Color degree condition for long rainbow paths in edge-colored graphs*

He Chen ${ }^{1}$ and Xueliang Li ${ }^{2}$
${ }^{1}$ Department of Mathematics, Southeast University, Nanjing, 210096, China
chenhe@seu.edu.cn
${ }^{2}$ Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
lxı@nankai.edu.cn

Abstract

Let G be an edge-colored graph. A rainbow (heterochromatic, or multicolored) path of G is such a path in which no two edges have the same color. Let the color degree of a vertex v to be the number of different colors that are used on edges incident to v, and denote it by $d^{c}(v)$. In a previous paper, we showed that if $d^{c}(v) \geq k$ (color degree condition) for every vertex v of G, then G has a rainbow path of length at least $\lceil(k+1) / 2\rceil$. Later, in another paper we first showed that if $k \leq 7, G$ has a rainbow path of length at least $k-1$, and then, based on this we used induction on k and showed that if $k \geq 8$, then G has a rainbow path of length at least $\lceil(3 k) / 5\rceil+1$. In 2010, Gyárfás and Mhalla showed that in any proper edge-colored complete graph K_{n}, there is a rainbow path with no less than $(2 n+1) / 3$ vertices. In the present paper, by using a simpler approach we further improve the result by showing that if $k \geq 8, G$ has a rainbow path of length at least $\lceil(2 k) / 3\rceil+1$.

Keywords: edge-colored graph, color degree, color neighborhood, rainbow (heterochromatic, or multicolored) path.

AMS Subject Classification (2000): 05C38, 05C15

1. Introduction

We use Bondy and Murty [3] for terminology and notation not defined here and consider simple graphs only.

[^0]Let $G=(V, E)$ be a graph. By an edge-coloring of G we mean a function $C: E \rightarrow \mathbb{N}$, the set of natural numbers. If G is assigned such a coloring, then we say that G is an edge-colored graph. Denote the colored graph by (G, C), and call $C(e)$ the color of an edge $e \in E$. A subgraph is called rainbow (heterochromatic, or multicolored) if any two edges of it have different colors. For a subgraph H of G, we denote $C(H)=\{C(e) \mid e \in E(H)\}$ and $c(H)=|C(H)|$. For a vertex v of G, the color neighborhood $C N(v)$ of v is defined as the set $\{C(e) \mid e$ is incident with $v\}$ and the color degree is $d^{c}(v)=|C N(v)|$, i.e., the number of different colors that are used on edges incident to v. Given a positive integer k, C is a k-good coloring if $d^{c}(v) \geq k$ for any vertex v of G. If u and v are two vertices on a path $P, u P v$ denotes the segment of P from u to v, whereas $v P^{-1} u$ denotes the same segment but from v to u.

There are many existing literature dealing with the existence of paths and cycles with special properties in edge-colored graphs. The rainbow Hamiltonian cycle or path problem was studied by Hahn and Thomassen [14], Rödl and Winkler (see [11]), Frieze and Reed [11], and Albert, Frieze and Reed [1]. In [2], Axenovich, Jiang and Tuza gave the range of the maximum k such that there exists a k-good coloring of $E\left(K_{n}\right)$ that contains no properly colored copies of a path with fixed number of edges, no rainbow copies of a path with fixed number of edges, no properly colored copies of a cycle with fixed number of edges and no rainbow copies of a cycle with fixed number of edges, respectively. In [9], Erdös and Tuza studied the rainbow paths in infinite complete graph K_{ω}. In [10], Erdös and Tuza studied the values of k, such that every k-good coloring of K_{n} contains a rainbow copy of F where F is a given graph with e edges $(e<n / k)$. In [15], Manoussakis, Spyratos and Tuza studied (s, t)-cycle in 2-edge-colored graphs, where (s, t)-cycle is a cycle of length $s+t$ and s consecutive edges are in one color and the remaining t edges are in the other color. In [16], Manoussakis, Spyratos, Tuza and Voigt studied conditions on the minimum number k of colors, sufficient for the existence of given types (such as families of internally pairwise vertex-disjoint paths with common endpoints, hamiltonian paths and hamiltonian cycles, cycles with a given lower bound of their length, spanning trees, stars, and cliques) of properly edge-colored subgraphs in a k-edge-colored complete graph. In [6], Chou, Manoussakis, Megalaki, Spyratos and Tuza showed that for a 2-edge-colored graph G and three specified vertices x, y and z, to decide whether there exists a color-alternating path from x to y passing through z is NP-complete. Many results in these papers were proved by using probabilistic methods.

In [2], Axenovich, Jiang and Tuza considered the local variation of antiRamsey problem. Namely, they studied the maximum k such that there exists a k-good edge-coloring of K_{n} containing no rainbow copies of a given graph H, and denoted by $g(n, H)$. They showed that for a fixed integer $k \geq 2$, $k-1 \leq g\left(n, P_{k+1}\right) \leq 2 k-3$, i.e., if K_{n} is edge-colored by a $(2 k-2)$-good coloring, then there must exist a rainbow path P_{k+1}, there exists a $(k-1)$-good coloring of K_{n} such that no rainbow path P_{k+1} exists.

In [4], the authors considered the long rainbow paths in general graphs with a k-good coloring and showed that if G is an edge-colored graph with $d^{c}(v) \geq k$ (color degree condition) for every vertex v of G, then G has a rainbow path of length at least $\lceil(k+1) / 2\rceil$. In [5], we first showed that if $3 \leq k \leq 7, G$ has a rainbow path of length at least $k-1$, and then, based on this we used induction on k and showed that if $k \geq 8$, then G has a rainbow path of length at least $\lceil(3 k) / 5\rceil+1$. In the present paper, by using a simpler approach we further improve the result by showing that if $k \geq 8, G$ has a rainbow path of length at least $\lceil(2 k) / 3\rceil+1$. This improves the result of [12], in which Gyárfás and Mhalla showed that in any properly edge-colored complete graph K_{n}, there is a rainbow path with no less than $(2 n+1) / 3$ vertices. Later, H. Gebauer, and F. Mousset showed in [13] that in any properly edge-colored complete graph K_{n}, there is a rainbow path with no less than $3 n / 4-o(n)$ vertices.

For more references on edge-colorings and cycles, see $[7,8,17,18,19]$.

2. Some properties of a longest rainbow path

In this section we will give some properties of a longest rainbow path. All these properties will help us to get better lower bounds of the length of a longest rainbow path.

Proposition 2.1 Let G be an edge-colored graph and suppose that $P=u_{1} u_{2} \ldots u_{l} u_{l+1}$ is a longest rainbow path, v be a vertex not belonging to the path P. For any integer $j, 2 \leq j \leq l-1$, if both the two edges $u_{j} v, u_{j+1} v$ exist, then $\mid\left\{C\left(u_{j} v\right), C\left(u_{j+1} v\right)\right\} \backslash$ $C(P) \mid \leq 1$.

Proof. By contradiction, if there exists an integer $j_{0}, 2 \leq j_{0} \leq l-1$, such that both the two edges $u_{j_{0}} v, u_{j_{0}+1} v$ exist and $\left|\left\{C\left(u_{j_{0}} v\right), C\left(u_{j_{0}+1} v\right)\right\} \backslash C(P)\right|=2$. Then $u_{1} P u_{y_{j}} v u_{y_{j_{0}}+1} P u_{l+1}$ is a rainbow path of length $l+1$, a contradiction.

Proposition 2.2 Let G be an edge-colored graph and suppose $P=u_{1} u_{2} \ldots u_{l} u_{l+1}$ is a longest rainbow path. If there exists an integer x such that $3 \leq x \leq l$ and $C\left(u_{1} u_{x}\right) \notin C(P)$, then for any vertex $v \in N\left(u_{l+1}\right) \backslash V(P)$, the color of the edge $u_{l+1} v$ is different from $C\left(u_{x-1} u_{x}\right)$.

Proof. By contradiction. If there exists a vertex $v \in N\left(u_{l+1}\right) \backslash V(P)$ such that $C\left(u_{l+1} v\right)=C\left(u_{x-1} u_{x}\right)$ (as shown in Figure 2.1), then $u_{x-1} P^{-1} u_{1} u_{x} P u_{l+1} v$ is a rainbow path of length $l+1$, a contradiction, which completes the proof.

Proposition 2.3 Let G be an edge-colored graph and suppose $P=u_{1} u_{2} \ldots u_{l} u_{l+1}$ is a longest rainbow path. If there exists a vertex $v \in N\left(u_{l+1}\right) \backslash V(P)$ and an integer $x(2 \leq x \leq l-2)$ such that $u_{x} v$ and $u_{x+2} v$ are edges of G and $\left|\left\{C\left(u_{x} v\right), C\left(u_{x+2} v\right)\right\} \backslash C(P)\right|=2$, then for any vertex $w \in N\left(u_{l+1}\right) \backslash(V(P) \cup\{v\})$, the color of the edge $u_{l+1} w$ is different from $C\left(u_{x} u_{x+1}\right)$ and $C\left(u_{x+1} u_{x+2}\right)$.

Figure 2.1

Figure 2.3

Figure 2.2

Figure 2.4

Proof. By contradiction. If there exists a vertex $w \in N\left(u_{l+1}\right) \backslash(V(P) \cup\{v\})$ such that $C\left(u_{l+1} w\right) \in\left\{C\left(u_{x} u_{x+1}\right), C\left(u_{x+1} u_{x+2}\right)\right\}$ (as shown in Figure 2.2), then $u_{1} P u_{x} v u_{x+2} P u_{l+1} w$ is a rainbow path of length $l+1$, a contradiction, which completes the proof.

Proposition 2.4 Let G be an edge-colored graph and $P=u_{1} u_{2} \ldots u_{l} u_{l+1} v$ be a path in G such that:
(a) $u_{1} P u_{l+1}$ is a longest rainbow path in G;
(b) $C\left(u_{l+1} v\right)=C\left(u_{j_{0}} u_{j_{0}+1}\right)$ for some integer j_{0} with $1 \leq j_{0} \leq l$.
(c) P was chosen so that j_{0} is minimum under the condition (b).

Then we have
(1) for any integer $x, j_{0}+1 \leq x \leq 2 j_{0}$, if the vertex u_{x} is adjacent to the vertex u_{1}, then the color of $u_{1} u_{x}$ must appear in P;
(2) for any integer $x, 2 j_{0} \leq x \leq l$, if both the vertices u_{x} and u_{x+1} are adjacent to the vertex u_{1}, then $\left|\left\{C\left(u_{1} u_{x}\right), C\left(u_{1} u_{x+1}\right)\right\} \backslash C(P)\right| \leq 1$.

Proof. (1) By contradiction. If there exists an integer x such that $j_{0}+1 \leq x \leq$ $2 j_{0}$, the vertex u_{x} is adjacent to the vertex u_{1} and the color of the edge $u_{1} u_{x}$ does not appear in $\mathrm{C}(\mathrm{P})$ (as shown in Figure 2.3), then $P^{\prime}=u_{x-1} P^{-1} u_{1} u_{x} P u_{l+1} v$ is a path satisfying that $u_{x-1} P^{\prime} u_{l+1}$ is a rainbow path of length l and $C\left(u_{l+1} v\right)=$ $C\left(u_{j_{0}+1} u_{j_{0}}\right)$ (note that $v \notin V\left(u_{x-1} P^{\prime} u_{l+1}\right)$), where $u_{j_{0}+1} u_{j_{0}}$ is the $\left(x-j_{0}-1\right)$-th edge in this rainbow path $u_{x-1} P^{\prime} u_{l+1}$. Since $x-j_{0}-1 \leq 2 j_{0}-j_{0}-1=j_{0}-1$, this contradicts the choice of P, which completes the proof of (1).
(2) By induction. If there exists an integer x such that $2 j_{0}+1 \leq x \leq l$, both the vertices u_{x} and u_{x+1} are adjacent to the vertex u_{1}, and the two edges $u_{1} u_{x}$ and $u_{1} u_{x+1}$ have distinct colors both of which do not appear in $C(P)$ (see Figure ??), then $P^{\prime \prime}=u_{2} P u_{x} u_{1} u_{x+1} P u_{l+1}$ is a path satisfying that $u_{2} P^{\prime \prime} u_{l+1}$ is a rainbow path of length l and $C\left(u_{l+1} v\right)=C\left(u_{j_{0}} u_{j_{0}+1}\right)$ (note that $\left.v \notin V\left(u_{2} P^{\prime \prime} u_{l+1}\right)\right)$ is the ($j_{0}-1$)-th edge in the rainbow path $u_{2} P^{\prime \prime} u_{l+1}$, contradicting the choice of P and completing the proof of (2).

3. New lower bounds for the length of a longest rainbow path

In this section we will give two better lower bound for the length of a longest rainbow path in G when $k \geq 8$. As an induction initial, we need the following result as a lemma.

Lemma 3.1 [5] Let G be an edge-colored graph and k ($3 \leq k \leq 7$) an integer. Suppose that $d^{c}(v) \geq k$ for every vertex v of G. Then G has a rainbow path of length at least $k-1$.

As we showed in [5], $k-1$ is the best lower bound of the length of a longest rainbow path. Therefore, we shall only consider the case when $k \geq 8$ now. We will begin this with an important Lemma.

Lemma 3.2 Let G be an edge-colored graph and suppose $d^{c}(v) \geq k \geq 8$ for every vertex $v \in V(G)$. If the length of a longest rainbow path in G is $l \leq\lceil(2 k) / 3\rceil$, then there is a path $P=u_{1} u_{2} \ldots u_{l} u_{l+1} v$ in G such that $u_{1} P u_{l+1}$ is a rainbow path of length l and $C\left(u_{l+1} v\right)=C\left(u_{1} u_{2}\right)$.

Proof. Let $P^{\prime}=w_{1} w_{2} \ldots w_{l} w_{l+1} s$ be a path in G such that
(a) $w_{1} P^{\prime} w_{l+1}$ is a rainbow path of length l;
(b) $C\left(w_{l+1} s\right)=C\left(w_{j_{0}} w_{j_{0}+1}\right)$ for some integer j_{0} with $1 \leq j_{0} \leq l$;
(c) P^{\prime} was chosen so that j_{0} is minimum under the condition (b).

Denote $c_{j}=C\left(w_{j} w_{j+1}\right), j=1,2, \ldots, l$. Now we will show that $j_{0}=1$ by contradiction, and then P^{\prime} is a path we want.

Suppose that $j_{0}>1$. First, we can easily get that $j_{0} \leq\lceil(l+1) / 2\rceil$, this is because $C N\left(w_{l+1}\right) \subseteq\left\{C\left(w_{j} w_{l+1}\right): 1 \leq j \leq l-1, w_{j} \in N\left(w_{l+1}\right)\right\} \cup\left\{c_{j_{0}}, c_{j_{0}+1}, \ldots, c_{l}\right\}$, and then $k \leq\left|C N\left(w_{l+1}\right)\right| \leq(l-1)+\left(l-j_{0}+1\right)=2 l-j_{0}$.

Since $w_{1} P^{\prime} w_{l+1}$ is a longest rainbow path in G, for any vertex $t \in N\left(w_{l+1}\right) \backslash$ $\left\{w_{1}, \ldots, w_{l+1}\right\}$ and any vertex $t^{\prime} \in N\left(w_{1}\right) \backslash\left\{w_{1}, \ldots, w_{l+1}\right\}$, the color of the edge $w_{l+1} t$ or the edge $w_{1} t^{\prime}$ must appear in P^{\prime}. This implies that there are at least $k-l$ different colors not in $C\left(P^{\prime}\right)$ appearing on some edges in the edge set $\left\{w_{1} t^{\prime}: t^{\prime} \in N\left(w_{1}\right) \cap\left\{w_{1}, \ldots, w_{l+1}\right\}\right\}$. In another words, there are $k-l$ different integers $x_{1}, x_{2}, \ldots, x_{k-l}$, such that $3 \leq x_{1}<x_{2}<\ldots<x_{k-l} \leq l+1$, $w_{x_{i}} \in N\left(w_{1}\right), 1 \leq i \leq k-l$, and the subgraph induced by the edge set $\left\{w_{1} w_{2}, w_{2} w_{3}, \ldots, w_{l} w_{l+1}, w_{1} w_{x_{1}}, w_{1} w_{x_{2}}, \ldots, w_{1} w_{x_{k-l}}\right\}$ is rainbow.

Now we consider the integer set $\left\{x_{1}, x_{2}, \ldots, x_{k-l}\right\}$. By Proposition 2.4, we can easily get that $\left\{j_{0}+1, j_{0}+2, \ldots, 2 j_{0}\right\} \cap\left\{x_{1}, x_{2}, \ldots, x_{k-l}\right\}=\emptyset$ and if $2 j_{0}+1 \leq l$, then for any integer $x, 2 j_{0}+1 \leq x \leq l$, at most one of $\{x, x+1\}$ belongs to $\left\{x_{1}, \ldots, x_{k-l}\right\}$. Using these two facts, we can get that $k-1 \leq\lceil(l+1) / 2\rceil-2$. We will show this in the following three cases:

$j_{0}=2$

Figure 3.1

Case 1. $2 j_{0}+1 \leq l$.
In this case, $k-l \leq\left(j_{0}-2\right)+\left\lceil\left(l-2 j_{0}+1\right) / 2\right\rceil=\lceil(l+1) / 2\rceil-2$.
Case 2. $2 j_{0}+1=l+1$, i.e. $l=2 j_{0}$.
In this case, $\left\{x_{1}, x_{2}, \ldots, x_{k-l}\right\} \subseteq\left\{3,4, \cdots, j_{0}, l+1\right\}$, so we have $k-l \leq$ $j_{0}-2+1=1 / 2-1=\lceil(l+1) / 2\rceil-2$ (the last equation holds because l is even).

Case 3. $2 j_{0}+1>l+1$, i.e. $j_{0}>l / 2$.
In this case, $\left\{x_{1}, x_{2}, \ldots, x_{k-l}\right\} \subseteq\left\{3,4, \cdots, j_{0}\right\}$, so we have $k-l \leq j_{0}-2 \leq$ $\lceil(l+1) / 2\rceil-2$.

Therefore we shall only consider the case when $k \equiv 2(\bmod 3)$ (note that in this case l is even) and $\left\{x_{1}, x_{2}, \ldots, x_{k-l}\right\}$ is equal to $\left\{3, \ldots, j_{0}, 2 j_{0}+1,2 j_{0}+\right.$ $3, \ldots, l-1, l+1\}$ if $j_{0} \geq 3$, or $\left\{2 j_{0}+1,2 j_{0}+3, \ldots, l-1, l+1\right\}$ if $j_{0}=2$ (as shown in Figure 3.1).

By the fact that $w_{2 j}\left(P^{\prime}\right)^{-1} w_{1} w_{2 j+1} P^{\prime} w_{l+1}$ is a rainbow path of length l for any integer $j, j \in\left\{j_{0}, j_{0}+1, \ldots, l / 2\right\}$, and the choice of P^{\prime}, we have that $\left\{C\left(w_{l+1} t\right)\right.$: $\left.t \in N\left(w_{l+1}\right) \backslash P^{\prime}\right\}=\left\{c_{j_{0}}\right\}$. Now $C N\left(w_{l+1}\right)=\left\{C\left(w_{l+1} t\right): t \in N\left(w_{l+1}\right) \cap P^{\prime}\right\} \cup\left\{c_{j_{0}}\right\}$, so $d^{c}\left(w_{l+1}\right)=\left|C N\left(w_{l+1}\right)\right| \leq l+1<k$, a contradiction, which concludes that $j_{0}=1$, and P^{\prime} is the path we want.

By using this lemma, we can easily get a better lower bound of the length of a longest rainbow path.

Theorem 3.3 Let G be an edge-colored graph. If $d^{c}(v) \geq k \geq 7$ for any vertex $v \in V(G)$, then G has a rainbow path of length at least $\lceil(2 k) / 3\rceil$.

Proof. By contradiction. Suppose a longest rainbow path in G has a length $l \leq\lceil(2 k) / 3\rceil-1$.

Since $l \leq\lceil(2 k) / 3\rceil-1<\lceil(2 k) / 3\rceil$, we can get by Lemma 3.2 that there exists a longest rainbow path $P=u_{1} u_{2} \cdots u_{l} u_{l+1}$ and a vertex $v \notin V(P)$ such that $C\left(u_{l+1} v\right)=C\left(u_{1} u_{2}\right)$.

Notice that $u_{2} P u_{l+1} v$ is also a rainbow path of length l, i.e., a longest rainbow path. Therefore, for any vertex $u \notin\left\{u_{2}, u_{3}, \cdots, u_{l}\right\}, C(v u) \in C(P)$. Without loss of generality, suppose that $\left|\left\{C\left(u_{x_{1}} v\right), C\left(u_{x_{2}} v\right), \cdots, C\left(u_{x_{t}} v\right)\right\} \backslash C(P)\right|=\mid C N(v) \backslash$ $C(P) \mid=t$ where $2 \leq x_{1}<x_{2}<\cdots<x_{t} \leq l$.

By Lemma 2.1, we have that $x_{j+1}-x_{j}>1$ for any $1 \leq j \leq t-1$. Then

$$
t \leq\left\lceil\frac{l-1}{2}\right\rceil \leq \frac{l}{2}
$$

On the other hand, $C N(v) \subseteq C(P) \cup\left\{C\left(u_{x_{1}} v\right), C\left(u_{x_{2}} v\right), \cdots, C\left(u_{x_{t}} v\right)\right\}$. Therefore, $k \leq d^{c}(v) \leq l+t$. This implies that

$$
t \geq k-l
$$

From the two inequations above, we can get that $k-l \leq t \leq l / 2$. So $l \geq(2 k) / 3$, a contradiction. Therefore, G has a rainbow path of length at least $\lceil(2 k) / 3\rceil$.

In the remaining part of this section, we will show that under the color degree condition, the length of a longest rainbow path is at least $\lceil(2 k) / 3\rceil+1$.

Theorem 3.4 Let G be an edge-colored graph. If $d^{c}(v) \geq k \geq 7$ for any vertex $v \in V(G)$, then G has a rainbow path of length at least $\lceil(2 k) / 3\rceil+1$.

Proof. We will prove the theorem by induction on k.
If $k=7$, our Lemma 2.1 guarantees that G has a rainbow path of length at least 6 , where $6=\lceil(2 \times 7) / 3\rceil+1$.

So we may assume that $k \geq 8$ and that the result holds for all smaller values of k.

Now we need only to show that if $d^{c}(v) \geq k$ for any $v \in V(G), G$ has a rainbow path of length $\lceil(2 k) / 3\rceil+1$. By the assumption, we know that G has a rainbow path of length $\lceil(2(k-1)) / 3\rceil+1$, which is equal to $\lceil(2 k / 3)\rceil+1$ when $k \equiv 0$ $(\bmod 3)$, and $\lceil(2 k) / 3\rceil$ otherwise. So if $k \equiv 0(\bmod 3)$, we are done. Therefore, the rest is only to show that if $k \equiv 1,2(\bmod 3), G$ has a rainbow path of length $\lceil(2 k) / 3\rceil+1$. We will show this by contradiction.

Assume that a longest rainbow path in G is of length $l=\lceil(2 k) / 3\rceil$. Then we have that $k-l \geq 2$, and we can get by Lemma 3.2 that G has a rainbow path $P=u_{1} u_{2} \ldots u_{l} u_{l+1}$ and there exists a vertex $v \in N\left(u_{l+1}\right) \backslash V(P)$ such that $C\left(u_{l+1} v\right)=C\left(u_{1} u_{2}\right)$. Denote $c_{j}=C\left(u_{j} u_{j+1}\right), j=1,2, \ldots, l$.

Since $d^{c}(v) \geq k, d^{c}\left(u_{1}\right) \geq k$, and the two paths P and $u_{2} P u_{l+1} v$ are both rainbow paths of length l, we have that there are at least $k-l$ different colors not belonging to the color set $C(P)$ appearing in the edge set $\left\{C\left(u_{1} u_{j}\right): 3 \leq\right.$ $j \leq l+1$, and $\left.u_{j} \in N\left(u_{1}\right)\right\}$, and there are also at least $k-l$ different colors not belonging to the color set $C(P)$ appearing in the color set $\left\{C\left(u_{j} v\right): 2 \leq\right.$ $j \leq l$, and $\left.u_{j} \in N(v)\right\}$. So we can conclude that there exist two integer sets

Figure 3.2

Figure 3.3

Figure 3.4
$\left\{x_{1}, x_{2}, \ldots, x_{k-l}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{k-l}\right\}$, such that $3 \leq x_{1}<x_{2}<\ldots<x_{k-l} \leq l+$ $1,2 \leq y_{1}<y_{2}<y_{3}<\ldots<y_{k-l} \leq l, u_{x_{i}} \in N\left(u_{1}\right)(i=1,2, \ldots, k-l), u_{y_{j}} \in N(v)$ $(j=1,2, \ldots, k-l)$, and $\left|\left\{C\left(u_{1} u_{x_{1}}\right), C\left(u_{1} u_{x_{2}}\right), \ldots, C\left(u_{1} u_{x_{k-l}}\right)\right\} \backslash C(P)\right|=k-l$, $\left|\left\{C\left(u_{y_{1}} v\right), C\left(u_{y_{2}} v\right), \ldots, C\left(u_{y_{k-l}} v\right)\right\} \backslash C(P)\right|=k-l$.

Note that we can easily get the following three claims:
Claim 1 For any integer $i, 3 \leq i \leq l$, if both the two edges $u_{1} u_{i}, u_{1} u_{i+1}$ exist, then $\left|\left\{C\left(u_{1} u_{i}\right), C\left(u_{1} u_{i+1}\right)\right\} \backslash C(P)\right| \leq 1$.

Otherwise, there exists an integer $i_{0}, 3 \leq i_{0} \leq l$, such that both the two edges $u_{1} u_{i_{0}}, u_{1} u_{i_{0}+1}$ exist and $\left|\left\{C\left(u_{1} u_{i_{0}}\right), C\left(u_{1} u_{i_{0}+1}\right)\right\} \backslash C(P)\right|=2$ (see Figure 3.2). Then $u_{2} P u_{i_{0}} u_{1} u_{i_{0}+1} P u_{l+1} v$ is a rainbow path of length $l+1$, a contradiction.

Claim 2 If the edge $u_{1} u_{l+1}$ exists, then the color of the edge must appear in P.

Otherwise, we have that the edge $u_{1} u_{l+1}$ exists and the color of it is not contained in $C(P)$. Since $k-l \geq 2$, there exists an integer $j^{\prime}, 1 \leq j^{\prime} \leq k-l$ such that $C\left(u_{y_{j^{\prime}}} v\right) \neq C\left(u_{1} u_{l+1}\right)$ (see Figure 3.3). Then $v u_{y_{j^{\prime}}} P u_{l+1} u_{1} P u_{y_{j^{\prime}}-1}$ is a rainbow path of length $l+1$, a contradiction.

Claim 3 If the edge $u_{2} v$ exists, then the color of the edge must appear in P.
Otherwise, we have that the edge $u_{2} v$ exists and the color of it is not contained in the color set $C(P)$. Since $k-l \geq 2$, there exists an integer $i^{\prime}, 1 \leq i^{\prime} \leq k-l$, such that $C\left(u_{1} u_{x_{i^{\prime}}}\right) \neq C\left(u_{2} v\right)$ (see Figure 3.4). Then $u_{x_{i^{\prime}-1}} P^{-1} u_{2} v u_{l+1} P^{-1} u_{x_{i^{\prime}}} u_{1}$ is a rainbow path of length $l+1$, a contradiction.

From the four claims above, we can get that $3 \leq x_{1}<x_{1}+1<x_{2}<x_{2}+1<$ $\ldots<x_{k-l} \leq l$ and $3 \leq y_{1}<y_{1}+1<y_{2}<y_{2}+1<\ldots<y_{k-l} \leq l$.

Now we distinguish the following two cases:
Case 1. $k \equiv 1(\bmod 3)$. (Then $l=\lceil(2 k) / 3\rceil=(2 k+1) / 3$ must be odd.)
Since $3 \leq y_{1}<y_{1}+1<y_{2}<y_{2}+1<\ldots<y_{k-l} \leq l$, we have $2(k-l-1) \leq$ $y_{k-l}-y_{1} \leq l-3$. On the other hand, we have $2(k-l-1)=l-3$. This implies that $\left\{y_{1}, y_{2}, \ldots, y_{k-l}\right\}=\{3,5, \ldots, l-2, l\}$. Then by Proposition 2.3, we can conclude that $\left\{c_{3}, c_{4}, \ldots, c_{l-2}, c_{l}\right\} \cap\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\}=\emptyset$. So $C N\left(u_{l+1}\right) \subseteq\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \cap V(P)\right\} \cup\left\{c_{1}, c_{2}, c_{l}\right\}=\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in\right.$ $\left.N\left(u_{l+1}\right) \cap V(P)\right\} \cup\left\{c_{1}, c_{2}\right\}$, and hence we get that $d^{c}\left(u_{l+1}\right)=\left|C N\left(u_{l+1}\right)\right| \leq l+2<$ k (the last inequality holds because $k \geq 8, k \equiv 1(\bmod 3)$ and $l=(2 k+1) / 3)$ a contradiction.

Case 2. $k \equiv 2(\bmod 3)$. (Then $l=\lceil(2 k) / 3\rceil=(2 k+1) / 3$ must be even.)
Since $3 \leq y_{1}<y_{1}+1<y_{2}<y_{2}+1<\ldots<y_{k-l} \leq l$, we have $2(k-l-1) \leq$ $y_{k-l}-y_{1} \leq l-3$. On the other hand, we have $2(k-l-1)=(l-3)-1$. Then we can conclude that $y_{j+1}=y_{j}+2$ for $j=1,2, \ldots, k-l-1$ or there exists an integer j_{0} such that $1 \leq j_{0} \leq k-l-1, y_{j_{0}+1}=y_{j_{0}}+3$, and $y_{j+1}=y_{j}+2$ for any $1 \leq j \leq k-l-1$ and $j \neq j_{0}$.

Case $2.1 y_{j+1}=y_{j}+2$ for $j=1,2, \ldots, k-l-1$.
Now we have $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \cap\left\{c_{y_{1}}, c_{y_{1}+1}, c_{y_{2}}, c_{y_{2}+1}, \ldots\right.$, $\left.c_{y_{k-l}-1}\right\}=\emptyset$ by Proposition 2.3, and $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \cap\left\{c_{x_{1}-1}\right.$, $\left.c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\}=\emptyset$ by Proposition 2.2. Therefore, $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash\right.$ $V(P)\} \subseteq C(P) \backslash\left(\left\{c_{y_{1}}, c_{y_{1}+1}, c_{y_{2}}, \ldots, c_{y_{k-l}-1}\right\} \cup\left\{c_{x_{1}-1}, c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\}\right)$, since P is a longest rainbow path.

Notice that $y_{j+1}=y_{j}+2$ for $j=1,2, \ldots, k-l-1$ and $3 \leq x_{1}<x_{1}+1$ $<x_{2}<\ldots<x_{k-l} \leq l$. Then we have $\left(y_{k-l}-1\right)-y_{1}=2(k-l-1)-1<$ $2(k-l-1) \leq\left(x_{k-l}-1\right)-\left(x_{1}-1\right)$. This implies that $\left\{c_{x_{1}-1}, c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\} \backslash$ $\left\{c_{y_{1}}, c_{y_{1}+1}, c_{y_{2}}, \ldots, c_{y_{k-l}-1}\right\} \neq \emptyset$. So we get

$$
\begin{align*}
k \leq & d^{c}\left(u_{l+1}\right)=\left|C N\left(u_{l+1}\right)\right| \\
\leq & \left|\left\{c_{1}, c_{2}, \ldots, c_{l}\right\} \backslash\left(\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{k-l}-1}\right\} \cup\left\{c_{x_{1}-1}, c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\}\right)\right| \\
& \quad+\mid\left\{C\left(u_{l+1} u_{j}\right): 1 \leq j \leq l-1 \text { and } u_{j} \in N\left(u_{l+1}\right)\right\} \mid \\
\leq & (l-2(k-l-1)-1)+(l-1)=4 l-2 k \tag{3.1}
\end{align*}
$$

Since if $k \equiv 2(\bmod 3)$ and $k>8$, then $4 l-2 k<k$, a contradiction. So we shall only consider the case when $k=8$.

If $k=8$, we have $l=(2 k+1) / 3=6$, then we have $y_{1}=3, y_{2}=5$ or $y_{1}=4, y_{2}=6$. Denote $c_{7}=C\left(u_{y_{1}} v_{1}\right), c_{8}=C\left(u_{y_{2}} v_{1}\right)$. On the other hand, since $4 l-2 k=8=k$, from equation (3.1) the only case we need to consider is the case when all the edges $u_{1} u_{l+1}, u_{2} u_{l+1}, \ldots, u_{l-1} u_{l+1}$ exist and

$$
\begin{align*}
& C N\left(u_{l+1}\right)=\left(\left\{c_{1}, c_{2}, \ldots, c_{l}\right\} \backslash\left(\left\{c_{y_{1}}, c_{y_{1}+1}\right\} \cup\left\{c_{x_{1}-1}, c_{x_{2}-1}\right\}\right)\right) \\
& \cup\left\{C\left(u_{l+1} u_{j}\right): 1 \leq j \leq l-1 \text { and } u_{j} \in N\left(u_{l+1}\right)\right\}, \tag{3.2}\\
& \left|\left\{c_{x_{1}-1}, c_{x_{2}-1}\right\} \backslash\left\{c_{y_{1}}, c_{y_{1}+1}\right\}\right|=1, \tag{3.3}\\
& \mid\left\{C\left(u_{l+1} u_{j}\right): 1 \leq j \leq l-1 \text { and } u_{j} \in N\left(u_{l+1}\right)\right\} \mid=l-1, \tag{3.4}\\
& \left\{C\left(u_{1} u_{l+1}\right), C\left(u_{2} u_{l+1}\right), \ldots, C\left(u_{l-1} u_{l+1}\right)\right\} \\
& \cap\left(C(P) \backslash\left(\left\{c_{y_{1}}, c_{y_{1}+1}\right\} \cup\left\{c_{x_{1}-1}, c_{x_{2}-1}\right\}\right)\right)=\emptyset . \tag{3.5}
\end{align*}
$$

Case 2.1.1 $y_{1}=3$ and $y_{2}=5$ (see Figure 3.5).
Then by equation (3.3), we need only to consider the cases when $x_{1}=3$ and $x_{2}=5$, or $x_{1}=4$ and $x_{2}=6$. Now we can conclude by Claim 2 and equations (3.4), (3.5) that $C\left(u_{1} u_{7}\right) \in\left\{c_{2}, c_{3}, c_{4}\right\}$ if $x_{1}=3, x_{2}=5$, and $C\left(u_{1} u_{7}\right) \in\left\{c_{3}, c_{4}, c_{5}\right\}$ if $x_{1}=4, x_{2}=6$. It is easy to check from Figure 3.5 that if $C\left(u_{1} u_{7}\right)=c_{3}$ or c_{5}, then $u_{4} u_{5} v u_{3} u_{2} u_{1} u_{7} u_{6}$ is a rainbow path of length 7 ; if $C\left(u_{1} u_{7}\right)=c_{2}$ or c_{4}, then

Figure 3.5
Figure 3.6
Figure 3.7
$u_{4} u_{3} v u_{5} u_{6} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 . In another words, there always is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.1.2 $y_{1}=4$ and $y_{2}=6$ (see Figure 3.6).
Then by equation (3.3), we need only to consider the cases when $x_{1}=3$ and $x_{2}=5$, or $x_{1}=3$ and $x_{2}=6$, or $x_{1}=4$ and $x_{2}=6$.

Now we can conclude by Claim 2 and equations (3.4), (3.5) that $C\left(u_{1} u_{7}\right) \in$ $\left\{c_{2}, c_{4}, c_{5}\right\}$ if $x_{1}=3, x_{2}=5$ or $x_{1}=3, x_{2}=6$, and $C\left(u_{1} u_{7}\right) \in\left\{c_{3}, c_{4}, c_{5}\right\}$ if $x_{1}=4, x_{2}=6$.

It is easy to check from Figure 3.6 that if $C\left(u_{1} u_{7}\right)=c_{3}$ or c_{5}, then $u_{5} u_{4} v u_{6} u_{7} u_{1} u_{2} u_{3}$ is a rainbow path of length 7 ; if $C\left(u_{1} u_{7}\right)=c_{4}$, then $u_{5} u_{6} v u_{4} u_{3} u_{2} u_{1} u_{7}$ is a rainbow path of length 7 , a contradiction. It remains us to consider the case when $C\left(u_{1} u_{7}\right)=c_{2}$ (see Figure 3.7), and $3 \in\left\{x_{1}, x_{2}\right\}$ only.

Then we have $x_{1}=3, x_{2}=5$, or $x_{1}=3, x_{2}=6$. So $\mid\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right)\right.$, $\left.C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \mid=4$ and $\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right), C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \cap\left\{c_{1}, c_{3}, c_{4}, c_{5}\right.$, $\left.c_{6}\right\} \subseteq\left\{c_{4}, c_{5}\right\}$, since $C\left(u_{1} u_{7}\right)=c_{2}$ and because of the equations (3.2), (3.4), (3.5). So the edge $u_{3} u_{7}$ is in color c_{4}, or color c_{5}, or some color not appearing in P. It is easy to check from Figure 3.7 that if the edge $u_{3} u_{7}$ is in color c_{4}, then $u_{2} u_{1} u_{7} u_{3} u_{4} v u_{6} u_{5}$ is a rainbow path of length 7 ; if $C\left(u_{3} u_{7}\right)=c_{5}$, then $u_{5} u_{4} v u_{6} u_{7} u_{3} u_{2} u_{1}$ is a rainbow path of length 7 ; if $C\left(u_{3} u_{7}\right)=c_{7}$, then $u_{2} u_{1} u_{7} u_{3} u_{4} u_{5}$ $u_{6} v$ is a rainbow path of length 7 ; if the edge $u_{3} u_{7}$ is in a color not belonging to the color set $\left\{c_{1}, c_{2}, \ldots, c_{7}\right\}$, then $v u_{4} u_{5} u_{6} u_{7} u_{3} u_{2} u_{1}$ is a rainbow path of length 7 . So there always is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.2 There exists an integer j_{0} such that $1 \leq j_{0} \leq k-l-1, y_{j_{0}+1}=y_{j_{0}}+3$, and $y_{j+1}=y_{j}+2$ for any $1 \leq j \leq k-l-1$ and $j \neq j_{0}$.

Then we have $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \cap\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}\right.$, $\left.c_{y_{j_{0}+1}+1}, \ldots, c_{y_{k-l}-1}\right\}=\emptyset$ by Lemma 2.3, and $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \cap$ $\left\{c_{x_{1}-1}, c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\}=\emptyset$ by Lemma 2.2. Therefore,

$$
\begin{align*}
C N\left(u_{l+1}\right)= & \left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \cap V(P)\right\} \cup \\
& \left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \\
\subseteq & \left\{C\left(u_{l+1} u_{j}\right): 1 \leq j \leq l-1 \text { and } u_{j} \in N\left(u_{l+1}\right)\right\} \cup \\
& \left(C (P) \backslash \left(\left\{c_{x_{1}-1}, c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\} \cup\right.\right. \\
& \left.\left.\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{k-l}-1}\right\}\right)\right) . \tag{3.6}
\end{align*}
$$

Since $3 \leq x_{1}<x_{1}+1<x_{2}<x_{2}+1<\ldots<x_{k-l-1}<x_{k-l-1}+1<x_{k-l} \leq l$, we can easily get that there are at most $\left(j_{0}-1\right)$ different integers $i(1 \leq i \leq k-l)$
such that x_{i} appears in the set $\left\{y_{1}, y_{1}+1, \ldots, y_{j_{0}}-1\right\}$ and at most $\left(k-l-j_{0}-1\right)$ different integers $i(1 \leq i \leq k-l)$ such that x_{i} appears in the set $\left\{y_{j_{0}+1}, y_{j_{0}+1}+\right.$ $\left.1, \ldots, y_{k-l}-1\right\}$. This implies that

$$
\begin{align*}
& \left|\left\{c_{x_{1}-1}, c_{x_{2}-1}, \ldots, c_{x_{k-l}-1}\right\} \backslash\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{k-l}-1}\right\}\right| \\
\geq & 2 . \tag{3.7}
\end{align*}
$$

Consequently, we have $k \leq\left|C N\left(u_{l+1}\right)\right| \leq(l-1)+\left(l-2\left(j_{0}-1\right)-2(k-l-\right.$ $\left.\left.j_{0}-1\right)-2\right)=4 l-2 k+1$. So we shall only consider the case when $k=8$ and the case when $k=11$, since if $k \equiv 2(\bmod 3)$ and $k>11$, then $4 l-2 k+1<k$, a contradiction.

Case 2.2.1 $k=8$. In this case, $l=6$ and $y_{1}=3, y_{2}=6$. Denote $c_{7}=C\left(u_{3} v\right)$ and $c_{8}=C\left(u_{6} v\right)$. We distinguish the following cases according to x_{1} and x_{2} :

Case 2.2.1.1 $x_{1}=3$ and $x_{2}=5$ (see Figure 3.8).
Then we can get from Proposition 2.2 that $\left\{C\left(u_{7} v^{\prime}\right): v^{\prime} \in N\left(u_{7}\right) \backslash V(P)\right\} \cap$ $\left\{c_{2}, c_{4}\right\}=\emptyset$. So $C N\left(u_{7}\right) \subseteq\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 6\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \cup\left\{C\left(u_{7} v^{\prime}\right):\right.$ $\left.v^{\prime} \in N\left(u_{7}\right) \backslash V(P)\right\} \subseteq\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 5\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \cup\left\{c_{1}, c_{3}, c_{5}, c_{6}\right\}$. Since $\left|C N\left(u_{7}\right)\right| \geq 8$, this implies that

$$
\begin{equation*}
\mid\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 5 \text { and } u_{j} \in N\left(u_{7}\right)\right\} \backslash\left\{c_{1}, c_{3}, c_{5}, c_{6}\right\} \mid \geq 4 . \tag{3.8}
\end{equation*}
$$

Now, we will consider the existence of the edge $u_{1} u_{7}$ in G and the color of it if it does exist.

Subcase 1 The edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{2}$.
It is obvious that $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 in this subcase, a contradiction.

Subcase 2 The edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{4}$ (see Figure 3.9).
In this case, $\left\{C\left(u_{j} u_{7}\right): 2 \leq j \leq 5\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \backslash\left\{c_{1}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\} \neq$ \emptyset, because of the inequality (3.8).

Subcase 2.1 There exists some $i \in\{2,4,5\}$ such that the edge $u_{i} u_{7}$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$.

It is easy to check in Figure 3.9 that if $i=2$, then $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{2} u_{1}$ is a rainbow path of length 7 ; if $i=4$, then $u_{5} u_{6} v u_{3} u_{4} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 ; if $i=5$, then $u_{4} u_{3} v u_{6} u_{5} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 , a contradiction.

Subcase 2.2 The edge $u_{3} u_{7}$ exists and the color of it does not belong to $\left\{c_{1}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$.

In this subcase, $u_{2} u_{1} u_{5} u_{4} u_{3} u_{7} u_{6} v$ is a rainbow path of length 7 if $C\left(u_{1} u_{5}\right)=c_{7}$. On the other hand, since $5=x_{2}$, so we may assume that $C\left(u_{1} u_{5}\right)=c_{8}$ (see Figure 3.10).

Since $u_{1} u_{2} u_{3} v u_{6} u_{5} u_{4}$ is a rainbow path of length 6 with the color set $\left\{c_{1}, c_{2}, c_{4}\right.$, $\left.c_{5}, c_{7}, c_{8}\right\},\left\{C\left(u_{1} w\right): w \in N\left(u_{1}\right) \cap\left\{u_{3}, u_{4}, u_{6}, v\right\}\right\} \backslash\left\{c_{1}, c_{2}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\} \neq \emptyset$. It is easy to check from Figure 3.10 that if the edge $u_{1} u_{4}$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $u_{5} u_{4} u_{1} u_{2} u_{3} v u_{6} u_{7}$ is a rainbow path of length 7 ; if the edge $u_{1} u_{6}$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $u_{2} u_{3} v u_{7} u_{6} u_{1} u_{5} u_{4}$ is a rainbow path of length 7 ; if the edge $u_{1} v$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $v u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$ is a rainbow path of length 7 ; if the edge $u_{1} v$ exists and the color of it is c_{3}, then $u_{2} u_{3} u_{1} v u_{7} u_{6} u_{5} u_{4}$ is a rainbow path of length 7 , a contradiction. So the edge $u_{1} u_{3}$ exists and is in a color not belonging to the color set $\left\{c_{1}, c_{2}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, which implies that the edge $u_{1} u_{3}$ is in a color not belonging to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$ since $3=x_{1}$. Denote $c_{9}=C\left(u_{1} u_{3}\right)$ (as shown in Figure 3.11).

From the analysis above, we now have $\left\{C\left(u_{1} w\right): w \in N\left(u_{1}\right) \cap\left\{u_{3}, u_{4}, u_{6}, v\right\}\right\} \subseteq$ $\left\{c_{1}, c_{2}, c_{4}, c_{5}, c_{6}, c_{7}, c_{8}, c_{9}\right\}$. On the other hand, because of the fact that P is a rainbow path of length 6 and Claim 1, we have $\left\{C\left(u_{1} w\right): w \in N\left(u_{1}\right) \cap\right.$ $\left.\left\{u_{3}, u_{4}, u_{6}, v\right\}\right\} \cap\left\{c_{7}\right\}=\emptyset$. So $\left\{C\left(u_{1} w\right): w \in N\left(u_{1}\right) \cap\left\{u_{3}, u_{4}, u_{6}, v\right\}\right\} \subseteq\left\{c_{1}, c_{2}, c_{4}\right.$, $\left.c_{5}, c_{6}, c_{8}, c_{9}\right\}$, and then $\left\{C\left(u_{1} w\right): w \in N\left(u_{1}\right) \cap\left\{u_{3}, u_{4}, \ldots, u_{6}, u_{7}, v\right\}\right\} \subseteq\left\{c_{1}, c_{2}, c_{4}\right.$, $\left.c_{5}, c_{6}, c_{8}, c_{9}\right\}$. Since $d^{c}\left(u_{1}\right) \geq 8$ and P is a rainbow path of length 6 , there exists a vertex $v^{\prime} \notin\left\{u_{1}, u_{2}, \ldots, u_{7}, v\right\}$ such that $C\left(u_{1} v^{\prime}\right)=c_{3}$. Then, $v^{\prime} u_{1} u_{2} u_{3} v u_{6} u_{5} u_{4}$ is a rainbow path of length 7 , a contradiction.

Subcase 3 The edge $u_{1} u_{7}$ exists and the color of it is other than c_{2} and c_{4}, or the edge $u_{1} u_{7}$ does not exist.

We can conclude from Claim 2 and the inequality (3.8) that the edges $u_{2} u_{7}$, $u_{3} u_{7}, u_{4} u_{7}, u_{5} u_{7}$ all exist and $\left|\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right), C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \backslash\left\{c_{1}, c_{3}, c_{5}, c_{6}\right\}\right|=$ 4. Then

$$
\begin{equation*}
C N\left(u_{7}\right)=\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right), C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \cup\left\{c_{1}, c_{3}, c_{5}, c_{6}\right\} . \tag{3.9}
\end{equation*}
$$

Note that if the edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{3}$, then $u_{4} u_{5} u_{6} v u_{3} u_{2} u_{1} u_{7}$ is a rainbow path of length 7 ; if $C\left(u_{1} u_{7}\right)=c_{5}$, then $u_{5} u_{4} u_{3} v_{1} u_{6} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 . So we can conclude from the equation (3.9) that there exist two vertices $v^{\prime}, v^{\prime \prime} \notin V(P)$ such that $C\left(u_{7} v^{\prime}\right)=c_{3}, C\left(u_{7} v^{\prime \prime}\right)=c_{5}$. On the other hand, since $x_{2}=5$, the edge $u_{1} u_{5}$ exists and has a color not belonging to the color set $C(P)$. If $C\left(u_{1} u_{5}\right) \neq c_{7}$, then $v u_{3} u_{2} u_{1} u_{5} u_{6} u_{7} v^{\prime}$ is a rainbow path of length 7 , and so we assume that $C\left(u_{1} u_{5}\right)=c_{7}$ (as shown in Figure 3.12). Now $v u_{6} u_{5} u_{1} u_{2} u_{3} u_{4}$ is a rainbow path of length 6 with color set $\left\{c_{1}, c_{2}, c_{3}, c_{5}, c_{7}, c_{8}\right\}$, and so we get that there exists an integer $j, 1 \leq j \leq 5$, such that the edge $u_{j} v$ exists and $C\left(u_{j} v\right) \notin\left\{c_{1}, c_{2}, c_{3}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, since $d^{c}(v) \geq 8$. It is easy to check from Figure 3.12 that if the edge $u_{1} v$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $u_{4} u_{3} u_{2} u_{1} v u_{6} u_{7} v^{\prime \prime}$ is a rainbow path of length 7 ; if the edge $u_{2} v$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $u_{4} u_{3} u_{2} v u_{7} u_{6} u_{5} u_{1}$ is a rainbow path of length 7 ; if the edge $u_{4} v$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $v u_{4} u_{3} u_{2} u_{1} u_{5} u_{6} u_{7}$ is a rainbow path of

Figure 3.8
Figure 3.9
Figure 3.10

Figure 3.11

Figure 3.12
length 7 ; if the edge $u_{5} v$ exists and the color of it does not belong to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{5}, c_{6}, c_{7}, c_{8}\right\}$, then $u_{4} u_{3} u_{2} u_{1} u_{5} v u_{6} u_{7}$ is a rainbow path of length 7 , a contradiction.

Case 2.2.1.2 $x_{1}=3$ and $x_{2}=6$ (see Figure 3.13).
Then we can get from Proposition 2.2 that $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \cap$ $\left\{c_{2}, c_{5}\right\}=\emptyset$. So $C N\left(u_{l+1}\right) \subseteq\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 6\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \cup\left\{C\left(u_{l+1} v^{\prime}\right):\right.$ $\left.v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \subseteq\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 5\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \cup\left\{c_{1}, c_{3}, c_{4}, c_{6}\right\}$. Since $\left|C N\left(u_{7}\right)\right| \geq 8$, this implies that

$$
\begin{equation*}
\mid\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 5 \text { and } u_{j} \in N\left(u_{7}\right)\right\} \backslash\left\{c_{1}, c_{3}, c_{4}, c_{6}\right\} \mid \geq 4 . \tag{3.10}
\end{equation*}
$$

Note that if the edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{2}$, then $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 ; if the edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{5}$, then $u_{5} u_{4} u_{3} v u_{6} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 , a contradiction. Then we can get from Claim 2 and the inequality (3.10) that the four edges $u_{2} u_{7}, u_{3} u_{7}, u_{4} u_{7}, u_{5} u_{7}$ all exist, and

$$
\begin{equation*}
\left|\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right), C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \backslash\left\{c_{1}, c_{3}, c_{4}, c_{6}\right\}\right|=4 . \tag{3.11}
\end{equation*}
$$

Now we consider the color of the edge $u_{2} u_{7}$. If $C\left(u_{2} u_{7}\right) \notin\left\{c_{1}, c_{3}, c_{4}, c_{5}, c_{6}\right.$, $\left.c_{7}\right\}$, then $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{2} u_{1}$ is a rainbow path of length 7 ; if $C\left(u_{2} u_{7}\right)=c_{5}$, then $u_{5} u_{4} u_{3} v u_{6} u_{7} u_{2} u_{1}$ is a rainbow path of length 7 , a contradiction. So we get from the inequality (3.11) that $C\left(u_{2} u_{7}\right)=c_{7}$ (see Figure 3.14).

On the other hand, $u_{1} u_{2} u_{3} v u_{6} u_{5} u_{4}$ is a rainbow path of length 6 with the color set $\left\{c_{1}, c_{2}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$, so we have that there exists a vertex $w \in\left\{u_{3}, u_{4}, u_{5}, u_{6}, v\right\}$ such that the edge $u_{1} w$ exists and $C\left(u_{1} w\right) \notin\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$ since $d^{c}\left(u_{1}\right) \geq$ 8. It is easy to check from Figure 3.14 that if the edge $u_{1} u_{3}$ has a color not belonging to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$, then $u_{1} u_{3} u_{2} u_{7} v u_{6} u_{5} u_{4}$ is a rainbow path of length 7 ; if the edge $u_{1} u_{4}$ exists and has a color not belonging to

Figure 3.13

Figure 3.14
the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$, then $u_{1} u_{4} u_{3} u_{2} u_{7} v u_{6} u_{5}$ is a rainbow path of length 7 ; if the edge $u_{1} u_{5}$ exists and has a color not belonging to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$, then $u_{1} u_{5} u_{4} u_{3} u_{2} u_{7} v u_{6}$ is a rainbow path of length 7 ; if the edge $u_{1} u_{6}$ has a color not belonging to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$, then $u_{1} u_{6} u_{5} u_{4} u_{3} u_{2} u_{7} v$ is a rainbow path of length 7 ; if the edge $u_{1} v$ exists and has a color not belonging to the color set $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{7}, c_{8}\right\}$, then $u_{1} v u_{7} u_{2} u_{3} u_{4} u_{5} u_{6}$ is a rainbow path of length 7 , a contradiction.

Case 2.2.1.3 $x_{1}=4$ and $x_{2}=6$ (see Figure 3.15).
Then we can get from Proposition 2.2 that $\left\{C\left(u_{l+1} v^{\prime}\right): v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \cap$ $\left\{c_{3}, c_{5}\right\}=\emptyset$. So $C N\left(u_{l+1}\right) \subseteq\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 6\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \cup\left\{C\left(u_{l+1} v^{\prime}\right):\right.$ $\left.v^{\prime} \in N\left(u_{l+1}\right) \backslash V(P)\right\} \subseteq\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 5\right.$ and $\left.u_{j} \in N\left(u_{7}\right)\right\} \cup\left\{c_{1}, c_{2}, c_{4}, c_{6}\right\}$. Since $\left|C N\left(u_{7}\right)\right| \geq 8$, this implies that

$$
\begin{equation*}
\mid\left\{C\left(u_{j} u_{7}\right): 1 \leq j \leq 5 \text { and } u_{j} \in N\left(u_{7}\right)\right\} \backslash\left\{c_{1}, c_{2}, c_{4}, c_{6}\right\} \mid \geq 4 \tag{3.12}
\end{equation*}
$$

Note that if the edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{3}$, then $v u_{3} u_{2} u_{1} u_{7} u_{6} u_{5} u_{4}$ is a rainbow path of length 7 ; if $C\left(u_{1} u_{7}\right)=c_{5}$, then $v u_{6} u_{7} u_{1} u_{2} u_{3} u_{4} u_{5}$ is a rainbow path of length 7 , a contradiction. So we can get from Claim 2 and the inequality (3.12) that all the four edges $u_{2} u_{7}, u_{3} u_{7}, u_{4} u_{7}, u_{5} u_{7}$ exist and

$$
\begin{gather*}
\left|\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right), C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \backslash\left\{c_{1}, c_{2}, c_{4}, c_{6}\right\}\right|=4, \tag{3.13}\\
C N\left(u_{7}\right)=\left\{C\left(u_{2} u_{7}\right), C\left(u_{3} u_{7}\right), C\left(u_{4} u_{7}\right), C\left(u_{5} u_{7}\right)\right\} \cup\left\{c_{1}, c_{2}, c_{4}, c_{6}\right\} . \tag{3.14}
\end{gather*}
$$

If $C\left(u_{1} u_{4}\right) \neq c_{7}$, then $v u_{3} u_{2} u_{1} u_{4} u_{5} u_{6} u_{7}$ is a rainbow path of length 7 , a contradiction. So we have $C\left(u_{1} u_{4}\right)=c_{7}$ and then $C\left(u_{1} u_{6}\right) \notin\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}$ because $x_{1}=4, x_{2}=6$ and from the way we choose x_{1}, x_{2}.

If the edge $u_{1} u_{7}$ exists and $C\left(u_{1} u_{7}\right)=c_{2}$, then $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{1} u_{2}$ is a rainbow path of length 7 , a contradiction. So we can conclude from the equations (3.13) and (3.14) that there exists a vertex $v^{\prime} \notin\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right\}$ such that $C\left(u_{7} v^{\prime}\right)=c_{2}$ (see Figure 3.16). Then, $u_{1} u_{6} u_{5} u_{4} u_{3} v u_{7} v^{\prime}$ is a rainbow path of length 7 , a contradiction.

So, in the case $k=8$, there always is a rainbow path of length 7 in G.
Case 2.2.2 $k=11$, then $l=8$.
Denote $c_{9}=C\left(u_{y_{1}} v_{1}\right), c_{10}=C\left(u_{y_{2}} v_{1}\right)$ and $c_{11}=C\left(u_{y_{3}} v_{1}\right)$.

Figure 3.15

Figure 3.16

By the two equations (3.6) and (3.7), we have $11=k \leq\left|C N\left(u_{l+1}\right)\right| \leq(l-$ $1)+\left(l-2\left(j_{0}-1\right)-2\left(k-l-j_{0}-1\right)-2\right)=4 l-2 k+1=11$. So we shall only consider the case when all the edges $u_{1} u_{9}, u_{2} u_{9}, \ldots, u_{7} u_{9}$ exist and

$$
\begin{align*}
& \left|\left\{C\left(u_{1} u_{9}\right), C\left(u_{2} u_{9}\right), \ldots, C\left(u_{7} u_{9}\right)\right\}\right|=7, \tag{3.15}\\
& \left\{C\left(u_{1} u_{9}\right), C\left(u_{2} u_{9}\right), \ldots, C\left(u_{7} u_{9}\right)\right\} \cap\left(C (P) \backslash \left(\left\{c_{x_{1}-1}, c_{x_{2}-1}, c_{x_{3}-1}\right\}\right.\right. \\
& \left.\left.\cup\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{3}-1}\right\}\right)\right)=\emptyset, \tag{3.16}\\
& C N\left(u_{9}\right)=\left\{C\left(u_{1} u_{9}\right), C\left(u_{2} u_{9}\right), \ldots, C\left(u_{7} u_{9}\right)\right\} \cup\left(C (P) \backslash \left(\left\{c_{x_{1}-1}, c_{x_{2}-1}, c_{x_{3}-1}\right\}\right.\right. \\
& \left.\left.\cup\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1},}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{3}-1}\right\}\right)\right), \tag{3.17}\\
& \left|\left\{c_{x_{1}-1}, c_{x_{2}-1}, c_{x_{3}-1}\right\} \backslash\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{3}-1}\right\}\right|=2 . \tag{3.18}
\end{align*}
$$

Now we distinguish the following two cases according to j_{0} :
Case 2.2.2.1 $j_{0}=1$, then $y_{1}=3, y_{2}=6$ and $y_{3}=8$ (see Figure 3.17)
In this case $\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{3}-1}\right\}=\left\{c_{6}, c_{7}\right\}$. So we can easily get that $\left\{c_{x_{1}-1}, c_{x_{2}-1}\right\} \cap\left\{c_{6}, c_{7}\right\}=\emptyset$ and $c_{x_{3}-1} \in\left\{c_{6}, c_{7}\right\}$ since $3 \leq x_{1}<x_{1}+1<x_{2}<x_{2}+1<x_{3} \leq 8$ and from equation (3.18). Then we have $\left\{C\left(u_{1} u_{9}\right), C\left(u_{2} u_{9}\right), \ldots, C\left(u_{7} u_{9}\right)\right\} \cap\left(\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{8}\right\} \backslash\left\{c_{x_{1}-1}, c_{x_{2}-1}\right\}\right)=\emptyset$ from the equation (3.16). So, $C\left(u_{1} u_{9}\right) \in\left\{c_{x_{1}-1}, c_{x_{2}-1}, c_{6}, c_{7}\right\} \subseteq\left\{c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}$ because of Claim 2 and the equations (3.15) and (3.16). It is easy to check in Figure 3.17 that if the edge $u_{1} u_{9}$ has color c_{2}, then $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{8} u_{9} u_{1} u_{2}$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{3}, then $u_{4} u_{5} u_{6} u_{7} u_{8} u_{9} u_{1} u_{2} u_{3} v$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{5}, then $v u_{6} u_{7} u_{8} u_{9} u_{1}$ $u_{2} u_{3} u_{4} u_{5}$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{6}, then $u_{7} u_{8} u_{9} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} v$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{7}, then $v u_{8} u_{9} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$ is a rainbow path of length 9 , a contradiction. So it remains us to consider the case when $C\left(u_{1} u_{9}\right)=c_{4}$ and $5 \in\left\{x_{1}, x_{2}\right\}$.

Then $4 \notin\left\{x_{1}, x_{2}\right\}$ since $C\left(u_{1} u_{9}\right) \in\left\{c_{x_{1}-1}, c_{x_{2}-1}, c_{6}, c_{7}\right\}$ and $3 \leq x_{1}<x_{1}+1<$ $x_{2}<x_{2}+1<x_{3} \leq 8$. Therefore, we can get from the equations (3.16) and (3.17) that there exists a vertex $v^{\prime} \notin V(P)$ such that $C\left(u_{9} v^{\prime}\right)=c_{3}$ (see Figure 3.18). Now $u_{5} u_{6} u_{7} u_{8} v_{1} u_{3} u_{2} u_{1} u_{9} v^{\prime}$ is a rainbow path of length 9 , a contradiction.

Case 2.2.2.2 $j_{0}=2$, then $y_{1}=3, y_{2}=5$ and $y_{3}=8$ (see Figure 3.20).
In this case $\left\{c_{y_{1}}, c_{y_{1}+1}, \ldots, c_{y_{j_{0}-1}}, c_{y_{j_{0}+1}}, c_{y_{j_{0}+1}+1}, \ldots, c_{y_{3}-1}\right\}=\left\{c_{3}, c_{4}\right\}$. So we can easily get that $x_{1}=3, x_{2}=5$ and $x_{3}=7$, or $x_{1}=3, x_{2}=5$ and

Figure 3.17

Figure 3.19

Figure 3.18

Figure 3.20
$x_{3}=8$, or $x_{1}=4, x_{2}=6$ and $x_{3}=8$, since $3 \leq x_{1}<x_{1}+1<x_{2}<$ $x_{2}+1<x_{3} \leq 8$ and form equation (3.18). On the other hand, we have that $C\left(u_{1} u_{9}\right) \in\left\{c_{3}, c_{4}, c_{x_{1}-1}, c_{x_{2}-1}, c_{x_{3}-1}\right\} \subseteq\left\{c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}\right\}$ because of Claim 2 and the equations (3.15) and (3.16). It is easy to check in Figure 3.20 that if the edge $u_{1} u_{9}$ has color c_{2}, then $v u_{3} u_{4} u_{5} u_{6} u_{7} u_{8} u_{9} u_{1} u_{2}$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{3}, then $u_{4} u_{5} u_{6} u_{7} u_{8} u_{9} u_{1} u_{2} u_{3} v$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{4}, then $v u_{5} u_{6} u_{7} u_{8} u_{9} u_{1} u_{2} u_{3} u_{4}$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{5}, then $u_{6} u_{7} u_{8} u_{9} u_{1} u_{2} u_{3} u_{4} u_{5} v$ is a rainbow path of length 9 ; if the edge $u_{1} u_{9}$ has color c_{7}, then $v u_{8} u_{9} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$ is a rainbow path of length 9 , a contradiction. So it remains us to consider the case when $C\left(u_{1} u_{9}\right)=c_{6}$ and $c_{6} \in\left\{c_{x_{1}-1}, c_{x_{2}-1}, c_{x_{3}-1}\right\}$.

Then we can conclude that $x_{1}=3, x_{2}=5$, and $x_{3}=7$ since $C\left(u_{1} u_{9}\right) \in$ $\left\{c_{3}, c_{4}, c_{x_{1}-1}, c_{x_{2}-1}, c_{x_{3}-1}\right\}$ and $3 \leq x_{1}<x_{1}+1<x_{2}<x_{2}+1<x_{3} \leq 8$. Therefore, we can get from the equations (3.16) and (3.17) that there exists a vertex $v^{\prime} \notin$ $V(P)$ such that $C\left(u_{9} v_{2}\right)=c_{5}$ (see Figure ??). Now $u_{7} u_{8} v u_{5} u_{4} u_{3} u_{2} u_{1} u_{9} v^{\prime}$ is a rainbow path of length 9 , a contradiction.

So, in the case $k=11$, there always is a rainbow path of length 9 in G, a contradiction.

Up to now, from all the above contradictions we can conclude that if $d^{c}(v) \geq$ $k \geq 7$ for any vertex $v \in V(G)$, then G has a rainbow path of length at least $\lceil(2 k) / 3\rceil+1$ in G.

4. Remarks

In this paper, we consider long rainbow paths in edge-colored general graphs. However, if we restrict graphs to properly edge-colored complete graphs, this is an important topic in combinatorial design [12].

If G is a properly edge-colored complete graph with n vertices, then any vertex v in G has color degree $k=n-1$. Therefore, by Theorem 3.3, we can get the following conclusion.

Corollary 4.1 In every proper edge-coloring of K_{n}, there exists a rainbow path of length at least $\lceil(2 n+1) / 3\rceil$.

This improves the result of [12], since in [12], Gyárfás and Mhalla claimed that there exists a rainbow path with at least $\lceil(2 n+1) / 3\rceil$ vertices, i.e., a rainbow path of length at least $\lceil(2 n+1) / 3\rceil-1$.

References

[1] M. Albert, A. Frieze, B. Reed, Multicolored Hamilton cycles, Electronic J. Combin. 2 (1995), \sharp R10.
[2] M. Axenovich, T. Jiang, Zs. Tuza, Local anti-Ramsey numbers of graphs, Combin. Probab. Comput. 12(2003), 495-511.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsvier, New York (1976).
[4] H.J. Broersma, X. Li, G. Woeginger, S. Zhang, Paths and cycles in colored graphs, Australasian J. Combin. 31(2005), 297-309.
[5] H. Chen, X. Li, Long heterochromatic paths in edge-colored graphs, Electronic J. Combin. 12(1)(2005), \sharp R33.
[6] W.S. Chou, Y. Manoussakis, O. Megalaki, M. Spyratos, Zs. Tuza, Paths through fixed vertices in edge-colored graphs, Math. Inf. Sci. Hun. 32(1994), 49-58.
[7] H.Y. Chen, X. Tan, J.L. Wu, The linear arboricity of planar graphs without 5 -cycles with chords, Bull. Malays. Math. Sci. Soc. (2) 36(2013), no.2, 285290.
[8] A. Dong, X. Zhang, G.J. Li, Equitable coloring and equitable choosability of planar graphs without 5- and 7-cycles, Bull. Malays. Math. Sci. Soc. (2) 35(2012), no.4, 897-910.
[9] P. Erdös, Zs. Tuza, Rainbow Hamiltonian paths and canonically colored subgraphs in infinite complete graphs, Mathematica Pannonica 1(1990), 513.
[10] P. Erdös, Zs. Tuza, Rainbow subgraphs in edge-colorings of complete graphs, Ann. Discrete Math. 55(1993), 81-88.
[11] A.M. Frieze, B.A. Reed, Polychromatic Hamilton cycles, Discrete Math. 118(1993), 69-74.
[12] A. Gyárfás, M. Mhalla, Rainbow and orthogonal paths in factorizations of K_{n}, J. Combin. Designs 18(2010), 167-176.
[13] H. Gebauer, F. Mousset, On rainbow cycles and paths, arXiv:1207.0840.
[14] G. Hahn, C. Thomassen, Path and cycle sub-Ramsey numbers and edgecoloring conjecture, Discrete Math. 62(1)(1986), 29-33.
[15] Y. Manoussakis, M. Spyratos, Zs. Tuza, Cycles of given color patterns, J. Graph Theory 21(1996), 153-162.
[16] Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt, Minimal colorings for properly colored subgraphs, Graphs Combin. 12(1996), 345-360.
[17] B. Wang, J.L. Wu, S.F. Tian, Total colorings of planar graphs with small maximum degree, Bull. Malays. Math. Sci. Soc. (2) 36(2013), no.3, 783-787.
[18] R.Y. Xu, J.L. Wu, H.J. Wang, Total coloring of planar graphs without some chordal 6-cycles, Bull. Malays. Math. Sci. Soc. (2), accepted.
[19] Q.S. Zou, H.Y. Chen, G.J. Li, Vertex-disjoint cycles of order eight with chords in a bipartite graph, Bull. Malays. Math. Sci. Soc. (2) 36(2013), no.1, 255-22.

[^0]: *Supported by NSFC Nos. 10901035, 11371205, PCSIRT and CSC

