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Abstract

Let G be an edge-colored graph. A rainbow (heterochromatic, or mul-
ticolored) path of G is such a path in which no two edges have the same
color. Let the color degree of a vertex v to be the number of different colors
that are used on edges incident to v, and denote it by d°(v). In a previ-
ous paper, we showed that if d°(v) > k (color degree condition) for every
vertex v of G, then G has a rainbow path of length at least [(k + 1)/2].
Later, in another paper we first showed that if & < 7, G has a rainbow
path of length at least k¥ — 1, and then, based on this we used induction
on k and showed that if k¥ > 8, then G has a rainbow path of length at
least [(3%k)/5] + 1. In 2010, Gyarfas and Mhalla showed that in any proper
edge-colored complete graph K, there is a rainbow path with no less than
(2n + 1)/3 vertices. In the present paper, by using a simpler approach we
further improve the result by showing that if £ > 8, G has a rainbow path
of length at least [(2k)/3] + 1.

Keywords: edge-colored graph, color degree, color neighborhood, rain-
bow (heterochromatic, or multicolored) path.
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1. Introduction

We use Bondy and Murty [3] for terminology and notation not defined here and
consider simple graphs only.
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Let G = (V, E) be a graph. By an edge-coloring of G we mean a function
C : E — N, the set of natural numbers. If G is assigned such a coloring, then
we say that G is an edge-colored graph. Denote the colored graph by (G,C),
and call C(e) the color of an edge e € E. A subgraph is called rainbow (hete-
rochromatic, or multicolored) if any two edges of it have different colors. For a
subgraph H of G, we denote C(H) = {C(e) | e € E(H)} and ¢(H) = |C(H)].
For a vertex v of G, the color neighborhood C'N(v) of v is defined as the set
{C(e) | e is incident with v} and the color degree is d°(v) = |C'N(v)|, i.e., the
number of different colors that are used on edges incident to v. Given a positive
integer k, C'is a k — good coloring if d°(v) > k for any vertex v of G. If w and v
are two vertices on a path P, uPv denotes the segment of P from u to v, whereas
vP~1u denotes the same segment but from v to w.

There are many existing literature dealing with the existence of paths and
cycles with special properties in edge-colored graphs. The rainbow Hamiltonian
cycle or path problem was studied by Hahn and Thomassen [14], Rédl and Win-
kler (see [11]), Frieze and Reed [11], and Albert, Frieze and Reed [1]. In [2],
Axenovich, Jiang and Tuza gave the range of the maximum k such that there
exists a k-good coloring of F(K,) that contains no properly colored copies of a
path with fixed number of edges, no rainbow copies of a path with fixed num-
ber of edges, no properly colored copies of a cycle with fixed number of edges
and no rainbow copies of a cycle with fixed number of edges, respectively. In [9],
Erdés and Tuza studied the rainbow paths in infinite complete graph K. In [10],
Erdos and Tuza studied the values of k, such that every k-good coloring of K,
contains a rainbow copy of F' where F' is a given graph with e edges (e < n/k).
In [15], Manoussakis, Spyratos and Tuza studied (s,t)-cycle in 2-edge-colored
graphs, where (s,t)-cycle is a cycle of length s + ¢ and s consecutive edges are
in one color and the remaining ¢ edges are in the other color. In [16], Manous-
sakis, Spyratos, Tuza and Voigt studied conditions on the minimum number k
of colors, sufficient for the existence of given types (such as families of internally
pairwise vertex-disjoint paths with common endpoints, hamiltonian paths and
hamiltonian cycles, cycles with a given lower bound of their length, spanning
trees, stars, and cliques) of properly edge-colored subgraphs in a k-edge-colored
complete graph. In [6], Chou, Manoussakis, Megalaki, Spyratos and Tuza showed
that for a 2-edge-colored graph G and three specified vertices z,y and z, to de-
cide whether there exists a color-alternating path from z to y passing through z
is NP-complete. Many results in these papers were proved by using probabilistic
methods.

In [2], Axenovich, Jiang and Tuza considered the local variation of anti-
Ramsey problem. Namely, they studied the maximum £ such that there exists
a k-good edge-coloring of K, containing no rainbow copies of a given graph
H, and denoted by ¢g(n,H). They showed that for a fixed integer & > 2,
k—1 < g(n,Pey1) < 2k — 3, ie., if K, is edge-colored by a (2k — 2)-good
coloring, then there must exist a rainbow path P 1, there exists a (k — 1)-good
coloring of K, such that no rainbow path Py exists.



In [4], the authors considered the long rainbow paths in general graphs with
a k-good coloring and showed that if G is an edge-colored graph with d°(v) > k
(color degree condition) for every vertex v of G, then G has a rainbow path
of length at least [(k + 1)/2]. In [5], we first showed that if 3 < k < 7, G
has a rainbow path of length at least kK — 1, and then, based on this we used
induction on k and showed that if £ > 8, then G has a rainbow path of length at
least [(3k)/5] + 1. In the present paper, by using a simpler approach we further
improve the result by showing that if £ > 8, G has a rainbow path of length at
least [(2k)/3] + 1. This improves the result of [12], in which Gyérfds and Mhalla
showed that in any properly edge-colored complete graph K, there is a rainbow
path with no less than (2n 4 1)/3 vertices. Later, H. Gebauer, and F. Mousset
showed in [13] that in any properly edge-colored complete graph K, there is a
rainbow path with no less than 3n/4 — o(n) vertices.

For more references on edge-colorings and cycles, see [7, 8, 17, 18, 19].

2. Some properties of a longest rainbow path

In this section we will give some properties of a longest rainbow path. All these
properties will help us to get better lower bounds of the length of a longest
rainbow path.

Proposition 2.1 Let G be an edge-colored graph and suppose that P = ujus . . . w11
s a longest rainbow path, v be a vertex not belonging to the path P. For any inte-
gerj, 2 < j <1-1, if both the two edges u;v, uji1v exist, then [{C(u;v), C(uj1q1v)}\
C(P)| < 1.

Proof. By contradiction, if there exists an integer jp, 2 < jo < [ — 1, such
that both the two edges u;,v, uj,+1v exist and |[{C(uj,v), C(uj,+1v)} \ C(P)| = 2.
Then ulpuyjo vuijHPulH is a rainbow path of length [ + 1, a contradiction. 1

Proposition 2.2 Let G be an edge-colored graph and suppose P = ujus . . . ity
s a longest rainbow path. If there exists an integer x such that 3 < x <[ and
C(uyuy) ¢ C(P), then for any vertex v € N(ujq1) \ V(P), the color of the edge
w10 s different from C(ug,_1uy).

Proof. By contradiction. If there exists a vertex v € N(u;41) \ V(P) such that
C(ug1v) = C(uz_1u,) (as shown in Figure 2.1), then u, 1 P~ uju, Pug v is a
rainbow path of length [ 4+ 1, a contradiction, which completes the proof. |

Proposition 2.3 Let G be an edge-colored graph and suppose P = ujus . .. ujtuyq
is a longest rainbow path. If there exists a verter v € N(uy1) \ V(P) and
an integer x (2 < x < 1 — 2) such that u,v and u, v are edges of G and
H{C (uyv), C(tugsav) }\C(P)| = 2, then for any vertex w € N(upy1)\ (V(P)U{v}),
the color of the edge uiw is different from C(uztyzr1) and C(uzpi1tzio).
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Proof. By contradiction. If there exists a vertex w € N(u;1) \ (V(P) U {v})
such that C(uw) € {Cluzugpsr), C(upriuzia)} (as shown in Figure 2.2), then
uy Pugvug o Puj qw is a rainbow path of length [ 4+ 1, a contradiction, which
completes the proof. 1

Proposition 2.4 Let G be an edge-colored graph and P = ujus ... uu1v be a
path in G such that:

(a) uy Puiyy is a longest rainbow path in G;

(b) C(upt1v) = Clujyujo11) for some integer jo with 1 < jo < 1.

(¢c) P was chosen so that jo is minimum under the condition (b).
Then we have

(1) for any integer x, jo+ 1 < = < 27y, if the verter u, is adjacent to the
vertex uy, then the color of uyu, must appear in P;

(2) for any integer x, 2jo < x < I, if both the vertices u, and u,y, are adjacent
to the vertex uy, then |{C(uiu,), C(uiuz41)} \ C(P)] < 1.

Proof. (1) By contradiction. If there exists an integer = such that jo +1 < z <
270, the vertex u, is adjacent to the vertex u; and the color of the edge uqu, does
not appear in C(P) (as shown in Figure 2.3), then P’ = u, P~ uju, Puj, v is
a path satisfying that u, 1P’u;;; is a rainbow path of length [ and C(ujq1v) =
C(ujo+1uj,) (note that v & V(uy—1P'ui41)), where u;o11u;, is the (x — jo — 1)-th
edge in this rainbow path wu,_1P'u; 1. Since z — jo — 1 < 2jg — jo — 1 = jo — 1,
this contradicts the choice of P, which completes the proof of (1).

(2) By induction. If there exists an integer x such that 2j, + 1 < x <[, both
the vertices u, and u,,; are adjacent to the vertex u;, and the two edges u u,
and uju,q have distinct colors both of which do not appear in C'(P) (see Figure
??), then P"” = uy Puguju,1Puyq is a path satisfying that us P”u;, 1 is a rainbow
path of length [ and C(u41v) = C(uj,ujo+1) (note that v ¢ V(ugP"ui4q)) is the
(jo — 1)-th edge in the rainbow path usP"u; 1, contradicting the choice of P and
completing the proof of (2). ]



3. New lower bounds for the length of a longest
rainbow path

In this section we will give two better lower bound for the length of a longest
rainbow path in G when k£ > 8. As an induction initial, we need the following
result as a lemma.

Lemma 3.1 [5] Let G be an edge-colored graph and k (3 < k < 7) an integer.
Suppose that d°(v) > k for every vertex v of G. Then G has a rainbow path of
length at least k — 1.

As we showed in [5], k — 1 is the best lower bound of the length of a longest
rainbow path. Therefore, we shall only consider the case when £ > 8 now. We
will begin this with an important Lemma.

Lemma 3.2 Let G be an edge-colored graph and suppose d°(v) > k > 8 for every
vertex v € V(G). If the length of a longest rainbow path in G is 1 < [(2k)/3],
then there is a path P = ujus . .. wyuy11v n G such that u; Pujyq s a rainbow path

of length | and C(uj41v) = C(ujus).

Proof. Let P' = wyws ... ww;18 be a path in G such that
(a) wy P'wiyq is a rainbow path of length [;
(b) C(wi415) = C(wj,wjy4+1) for some integer jo with 1 < jo < ;
(¢) P’ was chosen so that jj is minimum under the condition (b).

Denote ¢; = C(wjwjy1), j = 1,2,...,1. Now we will show that j, = 1 by
contradiction, and then P’ is a path we want.

Suppose that jo > 1. First, we can easily get that jo < [(I+1)/2], this is be-
cause CN(wt1) C{C(wjwis1) 1 1 < j <I1—1, wj € N(wis1) }I{cjo, Cjo+1s - - - G},
and then k < |CN(w;11)| < (I —1)+ (1 —jo+ 1) =20 — jo.

Since wy P'wy 1 is a longest rainbow path in G, for any vertex t € N(w1) \
{wy,..., w1} and any vertex t' € N(wy) \ {wy,..., w41}, the color of the edge
w1t or the edge wit’ must appear in P’. This implies that there are at least
k — [ different colors not in C'(P’) appearing on some edges in the edge set
{wit" -t € N(wy) N {wy,...,wy1}}. In another words, there are k — [ dif-
ferent integers xq,xs, ..., oy, such that 3 < z; < 9 < ... < xp; < [+ 1,
wy, € N(wy), 1 < ¢ < k — 1, and the subgraph induced by the edge set

k3

{wiwe, wows, . . ., WW1, W Wy, W1 Wy, - . ., WW,, , } 1S Tainbow.

Now we consider the integer set {x1, xs, ..., 25— }. By Proposition 2.4, we can
easily get that {jo+1,jo+2,...,2jo} N{z1,22,..., 25} = 0 and if 25+ 1 <[,
then for any integer x, 2jo + 1 < x < [, at most one of {x,z + 1} belongs to
{z1,...,2x—}. Using these two facts, we can get that & — 1 < [(I +1)/2] — 2.
We will show this in the following three cases:
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Case 1. 2jp+1 < [.
In this case, k =1 < (jo—2) + [({ = 2jo+1)/2] = [(I +1)/2] — 2.
Case 2. 2jp+1=1+1,1ie. [ = 2y,.

In this case, {x1,29,..., 2} C {3,4,---,j0,l + 1}, so we have k — [ <
Jo—24+1=1/2—1=[(l+1)/2] —2 (the last equation holds because [ is even).

Case 3. 2jo+1>1+1,ie jo>1/2.

In this case, {z1, 2, ..., 2k} C {3,4,--- ,Jo}, so we have k — [ < jo — 2 <
[(14+1)/2] —2.

Therefore we shall only consider the case when £ = 2 (mod 3) (note that
in this case [ is even) and {z1, s, ..., 2} is equal to {3, ..., jo,2jo + 1,20 +
3, ., l—1,1+1}if jo >3, 0r {2jo+1,2j0+3,...,1—1,1+ 1} if jo = 2 (as shown
in Figure 3.1).

By the fact that wa;(P") ™ wiwa;1 P'wiyq is a rainbow path of length [ for any
integer 7, j € {jo,jo+1,...,1/2}, and the choice of P’, we have that {C'(w;,1t) :
t € N(wis1)\P'} = {c;o}. Now ON(wig1) = {C(wig1t) : t € N(wi1)NP' }U{c; },
so d(wiy1) = |CN(wis1)| < 141 < k, a contradiction, which concludes that
jo =1, and P’ is the path we want. ]

By using this lemma, we can easily get a better lower bound of the length of
a longest rainbow path.

Theorem 3.3 Let G be an edge-colored graph. If d°(v) > k > 7 for any vertex
v € V(Q), then G has a rainbow path of length at least [(2k)/3].

Proof. By contradiction. Suppose a longest rainbow path in G has a length
I <(2k)/3] — 1.

Since [ < [(2k)/3] —1 < [(2k)/3], we can get by Lemma 3.2 that there exists
a longest rainbow path P = wjus---wu, and a vertex v ¢ V(P) such that
C(u1v) = Cluqug).



Notice that us Pu;, v is also a rainbow path of length [, i.e., a longest rainbow
path. Therefore, for any vertex u & {ug, us, - - - ul} C(vu) € C(P). Without loss
of generality, suppose that [{C(uz,v), C(ug,v),- -, C(ug,v)}\ C(P)| = |CN(v)\
C(P)| =t where 2 <mxy <x9 <--- <y <.

By Lemma 2.1, we have that x;;; —x; > 1 forany 1 <j <t¢—1. Then

-1 l
t < < —
On the other hand, CN (v) C C(P)U{C(uz,v), C(uz,v), -+ ,C(uyv)}. Therefore,
k < d°(v) <1+ t. This implies that
t>k—1

From the two inequations above, we can get that k —1 <t <1[/2. So [ > (2k)/3,
a contradiction. Therefore, G has a rainbow path of length at least [(2k)/3]. 1

In the remaining part of this section, we will show that under the color degree
condition, the length of a longest rainbow path is at least [(2k)/3] + 1.

Theorem 3.4 Let G be an edge-colored graph. If d°(v) > k > 7 for any vertex
v € V(G), then G has a rainbow path of length at least [(2k)/3] +

Proof. We will prove the theorem by induction on k.

If £k =7, our Lemma 2.1 guarantees that G has a rainbow path of length at
least 6, where 6 = [(2 x 7)/3] + 1.

So we may assume that & > 8 and that the result holds for all smaller values
of k.

Now we need only to show that if d°(v) > k for any v € V(G), G has a rainbow
path of length [(2k)/3] 4+ 1. By the assumption, we know that G has a rainbow
path of length [(2(k — 1))/3] + 1, which is equal to [(2k/3)] + 1 when £k = 0
(mod 3), and [(2k)/3] otherwise. So if k =0 (mod 3), we are done. Therefore,
the rest is only to show that if £ = 1,2 (mod 3), G has a rainbow path of length
[(2k)/3] + 1. We will show this by contradiction.

Assume that a longest rainbow path in G is of length | = [(2k)/3]. Then
we have that k — [ > 2, and we can get by Lemma 3.2 that G has a rainbow
path P = ujus ... wuyq and there exists a vertex v € N(u;q1) \ V(P) such that
C(u41v) = C(uqug). Denote ¢; = C(ujupq), j =1,2,...,1L.

Since d°(v) > k, d°(uy) > k, and the two paths P and usPu;, v are both
rainbow paths of length [, we have that there are at least k — [ different colors
not belonging to the color set C'(P) appearing in the edge set {C(uju;) : 3 <
Jj <1+1, and u; € N(u1)}, and there are also at least k — [ different colors
not belonging to the color set C'(P) appearing in the color set {C'(u;v) : 2 <
j <1, and u; € N(v)}. So we can conclude that there exist two integer sets
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{z1,29, ..., 2x_} and {y1,y2, ..., Y1}, such that 3 <z <my < ... <z < I+
L2<y<yp<y<..<ypa<lLu, € Nw)(@=12,...,k=1),u, € Nv)
(1 =1,2,...,k—=1), and [{C(uiuy, ), C(uruy,),...,C(uus,_,)} \ C(P)| =k —1,
{C(uy,0), Clug,0), - - -, Cluy,_ )} \ C(P)| =k L.

Note that we can easily get the following three claims:

Claim 1 For any integer i, 3 < ¢ <[, if both the two edges uju;, uju;q exist,
then [{C'(uu;), C(uruigr)} \ C(P)| < 1.

Otherwise, there exists an integer g, 3 < 79 < [, such that both the two edges
U Uy, Urligr1 exist and |[{C(uiuy,), C(urui1)} \ C(P)] = 2 (see Figure 3.2).
Then uwy Pu; uitiy+1Pu+1v is a rainbow path of length [ 4 1, a contradiction.

Claim 2 If the edge uju;,q exists, then the color of the edge must appear in
P.

Otherwise, we have that the edge wju;.1 exists and the color of it is not
contained in C(P). Since k — [ > 2, there exists an integer 5/, 1 < j' < k —1
such that C'(u,,v) # C(ui1w41) (see Figure 3.3). Then vu, , Pupyiui Puy,—1 is a
rainbow path of length [ 4 1, a contradiction.

Claim 3 If the edge usv exists, then the color of the edge must appear in P.

Otherwise, we have that the edge usv exists and the color of it is not contained
in the color set C'(P). Since k — [ > 2, there exists an integer ¢/, 1 < ¢ < k — 1,
such that C'(ujug, ) # C(ugv) (see Figure 3.4). Then u,, 1 P~ upvuy1 P~ g, ug
is a rainbow path of length [ + 1, a contradiction.

From the four claims above, we can get that 3 < z; <z +1 <z <941 <
.<xk_l§land3§y1<y1+1<y2<y2+1<...<yk_l§l.

Now we distinguish the following two cases:
Case 1. k=1 (mod 3). (Then | = [(2k)/3] = (2k + 1)/3 must be odd.)

Since3<y; <y1+1<yp<ye+1<...<yp <l wehave2(k—1—-1) <
Y-t — Y1 < [ — 3. On the other hand, we have 2(k — [ — 1) = [ — 3. This
implies that {y1,y2,...,yk—1} = {3,5,...,1 —2,1}. Then by Proposition 2.3, we
can conclude that {cs, ¢y, ..., ¢ 2, }N{C(u1v") : v € N(u1)\V(P)} = 0. So
CN(up41) € {C(up1v") : 0" € N(ur) NV(P)}U{er,co, 0} = {C(u1v") = 0" €
N(u1)NV(P)}U{cy, 2}, and hence we get that d(u;11) = |[CN(u41)] < 142 <
k (the last inequality holds because k > 8, k =1 (mod 3) and | = (2k+1)/3) a
contradiction.



Case 2. k=2 (mod 3). (Then [ = [(2k)/3] = (2k + 1)/3 must be even.)

Since3<y; <y1+1<ypa<ya+1<...<yp <l wehave2(k—1—-1) <
Yr—1 — 1 < 1 — 3. On the other hand, we have 2(k — 1 — 1) = (I — 3) — 1. Then
we can conclude that y;1; = y; +2 for j =1,2,...,k — 1 — 1 or there exists an
integer jo such that 1 < jo <k —1—1, yjo+1 = y;, + 3, and y;1; = y; + 2 for any
1<j<k—1—-1andj# jo.

Case 2.1y =y;+2forj=1,2,...k—1—1.

Now we have {C(uj+1v") @ v/ € N(ws1) \ V(P)} N {cyy, Chrt1s Cuos Cyotts - - s
Cye_—1} = 0 by Proposition 2.3, and {C'(u;110") : v' € N(wz1) \ V(P)} N {cy -1,
Cag—1y- - Cay_,—1} = 0 by Proposition 2.2. Therefore, {C'(u;510") : v € N(up41) \
V(P)} C C(P) \ ({cyl’ Cy1+1; Cyay - - - 7Cyk—l_1} U {0361—17 Cao—1y- ) C$k—l_1}>7 since
P is a longest rainbow path.

Notice that yj;1 = y; +2for j = 1,2,...;k =l —-1and 3 <z, <27 +1
< mg < ... < xpy <l Then we have (y_; — 1) —y1 =2(k—-1-1)—-1<
2(k—1-1) < (xp—;—1)—(x; —1). This implies that {c;, —1,Cop—1,- -+, Ca_—1} \

{Cyrs Cyri1s Cyay - oy Cyp -1+ # 0. So we get
ko< d(uga) = [ON(upga))|
S |{Cl7 C2;. .- ,C[} \ ({CyU Cyr+15 - - - 7Cyk,lfl} ) {C$1*17 Cro—1y--- 7ka,lfl})‘
+ {C(upuy) 1 1 < j<l—1and u; € N(u1)}|
< (1=2k=1-1)—-1)+(1—-1)=4—-2k (3.1)

Since if £ =2 (mod 3) and k > 8, then 4l — 2k < k, a contradiction. So we shall
only consider the case when k = 8.

If £ = 8, we have | = (2k + 1)/3 = 6, then we have y; = 3, yo = 5 or
y1 =4, yo = 6. Denote c¢; = C(uy,v1), cs = C(uy,v1). On the other hand, since
4] — 2k = 8 = k, from equation (3.1) the only case we need to consider is the case

when all the edges uyu;1, ustyy1, . .., w—1u;41 exist and
CN(ul-‘rl) = <{Cla €2, .. 701} \ ({Cylvcyﬁ-l} U {le—lv Cﬂ?2—1}))
U{C(upp1u;) : 1 < j<l—1and u; € N(u1)}, (3.2)
|{C$1—17 Cﬂ@2—1} \ {Cyv Cy1+1}| =1, (33)
HC(wgruy) 1 <j<l—1andu; € N(u1)}| =1—1, (3.4)
{Cururys), Cluguisa), - -+, Clu—qugr) }
N (C(P) \ ({Cyla C311-1-1} U {0961—1’ CI2—1})) - @ (35)

Case 2.1.1 y; = 3 and y, = 5 (see Figure 3.5).

Then by equation (3.3), we need only to consider the cases when z; = 3 and
x9 =5, or x;1 = 4 and x93 = 6. Now we can conclude by Claim 2 and equations
(3.4), (3.5) that C'(uyur) € {ca,c3,¢ca} if 2y = 3, 9 =5, and C(uyuy) € {cs, ¢4, 5}
if x;1 =4, x5 = 6. Tt is easy to check from Figure 3.5 that if C'(uju;) = c3 or cs,
then ujusvususuiurug is a rainbow path of length 7; if C'(ujuz) = ¢o or ¢4, then
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Figure 3.5 Figure 3.6 Figure 3.7

U4U3VU5UgU7 UL U 1S & rainbow path of length 7. In another words, there always
is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.1.2 y; = 4 and y, = 6 (see Figure 3.6).

Then by equation (3.3), we need only to consider the cases when z; = 3 and
To =H,0r ;1 =3 and x5 = 6, or xr1 = 4 and x5 = 6.

Now we can conclude by Claim 2 and equations (3.4), (3.5) that C(uju;) €
{ca,ca,c5} if 2y = 3, 29 =5 or &y = 3, 9 = 6, and C(ujuy) € {e3,cq,05} if
T = 4, Ty = 6.

It is easy to check from Figure 3.6 that if C(ujur) = c3 or ¢5, then ususvuguruiusus
is a rainbow path of length 7; if C'(ujur) = ¢4, then usugvusuzusuuy is a rain-
bow path of length 7, a contradiction. It remains us to consider the case when
C(uyuy) = ¢y (see Figure 3.7), and 3 € {x1, 22} only.

Then we have z; = 3, x3 = 5, or &y = 3, 22 = 6. So [{C(ugur), C(usur),
C(ugur), C(usur)}| = 4 and {C(ugur), C(usur), C(uguz), C(usuz)} N{ci, cs, ¢4, cs,
c6} C {ca,c5}, since Clujur) = o and because of the equations (3.2), (3.4),
(3.5). So the edge ugu; is in color ¢4, or color cs, or some color not appear-
ing in P. It is easy to check from Figure 3.7 that if the edge usu; is in color
¢4, then usujuzuzusvugus is a rainbow path of length 7; if C(uguz) = ¢s5, then
UsU4VUGUTU3 UL 1S & rainbow path of length 7; if C'(ugur) = ¢7, then uguiurugugus
ugv is a rainbow path of length 7; if the edge usuy is in a color not belonging to
the color set {c1, ¢, ..., cr}, then vususuguruzusuy is a rainbow path of length 7.
So there always is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.2 There exists an integer jo such that 1 < jo < k—1—1,y;,41 = y;, +3,
and y;41 =y; +2forany 1 <j <k —1—1andj # jo.

Then we have {C(u410") 1 v" € N(uip1) \V(P)} N {ey,, ety Cyip—15 Cyjy 1
Cyjpertls -+ Cyey—1} = 0 by Lemma 2.3, and {C(u410") : 0" € N(uipa) \V(P)}N
{Csy-1,Cap—1,+sCa,_,—1} = 0 by Lemma 2.2. Therefore,

CN(uiy1) = {C(uyq1v') v € N ) NV(P)U
{Clurr1v') : v € N(ugr) \ VI(P)}
C {Clwsuj) 1 <j<l—1and u; € N(ug1)}U
(C(P) \ <{c$1*17 Cao—1, - - - 7C$k—l*1} U
{Cyn Cyr+1s - -+ Cyjo =15 Cyjo 410 Cyjop1+1s - - 7Cyk—l_1}))‘ (3-6)

Since 3< 1 <1+ 1<a9<To+1<...<Tpj—1 <Tp_y1+1<x_; <L, we
can easily get that there are at most (jo — 1) different integers i(1 <1i < k —1)
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such that z; appears in the set {y1, 11 +1,...,y;, —1} and at most (k—1—jo—1)
different integers i(1 < i < k —[) such that z; appears in the set {y;,11,¥jo+1 +
1,...,yx— — 1}. This implies that

’{Cﬂnfla Caog—1s -+ 70%71*1} \ {Cyw Cyr+1s - -+ Cyjo =15 Cyjo 415 Cyjgpa+1s - - - 7Cyk71*1}‘

) (3.7)

Consequently, we have k < |CN(ujq)| < (I—=1)+ (1 —2(jo—1) —2(k -1 —
Jjo—1)—2) =4l — 2k + 1. So we shall only consider the case when k£ = 8 and
the case when k = 11, since if £ = 2 (mod 3) and k > 11, then 4] — 2k + 1 < k,
a contradiction.

Case 2.2.1 k£ = 8. In this case, [ = 6 and y; = 3, y2 = 6. Denote ¢; = C'(uzv)
and cg = C(ugv). We distinguish the following cases according to x; and xs:

Case 2.2.1.1 z; = 3 and x5 = 5 (see Figure 3.8).

Then we can get from Proposition 2.2 that {C'(uzv') : v' € N(uz) \ V(P)} N
{e2,e4} = 0. So CN(uz) C {C(ujur) : 1 <j <6andu; € N(uz)} U{C(us0) :
v € N(ur) \ V(P)} € {C(ujur) : 1 < j <b5andu; € N(ug)} U{c1, 3,65, ¢6}
Since |C'N(u7)| > 8, this implies that

{C(ujur) : 1 <j<5andu; € N(uz)} \ {c1,¢3,¢5 6} > 4. (3.8)

Now, we will consider the existence of the edge uju7 in G and the color of it
if it does exist.

Subcase 1 The edge uju; exists and C(ujuy) = co.

It is obvious that vusususuguruius is a rainbow path of length 7 in this sub-
case, a contradiction.

Subcase 2 The edge uju; exists and C(ujur) = ¢4 (see Figure 3.9).

In this case, {C(ujur) : 2 < j <5 and u; € N(uy)} \{c1,cs,c4,05,¢6, 07,8} #
0, because of the inequality (3.8).

Subcase 2.1 There exists some i € {2,4,5} such that the edge w;u; exists
and the color of it does not belong to the color set {c1, c3, ¢4, ¢5, Cq, €7, C }-

It is easy to check in Figure 3.9 that if ¢ = 2, then vuszususugurusu; is a
rainbow path of length 7; if ¢ = 4, then usugvuszusuruius is a rainbow path
of length 7; if ¢« = 5, then wujusvugususuius is a rainbow path of length 7, a
contradiction.

Subcase 2.2 The edge usu; exists and the color of it does not belong to
{cla 3, Cy4, C5, Cg, C7, CS}'

In this subcase, usujususuzusugy is a rainbow path of length 7 if C'(uqus) = ¢r.
On the other hand, since 5 = x4, so we may assume that C'(ujus) = cg (see Figure
3.10).
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Since ujuguzvugusuy is a rainbow path of length 6 with the color set {¢y, ¢, ¢4,
s, C7,c8}, {C(uw) : w € N(uy) N {ug, ug, ug,v}} \ {c1, 2, ca, 5, ¢6, 07,81 # 0. Tt
is easy to check from Figure 3.10 that if the edge uyuy exists and the color of it
does not belong to the color set {cy, co, 4, 5, o, C7, cs }, then ususuquguzvuguy is
a rainbow path of length 7; if the edge ujug exists and the color of it does not
belong to the color set {cy, ¢a, ¢4, 5, C6, €7, cs }, then uguzvuruguiusuy is a rainbow
path of length 7; if the edge u;v exists and the color of it does not belong to
the color set {c1, o, €3, ¢4, 5, Co, €7, Cs }, then vujusuzususuguy; is a rainbow path
of length 7; if the edge u v exists and the color of it is c3, then usuzu;vurUgUsU4
is a rainbow path of length 7, a contradiction. So the edge u us exists and is in
a color not belonging to the color set {c, g, ¢4, 5, 6, €7, cs }, Which implies that
the edge ujus is in a color not belonging to the color set {c, ¢a, 3, 4, 5, C6, €7, C8}
since 3 = z1. Denote ¢y = C'(uqu3) (as shown in Figure 3.11).

From the analysis above, we now have {C'(u1w) : w € N(uy)N{us, ug, ug,v}} C
{c1,¢a,¢4,C5,¢6,C7,C5,C9F.  On the other hand, because of the fact that P is
a rainbow path of length 6 and Claim 1, we have {C(ujw) : w € N(uy) N
{usz, ug, ug,v}}N{cr} = 0. So {C(uw) : w € N(uy)N{us, ug, ug,v}} C {c1, ca, 4,
Cs, C6, Cg, Co }, and then {C'(ugw) : w € N(uy)N{us, uy, ..., us, ur,v}} C {c1, co, 4,
Cs, C6, Cg, Co }. Since d(up) > 8 and P is a rainbow path of length 6, there exists
a vertex v' ¢ {uy,usg,...,ur,v} such that C(ujv’') = ¢3. Then, v'uyugusvugusuy
is a rainbow path of length 7, a contradiction.

Subcase 3 The edge uju; exists and the color of it is other than ¢, and ¢y,
or the edge uju; does not exist.

We can conclude from Claim 2 and the inequality (3.8) that the edges ugur,
ugy, ugty, usuy all exist and |[{C'(uguy), C'(ugur), C(ugur), C(usur) }\{c1, 3, 5, c6}| =
4. Then

ON(U7) = {C(U,QU7), O(U3U7), C(U4U7), C(U5U7)} U {Cl, Cs, Cs, 06}. (39)

Note that if the edge uju; exists and C(ujuz) = c3, then ugusugvuguguiuy is a
rainbow path of length 7; if C(ujur) = ¢5, then usuguzviuguruiug is a rainbow
path of length 7. So we can conclude from the equation (3.9) that there exist
two vertices v',v” ¢ V(P) such that C(uzv') = ¢3, C(u7v”) = ¢5. On the other
hand, since x5 = 5, the edge ujus exists and has a color not belonging to the
color set C'(P). If C(ujus) # ¢z, then vuszusujusugusv’ is a rainbow path of
length 7, and so we assume that C'(ujus) = ¢7 (as shown in Figure 3.12). Now
VUgUsUL UgU3Uy4 1S a Tainbow path of length 6 with color set {cy, o, 3, ¢5, 7,8},
and so we get that there exists an integer j, 1 < 5 < 5, such that the edge
u;v exists and C(u;v) ¢ {c1,c2,c¢3,05,¢6,¢7,c8}, since d(v) > 8. It is easy to
check from Figure 3.12 that if the edge ujv exists and the color of it does not
belong to the color set {ci,cq,c3,¢5,¢6, 7, cs}, then ugugusuivugurv” is a rain-
bow path of length 7; if the edge usv exists and the color of it does not be-
long to the color set {¢y, o, 3, ¢5, o, €7, cs}, then uguzusvusugusuy is a rainbow
path of length 7; if the edge u v exists and the color of it does not belong to
the color set {ci, 9, 3, 5, Cg, 7, c }, then vusuzusuusuguy is a rainbow path of
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Figure 3.11 Figure 3.12

length 7; if the edge usv exists and the color of it does not belong to the color
set {c1, ¢2, ¢3, ¢35, Cg, C7, Cs }, then uguzusuyusvuguy is a rainbow path of length 7, a
contradiction.

Case 2.2.1.2 71 = 3 and x5 = 6 (see Figure 3.13).

Then we can get from Proposition 2.2 that {C'(u;10") : v € N(u1)\V(P)}IN
{ca,e5} = 0. So CN(upy1) C {Clujur) : 1 < j <6 and uj € N(uz) }U{C(u410) :
v € N(u1) \V(P)} € {C(ujur) : 1 < j <5and u; € N(ur)} U{c1,c3,c4,¢6}
Since |C'N(uz)| > 8, this implies that

H{C(uju7) : 1 <j <b5andu; € N(uy)} \ {c1,¢3,ca,6} > 4. (3.10)

Note that if the edge ujuy exists and C(ujur) = cq, then vusugusuguruius
is a rainbow path of length 7; if the edge uju; exists and C'(uju;) = c¢s5, then
UsU4U3VUGUTUL U 18 a Tainbow path of length 7, a contradiction. Then we can get
from Claim 2 and the inequality (3.10) that the four edges usuy, usur, uguy, usur
all exist, and

|{C(U,2U7), O(U3U7), C(U4U,7), C(U5U7)} \ {Cl, C3, Cy4, 06}| = 4. (311)

Now we consider the color of the edge uguz. If Clusur) ¢ {ci1,cs,ca,cs, co,
c7}, then vugususuguruguy is a rainbow path of length 7; if C'(uguy) = c5, then
UsU4U3VUgUTU2U 1S a Tainbow path of length 7, a contradiction. So we get from
the inequality(3.11) that C'(uqur) = ¢7 (see Figure 3.14).

On the other hand, ujususvugusuy is a rainbow path of length 6 with the color
set {¢y, ¢2, ¢4, 5, ¢7, cs }, 50 we have that there exists a vertex w € {us, uy, us, ug, v}
such that the edge uyw exists and C(ujw) ¢ {c1, co, c3, 4, 5, C7, cg} since d(uy) >
8. It is easy to check from Figure 3.14 that if the edge wjus has a color not
belonging to the color set {cy, co, 3, 4, 5, ¢7, c }, then uyususurvugusuy is a rain-
bow path of length 7; if the edge u;u, exists and has a color not belonging to
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Figure 3.13 Figure 3.14

the color set {cy, co,c3, ¢4, C5, C7, cs}, then uyusuzusuzvugus is a rainbow path of
length 7; if the edge ujus exists and has a color not belonging to the color set
{c1, ¢, c3, ¢4, C5, C7, Cs }, then ugususuzusurvug is a rainbow path of length 7; if the
edge ujug has a color not belonging to the color set {c, ¢o, 3, ¢4, 5, ¢7, cg}, then
UL UgU5ULU3U2U7V 1S a Tainbow path of length 7; if the edge u v exists and has a
color not belonging to the color set {cy, co, ¢3, ¢4, ¢5, ¢7, ¢}, then uvuruuzusUsUgG
is a rainbow path of length 7, a contradiction.

Case 2.2.1.3 ; = 4 and x5 = 6 (see Figure 3.15).

Then we can get from Proposition 2.2 that {C'(u410") : v" € N(w1)\V(P)}N
{es,e5} = 0. So CN(uy1) € {Clujug) : 1 <5 <6 and u; € N(ur) }U{C(u41?) :
v € N(u) \V(P)} € {C(ujur) : 1 < j <5and u; € N(ur)} U{c1,co,cq,c6}
Since |C'N(uz)| > 8, this implies that

{C(ujuz) : 1 <j<5andu; € N(uz)} \ {c1, o, 4,6} > 4. (3.12)

Note that if the edge ujur exists and C(ujur) = c3, then vuzusuiurugusuy is
a rainbow path of length 7; if C(uju7) = c5, then vuguruiusugusus is a rainbow
path of length 7, a contradiction. So we can get from Claim 2 and the inequality
(3.12) that all the four edges uour, usur, usur, usuy exist and

|{C(UQU7), C(U3U7>, C(U4U7), C(U5U7)} \ {Cl, Co, C4, C6}| = 4, (313)
CN(U7) = {C<U2U7), C(U3U7), C(U4U7), C(U5U,7)} U {Cl, Co, C4, 06}. (314)
If C(ujuy) # c7, then vuzusuiususuguy is a rainbow path of length 7, a con-

tradiction. So we have C'(ujuy) = ¢7 and then C(uyug) ¢ {c1, o, 3, €4, C5, 6, C7}
because x1 = 4, x5 = 6 and from the way we choose x1, xs.

If the edge ujur exists and C(ujuy) = o, then vugususuguruius is a rainbow
path of length 7, a contradiction. So we can conclude from the equations (3.13)
and (3.14) that there exists a vertex v & {uy,us, ug, uy, us, ug, ur} such that
C(uzv') = co (see Figure 3.16). Then, ujugususuzvusv’ is a rainbow path of
length 7, a contradiction.

So, in the case k = 8, there always is a rainbow path of length 7 in G.
Case 2.2.2 k =11, then [ = 8.

Denote cg = C(uy,v1), c10 = C(uy,v1) and c13 = C(uy,v1).
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C(uyug) & {c1,¢2,...,07}
Figure 3.15 Figure 3.16

By the two equations (3.6) and (3.7), we have 11 = k < |ON(uj41)| < (I —
D4+0—=2(jo—1)—2(k—1—jo—1)—2) =4l — 2k + 1 = 11. So we shall only

consider the case when all the edges ujug, usuy, . . ., urug exist and
{C(urug), C(usuy), . .., Clurug) }| =17, (3.15)
{Cuug), Cluguy), . .., Clurug)} N (C(P)\ ({€ay-1, Cay—1, Cag—1}
U{Cyrs Cyrtts -+ o5 Cyjy—15 Cyyins Cujgpatls - -+ Cyg—11)) = 0, (3.16)
CN(UQ) = {C<U1U9)a C(u2u9)> SRR C(UﬂLg)} U (C(P> \ ({CCUI*l’ Cao—1, CIS*l}
U {Cyv Cyi+1y -+ 7Cyj0—17 Cyj0+17 Cyj0+1+1> s 7Cy3—l}))7 (317)
|{C$1—17 Cap—1; 0963—1} \ {Cy17 Cyr+15 - -+ Cyjo—15 Cyjo 415 Cyjgpa+1s - - - 7Cy3—1}| =2.
(3.18)

Now we distinguish the following two cases according to jo:

Case 2.2.2.1 jo =1, then y; = 3, y» = 6 and y3 = 8 (see Figure 3.17)

In this case {cy,,cy11,- -+, Cyiy—1 Cyj 15 Cysgiatir 1 Cys—1} = {C6,C7}. SO

we can easily get that {c;,_1,¢u-1} N {cs,cr} = 0 and c,e1 € {cg,c7} since
3<x <z +1<z9 <29+ 1 <23 <8 and from equation (3.18). Then we have
{C(uyug), C(uguy), . .., C(urug) } N ({c1, ca, €3, 4, 5,8} \ {Cay—1, Can—1}) = 0 from
the equation (3.16). So, C(ujug) € {Cs,—1,Cey—1,C6,C7} C {c2,¢3,C4,C5,¢6,07}
because of Claim 2 and the equations (3.15) and (3.16). It is easy to check in
Figure 3.17 that if the edge ujug has color ¢y, then vusususuguruguguius is a rain-
bow path of length 9; if the edge u;ug has color c3, then ususuguruguguusuzv is
a rainbow path of length 9; if the edge ujug has color c¢5, then vugurugugu,
usuzuguy is a rainbow path of length 9; if the edge wiug has color cg, then
UrUgUgU1 U U3 U4 U5 UGV 1S & Tainbow path of length 9; if the edge ujug has color ¢,
then vuguguiususususuguy is a rainbow path of length 9, a contradiction. So it
remains us to consider the case when C(ujug) = ¢4 and 5 € {zq, x2}.

Then 4 ¢ {1, 2} since C(ujug) € {¢s,-1,Cay-1,¢, 7t and 3 < x; < z1+1<
Ty < kg +1 < 3 < 8. Therefore, we can get from the equations (3.16) and (3.17)
that there exists a vertex v’ ¢ V(P) such that C(ugv’) = c3 (see Figure 3.18).
Now usugurugviuzustiugt’ is a rainbow path of length 9, a contradiction.

Case 2.2.2.2 j, = 2, then y; = 3, y» = 5 and y3 = 8 (see Figure 3.20).

In this case {cy,, Cyy 415+ -5 Cyy =1, Cyio g1 Cyjgirt1s -+ -5 Cys—1} = {C3,Caf. So We
can easily get that xry = 3, 2o = 5 and 23 = 7, or ;1 = 3, x5 = 5 and
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Figure 3.19 Figure 3.20

r3 = 8, or xr1 = 4, 19 = 6 and x3 = 8, since 3 < 1 < 1+ 1 < 13 <
ze +1 < x3 < 8 and form equation (3.18). On the other hand, we have that
C(urug) € {cs3,CayCai—1,Coy—1,Cas—1} C {c2,¢3,c4,c5,¢6,¢7} because of Claim 2
and the equations (3.15) and (3.16). It is easy to check in Figure 3.20 that if the
edge ujug has color ¢y, then vuzususuguruguguyus is a rainbow path of length 9; if
the edge uiug has color c3, then ususuguruguguiususv is a rainbow path of length
9; if the edge ujug has color ¢4, then vusuguruguguiusuzuy is a rainbow path of
length 9; if the edge ujug has color cs, then uguruguguiususususv is a rainbow
path of length 9; if the edge ujug has color c¢7, then vuguguiusus ususugur is a
rainbow path of length 9, a contradiction. So it remains us to consider the case
when C(ujug) = cg and ¢ € {Czy—1, Cay—1, Caz—1}-

Then we can conclude that ;7 = 3, 3 = 5, and z3 = 7 since C(ujug) €
{e3,¢4,Co,-1,Cop1,Cos1}and 3 <z < 274+1 < 29 < x9+1 < 3 < 8. Therefore,
we can get from the equations (3.16) and (3.17) that there exists a vertex v’ ¢
V(P) such that C'(ugve) = c5 (see Figure ??7). Now wurugvususuzusuiugv’ is a
rainbow path of length 9, a contradiction.

So, in the case k = 11, there always is a rainbow path of length 9 in G, a
contradiction.

Up to now, from all the above contradictions we can conclude that if d°(v) >
k > 7 for any vertex v € V(G), then G has a rainbow path of length at least
[(2k)/3] +1in G. |

4. Remarks

In this paper, we consider long rainbow paths in edge-colored general graphs.
However, if we restrict graphs to properly edge-colored complete graphs, this is
an important topic in combinatorial design [12].
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If GG is a properly edge-colored complete graph with n vertices, then any vertex
v in G has color degree k = n — 1. Therefore, by Theorem 3.3, we can get the
following conclusion.

Corollary 4.1 In every proper edge-coloring of K, there exists a rainbow path
of length at least [(2n +1)/3].

This improves the result of [12], since in [12], Gyérfds and Mhalla claimed that
there exists a rainbow path with at least [(2n + 1)/3] vertices, i.e., a rainbow
path of length at least [(2n + 1)/3] — 1.
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