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Abstract

In a paper of Harary and Plantholt, they concluded by noting that they
knew of no generalization of the leaf edge exchanb& F) transition se-
guence result on spanning trees to other natural families of spanning sub-
graphs. Now, we give two approaches for such a generalization. We define
two kinds of L E E-graphs over the set of all connected spaniiiregige sub-
graphs of a connected gragh and show that both of them are connected
for a2-connected grapty.

1 Introduction

In [1], Harary and Plantholt investigated the classification of interpolation theo-
rems for spanning trees and other families of spanning subgraphs. They gener-
alized the tree grap'(G) [2] of a graphG to the single edge exchange graph,
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simply calledS E E-graph, defined over the set of all connected spankiadge
subgraphs of7; whereas they generalized the adjacency tree gfgpsy) [3] of

a graphG to the adjacent edge exchange graph, simply calléds-graph, de-
fined also on the same set of subgraph&/ofThey proved that thé E E-graph

is connected for any connected graghwhereas thed E E-graph is connected

for any2-connected graptr. Recently, lower bounds for the connectivity of the
SE E-graph and thed E E-graph were obtained by X. Li [4]. However, Harary
and Plantholt concluded [1] by noting that they knew of no generalization of the
leaf edge exchange transition sequence result on spanning trees to other natural
families of spanning subgraphs. In this paper, by viewing leaf edges of a sub-
graph of a grapltz in two different ways, we define two kinds &fF E-graphs,

and show that both of them are connected for 2#tpnnected grapty.

Throughout this paper, all graphs may have multiple or parallel edges but do
not have loops. We define a (multi-)graphto be2-connected ifG has at least
2 vertices and every pair of vertices 6flies in a common cycle ofr. So, the
definition of the2-connectedness for a graph is as usual, with only one exception
that the graphs with two vertices and multiple edges2acennected under our
definition. A block of a connected gragh is defined as usual, including the
block K5 with two vertices connected by only one edge. [EEtbe a subgraph
of a graphG. The graph obtained by contractid§ from G is the graph that is
obtained by identifying all the vertices i into one vertex, deleting all the loops
if there are any, and keeping all the other edges including multiple edges.

2 The First Approach

Definition 2.1 LetG be a graph and” a subgraph of7. An edge: of F'is called
a leaf edge of Type 1, or simpl) -leaf edge wheneveF \ {e} has the same
number of components &8 does, or one more single vertex component than
does.

Definition 2.2 Let F be the set of all connected spannilxg@dge subgraphs of a
connected graplir. We define thé& EE-graphT;*(G) as follows: The vertex set
of T*(G) is F; whereas two verticed' and H are adjacent whenevefr AH =
{e, f} such thate and f are T}-leaf edges of" and H, respectively, wheré\
stands for the symmetric difference of two sets.

In order to show the connectedness of B E-graphT;(G), we fit it into
the skeleton of the basis graph of a greedoid.

We refer to [5] for terminology and results on greedoids, but repeat the defi-
nition for the notions used in this paper.



A greedoid on a finite sdt is a pair(E, Z), whereZ is a nonempty collection
of subsets of satisfying

(1).0eZ.
(2). For every nonemptyX € Z, there is anc € X such thatX \ {z} € 7.

(3). For X, Y € 7 such that|X| > |Y], there is am: € X \ Y such that
YU{z} €T

The sets irf are called feasible. Thus, a greedoid is a matroid if and only if every
subset of a feasible set is again feasible. The maximal feasible sets of a greedoid
are called its bases. Like in the case of matrdj,implies that all bases of a
greedoid have the same cardinality, which is called the rank of the greedoid. Two
basesX andY of a greedoid E, 7 ) are called adjacent X (Y| = | X|—1and

X NY €I, thatis, if X andY differ in exactly one element and their intersection

is feasible. This gives rise to the basis grapf\) of a greedoidA on the set of
bases ofA, whose edges represent pairs of adjacent bases.

A greedoid(E, T) with rank k is called2-connected if for eactX’ € Z with
|X| < k—2there exist:, y € E\ X suchthatX | J{z}, X U{y}, X U{z,y} € Z.

With G = (V, E,r) we denote a finite rooted graph with vertex §gtedge
setF, and a specified vertexe V, which we call the root of5. If X is a subset
of E, we denote by~7[X] the subgraph ofr induced byX.

Lemma 2.1l LetG = (V, E,r) be a rooted graph, and& a positive integer at
least|V| — 1. Denote byZ the set of edge sets of all connected subgraphs of
containing the root such that forX € 7 we havg X| < kandV(G[X]) =V

if | X| = k. Then,(E,Z) defines a greedoid, and moreover, the basis graph
of (F,Z) is a spanning subgraph of theE E-graphT}*(G) over F, defined in
Definition2.2.

Proof. It is not difficult to verify that the definitions of a greedoid and its basis
graph are satisfied by, 7). The details are omitted. [ |

Theorem 2.1 TheL EE-graphT}*(G) of a graphG is connected if7 is 2-connected.

Proof. In [6, Theorem 3.1], Korte and L&sz showed that the basis graph of
a 2-connected greedoid is connected. Obviously;ifs 2-connected, then the
greedoid(F,T) is 2-connected. Therefore, the basis gr&ph¥, Z), and hence
the LEE-graphT}*(G) by Lemma2.1, is connected, if7 is 2-connected. [

Notice that in the definition of *(G), we do not impose the condition that
two T -leaf edge® and f of F' and H, respectively, are adjacent.



Definition 2.3 We define the adjacefit; -leaf edge exchange graph, or simply
ALEE-graph, T, (G) as follows: the vertex set i&; whereas two verticeg’
and H are adjacent wheneveFAH = {e, f} such thate and f are T)-leaf
edges off' and H, respectively, and and f share one common vertex.

Notice that the basis graph of the greed@id 7) is no longer a subgraph of
T, (G). However, the latter is a spanning subgrapp{G). As a consequence
of Theorem3.1 in Section 3, we have

Theorem 2.2 If G is 2-connected, then the L E E-graph T, (G) is connected.

Remark 1. From an algorithmic point of view, the definition of 3 -leaf edge

for a subgraph¥’ of a graphG, in Definition 2.1, is acceptable. This is because
the concept of greedoids was introduced for algorithms. rFern — 1, where

and in what follows: denotes the number of vertices@f (E,Z) is exactly the
undirected branching greedoid [5]. SoTaleaf edgex is exactly an edge of
an X € Z such thatX \ {z} remains inducing a connected subgraph. Thus,
for k > n, (F,T) is indeed a natural generalization of the undirected branching
greedoid.

Remark 2. The greedoid £, Z) and its basis graph can be naturally generalized
for the directed case. We leave the details to the reader(s).

3 The Second Approach

Definition 3.1 LetG be a graph, andF’ a subgraph of7. An edgee = uv of F’
is called a leaf edge of Type 2, or simfly-leaf edge whenever one of the two
end-vertices, andv of e is not a cut vertex of".

Definition 3.2 Let F denote the set of all connected spanningdge subgraphs
of a connected graplty. We define th& EE-graphT;**(G) of G as follows: the
vertex set isF; whereas two vertice$' and H are adjacent whenevarAH =
{e, f} ande and f are T-leaf edges of" and H, respectively.

Notice that als-leaf edge is dl-leaf edge; however, the inverse does not
hold. ThereforeI;**(G) is a spanning subgraph &f (G).

In a similar way to Definitior2.3, we can give



Definition 3.3 We define the adjacefit-leaf edge exchange graph, or simply
ALEE-graph, T} (G) as follows: the vertex set i&, whereas two vertices’
andH are adjacentwhenevefAH = {e, f} such thak and f are T>-leaf edges
of F" and H, respectively, and and f share one common vertex which is not a
cut vertex off’ and H.

Obviously, T}/ (G) is a spanning subgraph @t (G), T;*(G) and T} (G).
The connectedness @ (G) and thereford ™ (G), T;*(G) andT;*(G) can be
derived from a stronger result which we shall give in the following.

Let G = (V,E,r) be a graph rooted at If we never exchange pairs of
adjacentl;-leaf edges with the common vertexthen we get a restricted adjacent
T»-leaf (or simply,ral) edge exchange grag@ly’;(G). In the following we shall
show thatl’** (G) is connected it is 2-connected. Before proceeding, we recall

ral

some facts.

Fact 1. If C is a minimal edge cut, the& \ C has exactly two (connected)
components, or parts.

Fact 2. Let G be2-connected. I is a minimal edge cut which separatésnto
two partsG; andGs, then by contracting any part ¢f; and G5, the resultant
graphG’ is still 2-connected.

Fact 3. Let G be a2-connected graph with at lea%wertices, and let, f andg
be three pairwise non-parallel edgegsfThen, there is a minimal edge cut@Gf
containing two ok, f andg, saye andf, but not the other one. In fact, sinc&is
2-connected, any edge cut must contain at least two edggs. fit is an edge cut
of G, then we are done. ffe, f} is not an edge cut, thef \ {e, f} is connected.
Consider a spanning tr@eof G \ {e, f} which contains the edge SinceG has
at least3 vertices, there is an eddec T \ {g}. Itis easy to see that there is a
minimal edge cut containing f andh but notg.

Fact 4. Let G be a2-connected graplfy a connected spanning subgraprCofif
B is a block ofS not isomorphic tak», then for any two edgesand f of B there
is a minimal edge cuf’ of G containinge and f such thatC separatess into
exactly two components. Obviously, any minimal edge cu$ e¢in be extended
into a minimal edge cut of;.

Fact 5. Let G and S be as in Factl, andC be a minimal edge cut of that
separate$' into exactly two components. Suppose the two parts &fC be G,
andGs. Contract any part off; andGs, sayGs, into one vertexr. Then, the
graphS’ contracted fromS is a connected spanning subgraph of the gra@ph
contracted from&. More important, any non-cut-vertex, other thgrof S’ is a
non-cut-vertex ofs.



Theorem 3.1 If G = (V, E,r) is a2-connected graph rooted at then the re-
stricted adjacent leaf edge exchange grapi},(G) of G is connected.

Proof. Let F' andH be any two vertices df ** (G) that represent two connected
spanningk-edge subgraphs @. Since theSEE-graph of G is connected by
[1], we can assume thdt and H are adjacent in thé F E-graph ofG, i.e., H =

F + e\ f, for some two edges and f of G such thatf € F bute ¢ F. Since
F andF + e\ f are connected, we know that battand f are not cut edges of

F + e. Thus,e is in a block of ' + e which is not isomorphic td<,, and so isf.
We shall use induction ofV| to complete the proof.

Obviously,G has at leas? vertices. If|V| = 2, then, since&7 is 2-connected,
G is a multi-graph with2 vertices and at leagtedges. The conclusion is clear.

SupposéV| > 3, and the conclusion holds for ady = (V, E, r) with |V| <

Assume now& = (V, E,r) with |[V| = n > 3. First we consider the case that
e and f are not parallel edges ¢f. We distinguish the following cases.

Case l.edges and f are not parallel, but are in the same bldglof F' + e.

Then, from Fact, we consider a minimal edge cGtof G containinge and
f such thatC separateg’ + e into exactly two components. Let the two parts of
G\ C beG; andG,. Without loss of generality, we assume that G-.

Subcase 1.1}V (G3)| > 2.

Then, contractis into one vertex:. The graphG’ contracted fron(s is 2-
connected by Fad, and has less tham vertices. By the induction hypothesis,
one can transform the gragtf contracted from#" into the graphHd’ contracted
from H by exchanges ofal edges inG’. From Fact, one can also do the same
exchanges ofal edges inG to transformF into H.

Subcase 1.2|V(G3)| = 1.

Then,V(G2) = {r}, i.e.,e and f share one common vertex Let the other
vertex ofe and f bew andv, respectively. Since and f are not parallel, we have
u # v. Sincee and f are in a same blocB of F' + ¢, there is a patlP,, in B
connectingu andv such that- ¢ V(P,,). Leth be an edge o#®,,,. From Fact
3, there are two minimal edge cut§ andCs of F' + e such thate, h € C; but
f ¢ Cy,andf,h € Cy bute ¢ Cs.

Step 1.Let the two parts o7 \ C; beG1; andG4, with r € G12. Then, contract
G145 into one vertexs. Since|V(Gi2)| > 2, the graphG’ contracted fromz
has less than vertices. By the induction hypothesis, one can transform the graph



F’ contracted fromF into the graph(F + e \ h)’ contracted fromF’ + e \ h
by exchanges ofal edges inG’. From Fact5, one can also transforrf into
F + ¢\ h by exchanges ofal edges inG.

Step 2.Let the two parts of7 \ C be G2; andGa, with - € G, Then, contract
G2z into one vertex. Since|V(Ga2)| > 2, the graphGY, contracted fromG

has less than vertices. By the induction hypothesis, one can transform the graph
(F'+e\ h)’ contracted fronF' + ¢\ h into the graph(F' + ¢\ f)’ contracted from
(F+e\h)+h\ f=F+e)\ fbyexchanges afal edges inG,. From Fact,

one can also transforfi + e \ h into F + e\ f by exchanges ofal edges inG.

From Steps 1 and 2, one can successively transfBrmto F + e \ f by
exchanges ofal edges inG.

Case 2.edges andf are not parallel, and are in different blocks/of+ e which
are not isomorphic té,, saye € B andf € By.

Suppose irf'+e the unique block sequence frafy to B is By, By, -+ , By, =
B, We use induction on the numberto complete the proof.

If m = 1, thenB, and B share one common vertex that is a cut vertex
of F' + e. Consider the components,, --- , A; of (F +¢) \ {w}. SinceG is
2-connected, there is a patfy. in G \ {w} connecting the edgegande in G.
Let the edges oF (Py.) \ (F'+e) beer, eq, - - -, ep, in @ successive order frofh
to e. Notice that here we assume that the number of edg§ity.) \ (F +e) is
as small as possible. First, consider- e;. It is easy to see that ande; are in
the same block of” + ¢;. From Casd we know that one can transfori into
F + 1\ f by exchanges afal edges inG. Then, considefF +e; \ f) + es. It
is easy to see that ande, are in a same block dfF" + e, \ f) + e2. From Case
1, one can transforn’ +e; \ finto (F +e1 \ f) +ea\e1 = F+ex\ f by
exchanges ofal edges inG. By successively considering, - - - , e, and finally
e, one can successively transfofminto F + e \ f by exchanges ofal edges in
G.

Now, consider the case > 2. Let the shared cut vertex @, and B, bew.
Consider(F' + ) \ {w}. SinceG is 2-connected, there is a pafty.in G \ {w}
connectingf ande in G. Suppose the number of edgesAiiPy.) \ (F + e) is
as small as possible. Let the edgesiifPs.) \ (F + ) beej,es,--- , e, ina
successive order fronfito e. Then, among the edgesfori = 1,2,--- ,¢, ¢, is
the unique edge with one end verteX i, B;. By the same proof technique as
for the casen = 1, one can transforn¥’ into F' + ¢, \ f by exchanges ofal
edges inG. Now, considetF’ + ¢, \ fand(F +e. \ f) +e\e.=F +e)\ f.
Since in(F + e; \ f) + e the number of blocks from, to e is less thammn, or
e; ande are in the same block, by induction hypothesisnonor Case 1, one can
transformF + e, \ finto (F'+e¢;\ f) +e\ e, = F + e\ f by exchanges afal



edges inG. Thus, one can successively transfafhinto F' + e \ f by exchanges
of ral edges inG;.

Finally, sinceG may have multiple edges, we have to consider the case that
and f are parallel edges @¥. Lete = uv andf = uv. Obviously,e andf are in
the same block of" + ¢, saye, f € B.

Case 3.edges andf are parallel edgesv, in a blockB of F, with |V (B)| > 3.

Then, there is a vertex € B, other than: andv, and there is a patR,,, in
B\ {v} connectingu andw. Leth be an edge o®,,,. Then,e andh are not
parallel edges, and so afeandh. Sincee andh are in the same block of F +e,
from Casel one can transfornf into F' + e \ h by exchanges afal edges inG.
Again, sincef andh are in the same blocB of (F + e\ h) + h = F + ¢, from
Casel one can transfornk” + e\ hinto (F +e\ h)+h\ f = F +e)\ f by
exchanges ofal edges inG. Therefore, one can successively transfdrnmto
F + ¢\ f by exchanges ofal edges inG.

Case 4.edges andf are parallel edgesv, in a blockB of F +e with |V (B)| =
2.

Then,V(B) = {u,v}. Since|V(G)| > 3, one ofu andv is a cut vertex
of F' + e, sayv. Then,(F + e) \ {v} has at least two components. Singds
2-connected, there is an edgién E(G) \ (F + e) such thath = uw for some
block B'(# B) of F + e with w € B’. Then,h and f are not parallel edges,
and so arer ande. It is easy to see thdt and f are in a same block of’ + h.
From Casel, one can transfornf into F' + h \ f by exchanges ofal edges in
G. Again,h ande are in a same block ¢fF' + 2\ f) + e. So, one can transform
F+h\ finto(F+h\ f)+e\h=F+e)\ fbyexchanges ofal edges inG.
Therefore, one can successively transfdrimto ' + e \ f by exchanges ofal
edges inG.

Because all possibilities are covered by Cases 1-4, our proof is compimte.

Corollary 3.1 If G is 2-connected, then all the four leaf edge exchange graphs
T (G), T5(G), T;*(G) and T/ (G), and the AEE-graph defined in1] are
connected.

Proof. It follows from Theorem 3.1 and the fact th&f”, (G) is a spanning sub-
graph of all the five graphs in the corollary. [ |

By induction on|V|, similar to the proof of Theorem 3.1, and the fact that the
SE E-graph is connected, we can derive the following corollary, which is similar
toaresultin [7].



Corollary 3.2 The diameter oI ¥ (G) of a2-connected graply is upper bounded
by kn2, wheren is the number of vertices @¢f and & is the number of edges in
the considere@-edge subgraphs, representing the vertice®0f(G).

Remark 3. If in Definition 3.3 we only require that and f are leaf edges of’

andH, respectively, and share one common vertex, but drop the condition that the
shared vertex is not a cut vertexBfand H, then we get another variation of leaf
edge exchange graphs. Since this variationj§g G) as a spanning subgraph,

it is connected il5 is 2-connected.

Remark 4. One can also obtain the same result of Theorem 3.1 for directed
graphs. The details are left to the reader(s).

Remark 5. One can naturally generalize our definitions of leaf edges and their
exchanges to other families of subgraphs, mentioned in Coracllanf [1]. One

can also consider applications of our results for interpolations of graph invariants.
We leave out the details.
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