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Abstract. We present an involution for a classical identity on the al-
ternate sum of the Gauss coefficients in terms of the traditional Ferrers di-
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on the height of Ferrers diagram implies a generalization of the Gauss iden-
tity, which is a terminating form of the q-Kummer identity. Furthermore, we
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1. Introduction

We use the standard notation on q-series. The q-shifted factorial (a; q)n is
defined by

(a; q)n =

{

1, n = 0

(1 − a)(1 − aq) · · · (1 − aqn−1) n = 1, 2, . . . .

The q-binomial coefficient, or the Gauss coefficient, is given by
[

n

k

]

or

[

n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k
.

Note that the parameter q is often omitted in the notation of Gauss coeffi-
cients when no confusion arises. The Rogers-Szegö polynomial

hn(x|q) =

n
∑

k=0

[

n

k

]

xk

plays an important role in the theory of basic hypergeometric series [1]. In
particular, for x = −1, we have the following evaluation which is due to
Gauss [4]:

Theorem 1.1 (Gauss) We have

m
∑

r=0

(−1)r

[

m

r

]

=

{

0, if m is odd,

(1 − q)(1 − q3) · · · (1 − qm−1), if m is even.
(1.1)

There have been several proofs of this identity. Rademacher proves it in or-
der to determine the sign of quadratic Gauss sums [9]. It is also a by-product
of results of Littlewood [7] on the evaluation of symmetric functions at roots
of unity, and plethysm with power sums (cf. [6]). Kupershmidt finds a gen-
eralization of the Gauss identity [5]. Andrews gives a combinatorial proof in
terms of generating functions for partitions with certain properties associated
with successive ranks [2]. In this paper, we obtain a simple combinatorial
proof of this identity based on Ferrers diagrams. Through a refinement of
our involution by considering the heights of the Ferrers diagrams, we get a
generalization of the Gauss identity, which is a terminating form of the q-
Kummer identity. Moreover, we give an extension of the Gauss identity to
the p-th root of unity.
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2. An Involution for the Gauss Identity

Our combinatorial setting for the proof of the Gauss identity is based on the
following equivalent form:

m
∑

r=0

(−1)r qr

(q; q)r

·
qm−r

(q; q)m−r

=







0, if m is odd,
qm

(q2; q2)m/2

, if m is even.
(2.1)

We proceed to describe our involution for the above identity. First, let us
recall the standard notation on partitions used in [8]. The set of nonnegative
integer is denoted by N. A partition λ is a sequence of nonnegative integers

(λ1, λ2, . . . , λi, . . .) (2.2)

in decreasing order λ1 ≥ λ2 ≥ · · · and containing only a finite number of
nonzero terms. If λi = 0 for all i > n, we also write λ as the finite form
(λ1, . . . , λn). Especially, the partition (0, 0, . . .) is denoted by 0. The nonzero
λi in (2.2) are called the parts of λ. The number of parts and the sum of
parts are called the length and the weight of λ, denoted by `(λ) and |λ|,
respectively. We also use the exponential notation λ = 1m12m2 · · · rmr · · · for
a partition with exactly mi parts equal to i.

Let λ = (λ1, . . . , λi, . . .), µ = (µ1, . . . , µi, . . .) be two partitions. We define
the addition of λ and µ to be the partition λ+µ = (λ1 +µ1, . . . , λi +µi, . . .).
The substraction of two partitions λ − µ is defined similarly, given that the
resulting partition exists. The Ferrers diagram of a partition is a left-justified
array of n squares with λi squares in the i-th row.

Let Pr be the set of partitions λ with maximal component r. Define Wr

and W as follows:

Wr := {(λ, µ; r) : λ ∈ Pr, µ ∈ Pm−r}, W :=
m
⋃

r=0

Wr.

It’s easy to see that
∑

λ∈Pr

q|λ| =
qr

(q; q)r
,
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and hence, the left hand side of (2.1) becomes

m
∑

r=0

(−1)r





(

∑

λ∈Pr

q|λ|

)





∑

µ∈Pm−r

q|µ|









=

m
∑

r=0

(−1)r
∑

(λ,µ;r)∈Wr

q|λ|+|µ|

=
∑

(λ,µ;r)∈W

(−1)rq|λ|+|µ|. (2.3)

For (λ, µ; r) ∈ W, let s = `(λ) and t = `(µ). We define a map σ : (λ, µ; r) 7−→
(λ′, µ′; r′) as follows:

Case 1: s < t

Let
λ′ = λ + 1t, µ′ = µ − 1t, and r′ = r + 1.

Clearly, λ′ ∈ Pr′ and µ′ ∈ Pm−r′ . Noting that t > 0, r must be less than m,
and hence (λ′, µ′; r′) ∈ W (The Ferrers diagrams are shown in Figure 1).
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−→

λ µ λ′ µ′

Figure 1: Case `(λ) < `(µ).

Case 2: s ≥ t

2.1 There exists at least one odd number among λt+1, . . . , λs.

Suppose λp is odd, while λp+1, . . . , λs are all even. Let

λ′ = λ − 1p, µ′ = µ + 1p, and r′ = r − 1.

Noting that λp > 0, which implies r = λ1 > 0, we have (λ′, µ′; r′) ∈ W
(see Figure 2).
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Figure 2: Case λp is odd.

2.2 λt+1, . . . , λs are all even, and t > 0.

If λt is odd, we define

λ′ = λ − 1t, µ′ = µ + 1t, and r′ = r − 1.

Then, (λ′, µ′; r′) ∈ W. (see Figure 3).
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Figure 3: Case λt is odd.

If λt is even, similar to Case 1, we define

λ′ = λ + 1t, µ′ = µ1 − 1t, and r′ = r + 1.

Then, (λ′, µ′; r′) ∈ W.(see Figure 4).

2.3 λ1, . . . , λs are all even, and t = 0.

Since t = 0, the partition µ is the zero partition, whose maximal part is
regarded as 0. From the definition of W, m − r = 0. In this situation,
we define the image of (λ, 0; m) to be itself.

We can check that σ2 is the identity map on W . In fact,
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Figure 4: Case λt is even.

• In Case 1, we have `(λ′) = t ≥ `(µ′) and λ′
t = 1. Hence σ(λ′, µ′; r′) =

(λ′ − 1t, µ′ + 1t; r′ − 1) = (λ, µ; r).

• In Case 2.1, there are two occasions. One is `(λ′) ≥ p = `(µ′) > 0 and
λ′

i are all even for i ≥ p. Hence, σ(λ′, µ′; r′) = (λ′ + 1p, µ′ − 1p; r′ +
1) = (λ, µ; r). The other occasion is `(λ′) < p = `(µ′). We also have
σ(λ′, µ′; r′) = (λ′ + 1p, µ′ − 1p; r′ + 1) = (λ, µ; r).

• In Case 2.2, there are also two occasions. One is that `(λ′) = `(λ). In
this situation, it’s clear that σ(λ′, µ′; r′) = (λ, µ; r). The other occasion
is `(λ′) < `(λ). Then s = t and λs = 1. Hence `(λ′) < `(µ) = t and
σ(λ′, µ′; r′) = (λ′ + 1t, µ′ − 1t; r′ + 1) = (λ, µ; r)

• In Case 2.3, σ is the identity map.

All together, σ2 becomes the identity map on W .

It is clear that |λ′| + |µ′| = |λ| + |µ|. Furthermore, except for Case 2.3,
we have |r − r′| = 1, which implies that (−1)r′q|λ

′|+|µ′| + (−1)rq|λ|+|µ| = 0.
Hence,
∑

(λ,µ;r)∈W

(−1)rq|λ|+|µ| =
∑

(λ, µ; r) being
fixed point of σ

(−1)rq|λ|+|µ| =
∑

(λ,0;m)∈Wm

λi all even

(−1)mq|λ|. (2.4)

Since (λ, 0; m) ∈ Wm implies that m = λ1, (2.4) becomes

∑

(λ,µ;r)∈W

(−1)rq|λ|+|µ| =











0, if m is odd,

qm

(q2; q2)m/2

, if m is even.
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The above involution can be refined in terms of the height of the Ferrers
diagram and one can derive the following identity which generalizes the Gauss
identity.

Theorem 2.1 We have

m
∑

r=0

(−1)r

[

n + r

n

][

n + m − r

n

]

=















0, m is odd,

[

n + m/2

n

]

q2

, m is even.
(2.5)

Proof. Note that the above involution σ preserves the bigger length between
λ and µ. Therefore, this involution can be restricted to the partitions with
length not greater than n + 1 and the arguments are still valid. Let Pn,r

be the set of partitions with maximal component r and length not greater
than n + 1. Since the generating function of partitions in Pn,r is (see [10,
Proposition 1.3.19])

∑

λ∈Pn,r

q|λ| = qr

[

n + r

n

]

,

we immediately have (2.5).

Note that the identity (1.1) is the limiting case of (2.5) by taking n → ∞.
We now reformulate Theorem 2.1 into a symmetric form.

Theorem 2.2 We have

m
∑

r=0

(−1)r (a; q)r

(q; q)r

(a; q)m−r

(q; q)m−r
=















0, m is odd,

(a2; q2)m/2

(q2; q2)m/2
, m is even.

(2.6)

Proof. We can rewrite the identity (2.5) as

m
∑

r=0

(−1)r (qn; q)r

(q; q)r

(qn; q)m−r

(q; q)m−r
=















0, m is odd,

(q2n; q2)m/2

(q2; q2)m/2
, m is even.

Setting a = qn, we obtain the desired formulation.
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Note that the case of a = 0 in (2.6) gives the Gauss identity and the case
a = ∞ also leads to the Gauss identity with parameter q replaced by q−1. As
pointed out by the referee, Theorem 2.2 is a specialization of the q-Kummer
identity, which is usually stated as follows [3]:

∞
∑

k=0

(a; q)k(b; q)k

(q; q)k(aq/b; q)k
(−q/b)k =

(−q; q)∞(aq; q2)∞(aq2/b2; q2)∞
(aq/b; q)∞(−q/b; q)∞

.

Exchanging a and b, we get

∞
∑

k=0

(a; q)k(b; q)k

(q; q)k(bq/a; q)k

(−q/a)k =
(−q; q)∞(bq; q2)∞(bq2/b2; q2)∞

(bq/a; q)∞(−q/a; q)∞
.

Setting b = q−m, we arrive at Theorem 2.2.

3. Generalization to the p-th root of unity

In this section, we consider a generalization of the Gauss identity to the p-th
root of unity. This generalization reduces to the classical case when p = 2.

Theorem 3.1 Let ζ = e
2πi
p be the p-th root of 1. Then

∑

r1+···+rp=m

ζr1+2r2+···+prp

[

n + r1

n

][

n + r2

n

]

· · ·

[

n + rp

n

]

=











0, if p - m,
[

n + m/p

n

]

qp

, if p | m.
(3.1)

Proof. Let Pn,r be the set of partitions with maximal component r and length
not greater than n + 1. Define the set W to be

W := {(λ1, . . . , λp; r1, . . . , rp) : r1 + · · ·+ rp = m and λk ∈ Pn,rk
},

and the weight of x = (λ1, . . . , λp; r1, . . . , rp) ∈ W to be

w(x) := ζr1+2r2+···+prpq|λ
1|+···+|λp|.
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As stated in the proof of Theorem 2.1, the generating function of partitions
in Pn,r is

∑

λ∈Pn,r

q|λ| = qr

[

n + r

n

]

,

Therefore, (3.1) is equivalent to

∑

x∈W

w(x) =











0, if p - m,
∑

λ∈Pn,m/p

qp|λ|, if p | m.

Let a (0 ≤ a < p) denote the residue of a modulo p. Define

Wh := {(λ1, . . . , λp; r1, . . . , rp) ∈ W :

h is the smallest integer such that λ1
k = λ2

k = · · · = λp
k = 0, ∀ k > h},

and

Wh,s := {(λ1, . . . , λp; r1, . . . , rp) ∈ Wh :

s is the smallest integer such that λ1
h + λ2

h + · · · + λs
h ≥ p − s + 1},

where λi
j denote the j-th component of the partition λi. Noting that λ1

h < p,
Wh,1 = ∅ for any h > 0. Hence,

W =
n+1
⊎

h=0

Wh = W0

⊎

(

n+1
⊎

h=1

p
⊎

s=2

Wh,s

)

,

where
⊎

denotes the disjoint union.

In the following, we focus on Wh,s with h > 0 and s ≥ 2.

For x = (λ1, . . . , λp; r1, . . . , rp) ∈ Wh,s. Let

dx := (p − s + 1) − (λ1
h + λ2

h + · · ·+ λs−1
h ),

Ix := (λ1
h, λ

2
h, . . . , λ

s−1
h , dx).

From the definition of Wh,s,

λ1
h + λ2

h + · · ·+ λs−1
h < p − (s − 1) + 1 = p − s + 2,
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which implies Ix ∈ Ns. Moreover,

λs
h − dx = (λ1

h + λ2
h + · · · + λs

h) − (p − s + 1) ≥ 0.

For each I = (i1, . . . , is) ∈ Ns with |I| = i1 + · · ·+ is = p − s + 1, define

Wh,s,I := {x ∈ Wh,s : Ix = I}.

Since Ix are uniquely determined by x, Wh,s is the disjoint union of Wh,s,I :

Wh,s =
⊎

I∈Ns

|I|=p−s+1

Wh,s,I.

For I = (i1, . . . , is), J = (j1, . . . , js) ∈ Ns with |I| = |J | = p− s + 1, there
is a bijection σI,J from Wh,s,I to Wh,s,J defined by

σI,J : Wh,s,I → Wh,s,J

x 7→ y,

where

x = (λ1, . . . , λp; r1, . . . , rp), y = (µ1, . . . , µp; r′1, . . . , r
′
p),

µk =

{

λk − (ik)
h + (jk)

h, if 1 ≤ k ≤ s,

λk, s < k ≤ p,

r′k =

{

rk − ik + jk, if 1 ≤ k ≤ s,

rk, s < k ≤ p.

We will show that σI,J is well defined, i.e., y ∈ Wh,s,J . Since Ix = I, we
have

λ1
h ≥ λ1

h = i1, λk
h = ik for k = 2, . . . , s − 1, λs

h ≥ dx = is.

Noting also that λ1
k = λ2

k = · · · = λp
k = 0 for k > h, the difference partition

λk − (ik)
h is well defined, and hence, µk = λk − (ik)

h + (jk)
h is well defined.

Furthermore, the maximal components of µk is rk − ik + jk = r′k. Therefore,
y ∈ W . It’s easy to see that

(µ1
h, µ

2
h, . . . , µ

s
h) = (j1, . . . , js−1, (λ

s
h − ds) + js). (3.2)

10



Since J 6= (0, . . . , 0), (µ1
h, µ

2
h, . . . , µ

s
h) 6= (0, . . . , 0), which implies that y ∈

Wh. Noting that µ1
h + µ2

h + · · · + µt
h ≤ |J | < p − t + 1 for t < s and

µ1
h + µ2

h + · · · + µs
h = λ1

h + λ2
h + · · · + λs

h ≥ p − s + 1, we have y ∈ Wh,s.
Furthermore, (3.2) and |Iy| = |J | = p − s + 1 imply that Iy = J , that is,
y ∈ Wh,s,J . Thus, we prove that σI,J is a well defined map from Wh,s,I to
Wh,s,J .

It’s easy to derive that σI,J ◦ σJ,I and σJ,I ◦ σI,J are the identity maps on
Wh,s,I and Wh,s,J , respectively. Therefore, σI,J is a bijection from Wh,s,I to
Wh,s,J . Moreover,

w(σI,J(x)) = w(y)

= ζr′
1
+2r′

2
+···+pr′pq|µ

1|+···+|µp|

= ζr1+2r2+···+prpζ−(i1+2i2+···+sis)ζj1+2j2+···+sjsq|λ
1|+···+|λp|

= ζ−(i1+2i2+···+sis)w(x)ζj1+2j2+···+sjs

Let I0 = (p − s + 1, 0, . . . , 0) ∈ Ns. Using the bijection σI0,J , we have

∑

x∈Wh,s

w(x) =
∑

J∈Ns

|J |=p−s+1

∑

x∈Wh,s,J

w(x)

=
∑

J∈Ns

|J |=p−s+1

∑

x∈Wh,s,I0

w(σI0,J(x))

=
∑

J∈Ns

|J |=p−s+1

∑

x∈Wh,s,I0

ζ−(p−s+1)w(x)ζj1+2j2+···+sjs

=
∑

x∈Wh,s,I0

ζ−(p−s+1)w(x)
∑

J∈Ns

|J |=p−s+1

ζj1+2j2+···+sjs.
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Now,

∑

J∈Ns,|J |=p−s+1

tj1+2j2+···+sjs =
∑

λ=1j12j2 ···sjs

j1+···+js=p−s+1

t|λ|

=
∑

`(λ)=p−s+1
each part ≤ s

t|λ|

=
∑

`(λ)≤s
maximal part is p − s + 1

t|λ|

=
∑

λ∈Ps−1,p−s+1

t|λ|

= tp−s+1 (t; t)p

(t; t)s−1(t; t)p−s+1

.

Noting that 1 − ζp = 0 and 1 − ζk 6= 0 for k = 1, . . . , p − 1,

∑

J∈Ns

|J |=p−s+1

ζj1+2j2+···+sjs = 0, ∀ 2 ≤ s ≤ p,

which implies that
∑

x∈Wh,s
w(x) vanishes for all h > 0 and 2 ≤ s ≤ p. Hence,

∑

x∈W w(x) =
∑

x∈W0
w(x). From the definition,

W0 = {(λ, 0, . . . , 0; λ1, 0, . . . , 0) ∈ W : λ1 = m and p | λi ∀ i ≥ 1}.

If p - m, W0 will be the empty set. Otherwise, there is a bijection between
W0 and Pn,m/p by dividing each component of λ by p. Hence,

∑

x∈W0

w(x) =











0, if p - m,
∑

λ∈Pn,m/p

qp|λ|, if p | m.

Setting n → ∞, we get the generalized form of the Gauss identity.
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Corollary 3.2 Let ζ = e
2πi
p be the p-th root of 1. Then

∑

r1+···+rp=m

ζr1+2r2+···+prp

[

m

r1, . . . , rp

]

=



















0, if p - m,

∏

1≤k≤m
p-k

(1 − qk), if p | m,

where
[

m
r1,...,rp

]

= (q;q)m

(q;q)r1 ···(q;q)rp
is the q-multinomial coefficient.

Analogous to Theorem 2.2, we have

Theorem 3.3 Let ζ = e
2πi
p be the p-th root of 1. Then

∑

r1+···+rp=m

ζr1+2r2+···+prp
(a; q)r1

(q; q)r1

· · ·
(a; q)rp

(q; q)rp

=











0, if p - m,

(ap; qp)m/p

(qp; qp)m/p
, if p | m.

To conclude this paper, we present an algebraic proof of Theorem 3.3
from the Cauchy identity:

∞
∑

r=0

(a; q)r

(q; q)r

tr =
∞
∏

r=0

(1 − atqr)

(1 − tqr)

Algebraic Proof of Theorem 3.3. Let ζ = e
2πi
p be the p-th root of 1. Then

∞
∏

r=0

(1 − aζtqr)

(1 − ζtqr)
·

∞
∏

r=0

(1 − aζ2tqr)

(1 − ζ2tqr)
· · ·

∞
∏

r=0

(1 − aζptqr)

(1 − ζptqr)

=

∞
∑

r=0

(a; q)r

(q; q)r
(ζt)r ·

∞
∑

r=0

(a; q)r

(q; q)r
(ζ2t)r · · ·

∞
∑

r=0

(a; q)r

(q; q)r
(ζpt)r

=

∞
∑

m=0

tm
∑

r1+···+rp=m

(a; q)r1

(q; q)r1

· · ·
(a; q)rp

(q; q)rp

ζr1+2r2+···+prp.
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On the other hand, from the relation 1− xp = (1− x)(1− ζx) · · · (1− ζp−1x)
and the Cauchy identity, it follows that

∞
∏

r=0

(1 − aζtqr)

(1 − ζtqr)
·

∞
∏

r=0

(1 − aζ2tqr)

(1 − ζ2tqr)
· · ·

∞
∏

r=0

(1 − aζptqr)

(1 − ζptqr)

=

∞
∏

r=0

(1 − atqr)(1 − ζatqr) · · · (1 − ζp−1atqr)

(1 − tqr)(1 − ζtqr) · · · (1 − ζp−1tqr)

=
∞
∏

r=0

1 − (atqr)p

1 − (tqr)p

=
∞
∏

r=0

1 − aptp(qp)r

1 − tp(qp)r

=
∞
∑

r=0

(ap; qp)r

(qp; qp)r
(tp)r.

Comparing the coefficients of tm, we obtain Theorem 3.3.
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