq(
k
2)

(q; q)k

ck(qkc; q)∞ (by Euler (3.1))

= (c; q)∞
∞∑

k=0

(1/x; q)k(−1)kq(
k
2)

(c; q)k(q; q)k

(cx)k. (by 2.3)

Thus, we get
∞∑

k=0

(1/x; q)k(−1)kq(
k
2)

(c; q)k(q; q)k

(cx)k =
(cx; q)∞
(c; q)∞

. (3.3)

Substituting x with 1/a, one obtains (3.2).

4. From q-Vandermonde-Chu to Jackson

The following transformation formula from 2φ1 to 3φ1 of Jackson [5, p. 23]
naturally falls into the framework of the Cauchy augmentation:

2φ1(q
−n, b; c; q, z) =

(c/b; q)n

(c; q)n

bn
3φ1(q

−n, b, q/z; bq1−n/c; q, z/c). (4.1)

Recall the q-Vandermonde-Chu formula:

2φ1(q
−n, b; c; q, q) =

(c/b; q)n

(c; q)n

bn. (4.2)

We now give the Cauchy augmentation procedure for Jackson’s transforma-
tion formula starting from the q-Vandermonde-Chu identity.
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Proof. Substituting z with qz, the left hand side of (4.1) equals

n∑
m=0

(q−n; q)m(b; q)m

(c; q)m(q; q)m

(zq)m

=
n∑

m=0

(q−n; q)m(b; q)m

(c; q)m(q; q)m

qm

m∑

k=0

[
m

k

]
Pk(z, 1)

=
n∑

k=0

(q−n; q)k(b; q)kPk(z, 1)

(c; q)k(q; q)k

qk

n∑

m=k

(q−n+k; q)m−k(q
kb; q)m−k

(qkc; q)m−k(q; q)m−k

qm−k

=
n∑

k=0

(q−n; q)k(b; q)kPk(z, 1)

(c; q)k(q; q)k

qk
2φ1(q

−(n−k), qkb; qkc; q, q)

=
n∑

k=0

(q−n; q)k(b; q)kPk(z, 1)

(c; q)k(q; q)k

qk (c/b; q)n−k

(qkc; q)n−k

(qkb)n−k (by (4.2))

=
1

(c; q)n

n∑

k=0

(q−n; q)k(b; q)k(1/z; q)k(qz)k

(q; q)k

(c/b; q)n−k(q
kb)n−k.

Let us write (c/b; q)n−k as

(c/b; q)n−k =
(c/b; q)n

(qn−kc/b; q)k

.

Using the inversion formulas [5]:

(a; q)n = (a−1; q−1)n an (−1)nq(
n
2),

(a; q−1)n = (q1−na; q)n,

we get

(qn−kc/b; q)k = (qn−kc/b)k(−1)kq(
k
2)(q−(n−k)b/c; q−1)k

= (qn−kc/b)k(−1)kq(
k
2)(q1−nb/c; q)k. (4.3)

Thus we have

(c/b; q)n−k(q
kb)n−k =

(c/b; q)n(qkb)n−k

(qn−kc/b)k(−1)kq(
k
2)(q1−nb/c; q)k

=
(c/b; q)n(−1)kq−(k

2)

ck(q1−nb/c; q)k

.

In accordance with the above definition of rφs, we obtain

2φ1(q
−n, b; c; q, qz) =

(c/b; q)n

(c; q)n

bn
3φ1(q

−n, b, 1/z; bq1−n/c; q, qz/c).

Setting zq → z, we arrive at (4.1).
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5. A Transformation Formula

Analogous to Jackson’s formula (4.1), we obtain a transformation formula
based on the following summation formula [5, p. 21]:

2φ1(q
−n, q1−n; qb2; q2; q2) =

(b2; q2)n

(b2; q)n

q−(n
2). (5.1)

Theorem 5.1 We have

2φ1(q
−n, q1−n; qb2; q2; z)

=
(b2; q2)n

(b2; q)n

q−(n
2)3φ1(q

−n, q1−n, q2/z; q2(1−n)/b2; q2; z/qb2). (5.2)

It is delightful to see that the Cauchy augmentation can be carried through
to reach the above transformation formula. In the following proof, we need
the Cauchy identity for parameter q2:

zn =
n∑

k=0

[
n

k

]

q2

Pk(z, 1; q2), (5.3)

where
Pn(x, y; q2) = (x− y)(x− q2y) · · · (x− q2(n−1)y),

[
n
k

]
q2 stands for the Gauss coefficients with q replaced by q2. We also need to

recall that the summation (5.1) terminates because (q−n; q2)m(q1−n; q2)m = 0
for any integer m whenever 2m > n regardless of its parity. Because of this
vanishing property, we may relax the ranges of summations in the following
proof.

Proof. Substituting z with q2z, the left hand side of (5.2) equals

n∑
m=0

(q−n; q2)m(q1−n; q2)m

(q2; q2)m(qb2; q2)m

(q2z)m

=
n∑

m=0

(q−n; q2)m(q1−n; q2)m

(q2; q2)m(qb2; q2)m

(q2)m

m∑

k=0

[
m

k

]

q2

Pk(z, 1; q2)

=
n∑

k=0

(q−n; q2)k(q
1−n; q2)k

(q2; q2)k(qb2; q2)k

(q2)kPk(z, 1; q2)

·
n∑

m=k

(q−(n−2k); q2)m−k(q
1−(n−2k); q2)m−k

(q2; q2)m−k(qq2kb2; q2)m−k

(q2)m−k. (5.4)
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Now the second summation can be indexed by m ranging from 0 to n− k:

n−k∑
m=0

(q−(n−2k); q2)m(q1−(n−2k); q2)m

(q2; q2)m(qq2kb2; q2)m

(q2)m. (5.5)

Because of the vanishing property of (q−(n−2k); q2)m(q1−(n−2k); q2)m, the sum-
mation (5.5) can be further reduced to the range of m from 0 to n − 2k.
Applying (5.8), (5.5) sums to

(q2kb2; q2)n−2k

(q2kb2; q)n−2k

q−(n−2k
2 ). (5.6)

From the relations

(b2; q2)n = (b2; q2)k(q
2kb2; q2)n−2k(q

2(n−k)b2; q2)k,

(b2; q)n = (b2; q)2k(q
2kb2; q)n−2k,

(b2; q)2k = (b2; q2)k (qb2; q2)k,

it follows that

(q2kb2; q2)n−2k

(q2kb2; q)n−2k

=
(b2; q2)n

(b2; q)n

(qb2; q2)k

(q2(n−k)b2; q2)k

.

Using the inverse relation (4.3) with q replaced by q2, we get

(q2(n−k)b2; q2)k = (q2(n−k)b2)k(−1)kq2(k
2)(q2(1−n)/b2; q2)k. (5.7)

Hence (5.6) equals

(b2; q2)n

(b2; q)n

(qb2; q2)k(−1)kq−2(k
2)q−2(n−k)k

(b2)k(q2(1−n)/b2; q2)k

q−(n−2k
2 )

=
(b2; q2)n

(b2; q)n

q−(n
2) (qb2; q2)k(−1)kq−2(k

2)q−k

(b2)k(q2(1−n)/b2; q2)k

. (5.8)

Writing Pk(z, 1; q2) as (1/z; q2)k zk, from (5.4), (5.6) and (5.8) it follows that

2φ1(q
−n, q1−n; qb2; q2; q2z)

=
(b2; q2)n

(b2; q)n

q−(n
2)

n∑

k=0

(q−n; q2)k(q
1−n; q2)k(1/z; q2)k

(q2; q2)k(q2(1−n)/b2; q2)k

(−1)k(q2)−(k
2)(qz/b2)k

=
(b2; q2)n

(b2; q)n

q−(n
2)3φ1(q

−n, q1−n, 1/z; q2(1−n)/b2; q2, qz/b2).
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Setting q2z → z, we obtain (5.2).
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