
Color degree condition for long rainbow paths in
edge-colored graphs∗

He Chen1 and Xueliang Li2

1Department of Mathematics,

Southeast University, Nanjing, 210096, China

chenhe@seu.edu.cn
2Center for Combinatorics and LPMC

Nankai University, Tianjin 300071, China

lxl@nankai.edu.cn

Abstract

Let G be an edge-colored graph. A rainbow (heterochromatic, or mul-
ticolored) path of G is such a path in which no two edges have the same
color. Let the color degree of a vertex v to be the number of different colors
that are used on edges incident to v, and denote it by dc(v). In a previ-
ous paper, we showed that if dc(v) ≥ k (color degree condition) for every
vertex v of G, then G has a rainbow path of length at least d(k + 1)/2e.
Later, in another paper we first showed that if k ≤ 7, G has a rainbow
path of length at least k − 1, and then, based on this we used induction
on k and showed that if k ≥ 8, then G has a rainbow path of length at
least d(3k)/5e+1. In 2010, Gyárfás and Mhalla showed that in any proper
edge-colored complete graph Kn, there is a rainbow path with no less than
(2n + 1)/3 vertices. In the present paper, by using a simpler approach we
further improve the result by showing that if k ≥ 8, G has a rainbow path
of length at least d(2k)/3e+ 1.

Keywords: edge-colored graph, color degree, color neighborhood, rain-
bow (heterochromatic, or multicolored) path.

AMS Subject Classification (2000): 05C38, 05C15

1. Introduction

We use Bondy and Murty [3] for terminology and notation not defined here and
consider simple graphs only.
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Let G = (V, E) be a graph. By an edge-coloring of G we mean a function
C : E → N, the set of natural numbers. If G is assigned such a coloring, then
we say that G is an edge-colored graph. Denote the colored graph by (G,C),
and call C(e) the color of an edge e ∈ E. A subgraph is called rainbow (hete-
rochromatic, or multicolored) if any two edges of it have different colors. For a
subgraph H of G, we denote C(H) = {C(e) | e ∈ E(H)} and c(H) = |C(H)|.
For a vertex v of G, the color neighborhood CN(v) of v is defined as the set
{C(e) | e is incident with v} and the color degree is dc(v) = |CN(v)|, i.e., the
number of different colors that are used on edges incident to v. Given a positive
integer k, C is a k − good coloring if dc(v) ≥ k for any vertex v of G. If u and v
are two vertices on a path P , uPv denotes the segment of P from u to v, whereas
vP−1u denotes the same segment but from v to u.

There are many existing literature dealing with the existence of paths and
cycles with special properties in edge-colored graphs. The rainbow Hamiltonian
cycle or path problem was studied by Hahn and Thomassen [14], Rödl and Win-
kler (see [11]), Frieze and Reed [11], and Albert, Frieze and Reed [1]. In [2],
Axenovich, Jiang and Tuza gave the range of the maximum k such that there
exists a k-good coloring of E(Kn) that contains no properly colored copies of a
path with fixed number of edges, no rainbow copies of a path with fixed num-
ber of edges, no properly colored copies of a cycle with fixed number of edges
and no rainbow copies of a cycle with fixed number of edges, respectively. In [9],
Erdös and Tuza studied the rainbow paths in infinite complete graph Kω. In [10],
Erdös and Tuza studied the values of k, such that every k-good coloring of Kn

contains a rainbow copy of F where F is a given graph with e edges (e < n/k).
In [15], Manoussakis, Spyratos and Tuza studied (s, t)-cycle in 2-edge-colored
graphs, where (s, t)-cycle is a cycle of length s + t and s consecutive edges are
in one color and the remaining t edges are in the other color. In [16], Manous-
sakis, Spyratos, Tuza and Voigt studied conditions on the minimum number k
of colors, sufficient for the existence of given types (such as families of internally
pairwise vertex-disjoint paths with common endpoints, hamiltonian paths and
hamiltonian cycles, cycles with a given lower bound of their length, spanning
trees, stars, and cliques) of properly edge-colored subgraphs in a k-edge-colored
complete graph. In [6], Chou, Manoussakis, Megalaki, Spyratos and Tuza showed
that for a 2-edge-colored graph G and three specified vertices x, y and z, to de-
cide whether there exists a color-alternating path from x to y passing through z
is NP-complete. Many results in these papers were proved by using probabilistic
methods.

In [2], Axenovich, Jiang and Tuza considered the local variation of anti-
Ramsey problem. Namely, they studied the maximum k such that there exists
a k-good edge-coloring of Kn containing no rainbow copies of a given graph
H, and denoted by g(n,H). They showed that for a fixed integer k ≥ 2,
k − 1 ≤ g(n, Pk+1) ≤ 2k − 3, i.e., if Kn is edge-colored by a (2k − 2)-good
coloring, then there must exist a rainbow path Pk+1, there exists a (k − 1)-good
coloring of Kn such that no rainbow path Pk+1 exists.
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In [4], the authors considered the long rainbow paths in general graphs with
a k-good coloring and showed that if G is an edge-colored graph with dc(v) ≥ k
(color degree condition) for every vertex v of G, then G has a rainbow path
of length at least d(k + 1)/2e. In [5], we first showed that if 3 ≤ k ≤ 7, G
has a rainbow path of length at least k − 1, and then, based on this we used
induction on k and showed that if k ≥ 8, then G has a rainbow path of length at
least d(3k)/5e+ 1. In the present paper, by using a simpler approach we further
improve the result by showing that if k ≥ 8, G has a rainbow path of length at
least d(2k)/3e+1. This improves the result of [12], in which Gyárfás and Mhalla
showed that in any properly edge-colored complete graph Kn, there is a rainbow
path with no less than (2n + 1)/3 vertices. Later, H. Gebauer, and F. Mousset
showed in [13] that in any properly edge-colored complete graph Kn, there is a
rainbow path with no less than 3n/4− o(n) vertices.

For more references on edge-colorings and cycles, see [7, 8, 17, 18, 19].

2. Some properties of a longest rainbow path

In this section we will give some properties of a longest rainbow path. All these
properties will help us to get better lower bounds of the length of a longest
rainbow path.

Proposition 2.1 Let G be an edge-colored graph and suppose that P = u1u2 . . . ulul+1

is a longest rainbow path, v be a vertex not belonging to the path P . For any inte-
ger j, 2 ≤ j ≤ l−1, if both the two edges ujv, uj+1v exist, then |{C(ujv), C(uj+1v)}\
C(P )| ≤ 1.

Proof. By contradiction, if there exists an integer j0, 2 ≤ j0 ≤ l − 1, such
that both the two edges uj0v, uj0+1v exist and |{C(uj0v), C(uj0+1v)}\C(P )| = 2.
Then u1Puyj0

vuyj0
+1Pul+1 is a rainbow path of length l + 1, a contradiction.

Proposition 2.2 Let G be an edge-colored graph and suppose P = u1u2 . . . ulul+1

is a longest rainbow path. If there exists an integer x such that 3 ≤ x ≤ l and
C(u1ux) /∈ C(P ), then for any vertex v ∈ N(ul+1) \ V (P ), the color of the edge
ul+1v is different from C(ux−1ux).

Proof. By contradiction. If there exists a vertex v ∈ N(ul+1) \ V (P ) such that
C(ul+1v) = C(ux−1ux) (as shown in Figure 2.1), then ux−1P

−1u1uxPul+1v is a
rainbow path of length l + 1, a contradiction, which completes the proof.

Proposition 2.3 Let G be an edge-colored graph and suppose P = u1u2 . . . ulul+1

is a longest rainbow path. If there exists a vertex v ∈ N(ul+1) \ V (P ) and
an integer x (2 ≤ x ≤ l − 2) such that uxv and ux+2v are edges of G and
|{C(uxv), C(ux+2v)}\C(P )| = 2, then for any vertex w ∈ N(ul+1)\(V (P )∪{v}),
the color of the edge ul+1w is different from C(uxux+1) and C(ux+1ux+2).
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Proof. By contradiction. If there exists a vertex w ∈ N(ul+1) \ (V (P ) ∪ {v})
such that C(ul+1w) ∈ {C(uxux+1), C(ux+1ux+2)} (as shown in Figure 2.2), then
u1Puxvux+2Pul+1w is a rainbow path of length l + 1, a contradiction, which
completes the proof.

Proposition 2.4 Let G be an edge-colored graph and P = u1u2 . . . ulul+1v be a
path in G such that:

(a) u1Pul+1 is a longest rainbow path in G;
(b) C(ul+1v) = C(uj0uj0+1) for some integer j0 with 1 ≤ j0 ≤ l.
(c) P was chosen so that j0 is minimum under the condition (b).

Then we have
(1) for any integer x, j0 + 1 ≤ x ≤ 2j0, if the vertex ux is adjacent to the

vertex u1, then the color of u1ux must appear in P ;
(2) for any integer x, 2j0 ≤ x ≤ l, if both the vertices ux and ux+1 are adjacent

to the vertex u1, then |{C(u1ux), C(u1ux+1)} \ C(P )| ≤ 1.

Proof. (1) By contradiction. If there exists an integer x such that j0 + 1 ≤ x ≤
2j0, the vertex ux is adjacent to the vertex u1 and the color of the edge u1ux does
not appear in C(P) (as shown in Figure 2.3), then P ′ = ux−1P

−1u1uxPul+1v is
a path satisfying that ux−1P

′ul+1 is a rainbow path of length l and C(ul+1v) =
C(uj0+1uj0) (note that v /∈ V (ux−1P

′ul+1)), where uj0+1uj0 is the (x− j0 − 1)-th
edge in this rainbow path ux−1P

′ul+1. Since x − j0 − 1 ≤ 2j0 − j0 − 1 = j0 − 1,
this contradicts the choice of P , which completes the proof of (1).

(2) By induction. If there exists an integer x such that 2j0 + 1 ≤ x ≤ l, both
the vertices ux and ux+1 are adjacent to the vertex u1, and the two edges u1ux

and u1ux+1 have distinct colors both of which do not appear in C(P ) (see Figure
??), then P ′′ = u2Puxu1ux+1Pul+1 is a path satisfying that u2P

′′ul+1 is a rainbow
path of length l and C(ul+1v) = C(uj0uj0+1) (note that v /∈ V (u2P

′′ul+1)) is the
(j0− 1)-th edge in the rainbow path u2P

′′ul+1, contradicting the choice of P and
completing the proof of (2).
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3. New lower bounds for the length of a longest

rainbow path

In this section we will give two better lower bound for the length of a longest
rainbow path in G when k ≥ 8. As an induction initial, we need the following
result as a lemma.

Lemma 3.1 [5] Let G be an edge-colored graph and k (3 ≤ k ≤ 7) an integer.
Suppose that dc(v) ≥ k for every vertex v of G. Then G has a rainbow path of
length at least k − 1.

As we showed in [5], k − 1 is the best lower bound of the length of a longest
rainbow path. Therefore, we shall only consider the case when k ≥ 8 now. We
will begin this with an important Lemma.

Lemma 3.2 Let G be an edge-colored graph and suppose dc(v) ≥ k ≥ 8 for every
vertex v ∈ V (G). If the length of a longest rainbow path in G is l ≤ d(2k)/3e,
then there is a path P = u1u2 . . . ulul+1v in G such that u1Pul+1 is a rainbow path
of length l and C(ul+1v) = C(u1u2).

Proof. Let P ′ = w1w2 . . . wlwl+1s be a path in G such that
(a) w1P

′wl+1 is a rainbow path of length l;
(b) C(wl+1s) = C(wj0wj0+1) for some integer j0 with 1 ≤ j0 ≤ l;
(c) P ′ was chosen so that j0 is minimum under the condition (b).

Denote cj = C(wjwj+1), j = 1, 2, . . . , l. Now we will show that j0 = 1 by
contradiction, and then P ′ is a path we want.

Suppose that j0 > 1. First, we can easily get that j0 ≤ d(l + 1)/2e, this is be-
cause CN(wl+1) ⊆ {C(wjwl+1) : 1 ≤ j ≤ l−1, wj ∈ N(wl+1)}∪{cj0 , cj0+1, . . . , cl},
and then k ≤ |CN(wl+1)| ≤ (l − 1) + (l − j0 + 1) = 2l − j0.

Since w1P
′wl+1 is a longest rainbow path in G, for any vertex t ∈ N(wl+1) \

{w1, . . . , wl+1} and any vertex t′ ∈ N(w1) \ {w1, . . . , wl+1}, the color of the edge
wl+1t or the edge w1t

′ must appear in P ′. This implies that there are at least
k − l different colors not in C(P ′) appearing on some edges in the edge set
{w1t

′ : t′ ∈ N(w1) ∩ {w1, . . . , wl+1}}. In another words, there are k − l dif-
ferent integers x1, x2, . . . , xk−l, such that 3 ≤ x1 < x2 < . . . < xk−l ≤ l + 1,
wxi

∈ N(w1), 1 ≤ i ≤ k − l, and the subgraph induced by the edge set
{w1w2, w2w3, . . . , wlwl+1, w1wx1 , w1wx2 , . . . , w1wxk−l

} is rainbow.

Now we consider the integer set {x1, x2, . . . , xk−l}. By Proposition 2.4, we can
easily get that {j0 + 1, j0 + 2, . . . , 2j0} ∩ {x1, x2, . . . , xk−l} = ∅ and if 2j0 + 1 ≤ l,
then for any integer x, 2j0 + 1 ≤ x ≤ l, at most one of {x, x + 1} belongs to
{x1, . . . , xk−l}. Using these two facts, we can get that k − 1 ≤ d(l + 1)/2e − 2.
We will show this in the following three cases:
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Case 1. 2j0 + 1 ≤ l.

In this case, k − l ≤ (j0 − 2) + d(l − 2j0 + 1)/2e = d(l + 1)/2e − 2.

Case 2. 2j0 + 1 = l + 1, i.e. l = 2j0.

In this case, {x1, x2, . . . , xk−l} ⊆ {3, 4, · · · , j0, l + 1}, so we have k − l ≤
j0− 2 + 1 = 1/2− 1 = d(l + 1)/2e− 2 (the last equation holds because l is even).

Case 3. 2j0 + 1 > l + 1, i.e. j0 > l/2.

In this case, {x1, x2, . . . , xk−l} ⊆ {3, 4, · · · , j0}, so we have k − l ≤ j0 − 2 ≤
d(l + 1)/2e − 2.

Therefore we shall only consider the case when k ≡ 2 (mod 3) (note that
in this case l is even) and {x1, x2, . . . , xk−l} is equal to {3, . . . , j0, 2j0 + 1, 2j0 +
3, . . . , l−1, l+1} if j0 ≥ 3, or {2j0 +1, 2j0 +3, . . . , l−1, l+1} if j0 = 2 (as shown
in Figure 3.1).

By the fact that w2j(P
′)−1w1w2j+1P

′wl+1 is a rainbow path of length l for any
integer j, j ∈ {j0, j0 + 1, . . . , l/2}, and the choice of P ′, we have that {C(wl+1t) :
t ∈ N(wl+1)\P ′} = {cj0}. Now CN(wl+1) = {C(wl+1t) : t ∈ N(wl+1)∩P ′}∪{cj0},
so dc(wl+1) = |CN(wl+1)| ≤ l + 1 < k, a contradiction, which concludes that
j0 = 1, and P ′ is the path we want.

By using this lemma, we can easily get a better lower bound of the length of
a longest rainbow path.

Theorem 3.3 Let G be an edge-colored graph. If dc(v) ≥ k ≥ 7 for any vertex
v ∈ V (G), then G has a rainbow path of length at least d(2k)/3e.

Proof. By contradiction. Suppose a longest rainbow path in G has a length
l ≤ d(2k)/3e − 1.

Since l ≤ d(2k)/3e−1 < d(2k)/3e, we can get by Lemma 3.2 that there exists
a longest rainbow path P = u1u2 · · ·ulul+1 and a vertex v /∈ V (P ) such that
C(ul+1v) = C(u1u2).
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Notice that u2Pul+1v is also a rainbow path of length l, i.e., a longest rainbow
path. Therefore, for any vertex u /∈ {u2, u3, · · · , ul}, C(vu) ∈ C(P ). Without loss
of generality, suppose that |{C(ux1v), C(ux2v), · · · , C(uxtv)} \C(P )| = |CN(v) \
C(P )| = t where 2 ≤ x1 < x2 < · · · < xt ≤ l.

By Lemma 2.1, we have that xj+1 − xj > 1 for any 1 ≤ j ≤ t− 1. Then

t ≤ d l − 1

2
e ≤ l

2
.

On the other hand, CN(v) ⊆ C(P )∪{C(ux1v), C(ux2v), · · · , C(uxtv)}. Therefore,
k ≤ dc(v) ≤ l + t. This implies that

t ≥ k − l.

From the two inequations above, we can get that k − l ≤ t ≤ l/2. So l ≥ (2k)/3,
a contradiction. Therefore, G has a rainbow path of length at least d(2k)/3e.

In the remaining part of this section, we will show that under the color degree
condition, the length of a longest rainbow path is at least d(2k)/3e+ 1.

Theorem 3.4 Let G be an edge-colored graph. If dc(v) ≥ k ≥ 7 for any vertex
v ∈ V (G), then G has a rainbow path of length at least d(2k)/3e+ 1.

Proof. We will prove the theorem by induction on k.

If k = 7, our Lemma 2.1 guarantees that G has a rainbow path of length at
least 6, where 6 = d(2× 7)/3e+ 1.

So we may assume that k ≥ 8 and that the result holds for all smaller values
of k.

Now we need only to show that if dc(v) ≥ k for any v ∈ V (G), G has a rainbow
path of length d(2k)/3e+ 1. By the assumption, we know that G has a rainbow
path of length d(2(k − 1))/3e + 1, which is equal to d(2k/3)e + 1 when k ≡ 0
(mod 3), and d(2k)/3e otherwise. So if k ≡ 0 (mod 3), we are done. Therefore,
the rest is only to show that if k ≡ 1, 2 (mod 3), G has a rainbow path of length
d(2k)/3e+ 1. We will show this by contradiction.

Assume that a longest rainbow path in G is of length l = d(2k)/3e. Then
we have that k − l ≥ 2, and we can get by Lemma 3.2 that G has a rainbow
path P = u1u2 . . . ulul+1 and there exists a vertex v ∈ N(ul+1) \ V (P ) such that
C(ul+1v) = C(u1u2). Denote cj = C(ujuj+1), j = 1, 2, . . . , l.

Since dc(v) ≥ k, dc(u1) ≥ k, and the two paths P and u2Pul+1v are both
rainbow paths of length l, we have that there are at least k − l different colors
not belonging to the color set C(P ) appearing in the edge set {C(u1uj) : 3 ≤
j ≤ l + 1, and uj ∈ N(u1)}, and there are also at least k − l different colors
not belonging to the color set C(P ) appearing in the color set {C(ujv) : 2 ≤
j ≤ l, and uj ∈ N(v)}. So we can conclude that there exist two integer sets
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{x1, x2, . . . , xk−l} and {y1, y2, . . . , yk−l}, such that 3 ≤ x1 < x2 < . . . < xk−l ≤ l+
1, 2 ≤ y1 < y2 < y3 < . . . < yk−l ≤ l, uxi

∈ N(u1) (i = 1, 2, . . . , k− l), uyj
∈ N(v)

(j = 1, 2, . . . , k − l), and |{C(u1ux1), C(u1ux2), . . . , C(u1uxk−l
)} \ C(P )| = k − l,

|{C(uy1v), C(uy2v), . . . , C(uyk−l
v)} \ C(P )| = k − l.

Note that we can easily get the following three claims:

Claim 1 For any integer i, 3 ≤ i ≤ l, if both the two edges u1ui, u1ui+1 exist,
then |{C(u1ui), C(u1ui+1)} \ C(P )| ≤ 1.

Otherwise, there exists an integer i0, 3 ≤ i0 ≤ l, such that both the two edges
u1ui0 , u1ui0+1 exist and |{C(u1ui0), C(u1ui0+1)} \ C(P )| = 2 (see Figure 3.2).
Then u2Pui0u1ui0+1Pul+1v is a rainbow path of length l + 1, a contradiction.

Claim 2 If the edge u1ul+1 exists, then the color of the edge must appear in
P .

Otherwise, we have that the edge u1ul+1 exists and the color of it is not
contained in C(P ). Since k − l ≥ 2, there exists an integer j′, 1 ≤ j′ ≤ k − l
such that C(uyj′v) 6= C(u1ul+1) (see Figure 3.3). Then vuyj′Pul+1u1Puyj′−1 is a
rainbow path of length l + 1, a contradiction.

Claim 3 If the edge u2v exists, then the color of the edge must appear in P .

Otherwise, we have that the edge u2v exists and the color of it is not contained
in the color set C(P ). Since k − l ≥ 2, there exists an integer i′, 1 ≤ i′ ≤ k − l,
such that C(u1uxi′ ) 6= C(u2v) (see Figure 3.4). Then uxi′−1P

−1u2vul+1P
−1uxi′u1

is a rainbow path of length l + 1, a contradiction.

From the four claims above, we can get that 3 ≤ x1 < x1 + 1 < x2 < x2 + 1 <
. . . < xk−l ≤ l and 3 ≤ y1 < y1 + 1 < y2 < y2 + 1 < . . . < yk−l ≤ l.

Now we distinguish the following two cases:

Case 1. k ≡ 1 (mod 3). (Then l = d(2k)/3e = (2k + 1)/3 must be odd.)

Since 3 ≤ y1 < y1 + 1 < y2 < y2 + 1 < . . . < yk−l ≤ l, we have 2(k − l − 1) ≤
yk−l − y1 ≤ l − 3. On the other hand, we have 2(k − l − 1) = l − 3. This
implies that {y1, y2, . . . , yk−l} = {3, 5, . . . , l − 2, l}. Then by Proposition 2.3, we
can conclude that {c3, c4, . . . , cl−2, cl}∩{C(ul+1v

′) : v′ ∈ N(ul+1)\V (P )} = ∅. So
CN(ul+1) ⊆ {C(ul+1v

′) : v′ ∈ N(ul+1) ∩ V (P )} ∪ {c1, c2, cl} = {C(ul+1v
′) : v′ ∈

N(ul+1)∩V (P )}∪{c1, c2}, and hence we get that dc(ul+1) = |CN(ul+1)| ≤ l+2 <
k (the last inequality holds because k ≥ 8, k ≡ 1 (mod 3) and l = (2k + 1)/3) a
contradiction.
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Case 2. k ≡ 2 (mod 3). (Then l = d(2k)/3e = (2k + 1)/3 must be even.)

Since 3 ≤ y1 < y1 + 1 < y2 < y2 + 1 < . . . < yk−l ≤ l, we have 2(k − l − 1) ≤
yk−l − y1 ≤ l − 3. On the other hand, we have 2(k − l − 1) = (l − 3)− 1. Then
we can conclude that yj+1 = yj + 2 for j = 1, 2, . . . , k − l − 1 or there exists an
integer j0 such that 1 ≤ j0 ≤ k− l− 1, yj0+1 = yj0 + 3, and yj+1 = yj + 2 for any
1 ≤ j ≤ k − l − 1 and j 6= j0.

Case 2.1 yj+1 = yj + 2 for j = 1, 2, . . . , k − l − 1.

Now we have {C(ul+1v
′) : v′ ∈ N(ul+1) \ V (P )} ∩ {cy1 , cy1+1, cy2 , cy2+1, . . . ,

cyk−l−1} = ∅ by Proposition 2.3, and {C(ul+1v
′) : v′ ∈ N(ul+1) \ V (P )} ∩ {cx1−1,

cx2−1, . . . , cxk−l−1} = ∅ by Proposition 2.2. Therefore, {C(ul+1v
′) : v′ ∈ N(ul+1) \

V (P )} ⊆ C(P ) \ ({cy1 , cy1+1, cy2 , . . . , cyk−l−1} ∪ {cx1−1, cx2−1, . . . , cxk−l−1}), since
P is a longest rainbow path.

Notice that yj+1 = yj + 2 for j = 1, 2, . . . , k − l − 1 and 3 ≤ x1 < x1 + 1
< x2 < . . . < xk−l ≤ l. Then we have (yk−l − 1) − y1 = 2(k − l − 1) − 1 <
2(k− l− 1) ≤ (xk−l− 1)− (x1− 1). This implies that {cx1−1, cx2−1, . . . , cxk−l−1} \
{cy1 , cy1+1, cy2 , . . . , cyk−l−1} 6= ∅. So we get

k ≤ dc(ul+1) = |CN(ul+1)|
≤ |{c1, c2, . . . , cl} \ ({cy1 , cy1+1, . . . , cyk−l−1} ∪ {cx1−1, cx2−1, . . . , cxk−l−1})|

+ |{C(ul+1uj) : 1 ≤ j ≤ l − 1 and uj ∈ N(ul+1)}|
≤ (l − 2(k − l − 1)− 1) + (l − 1) = 4l − 2k (3.1)

Since if k ≡ 2 (mod 3) and k > 8, then 4l− 2k < k, a contradiction. So we shall
only consider the case when k = 8.

If k = 8, we have l = (2k + 1)/3 = 6, then we have y1 = 3, y2 = 5 or
y1 = 4, y2 = 6. Denote c7 = C(uy1v1), c8 = C(uy2v1). On the other hand, since
4l−2k = 8 = k, from equation (3.1) the only case we need to consider is the case
when all the edges u1ul+1, u2ul+1, . . . , ul−1ul+1 exist and

CN(ul+1) = ({c1, c2, . . . , cl} \ ({cy1 , cy1+1} ∪ {cx1−1, cx2−1}))
∪{C(ul+1uj) : 1 ≤ j ≤ l − 1 and uj ∈ N(ul+1)}, (3.2)

|{cx1−1, cx2−1} \ {cy1 , cy1+1}| = 1, (3.3)

|{C(ul+1uj) : 1 ≤ j ≤ l − 1 and uj ∈ N(ul+1)}| = l − 1, (3.4)

{C(u1ul+1), C(u2ul+1), . . . , C(ul−1ul+1)}
∩ (C(P ) \ ({cy1 , cy1+1} ∪ {cx1−1, cx2−1})) = ∅. (3.5)

Case 2.1.1 y1 = 3 and y2 = 5 (see Figure 3.5).

Then by equation (3.3), we need only to consider the cases when x1 = 3 and
x2 = 5, or x1 = 4 and x2 = 6. Now we can conclude by Claim 2 and equations
(3.4), (3.5) that C(u1u7) ∈ {c2, c3, c4} if x1 = 3, x2 = 5, and C(u1u7) ∈ {c3, c4, c5}
if x1 = 4, x2 = 6. It is easy to check from Figure 3.5 that if C(u1u7) = c3 or c5,
then u4u5vu3u2u1u7u6 is a rainbow path of length 7; if C(u1u7) = c2 or c4, then
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u4u3vu5u6u7u1u2 is a rainbow path of length 7. In another words, there always
is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.1.2 y1 = 4 and y2 = 6 (see Figure 3.6).

Then by equation (3.3), we need only to consider the cases when x1 = 3 and
x2 = 5, or x1 = 3 and x2 = 6, or x1 = 4 and x2 = 6.

Now we can conclude by Claim 2 and equations (3.4), (3.5) that C(u1u7) ∈
{c2, c4, c5} if x1 = 3, x2 = 5 or x1 = 3, x2 = 6, and C(u1u7) ∈ {c3, c4, c5} if
x1 = 4, x2 = 6.

It is easy to check from Figure 3.6 that if C(u1u7) = c3 or c5, then u5u4vu6u7u1u2u3

is a rainbow path of length 7; if C(u1u7) = c4, then u5u6vu4u3u2u1u7 is a rain-
bow path of length 7, a contradiction. It remains us to consider the case when
C(u1u7) = c2 (see Figure 3.7), and 3 ∈ {x1, x2} only.

Then we have x1 = 3, x2 = 5, or x1 = 3, x2 = 6. So |{C(u2u7), C(u3u7),
C(u4u7), C(u5u7)}| = 4 and {C(u2u7), C(u3u7), C(u4u7), C(u5u7)}∩{c1, c3, c4, c5,
c6} ⊆ {c4, c5}, since C(u1u7) = c2 and because of the equations (3.2), (3.4),
(3.5). So the edge u3u7 is in color c4, or color c5, or some color not appear-
ing in P . It is easy to check from Figure 3.7 that if the edge u3u7 is in color
c4, then u2u1u7u3u4vu6u5 is a rainbow path of length 7; if C(u3u7) = c5, then
u5u4vu6u7u3u2u1 is a rainbow path of length 7; if C(u3u7) = c7, then u2u1u7u3u4u5

u6v is a rainbow path of length 7; if the edge u3u7 is in a color not belonging to
the color set {c1, c2, . . . , c7}, then vu4u5u6u7u3u2u1 is a rainbow path of length 7.
So there always is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.2 There exists an integer j0 such that 1 ≤ j0 ≤ k−l−1,yj0+1 = yj0 +3,
and yj+1 = yj + 2 for any 1 ≤ j ≤ k − l − 1 and j 6= j0.

Then we have {C(ul+1v
′) : v′ ∈ N(ul+1)\V (P )}∩{cy1 , cy1+1, . . . , cyj0

−1, cyj0+1
,

cyj0+1+1, . . . , cyk−l−1} = ∅ by Lemma 2.3, and {C(ul+1v
′) : v′ ∈ N(ul+1) \V (P )}∩

{cx1−1, cx2−1, . . . , cxk−l−1} = ∅ by Lemma 2.2. Therefore,

CN(ul+1) = {C(ul+1v
′) : v′ ∈ N(ul+1) ∩ V (P )} ∪

{C(ul+1v
′) : v′ ∈ N(ul+1) \ V (P )}

⊆ {C(ul+1uj) : 1 ≤ j ≤ l − 1 and uj ∈ N(ul+1)} ∪
(C(P ) \ ({cx1−1, cx2−1, . . . , cxk−l−1} ∪
{cy1 , cy1+1, . . . , cyj0

−1, cyj0+1
, cyj0+1+1, . . . , cyk−l−1})). (3.6)

Since 3 ≤ x1 < x1 + 1 < x2 < x2 + 1 < . . . < xk−l−1 < xk−l−1 + 1 < xk−l ≤ l, we
can easily get that there are at most (j0 − 1) different integers i(1 ≤ i ≤ k − l)
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such that xi appears in the set {y1, y1 +1, . . . , yj0−1} and at most (k− l− j0−1)
different integers i(1 ≤ i ≤ k − l) such that xi appears in the set {yj0+1, yj0+1 +
1, . . . , yk−l − 1}. This implies that

|{cx1−1, cx2−1, . . . , cxk−l−1} \ {cy1 , cy1+1, . . . , cyj0
−1, cyj0+1

, cyj0+1+1, . . . , cyk−l−1}|
≥ 2. (3.7)

Consequently, we have k ≤ |CN(ul+1)| ≤ (l − 1) + (l − 2(j0 − 1)− 2(k − l −
j0 − 1) − 2) = 4l − 2k + 1. So we shall only consider the case when k = 8 and
the case when k = 11, since if k ≡ 2 (mod 3) and k > 11, then 4l − 2k + 1 < k,
a contradiction.

Case 2.2.1 k = 8. In this case, l = 6 and y1 = 3, y2 = 6. Denote c7 = C(u3v)
and c8 = C(u6v). We distinguish the following cases according to x1 and x2:

Case 2.2.1.1 x1 = 3 and x2 = 5 (see Figure 3.8).

Then we can get from Proposition 2.2 that {C(u7v
′) : v′ ∈ N(u7) \ V (P )} ∩

{c2, c4} = ∅. So CN(u7) ⊆ {C(uju7) : 1 ≤ j ≤ 6 and uj ∈ N(u7)} ∪ {C(u7v
′) :

v′ ∈ N(u7) \ V (P )} ⊆ {C(uju7) : 1 ≤ j ≤ 5 and uj ∈ N(u7)} ∪ {c1, c3, c5, c6}.
Since |CN(u7)| ≥ 8, this implies that

|{C(uju7) : 1 ≤ j ≤ 5 and uj ∈ N(u7)} \ {c1, c3, c5, c6}| ≥ 4. (3.8)

Now, we will consider the existence of the edge u1u7 in G and the color of it
if it does exist.

Subcase 1 The edge u1u7 exists and C(u1u7) = c2.

It is obvious that vu3u4u5u6u7u1u2 is a rainbow path of length 7 in this sub-
case, a contradiction.

Subcase 2 The edge u1u7 exists and C(u1u7) = c4 (see Figure 3.9).

In this case, {C(uju7) : 2 ≤ j ≤ 5 and uj ∈ N(u7)} \ {c1, c3, c4, c5, c6, c7, c8} 6=
∅, because of the inequality (3.8).

Subcase 2.1 There exists some i ∈ {2, 4, 5} such that the edge uiu7 exists
and the color of it does not belong to the color set {c1, c3, c4, c5, c6, c7, c8}.

It is easy to check in Figure 3.9 that if i = 2, then vu3u4u5u6u7u2u1 is a
rainbow path of length 7; if i = 4, then u5u6vu3u4u7u1u2 is a rainbow path
of length 7; if i = 5, then u4u3vu6u5u7u1u2 is a rainbow path of length 7, a
contradiction.

Subcase 2.2 The edge u3u7 exists and the color of it does not belong to
{c1, c3, c4, c5, c6, c7, c8}.

In this subcase, u2u1u5u4u3u7u6v is a rainbow path of length 7 if C(u1u5) = c7.
On the other hand, since 5 = x2, so we may assume that C(u1u5) = c8 (see Figure
3.10).
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Since u1u2u3vu6u5u4 is a rainbow path of length 6 with the color set {c1, c2, c4,
c5, c7, c8}, {C(u1w) : w ∈ N(u1) ∩ {u3, u4, u6, v}} \ {c1, c2, c4, c5, c6, c7, c8} 6= ∅. It
is easy to check from Figure 3.10 that if the edge u1u4 exists and the color of it
does not belong to the color set {c1, c2, c4, c5, c6, c7, c8}, then u5u4u1u2u3vu6u7 is
a rainbow path of length 7; if the edge u1u6 exists and the color of it does not
belong to the color set {c1, c2, c4, c5, c6, c7, c8}, then u2u3vu7u6u1u5u4 is a rainbow
path of length 7; if the edge u1v exists and the color of it does not belong to
the color set {c1, c2, c3, c4, c5, c6, c7, c8}, then vu1u2u3u4u5u6u7 is a rainbow path
of length 7; if the edge u1v exists and the color of it is c3, then u2u3u1vu7u6u5u4

is a rainbow path of length 7, a contradiction. So the edge u1u3 exists and is in
a color not belonging to the color set {c1, c2, c4, c5, c6, c7, c8}, which implies that
the edge u1u3 is in a color not belonging to the color set {c1, c2, c3, c4, c5, c6, c7, c8}
since 3 = x1. Denote c9 = C(u1u3) (as shown in Figure 3.11).

From the analysis above, we now have {C(u1w) : w ∈ N(u1)∩{u3, u4, u6, v}} ⊆
{c1, c2, c4, c5, c6, c7, c8, c9}. On the other hand, because of the fact that P is
a rainbow path of length 6 and Claim 1, we have {C(u1w) : w ∈ N(u1) ∩
{u3, u4, u6, v}}∩{c7} = ∅. So {C(u1w) : w ∈ N(u1)∩{u3, u4, u6, v}} ⊆ {c1, c2, c4,
c5, c6, c8, c9}, and then {C(u1w) : w ∈ N(u1)∩{u3, u4, . . . , u6, u7, v}} ⊆ {c1, c2, c4,
c5, c6, c8, c9}. Since dc(u1) ≥ 8 and P is a rainbow path of length 6, there exists
a vertex v′ /∈ {u1, u2, . . . , u7, v} such that C(u1v

′) = c3. Then, v′u1u2u3vu6u5u4

is a rainbow path of length 7, a contradiction.

Subcase 3 The edge u1u7 exists and the color of it is other than c2 and c4,
or the edge u1u7 does not exist.

We can conclude from Claim 2 and the inequality (3.8) that the edges u2u7,
u3u7, u4u7, u5u7 all exist and |{C(u2u7), C(u3u7), C(u4u7), C(u5u7)}\{c1, c3, c5, c6}| =
4. Then

CN(u7) = {C(u2u7), C(u3u7), C(u4u7), C(u5u7)} ∪ {c1, c3, c5, c6}. (3.9)

Note that if the edge u1u7 exists and C(u1u7) = c3, then u4u5u6vu3u2u1u7 is a
rainbow path of length 7; if C(u1u7) = c5, then u5u4u3v1u6u7u1u2 is a rainbow
path of length 7. So we can conclude from the equation (3.9) that there exist
two vertices v′, v′′ /∈ V (P ) such that C(u7v

′) = c3, C(u7v
′′) = c5. On the other

hand, since x2 = 5, the edge u1u5 exists and has a color not belonging to the
color set C(P ). If C(u1u5) 6= c7, then vu3u2u1u5u6u7v

′ is a rainbow path of
length 7, and so we assume that C(u1u5) = c7 (as shown in Figure 3.12). Now
vu6u5u1u2u3u4 is a rainbow path of length 6 with color set {c1, c2, c3, c5, c7, c8},
and so we get that there exists an integer j, 1 ≤ j ≤ 5, such that the edge
ujv exists and C(ujv) /∈ {c1, c2, c3, c5, c6, c7, c8}, since dc(v) ≥ 8. It is easy to
check from Figure 3.12 that if the edge u1v exists and the color of it does not
belong to the color set {c1, c2, c3, c5, c6, c7, c8}, then u4u3u2u1vu6u7v

′′ is a rain-
bow path of length 7; if the edge u2v exists and the color of it does not be-
long to the color set {c1, c2, c3, c5, c6, c7, c8}, then u4u3u2vu7u6u5u1 is a rainbow
path of length 7; if the edge u4v exists and the color of it does not belong to
the color set {c1, c2, c3, c5, c6, c7, c8}, then vu4u3u2u1u5u6u7 is a rainbow path of
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length 7; if the edge u5v exists and the color of it does not belong to the color
set {c1, c2, c3, c5, c6, c7, c8}, then u4u3u2u1u5vu6u7 is a rainbow path of length 7, a
contradiction.

Case 2.2.1.2 x1 = 3 and x2 = 6 (see Figure 3.13).

Then we can get from Proposition 2.2 that {C(ul+1v
′) : v′ ∈ N(ul+1)\V (P )}∩

{c2, c5} = ∅. So CN(ul+1) ⊆ {C(uju7) : 1 ≤ j ≤ 6 and uj ∈ N(u7)}∪{C(ul+1v
′) :

v′ ∈ N(ul+1) \ V (P )} ⊆ {C(uju7) : 1 ≤ j ≤ 5 and uj ∈ N(u7)} ∪ {c1, c3, c4, c6}.
Since |CN(u7)| ≥ 8, this implies that

|{C(uju7) : 1 ≤ j ≤ 5 and uj ∈ N(u7)} \ {c1, c3, c4, c6}| ≥ 4. (3.10)

Note that if the edge u1u7 exists and C(u1u7) = c2, then vu3u4u5u6u7u1u2

is a rainbow path of length 7; if the edge u1u7 exists and C(u1u7) = c5, then
u5u4u3vu6u7u1u2 is a rainbow path of length 7, a contradiction. Then we can get
from Claim 2 and the inequality (3.10) that the four edges u2u7, u3u7, u4u7, u5u7

all exist, and

|{C(u2u7), C(u3u7), C(u4u7), C(u5u7)} \ {c1, c3, c4, c6}| = 4. (3.11)

Now we consider the color of the edge u2u7. If C(u2u7) /∈ {c1, c3, c4, c5, c6,
c7}, then vu3u4u5u6u7u2u1 is a rainbow path of length 7; if C(u2u7) = c5, then
u5u4u3vu6u7u2u1 is a rainbow path of length 7, a contradiction. So we get from
the inequality(3.11) that C(u2u7) = c7 (see Figure 3.14).

On the other hand, u1u2u3vu6u5u4 is a rainbow path of length 6 with the color
set {c1, c2, c4, c5, c7, c8}, so we have that there exists a vertex w ∈ {u3, u4, u5, u6, v}
such that the edge u1w exists and C(u1w) /∈ {c1, c2, c3, c4, c5, c7, c8} since dc(u1) ≥
8. It is easy to check from Figure 3.14 that if the edge u1u3 has a color not
belonging to the color set {c1, c2, c3, c4, c5, c7, c8}, then u1u3u2u7vu6u5u4 is a rain-
bow path of length 7; if the edge u1u4 exists and has a color not belonging to
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the color set {c1, c2, c3, c4, c5, c7, c8}, then u1u4u3u2u7vu6u5 is a rainbow path of
length 7; if the edge u1u5 exists and has a color not belonging to the color set
{c1, c2, c3, c4, c5, c7, c8}, then u1u5u4u3u2u7vu6 is a rainbow path of length 7; if the
edge u1u6 has a color not belonging to the color set {c1, c2, c3, c4, c5, c7, c8}, then
u1u6u5u4u3u2u7v is a rainbow path of length 7; if the edge u1v exists and has a
color not belonging to the color set {c1, c2, c3, c4, c5, c7, c8}, then u1vu7u2u3u4u5u6

is a rainbow path of length 7, a contradiction.

Case 2.2.1.3 x1 = 4 and x2 = 6 (see Figure 3.15).

Then we can get from Proposition 2.2 that {C(ul+1v
′) : v′ ∈ N(ul+1)\V (P )}∩

{c3, c5} = ∅. So CN(ul+1) ⊆ {C(uju7) : 1 ≤ j ≤ 6 and uj ∈ N(u7)}∪{C(ul+1v
′) :

v′ ∈ N(ul+1) \ V (P )} ⊆ {C(uju7) : 1 ≤ j ≤ 5 and uj ∈ N(u7)} ∪ {c1, c2, c4, c6}.
Since |CN(u7)| ≥ 8, this implies that

|{C(uju7) : 1 ≤ j ≤ 5 and uj ∈ N(u7)} \ {c1, c2, c4, c6}| ≥ 4. (3.12)

Note that if the edge u1u7 exists and C(u1u7) = c3, then vu3u2u1u7u6u5u4 is
a rainbow path of length 7; if C(u1u7) = c5, then vu6u7u1u2u3u4u5 is a rainbow
path of length 7, a contradiction. So we can get from Claim 2 and the inequality
(3.12) that all the four edges u2u7, u3u7, u4u7, u5u7 exist and

|{C(u2u7), C(u3u7), C(u4u7), C(u5u7)} \ {c1, c2, c4, c6}| = 4, (3.13)

CN(u7) = {C(u2u7), C(u3u7), C(u4u7), C(u5u7)} ∪ {c1, c2, c4, c6}. (3.14)

If C(u1u4) 6= c7, then vu3u2u1u4u5u6u7 is a rainbow path of length 7, a con-
tradiction. So we have C(u1u4) = c7 and then C(u1u6) /∈ {c1, c2, c3, c4, c5, c6, c7}
because x1 = 4, x2 = 6 and from the way we choose x1, x2.

If the edge u1u7 exists and C(u1u7) = c2, then vu3u4u5u6u7u1u2 is a rainbow
path of length 7, a contradiction. So we can conclude from the equations (3.13)
and (3.14) that there exists a vertex v′ /∈ {u1, u2, u3, u4, u5, u6, u7} such that
C(u7v

′) = c2 (see Figure 3.16). Then, u1u6u5u4u3vu7v
′ is a rainbow path of

length 7, a contradiction.

So, in the case k = 8, there always is a rainbow path of length 7 in G.

Case 2.2.2 k = 11, then l = 8.

Denote c9 = C(uy1v1), c10 = C(uy2v1) and c11 = C(uy3v1).
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By the two equations (3.6) and (3.7), we have 11 = k ≤ |CN(ul+1)| ≤ (l −
1) + (l − 2(j0 − 1)− 2(k − l − j0 − 1)− 2) = 4l − 2k + 1 = 11. So we shall only
consider the case when all the edges u1u9, u2u9, . . . , u7u9 exist and

|{C(u1u9), C(u2u9), . . . , C(u7u9)}| = 7, (3.15)

{C(u1u9), C(u2u9), . . . , C(u7u9)} ∩ (C(P ) \ ({cx1−1, cx2−1, cx3−1}
∪ {cy1 , cy1+1, . . . , cyj0

−1, cyj0+1
, cyj0+1+1, . . . , cy3−1})) = ∅, (3.16)

CN(u9) = {C(u1u9), C(u2u9), . . . , C(u7u9)} ∪ (C(P ) \ ({cx1−1, cx2−1, cx3−1}
∪ {cy1 , cy1+1, . . . , cyj0

−1, cyj0+1
, cyj0+1+1, . . . , cy3−1})), (3.17)

|{cx1−1, cx2−1, cx3−1} \ {cy1 , cy1+1, . . . , cyj0
−1, cyj0+1

, cyj0+1+1, . . . , cy3−1}| = 2.

(3.18)

Now we distinguish the following two cases according to j0:

Case 2.2.2.1 j0 = 1, then y1 = 3, y2 = 6 and y3 = 8 (see Figure 3.17)

In this case {cy1 , cy1+1, . . . , cyj0
−1, cyj0+1

, cyj0+1+1, . . . , cy3−1} = {c6, c7}. So
we can easily get that {cx1−1, cx2−1} ∩ {c6, c7} = ∅ and cx3−1 ∈ {c6, c7} since
3 ≤ x1 < x1 + 1 < x2 < x2 + 1 < x3 ≤ 8 and from equation (3.18). Then we have
{C(u1u9), C(u2u9), . . . , C(u7u9)}∩ ({c1, c2, c3, c4, c5, c8} \ {cx1−1, cx2−1}) = ∅ from
the equation (3.16). So, C(u1u9) ∈ {cx1−1, cx2−1, c6, c7} ⊆ {c2, c3, c4, c5, c6, c7}
because of Claim 2 and the equations (3.15) and (3.16). It is easy to check in
Figure 3.17 that if the edge u1u9 has color c2, then vu3u4u5u6u7u8u9u1u2 is a rain-
bow path of length 9; if the edge u1u9 has color c3, then u4u5u6u7u8u9u1u2u3v is
a rainbow path of length 9; if the edge u1u9 has color c5, then vu6u7u8u9u1

u2u3u4u5 is a rainbow path of length 9; if the edge u1u9 has color c6, then
u7u8u9u1u2u3u4u5u6v is a rainbow path of length 9; if the edge u1u9 has color c7,
then vu8u9u1u2u3u4u5u6u7 is a rainbow path of length 9, a contradiction. So it
remains us to consider the case when C(u1u9) = c4 and 5 ∈ {x1, x2}.

Then 4 /∈ {x1, x2} since C(u1u9) ∈ {cx1−1, cx2−1, c6, c7} and 3 ≤ x1 < x1 +1 <
x2 < x2 +1 < x3 ≤ 8. Therefore, we can get from the equations (3.16) and (3.17)
that there exists a vertex v′ /∈ V (P ) such that C(u9v

′) = c3 (see Figure 3.18).
Now u5u6u7u8v1u3u2u1u9v

′ is a rainbow path of length 9, a contradiction.

Case 2.2.2.2 j0 = 2, then y1 = 3, y2 = 5 and y3 = 8 (see Figure 3.20).

In this case {cy1 , cy1+1, . . . , cyj0
−1, cyj0+1

, cyj0+1+1, . . . , cy3−1} = {c3, c4}. So we
can easily get that x1 = 3, x2 = 5 and x3 = 7, or x1 = 3, x2 = 5 and
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x3 = 8, or x1 = 4, x2 = 6 and x3 = 8, since 3 ≤ x1 < x1 + 1 < x2 <
x2 + 1 < x3 ≤ 8 and form equation (3.18). On the other hand, we have that
C(u1u9) ∈ {c3, c4, cx1−1, cx2−1, cx3−1} ⊆ {c2, c3, c4, c5, c6, c7} because of Claim 2
and the equations (3.15) and (3.16). It is easy to check in Figure 3.20 that if the
edge u1u9 has color c2, then vu3u4u5u6u7u8u9u1u2 is a rainbow path of length 9; if
the edge u1u9 has color c3, then u4u5u6u7u8u9u1u2u3v is a rainbow path of length
9; if the edge u1u9 has color c4, then vu5u6u7u8u9u1u2u3u4 is a rainbow path of
length 9; if the edge u1u9 has color c5, then u6u7u8u9u1u2u3u4u5v is a rainbow
path of length 9; if the edge u1u9 has color c7, then vu8u9u1u2u3 u4u5u6u7 is a
rainbow path of length 9, a contradiction. So it remains us to consider the case
when C(u1u9) = c6 and c6 ∈ {cx1−1, cx2−1, cx3−1}.

Then we can conclude that x1 = 3, x2 = 5, and x3 = 7 since C(u1u9) ∈
{c3, c4, cx1−1, cx2−1, cx3−1} and 3 ≤ x1 < x1+1 < x2 < x2+1 < x3 ≤ 8. Therefore,
we can get from the equations (3.16) and (3.17) that there exists a vertex v′ /∈
V (P ) such that C(u9v2) = c5 (see Figure ??). Now u7u8vu5u4u3u2u1u9v

′ is a
rainbow path of length 9, a contradiction.

So, in the case k = 11, there always is a rainbow path of length 9 in G, a
contradiction.

Up to now, from all the above contradictions we can conclude that if dc(v) ≥
k ≥ 7 for any vertex v ∈ V (G), then G has a rainbow path of length at least
d(2k)/3e+ 1 in G.

4. Remarks

In this paper, we consider long rainbow paths in edge-colored general graphs.
However, if we restrict graphs to properly edge-colored complete graphs, this is
an important topic in combinatorial design [12].
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If G is a properly edge-colored complete graph with n vertices, then any vertex
v in G has color degree k = n − 1. Therefore, by Theorem 3.3, we can get the
following conclusion.

Corollary 4.1 In every proper edge-coloring of Kn, there exists a rainbow path
of length at least d(2n + 1)/3e.

This improves the result of [12], since in [12], Gyárfás and Mhalla claimed that
there exists a rainbow path with at least d(2n + 1)/3e vertices, i.e., a rainbow
path of length at least d(2n + 1)/3e − 1.
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