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Abstract

In a paper of Harary and Plantholt, they concluded by noting that they
knew of no generalization of the leaf edge exchange (LEE) transition se-
quence result on spanning trees to other natural families of spanning sub-
graphs. Now, we give two approaches for such a generalization. We define
two kinds ofLEE-graphs over the set of all connected spanningk-edge sub-
graphs of a connected graphG, and show that both of them are connected
for a2-connected graphG.

1 Introduction

In [1], Harary and Plantholt investigated the classification of interpolation theo-
rems for spanning trees and other families of spanning subgraphs. They gener-
alized the tree graphT (G) [2] of a graphG to the single edge exchange graph,
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simply calledSEE-graph, defined over the set of all connected spanningk-edge
subgraphs ofG; whereas they generalized the adjacency tree graphTa(G) [3] of
a graphG to the adjacent edge exchange graph, simply calledAEE-graph, de-
fined also on the same set of subgraphs ofG. They proved that theSEE-graph
is connected for any connected graphG; whereas theAEE-graph is connected
for any2-connected graphG. Recently, lower bounds for the connectivity of the
SEE-graph and theAEE-graph were obtained by X. Li [4]. However, Harary
and Plantholt concluded [1] by noting that they knew of no generalization of the
leaf edge exchange transition sequence result on spanning trees to other natural
families of spanning subgraphs. In this paper, by viewing leaf edges of a sub-
graph of a graphG in two different ways, we define two kinds ofLEE-graphs,
and show that both of them are connected for any2-connected graphG.

Throughout this paper, all graphs may have multiple or parallel edges but do
not have loops. We define a (multi-)graphG to be2-connected ifG has at least
2 vertices and every pair of vertices ofG lies in a common cycle ofG. So, the
definition of the2-connectedness for a graph is as usual, with only one exception
that the graphs with two vertices and multiple edges are2-connected under our
definition. A block of a connected graphG is defined as usual, including the
block K2 with two vertices connected by only one edge. LetH be a subgraph
of a graphG. The graph obtained by contractingH from G is the graph that is
obtained by identifying all the vertices inH into one vertex, deleting all the loops
if there are any, and keeping all the other edges including multiple edges.

2 The First Approach

Definition 2.1 LetG be a graph andF a subgraph ofG. An edgee of F is called
a leaf edge of Type 1, or simplyT1-leaf edge wheneverF \ {e} has the same
number of components asF does, or one more single vertex component thanF
does.

Definition 2.2 LetF be the set of all connected spanningk-edge subgraphs of a
connected graphG. We define theLEE-graphT ∗l (G) as follows: The vertex set
of T ∗l (G) is F ; whereas two verticesF andH are adjacent wheneverF∆H =
{e, f} such thate and f are T1-leaf edges ofF and H, respectively, where∆
stands for the symmetric difference of two sets.

In order to show the connectedness of theLEE-graphT ∗l (G), we fit it into
the skeleton of the basis graph of a greedoid.

We refer to [5] for terminology and results on greedoids, but repeat the defi-
nition for the notions used in this paper.
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A greedoid on a finite setE is a pair(E, I), whereI is a nonempty collection
of subsets ofE satisfying

(1). ∅ ∈ I.

(2). For every nonemptyX ∈ I, there is anx ∈ X such thatX \ {x} ∈ I.

(3). For X, Y ∈ I such that|X| > |Y |, there is anx ∈ X \ Y such that
Y

⋃{x} ∈ I.

The sets inI are called feasible. Thus, a greedoid is a matroid if and only if every
subset of a feasible set is again feasible. The maximal feasible sets of a greedoid
are called its bases. Like in the case of matroid,(3) implies that all bases of a
greedoid have the same cardinality, which is called the rank of the greedoid. Two
basesX andY of a greedoid(E, I) are called adjacent if|X ⋂

Y | = |X|−1 and
X

⋂
Y ∈ I, that is, ifX andY differ in exactly one element and their intersection

is feasible. This gives rise to the basis graphG(∆) of a greedoid∆ on the set of
bases of∆, whose edges represent pairs of adjacent bases.

A greedoid(E, I) with rankk is called2-connected if for eachX ∈ I with
|X| ≤ k−2 there existx, y ∈ E\X such thatX

⋃{x}, X ⋃{y}, X ⋃{x, y} ∈ I.

With G = (V, E, r) we denote a finite rooted graph with vertex setV , edge
setE, and a specified vertexr ∈ V , which we call the root ofG. If X is a subset
of E, we denote byG[X] the subgraph ofG induced byX.

Lemma 2.1 Let G = (V, E, r) be a rooted graph, andk a positive integer at
least|V | − 1. Denote byI the set of edge sets of all connected subgraphs ofG
containing the rootr such that forX ∈ I we have|X| ≤ k andV (G[X]) = V
if |X| = k. Then,(E, I) defines a greedoid, and moreover, the basis graph
of (E, I) is a spanning subgraph of theLEE-graphT ∗l (G) overF , defined in
Definition2.2.

Proof. It is not difficult to verify that the definitions of a greedoid and its basis
graph are satisfied by(E, I). The details are omitted.

Theorem 2.1 TheLEE-graphT ∗l (G) of a graphG is connected ifG is2-connected.

Proof. In [6, Theorem 3.1], Korte and Lovász showed that the basis graph of
a 2-connected greedoid is connected. Obviously, ifG is 2-connected, then the
greedoid(E, I) is 2-connected. Therefore, the basis graphG(E, I), and hence
theLEE-graphT ∗l (G) by Lemma2.1, is connected, ifG is 2-connected.

Notice that in the definition ofT ∗l (G), we do not impose the condition that
two T1-leaf edgese andf of F andH, respectively, are adjacent.
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Definition 2.3 We define the adjacentT1-leaf edge exchange graph, or simply
ALEE-graph, T ∗al(G) as follows: the vertex set isF ; whereas two verticesF
and H are adjacent wheneverF∆H = {e, f} such thate and f are T1-leaf
edges ofF andH, respectively, ande andf share one common vertex.

Notice that the basis graph of the greedoid(E, I) is no longer a subgraph of
T ∗al(G). However, the latter is a spanning subgraph ofT ∗l (G). As a consequence
of Theorem3.1 in Section 3, we have

Theorem 2.2 If G is 2-connected, then theALEE-graphT ∗al(G) is connected.

Remark 1. From an algorithmic point of view, the definition of aT1-leaf edge
for a subgraphF of a graphG, in Definition 2.1, is acceptable. This is because
the concept of greedoids was introduced for algorithms. Forr = n − 1, where
and in what followsn denotes the number of vertices ofG, (E, I) is exactly the
undirected branching greedoid [5]. So, aT1-leaf edgex is exactly an edge of
an X ∈ I such thatX \ {x} remains inducing a connected subgraph. Thus,
for k ≥ n, (E, I) is indeed a natural generalization of the undirected branching
greedoid.

Remark 2. The greedoid(E, I) and its basis graph can be naturally generalized
for the directed case. We leave the details to the reader(s).

3 The Second Approach

Definition 3.1 Let G be a graph, andF a subgraph ofG. An edgee = uv of F
is called a leaf edge of Type 2, or simplyT2-leaf edge whenever one of the two
end-verticesu andv of e is not a cut vertex ofF .

Definition 3.2 LetF denote the set of all connected spanningk-edge subgraphs
of a connected graphG. We define theLEE-graphT ∗∗l (G) of G as follows: the
vertex set isF ; whereas two verticesF andH are adjacent wheneverF∆H =
{e, f} ande andf areT2-leaf edges ofF andH, respectively.

Notice that aT2-leaf edge is aT1-leaf edge; however, the inverse does not
hold. Therefore,T ∗∗l (G) is a spanning subgraph ofT ∗l (G).

In a similar way to Definition2.3, we can give
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Definition 3.3 We define the adjacentT2-leaf edge exchange graph, or simply
ALEE-graph,T ∗∗al (G) as follows: the vertex set isF , whereas two verticesF
andH are adjacent wheneverF∆H = {e, f} such thate andf areT2-leaf edges
of F andH, respectively, ande andf share one common vertex which is not a
cut vertex ofF andH.

Obviously,T ∗∗al (G) is a spanning subgraph ofT ∗al(G), T ∗∗l (G) andT ∗l (G).
The connectedness ofT ∗∗al (G) and thereforeT ∗al(G), T ∗∗l (G) andT ∗l (G) can be
derived from a stronger result which we shall give in the following.

Let G = (V, E, r) be a graph rooted atr. If we never exchange pairs of
adjacentT2-leaf edges with the common vertexr, then we get a restricted adjacent
T2-leaf (or simply,ral) edge exchange graphT ∗∗ral(G). In the following we shall
show thatT ∗∗ral(G) is connected ifG is 2-connected. Before proceeding, we recall
some facts.

Fact 1. If C is a minimal edge cut, thenG \ C has exactly two (connected)
components, or parts.

Fact 2. Let G be2-connected. IfC is a minimal edge cut which separatesG into
two partsG1 andG2, then by contracting any part ofG1 andG2, the resultant
graphG′ is still 2-connected.

Fact 3. Let G be a2-connected graph with at least3 vertices, and lete, f andg
be three pairwise non-parallel edges ofG. Then, there is a minimal edge cut ofG
containing two ofe, f andg, saye andf , but not the other one. In fact, sinceG is
2-connected, any edge cut must contain at least two edges. If{e, f} is an edge cut
of G, then we are done. If{e, f} is not an edge cut, thenG \ {e, f} is connected.
Consider a spanning treeT of G \ {e, f} which contains the edgeg. SinceG has
at least3 vertices, there is an edgeh ∈ T \ {g}. It is easy to see that there is a
minimal edge cut containinge, f andh but notg.

Fact 4. Let G be a2-connected graph,S a connected spanning subgraph ofG. If
B is a block ofS not isomorphic toK2, then for any two edgese andf of B there
is a minimal edge cutC of G containinge andf such thatC separatesS into
exactly two components. Obviously, any minimal edge cut ofS can be extended
into a minimal edge cut ofG.

Fact 5. Let G andS be as in Fact4, andC be a minimal edge cut ofG that
separatesS into exactly two components. Suppose the two parts ofG \ C beG1

andG2. Contract any part ofG1 andG2, sayG2, into one vertex̄r. Then, the
graphS′ contracted fromS is a connected spanning subgraph of the graphG′

contracted fromG. More important, any non-cut-vertex, other thanr̄, of S′ is a
non-cut-vertex ofS.
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Theorem 3.1 If G = (V, E, r) is a 2-connected graph rooted atr, then the re-
stricted adjacent leaf edge exchange graphT ∗∗ral(G) of G is connected.

Proof. Let F andH be any two vertices ofT ∗∗ral(G) that represent two connected
spanningk-edge subgraphs ofG. Since theSEE-graph ofG is connected by
[1], we can assume thatF andH are adjacent in theSEE-graph ofG, i.e.,H =
F + e \ f , for some two edgese andf of G such thatf ∈ F but e /∈ F . Since
F andF + e \ f are connected, we know that bothe andf are not cut edges of
F + e. Thus,e is in a block ofF + e which is not isomorphic toK2, and so isf .

We shall use induction on|V | to complete the proof.

Obviously,G has at least2 vertices. If|V | = 2, then, sinceG is 2-connected,
G is a multi-graph with2 vertices and at least2 edges. The conclusion is clear.

Suppose|V | ≥ 3, and the conclusion holds for anyG = (V,E, r) with |V | <
n.

Assume nowG = (V, E, r) with |V | = n ≥ 3. First we consider the case that
e andf are not parallel edges ofG. We distinguish the following cases.

Case 1.edgese andf are not parallel, but are in the same blockB of F + e.

Then, from Fact4, we consider a minimal edge cutC of G containinge and
f such thatC separatesF + e into exactly two components. Let the two parts of
G \ C beG1 andG2. Without loss of generality, we assume thatr ∈ G2.

Subcase 1.1.|V (G2)| ≥ 2.

Then, contractG2 into one vertex̄r. The graphG′ contracted fromG is 2-
connected by Fact2, and has less thann vertices. By the induction hypothesis,
one can transform the graphF ′ contracted fromF into the graphH ′ contracted
from H by exchanges ofral edges inG′. From Fact5, one can also do the same
exchanges ofral edges inG to transformF into H.

Subcase 1.2.|V (G2)| = 1.

Then,V (G2) = {r}, i.e.,e andf share one common vertexr. Let the other
vertex ofe andf beu andv, respectively. Sincee andf are not parallel, we have
u 6= v. Sincee andf are in a same blockB of F + e, there is a pathPuv in B
connectingu andv such thatr /∈ V (Puv). Let h be an edge onPuv. From Fact
3, there are two minimal edge cutsC1 andC2 of F + e such thate, h ∈ C1 but
f /∈ C1, andf, h ∈ C2 bute /∈ C2.

Step 1.Let the two parts ofG \C1 beG11 andG12 with r ∈ G12. Then, contract
G12 into one vertexr̄1. Since|V (G12)| ≥ 2, the graphG′1 contracted fromG
has less thann vertices. By the induction hypothesis, one can transform the graph
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F ′ contracted fromF into the graph(F + e \ h)′ contracted fromF + e \ h
by exchanges ofral edges inG′1. From Fact5, one can also transformF into
F + e \ h by exchanges ofral edges inG.

Step 2.Let the two parts ofG \C2 beG21 andG22 with r ∈ G22. Then, contract
G22 into one vertexr̄2. Since|V (G22)| ≥ 2, the graphG′2 contracted fromG
has less thann vertices. By the induction hypothesis, one can transform the graph
(F + e\h)′ contracted fromF +e\h into the graph(F +e\f)′ contracted from
(F + e \ h) + h \ f = F + e \ f by exchanges ofral edges inG′2. From Fact5,
one can also transformF + e \ h into F + e \ f by exchanges ofral edges inG.

From Steps 1 and 2, one can successively transformF into F + e \ f by
exchanges ofral edges inG.

Case 2.edgese andf are not parallel, and are in different blocks ofF + e which
are not isomorphic toK2, saye ∈ B andf ∈ B0.

Suppose inF+e the unique block sequence fromB0 toB isB0, B1, · · · , Bm =
B, We use induction on the numberm to complete the proof.

If m = 1, thenB0 andB share one common vertexw that is a cut vertex
of F + e. Consider the componentsA1, · · · , At of (F + e) \ {w}. SinceG is
2-connected, there is a pathPfe in G \ {w} connecting the edgesf ande in G.
Let the edges ofE(Pfe) \ (F + e) bee1, e2, · · · , ep, in a successive order fromf
to e. Notice that here we assume that the number of edges inE(Pfe) \ (F + e) is
as small as possible. First, considerF + e1. It is easy to see thatf ande1 are in
the same block ofF + e1. From Case1 we know that one can transformF into
F + e1 \ f by exchanges ofral edges inG. Then, consider(F + e1 \ f) + e2. It
is easy to see thate1 ande2 are in a same block of(F + e1 \ f) + e2. From Case
1, one can transformF + e1 \ f into (F + e1 \ f) + e2 \ e1 = F + e2 \ f by
exchanges ofral edges inG. By successively consideringe3, · · · , ep and finally
e, one can successively transformF into F + e \ f by exchanges ofral edges in
G.

Now, consider the casem ≥ 2. Let the shared cut vertex ofB0 andB1 bew.
Consider(F + e) \ {w}. SinceG is 2-connected, there is a pathPfein G \ {w}
connectingf ande in G. Suppose the number of edges inE(Pfe) \ (F + e) is
as small as possible. Let the edges ofE(Pfe) \ (F + e) be e1, e2, · · · , et, in a
successive order fromf to e. Then, among the edgesei for i = 1, 2, · · · , t, et is
the unique edge with one end vertex in

⋃m
i=1 Bi. By the same proof technique as

for the casem = 1, one can transformF into F + et \ f by exchanges ofral
edges inG. Now, considerF + et \ f and(F + et \ f) + e \ et = F + e \ f .
Since in(F + et \ f) + e the number of blocks fromet to e is less thanm, or
et ande are in the same block, by induction hypothesis onm, or Case 1, one can
transformF + et \ f into (F + et \ f) + e \ et = F + e \ f by exchanges ofral
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edges inG. Thus, one can successively transformF into F + e \ f by exchanges
of ral edges inG.

Finally, sinceG may have multiple edges, we have to consider the case thate
andf are parallel edges ofG. Let e = uv andf = uv. Obviously,e andf are in
the same block ofF + e, saye, f ∈ B.

Case 3.edgese andf are parallel edgesuv, in a blockB of Fe with |V (B)| ≥ 3.

Then, there is a vertexw ∈ B, other thanu andv, and there is a pathPuw in
B \ {v} connectingu andw. Let h be an edge onPuw. Then,e andh are not
parallel edges, and so aref andh. Sincee andh are in the same blockB of F +e,
from Case1 one can transformF into F + e \ h by exchanges ofral edges inG.
Again, sincef andh are in the same blockB of (F + e \ h) + h = F + e, from
Case1 one can transformF + e \ h into (F + e \ h) + h \ f = F + e \ f by
exchanges ofral edges inG. Therefore, one can successively transformF into
F + e \ f by exchanges ofral edges inG.

Case 4.edgese andf are parallel edgesuv, in a blockB of F +e with |V (B)| =
2.

Then,V (B) = {u, v}. Since|V (G)| ≥ 3, one ofu andv is a cut vertex
of F + e, sayv. Then,(F + e) \ {v} has at least two components. SinceG is
2-connected, there is an edgeh in E(G) \ (F + e) such thath = uw for some
block B′( 6= B) of F + e with w ∈ B′. Then,h andf are not parallel edges,
and so areh ande. It is easy to see thath andf are in a same block ofF + h.
From Case1, one can transformF into F + h \ f by exchanges ofral edges in
G. Again,h ande are in a same block of(F + h \ f) + e. So, one can transform
F + h \ f into (F + h \ f) + e \ h = F + e \ f by exchanges ofral edges inG.
Therefore, one can successively transformF into F + e \ f by exchanges ofral
edges inG.

Because all possibilities are covered by Cases 1-4, our proof is complete.

Corollary 3.1 If G is 2-connected, then all the four leaf edge exchange graphs
T ∗l (G), T ∗al(G), T ∗∗l (G) and T ∗∗al (G), and theAEE-graph defined in[1] are
connected.

Proof. It follows from Theorem 3.1 and the fact thatT ∗∗ral(G) is a spanning sub-
graph of all the five graphs in the corollary.

By induction on|V |, similar to the proof of Theorem 3.1, and the fact that the
SEE-graph is connected, we can derive the following corollary, which is similar
to a result in [7].
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Corollary 3.2 The diameter ofT ∗∗ral(G) of a2-connected graphG is upper bounded
by kn2, wheren is the number of vertices ofG andk is the number of edges in
the consideredk-edge subgraphs, representing the vertices ofT ∗∗ral(G).

Remark 3. If in Definition 3.3 we only require thate andf are leaf edges ofF
andH, respectively, and share one common vertex, but drop the condition that the
shared vertex is not a cut vertex ofF andH, then we get another variation of leaf
edge exchange graphs. Since this variation hasT ∗∗ral(G) as a spanning subgraph,
it is connected ifG is 2-connected.

Remark 4. One can also obtain the same result of Theorem 3.1 for directed
graphs. The details are left to the reader(s).

Remark 5. One can naturally generalize our definitions of leaf edges and their
exchanges to other families of subgraphs, mentioned in Corollary4a of [1]. One
can also consider applications of our results for interpolations of graph invariants.
We leave out the details.
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