Color degree condition for long rainbow paths in edge-colored graphs^{*}

He Chen¹ and Xueliang Li^2

¹Department of Mathematics, Southeast University, Nanjing, 210096, China chenhe@seu.edu.cn ²Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China lxl@nankai.edu.cn

Abstract

Let G be an edge-colored graph. A rainbow (heterochromatic, or multicolored) path of G is such a path in which no two edges have the same color. Let the color degree of a vertex v to be the number of different colors that are used on edges incident to v, and denote it by $d^c(v)$. In a previous paper, we showed that if $d^c(v) \ge k$ (color degree condition) for every vertex v of G, then G has a rainbow path of length at least $\lceil (k+1)/2 \rceil$. Later, in another paper we first showed that if $k \le 7$, G has a rainbow path of length at least k - 1, and then, based on this we used induction on k and showed that if $k \ge 8$, then G has a rainbow path of length at least $\lceil (3k)/5 \rceil + 1$. In 2010, Gyárfás and Mhalla showed that in any proper edge-colored complete graph K_n , there is a rainbow path with no less than (2n + 1)/3 vertices. In the present paper, by using a simpler approach we further improve the result by showing that if $k \ge 8$, G has a rainbow path of length at least $\lceil (2k)/3 \rceil + 1$.

Keywords: edge-colored graph, color degree, color neighborhood, rainbow (heterochromatic, or multicolored) path.

AMS Subject Classification (2000): 05C38, 05C15

1. Introduction

We use Bondy and Murty [3] for terminology and notation not defined here and consider simple graphs only.

^{*}Supported by NSFC Nos. 10901035, 11371205, PCSIRT and CSC

Let G = (V, E) be a graph. By an *edge-coloring* of G we mean a function $C : E \to \mathbb{N}$, the set of natural numbers. If G is assigned such a coloring, then we say that G is an *edge-colored graph*. Denote the colored graph by (G, C), and call C(e) the color of an edge $e \in E$. A subgraph is called rainbow (hete-rochromatic, or multicolored) if any two edges of it have different colors. For a subgraph H of G, we denote $C(H) = \{C(e) \mid e \in E(H)\}$ and c(H) = |C(H)|. For a vertex v of G, the color neighborhood CN(v) of v is defined as the set $\{C(e) \mid e \text{ is incident with } v\}$ and the color degree is $d^c(v) = |CN(v)|$, i.e., the number of different colors that are used on edges incident to v. Given a positive integer k, C is a k – good coloring if $d^c(v) \ge k$ for any vertex v of G. If u and v are two vertices on a path P, uPv denotes the segment of P from u to v, whereas $vP^{-1}u$ denotes the same segment but from v to u.

There are many existing literature dealing with the existence of paths and cycles with special properties in edge-colored graphs. The rainbow Hamiltonian cycle or path problem was studied by Hahn and Thomassen [14], Rödl and Winkler (see [11]), Frieze and Reed [11], and Albert, Frieze and Reed [1]. In [2], Axenovich, Jiang and Tuza gave the range of the maximum k such that there exists a k-good coloring of $E(K_n)$ that contains no properly colored copies of a path with fixed number of edges, no rainbow copies of a path with fixed number of edges, no properly colored copies of a cycle with fixed number of edges and no rainbow copies of a cycle with fixed number of edges, respectively. In [9], Erdös and Tuza studied the rainbow paths in infinite complete graph K_{ω} . In [10], Erdös and Tuza studied the values of k, such that every k-good coloring of K_n contains a rainbow copy of F where F is a given graph with e edges (e < n/k). In [15], Manoussakis, Spyratos and Tuza studied (s, t)-cycle in 2-edge-colored graphs, where (s, t)-cycle is a cycle of length s + t and s consecutive edges are in one color and the remaining t edges are in the other color. In [16], Manoussakis, Spyratos, Tuza and Voigt studied conditions on the minimum number kof colors, sufficient for the existence of given types (such as families of internally pairwise vertex-disjoint paths with common endpoints, hamiltonian paths and hamiltonian cycles, cycles with a given lower bound of their length, spanning trees, stars, and cliques) of properly edge-colored subgraphs in a k-edge-colored complete graph. In [6], Chou, Manoussakis, Megalaki, Spyratos and Tuza showed that for a 2-edge-colored graph G and three specified vertices x, y and z, to decide whether there exists a color-alternating path from x to y passing through z is NP-complete. Many results in these papers were proved by using probabilistic methods.

In [2], Axenovich, Jiang and Tuza considered the local variation of anti-Ramsey problem. Namely, they studied the maximum k such that there exists a k-good edge-coloring of K_n containing no rainbow copies of a given graph H, and denoted by g(n, H). They showed that for a fixed integer $k \geq 2$, $k-1 \leq g(n, P_{k+1}) \leq 2k-3$, i.e., if K_n is edge-colored by a (2k-2)-good coloring, then there must exist a rainbow path P_{k+1} , there exists a (k-1)-good coloring of K_n such that no rainbow path P_{k+1} exists. In [4], the authors considered the long rainbow paths in general graphs with a k-good coloring and showed that if G is an edge-colored graph with $d^c(v) \ge k$ (color degree condition) for every vertex v of G, then G has a rainbow path of length at least $\lceil (k+1)/2 \rceil$. In [5], we first showed that if $3 \le k \le 7$, G has a rainbow path of length at least k - 1, and then, based on this we used induction on k and showed that if $k \ge 8$, then G has a rainbow path of length at least $\lceil (3k)/5 \rceil + 1$. In the present paper, by using a simpler approach we further improve the result by showing that if $k \ge 8$, G has a rainbow path of length at least $\lceil (2k)/3 \rceil + 1$. This improves the result of [12], in which Gyárfás and Mhalla showed that in any properly edge-colored complete graph K_n , there is a rainbow path with no less than (2n + 1)/3 vertices. Later, H. Gebauer, and F. Mousset showed in [13] that in any properly edge-colored complete graph K_n , there is a rainbow path with no less than 3n/4 - o(n) vertices.

For more references on edge-colorings and cycles, see [7, 8, 17, 18, 19].

2. Some properties of a longest rainbow path

In this section we will give some properties of a longest rainbow path. All these properties will help us to get better lower bounds of the length of a longest rainbow path.

Proposition 2.1 Let G be an edge-colored graph and suppose that $P = u_1 u_2 \dots u_l u_{l+1}$ is a longest rainbow path, v be a vertex not belonging to the path P. For any integer j, $2 \leq j \leq l-1$, if both the two edges $u_j v$, $u_{j+1}v$ exist, then $|\{C(u_j v), C(u_{j+1}v)\} \setminus C(P)| \leq 1$.

Proof. By contradiction, if there exists an integer j_0 , $2 \leq j_0 \leq l-1$, such that both the two edges $u_{j_0}v$, $u_{j_0+1}v$ exist and $|\{C(u_{j_0}v), C(u_{j_0+1}v)\} \setminus C(P)| = 2$. Then $u_1Pu_{y_{j_0}}vu_{y_{j_0}+1}Pu_{l+1}$ is a rainbow path of length l+1, a contradiction.

Proposition 2.2 Let G be an edge-colored graph and suppose $P = u_1u_2...u_lu_{l+1}$ is a longest rainbow path. If there exists an integer x such that $3 \le x \le l$ and $C(u_1u_x) \notin C(P)$, then for any vertex $v \in N(u_{l+1}) \setminus V(P)$, the color of the edge $u_{l+1}v$ is different from $C(u_{x-1}u_x)$.

Proof. By contradiction. If there exists a vertex $v \in N(u_{l+1}) \setminus V(P)$ such that $C(u_{l+1}v) = C(u_{x-1}u_x)$ (as shown in Figure 2.1), then $u_{x-1}P^{-1}u_1u_xPu_{l+1}v$ is a rainbow path of length l + 1, a contradiction, which completes the proof.

Proposition 2.3 Let G be an edge-colored graph and suppose $P = u_1u_2...u_lu_{l+1}$ is a longest rainbow path. If there exists a vertex $v \in N(u_{l+1}) \setminus V(P)$ and an integer x ($2 \leq x \leq l-2$) such that $u_x v$ and $u_{x+2}v$ are edges of G and $|\{C(u_xv), C(u_{x+2}v)\} \setminus C(P)| = 2$, then for any vertex $w \in N(u_{l+1}) \setminus (V(P) \cup \{v\})$, the color of the edge $u_{l+1}w$ is different from $C(u_xu_{x+1})$ and $C(u_{x+1}u_{x+2})$.

Proof. By contradiction. If there exists a vertex $w \in N(u_{l+1}) \setminus (V(P) \cup \{v\})$ such that $C(u_{l+1}w) \in \{C(u_xu_{x+1}), C(u_{x+1}u_{x+2})\}$ (as shown in Figure 2.2), then $u_1Pu_xvu_{x+2}Pu_{l+1}w$ is a rainbow path of length l + 1, a contradiction, which completes the proof.

Proposition 2.4 Let G be an edge-colored graph and $P = u_1 u_2 \dots u_l u_{l+1} v$ be a path in G such that:

(a) u_1Pu_{l+1} is a longest rainbow path in G;

(b) $C(u_{l+1}v) = C(u_{j_0}u_{j_0+1})$ for some integer j_0 with $1 \le j_0 \le l$.

(c) P was chosen so that j_0 is minimum under the condition (b).

Then we have

(1) for any integer x, $j_0 + 1 \le x \le 2j_0$, if the vertex u_x is adjacent to the vertex u_1 , then the color of u_1u_x must appear in P;

(2) for any integer x, $2j_0 \le x \le l$, if both the vertices u_x and u_{x+1} are adjacent to the vertex u_1 , then $|\{C(u_1u_x), C(u_1u_{x+1})\} \setminus C(P)| \le 1$.

Proof. (1) By contradiction. If there exists an integer x such that $j_0 + 1 \le x \le 2j_0$, the vertex u_x is adjacent to the vertex u_1 and the color of the edge u_1u_x does not appear in C(P) (as shown in Figure 2.3), then $P' = u_{x-1}P^{-1}u_1u_xPu_{l+1}v$ is a path satisfying that $u_{x-1}P'u_{l+1}$ is a rainbow path of length l and $C(u_{l+1}v) = C(u_{j_0+1}u_{j_0})$ (note that $v \notin V(u_{x-1}P'u_{l+1})$), where $u_{j_0+1}u_{j_0}$ is the $(x - j_0 - 1)$ -th edge in this rainbow path $u_{x-1}P'u_{l+1}$. Since $x - j_0 - 1 \le 2j_0 - j_0 - 1 = j_0 - 1$, this contradicts the choice of P, which completes the proof of (1).

(2) By induction. If there exists an integer x such that $2j_0 + 1 \le x \le l$, both the vertices u_x and u_{x+1} are adjacent to the vertex u_1 , and the two edges u_1u_x and u_1u_{x+1} have distinct colors both of which do not appear in C(P) (see Figure ??), then $P'' = u_2Pu_xu_1u_{x+1}Pu_{l+1}$ is a path satisfying that $u_2P''u_{l+1}$ is a rainbow path of length l and $C(u_{l+1}v) = C(u_{j_0}u_{j_0+1})$ (note that $v \notin V(u_2P''u_{l+1})$) is the $(j_0 - 1)$ -th edge in the rainbow path $u_2P''u_{l+1}$, contradicting the choice of P and completing the proof of (2).

3. New lower bounds for the length of a longest rainbow path

In this section we will give two better lower bound for the length of a longest rainbow path in G when $k \geq 8$. As an induction initial, we need the following result as a lemma.

Lemma 3.1 [5] Let G be an edge-colored graph and k ($3 \le k \le 7$) an integer. Suppose that $d^{c}(v) \ge k$ for every vertex v of G. Then G has a rainbow path of length at least k - 1.

As we showed in [5], k - 1 is the best lower bound of the length of a longest rainbow path. Therefore, we shall only consider the case when $k \ge 8$ now. We will begin this with an important Lemma.

Lemma 3.2 Let G be an edge-colored graph and suppose $d^c(v) \ge k \ge 8$ for every vertex $v \in V(G)$. If the length of a longest rainbow path in G is $l \le \lceil (2k)/3 \rceil$, then there is a path $P = u_1u_2 \ldots u_lu_{l+1}v$ in G such that u_1Pu_{l+1} is a rainbow path of length l and $C(u_{l+1}v) = C(u_1u_2)$.

Proof. Let $P' = w_1 w_2 \dots w_l w_{l+1} s$ be a path in G such that

- (a) $w_1 P' w_{l+1}$ is a rainbow path of length l;
- (b) $C(w_{l+1}s) = C(w_{j_0}w_{j_0+1})$ for some integer j_0 with $1 \le j_0 \le l$;
- (c) P' was chosen so that j_0 is minimum under the condition (b).

Denote $c_j = C(w_j w_{j+1})$, j = 1, 2, ..., l. Now we will show that $j_0 = 1$ by contradiction, and then P' is a path we want.

Suppose that $j_0 > 1$. First, we can easily get that $j_0 \leq \lceil (l+1)/2 \rceil$, this is because $CN(w_{l+1}) \subseteq \{C(w_j w_{l+1}) : 1 \leq j \leq l-1, w_j \in N(w_{l+1})\} \cup \{c_{j_0}, c_{j_0+1}, \ldots, c_l\}$, and then $k \leq |CN(w_{l+1})| \leq (l-1) + (l-j_0+1) = 2l - j_0$.

Since $w_1P'w_{l+1}$ is a longest rainbow path in G, for any vertex $t \in N(w_{l+1}) \setminus \{w_1, \ldots, w_{l+1}\}$ and any vertex $t' \in N(w_1) \setminus \{w_1, \ldots, w_{l+1}\}$, the color of the edge $w_{l+1}t$ or the edge w_1t' must appear in P'. This implies that there are at least k-l different colors not in C(P') appearing on some edges in the edge set $\{w_1t': t' \in N(w_1) \cap \{w_1, \ldots, w_{l+1}\}\}$. In another words, there are k-l different integers $x_1, x_2, \ldots, x_{k-l}$, such that $3 \leq x_1 < x_2 < \ldots < x_{k-l} \leq l+1$, $w_{x_i} \in N(w_1)$, $1 \leq i \leq k-l$, and the subgraph induced by the edge set $\{w_1w_2, w_2w_3, \ldots, w_lw_{l+1}, w_1w_{x_1}, w_1w_{x_2}, \ldots, w_1w_{x_{k-l}}\}$ is rainbow.

Now we consider the integer set $\{x_1, x_2, \ldots, x_{k-l}\}$. By Proposition 2.4, we can easily get that $\{j_0 + 1, j_0 + 2, \ldots, 2j_0\} \cap \{x_1, x_2, \ldots, x_{k-l}\} = \emptyset$ and if $2j_0 + 1 \le l$, then for any integer $x, 2j_0 + 1 \le x \le l$, at most one of $\{x, x + 1\}$ belongs to $\{x_1, \ldots, x_{k-l}\}$. Using these two facts, we can get that $k - 1 \le \lceil (l+1)/2 \rceil - 2$. We will show this in the following three cases:

Figure 3.1

Case 1. $2j_0 + 1 \le l$.

In this case, $k - l \le (j_0 - 2) + \left[(l - 2j_0 + 1)/2 \right] = \left[(l + 1)/2 \right] - 2.$

Case 2. $2j_0 + 1 = l + 1$, i.e. $l = 2j_0$.

In this case, $\{x_1, x_2, ..., x_{k-l}\} \subseteq \{3, 4, \cdots, j_0, l+1\}$, so we have $k - l \leq j_0 - 2 + 1 = 1/2 - 1 = \lceil (l+1)/2 \rceil - 2$ (the last equation holds because *l* is even).

Case 3. $2j_0 + 1 > l + 1$, i.e. $j_0 > l/2$.

In this case, $\{x_1, x_2, \ldots, x_{k-l}\} \subseteq \{3, 4, \cdots, j_0\}$, so we have $k - l \leq j_0 - 2 \leq \lceil (l+1)/2 \rceil - 2$.

Therefore we shall only consider the case when $k \equiv 2 \pmod{3}$ (note that in this case l is even) and $\{x_1, x_2, \ldots, x_{k-l}\}$ is equal to $\{3, \ldots, j_0, 2j_0 + 1, 2j_0 + 3, \ldots, l-1, l+1\}$ if $j_0 \geq 3$, or $\{2j_0+1, 2j_0+3, \ldots, l-1, l+1\}$ if $j_0 = 2$ (as shown in Figure 3.1).

By the fact that $w_{2j}(P')^{-1}w_1w_{2j+1}P'w_{l+1}$ is a rainbow path of length l for any integer $j, j \in \{j_0, j_0 + 1, \ldots, l/2\}$, and the choice of P', we have that $\{C(w_{l+1}t) : t \in N(w_{l+1}) \setminus P'\} = \{c_{j_0}\}$. Now $CN(w_{l+1}) = \{C(w_{l+1}t) : t \in N(w_{l+1}) \cap P'\} \cup \{c_{j_0}\}$, so $d^c(w_{l+1}) = |CN(w_{l+1})| \leq l+1 < k$, a contradiction, which concludes that $j_0 = 1$, and P' is the path we want.

By using this lemma, we can easily get a better lower bound of the length of a longest rainbow path.

Theorem 3.3 Let G be an edge-colored graph. If $d^c(v) \ge k \ge 7$ for any vertex $v \in V(G)$, then G has a rainbow path of length at least $\lceil (2k)/3 \rceil$.

Proof. By contradiction. Suppose a longest rainbow path in G has a length $l \leq \lfloor (2k)/3 \rfloor - 1$.

Since $l \leq \lceil (2k)/3 \rceil - 1 < \lceil (2k)/3 \rceil$, we can get by Lemma 3.2 that there exists a longest rainbow path $P = u_1 u_2 \cdots u_l u_{l+1}$ and a vertex $v \notin V(P)$ such that $C(u_{l+1}v) = C(u_1 u_2).$ Notice that $u_2Pu_{l+1}v$ is also a rainbow path of length l, i.e., a longest rainbow path. Therefore, for any vertex $u \notin \{u_2, u_3, \cdots, u_l\}, C(vu) \in C(P)$. Without loss of generality, suppose that $|\{C(u_{x_1}v), C(u_{x_2}v), \cdots, C(u_{x_t}v)\} \setminus C(P)| = |CN(v) \setminus C(P)| = t$ where $2 \leq x_1 < x_2 < \cdots < x_t \leq l$.

By Lemma 2.1, we have that $x_{j+1} - x_j > 1$ for any $1 \le j \le t - 1$. Then

$$t \leq \lceil \frac{l-1}{2} \rceil \leq \frac{l}{2}$$

On the other hand, $CN(v) \subseteq C(P) \cup \{C(u_{x_1}v), C(u_{x_2}v), \cdots, C(u_{x_t}v)\}$. Therefore, $k \leq d^c(v) \leq l+t$. This implies that

$$t \ge k - l.$$

From the two inequations above, we can get that $k - l \le t \le l/2$. So $l \ge (2k)/3$, a contradiction. Therefore, G has a rainbow path of length at least $\lceil (2k)/3 \rceil$.

In the remaining part of this section, we will show that under the color degree condition, the length of a longest rainbow path is at least $\lceil (2k)/3 \rceil + 1$.

Theorem 3.4 Let G be an edge-colored graph. If $d^c(v) \ge k \ge 7$ for any vertex $v \in V(G)$, then G has a rainbow path of length at least $\lceil (2k)/3 \rceil + 1$.

Proof. We will prove the theorem by induction on k.

If k = 7, our Lemma 2.1 guarantees that G has a rainbow path of length at least 6, where $6 = \lfloor (2 \times 7)/3 \rfloor + 1$.

So we may assume that $k \ge 8$ and that the result holds for all smaller values of k.

Now we need only to show that if $d^c(v) \ge k$ for any $v \in V(G)$, G has a rainbow path of length $\lceil (2k)/3 \rceil + 1$. By the assumption, we know that G has a rainbow path of length $\lceil (2(k-1))/3 \rceil + 1$, which is equal to $\lceil (2k/3) \rceil + 1$ when $k \equiv 0$ (mod 3), and $\lceil (2k)/3 \rceil$ otherwise. So if $k \equiv 0 \pmod{3}$, we are done. Therefore, the rest is only to show that if $k \equiv 1, 2 \pmod{3}$, G has a rainbow path of length $\lceil (2k)/3 \rceil + 1$. We will show this by contradiction.

Assume that a longest rainbow path in G is of length $l = \lceil (2k)/3 \rceil$. Then we have that $k - l \ge 2$, and we can get by Lemma 3.2 that G has a rainbow path $P = u_1 u_2 \dots u_l u_{l+1}$ and there exists a vertex $v \in N(u_{l+1}) \setminus V(P)$ such that $C(u_{l+1}v) = C(u_1u_2)$. Denote $c_j = C(u_j u_{j+1}), j = 1, 2, \dots, l$.

Since $d^{c}(v) \geq k$, $d^{c}(u_{1}) \geq k$, and the two paths P and $u_{2}Pu_{l+1}v$ are both rainbow paths of length l, we have that there are at least k - l different colors not belonging to the color set C(P) appearing in the edge set $\{C(u_{1}u_{j}): 3 \leq j \leq l+1, \text{ and } u_{j} \in N(u_{1})\}$, and there are also at least k - l different colors not belonging to the color set C(P) appearing in the color set $\{C(u_{j}v): 3 \leq j \leq l, \text{ and } u_{j} \in N(v)\}$. So we can conclude that there exist two integer sets

 $\{x_1, x_2, \dots, x_{k-l}\} \text{ and } \{y_1, y_2, \dots, y_{k-l}\}, \text{ such that } 3 \le x_1 < x_2 < \dots < x_{k-l} \le l + 1, 2 \le y_1 < y_2 < y_3 < \dots < y_{k-l} \le l, u_{x_i} \in N(u_1) \ (i = 1, 2, \dots, k-l), u_{y_j} \in N(v) \ (j = 1, 2, \dots, k-l), \text{ and } |\{C(u_1u_{x_1}), C(u_1u_{x_2}), \dots, C(u_1u_{x_{k-l}})\} \setminus C(P)| = k-l, |\{C(u_{y_1}v), C(u_{y_2}v), \dots, C(u_{y_{k-l}}v)\} \setminus C(P)| = k-l.$

Note that we can easily get the following three claims:

Claim 1 For any integer $i, 3 \leq i \leq l$, if both the two edges u_1u_i, u_1u_{i+1} exist, then $|\{C(u_1u_i), C(u_1u_{i+1})\} \setminus C(P)| \leq 1.$

Otherwise, there exists an integer $i_0, 3 \leq i_0 \leq l$, such that both the two edges $u_1u_{i_0}, u_1u_{i_0+1}$ exist and $|\{C(u_1u_{i_0}), C(u_1u_{i_0+1})\} \setminus C(P)| = 2$ (see Figure 3.2). Then $u_2Pu_{i_0}u_1u_{i_0+1}Pu_{l+1}v$ is a rainbow path of length l+1, a contradiction.

Claim 2 If the edge u_1u_{l+1} exists, then the color of the edge must appear in P.

Otherwise, we have that the edge u_1u_{l+1} exists and the color of it is not contained in C(P). Since $k - l \ge 2$, there exists an integer j', $1 \le j' \le k - l$ such that $C(u_{y_j}, v) \ne C(u_1u_{l+1})$ (see Figure 3.3). Then $vu_{y_j}, Pu_{l+1}u_1Pu_{y_{j'}-1}$ is a rainbow path of length l + 1, a contradiction.

Claim 3 If the edge u_2v exists, then the color of the edge must appear in P.

Otherwise, we have that the edge u_2v exists and the color of it is not contained in the color set C(P). Since $k - l \ge 2$, there exists an integer i', $1 \le i' \le k - l$, such that $C(u_1u_{x_{i'}}) \ne C(u_2v)$ (see Figure 3.4). Then $u_{x_{i'}-1}P^{-1}u_2vu_{l+1}P^{-1}u_{x_{i'}}u_1$ is a rainbow path of length l + 1, a contradiction.

From the four claims above, we can get that $3 \le x_1 < x_1 + 1 < x_2 < x_2 + 1 < \ldots < x_{k-l} \le l$ and $3 \le y_1 < y_1 + 1 < y_2 < y_2 + 1 < \ldots < y_{k-l} \le l$.

Now we distinguish the following two cases:

Case 1. $k \equiv 1 \pmod{3}$. (Then $l = \lfloor (2k)/3 \rfloor = (2k+1)/3$ must be odd.)

Since $3 \leq y_1 < y_1 + 1 < y_2 < y_2 + 1 < \ldots < y_{k-l} \leq l$, we have $2(k - l - 1) \leq y_{k-l} - y_1 \leq l - 3$. On the other hand, we have 2(k - l - 1) = l - 3. This implies that $\{y_1, y_2, \ldots, y_{k-l}\} = \{3, 5, \ldots, l - 2, l\}$. Then by Proposition 2.3, we can conclude that $\{c_3, c_4, \ldots, c_{l-2}, c_l\} \cap \{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} = \emptyset$. So $CN(u_{l+1}) \subseteq \{C(u_{l+1}v') : v' \in N(u_{l+1}) \cap V(P)\} \cup \{c_1, c_2, c_l\} = \{C(u_{l+1}v') : v' \in N(u_{l+1}) \cap V(P)\} \cup \{c_1, c_2\}$, and hence we get that $d^c(u_{l+1}) = |CN(u_{l+1})| \leq l+2 < k$ (the last inequality holds because $k \geq 8$, $k \equiv 1 \pmod{3}$ and l = (2k + 1)/3) a contradiction.

Case 2. $k \equiv 2 \pmod{3}$. (Then $l = \lfloor (2k)/3 \rfloor = (2k+1)/3$ must be even.)

Since $3 \le y_1 < y_1 + 1 < y_2 < y_2 + 1 < \ldots < y_{k-l} \le l$, we have $2(k - l - 1) \le y_{k-l} - y_1 \le l - 3$. On the other hand, we have 2(k - l - 1) = (l - 3) - 1. Then we can conclude that $y_{j+1} = y_j + 2$ for $j = 1, 2, \ldots, k - l - 1$ or there exists an integer j_0 such that $1 \le j_0 \le k - l - 1$, $y_{j_0+1} = y_{j_0} + 3$, and $y_{j+1} = y_j + 2$ for any $1 \le j \le k - l - 1$ and $j \ne j_0$.

Case 2.1 $y_{j+1} = y_j + 2$ for j = 1, 2, ..., k - l - 1.

Now we have $\{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \cap \{c_{y_1}, c_{y_1+1}, c_{y_2}, c_{y_2+1}, \dots, c_{y_{k-l}-1}\} = \emptyset$ by Proposition 2.3, and $\{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \cap \{c_{x_1-1}, c_{x_2-1}, \dots, c_{x_{k-l}-1}\} = \emptyset$ by Proposition 2.2. Therefore, $\{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \subseteq C(P) \setminus (\{c_{y_1}, c_{y_1+1}, c_{y_2}, \dots, c_{y_{k-l}-1}\} \cup \{c_{x_1-1}, c_{x_2-1}, \dots, c_{x_{k-l}-1}\})$, since P is a longest rainbow path.

Notice that $y_{j+1} = y_j + 2$ for j = 1, 2, ..., k - l - 1 and $3 \le x_1 < x_1 + 1$ $< x_2 < ... < x_{k-l} \le l$. Then we have $(y_{k-l} - 1) - y_1 = 2(k - l - 1) - 1 < 2(k - l - 1) \le (x_{k-l} - 1) - (x_1 - 1)$. This implies that $\{c_{x_1-1}, c_{x_2-1}, ..., c_{x_{k-l}-1}\} \setminus \{c_{y_1}, c_{y_1+1}, c_{y_2}, ..., c_{y_{k-l}-1}\} \neq \emptyset$. So we get

$$k \leq d^{c}(u_{l+1}) = |CN(u_{l+1})|$$

$$\leq |\{c_{1}, c_{2}, \dots, c_{l}\} \setminus (\{c_{y_{1}}, c_{y_{1}+1}, \dots, c_{y_{k-l}-1}\} \cup \{c_{x_{1}-1}, c_{x_{2}-1}, \dots, c_{x_{k-l}-1}\})|$$

$$+ |\{C(u_{l+1}u_{j}) : 1 \leq j \leq l-1 \text{ and } u_{j} \in N(u_{l+1})\}|$$

$$\leq (l-2(k-l-1)-1) + (l-1) = 4l - 2k \qquad (3.1)$$

Since if $k \equiv 2 \pmod{3}$ and k > 8, then 4l - 2k < k, a contradiction. So we shall only consider the case when k = 8.

If k = 8, we have l = (2k + 1)/3 = 6, then we have $y_1 = 3$, $y_2 = 5$ or $y_1 = 4$, $y_2 = 6$. Denote $c_7 = C(u_{y_1}v_1)$, $c_8 = C(u_{y_2}v_1)$. On the other hand, since 4l - 2k = 8 = k, from equation (3.1) the only case we need to consider is the case when all the edges $u_1u_{l+1}, u_2u_{l+1}, \ldots, u_{l-1}u_{l+1}$ exist and

$$CN(u_{l+1}) = (\{c_1, c_2, \dots, c_l\} \setminus (\{c_{y_1}, c_{y_1+1}\} \cup \{c_{x_1-1}, c_{x_2-1}\}))$$

$$\cup \{C(u_{l+1}u_j) : 1 \le j \le l-1 \text{ and } u_j \in N(u_{l+1})\},$$
(3.2)

$$|\{c_{x_1-1}, c_{x_2-1}\} \setminus \{c_{y_1}, c_{y_1+1}\}| = 1,$$
(3.3)

$$|\{C(u_{l+1}u_j): 1 \le j \le l-1 \text{ and } u_j \in N(u_{l+1})\}| = l-1,$$
(3.4)

$$\{C(u_{l+1}u_{j}), C(u_{2}u_{l+1}), \dots, C(u_{l-1}u_{l+1})\}$$

$$\cap \left(C(P) \setminus \left(\{ c_{y_1}, c_{y_1+1} \} \cup \{ c_{x_1-1}, c_{x_2-1} \} \right) \right) = \emptyset.$$
(3.5)

Case 2.1.1 $y_1 = 3$ and $y_2 = 5$ (see Figure 3.5).

Then by equation (3.3), we need only to consider the cases when $x_1 = 3$ and $x_2 = 5$, or $x_1 = 4$ and $x_2 = 6$. Now we can conclude by Claim 2 and equations (3.4), (3.5) that $C(u_1u_7) \in \{c_2, c_3, c_4\}$ if $x_1 = 3$, $x_2 = 5$, and $C(u_1u_7) \in \{c_3, c_4, c_5\}$ if $x_1 = 4$, $x_2 = 6$. It is easy to check from Figure 3.5 that if $C(u_1u_7) = c_3$ or c_5 , then $u_4u_5vu_3u_2u_1u_7u_6$ is a rainbow path of length 7; if $C(u_1u_7) = c_2$ or c_4 , then

Figure 3.5 Figure 3.6 Figure 3.7

 $u_4u_3vu_5u_6u_7u_1u_2$ is a rainbow path of length 7. In another words, there always is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.1.2 $y_1 = 4$ and $y_2 = 6$ (see Figure 3.6).

Then by equation (3.3), we need only to consider the cases when $x_1 = 3$ and $x_2 = 5$, or $x_1 = 3$ and $x_2 = 6$, or $x_1 = 4$ and $x_2 = 6$.

Now we can conclude by Claim 2 and equations (3.4), (3.5) that $C(u_1u_7) \in \{c_2, c_4, c_5\}$ if $x_1 = 3$, $x_2 = 5$ or $x_1 = 3$, $x_2 = 6$, and $C(u_1u_7) \in \{c_3, c_4, c_5\}$ if $x_1 = 4, x_2 = 6$.

It is easy to check from Figure 3.6 that if $C(u_1u_7) = c_3$ or c_5 , then $u_5u_4vu_6u_7u_1u_2u_3$ is a rainbow path of length 7; if $C(u_1u_7) = c_4$, then $u_5u_6vu_4u_3u_2u_1u_7$ is a rainbow path of length 7, a contradiction. It remains us to consider the case when $C(u_1u_7) = c_2$ (see Figure 3.7), and $3 \in \{x_1, x_2\}$ only.

Then we have $x_1 = 3$, $x_2 = 5$, or $x_1 = 3$, $x_2 = 6$. So $|\{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\}| = 4$ and $\{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\} \cap \{c_1, c_3, c_4, c_5, c_6\} \subseteq \{c_4, c_5\}$, since $C(u_1u_7) = c_2$ and because of the equations (3.2), (3.4), (3.5). So the edge u_3u_7 is in color c_4 , or color c_5 , or some color not appearing in P. It is easy to check from Figure 3.7 that if the edge u_3u_7 is in color c_4 , then $u_2u_1u_7u_3u_4vu_6u_5$ is a rainbow path of length 7; if $C(u_3u_7) = c_5$, then $u_5u_4vu_6u_7u_3u_2u_1$ is a rainbow path of length 7; if $C(u_3u_7) = c_7$, then $u_2u_1u_7u_3u_4u_5u_6v$ is a rainbow path of length 7; is in a color not belonging to the color set $\{c_1, c_2, \ldots, c_7\}$, then $vu_4u_5u_6u_7u_3u_2u_1$ is a rainbow path of length 7. So there always is a rainbow path of length 7 in all these cases, a contradiction.

Case 2.2 There exists an integer j_0 such that $1 \le j_0 \le k - l - 1, y_{j_0+1} = y_{j_0} + 3$, and $y_{j+1} = y_j + 2$ for any $1 \le j \le k - l - 1$ and $j \ne j_0$.

Then we have $\{C(u_{l+1}v'): v' \in N(u_{l+1}) \setminus V(P)\} \cap \{c_{y_1}, c_{y_1+1}, \dots, c_{y_{j_0}-1}, c_{y_{j_0+1}}, c_{y_{j_0+1}+1}, \dots, c_{y_{k-l}-1}\} = \emptyset$ by Lemma 2.3, and $\{C(u_{l+1}v'): v' \in N(u_{l+1}) \setminus V(P)\} \cap \{c_{x_1-1}, c_{x_2-1}, \dots, c_{x_{k-l}-1}\} = \emptyset$ by Lemma 2.2. Therefore,

$$CN(u_{l+1}) = \{C(u_{l+1}v') : v' \in N(u_{l+1}) \cap V(P)\} \cup \{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\}$$

$$\subseteq \{C(u_{l+1}u_j) : 1 \leq j \leq l-1 \text{ and } u_j \in N(u_{l+1})\} \cup (C(P) \setminus (\{c_{x_1-1}, c_{x_2-1}, \dots, c_{x_{k-l}-1}\} \cup \{c_{y_1}, c_{y_1+1}, \dots, c_{y_{j_0}-1}, c_{y_{j_0}+1}, c_{y_{j_0}+1}+1, \dots, c_{y_{k-l}-1}\})).$$
(3.6)

Since $3 \le x_1 < x_1 + 1 < x_2 < x_2 + 1 < ... < x_{k-l-1} < x_{k-l-1} + 1 < x_{k-l} \le l$, we can easily get that there are at most $(j_0 - 1)$ different integers $i(1 \le i \le k - l)$

such that x_i appears in the set $\{y_1, y_1 + 1, \dots, y_{j_0} - 1\}$ and at most $(k - l - j_0 - 1)$ different integers $i(1 \le i \le k - l)$ such that x_i appears in the set $\{y_{j_0+1}, y_{j_0+1} + 1, \dots, y_{k-l} - 1\}$. This implies that

$$|\{c_{x_1-1}, c_{x_2-1}, \dots, c_{x_{k-l}-1}\} \setminus \{c_{y_1}, c_{y_1+1}, \dots, c_{y_{j_0}-1}, c_{y_{j_0+1}}, c_{y_{j_0+1}+1}, \dots, c_{y_{k-l}-1}\}| \ge 2.$$

$$(3.7)$$

Consequently, we have $k \leq |CN(u_{l+1})| \leq (l-1) + (l-2(j_0-1)-2(k-l-j_0-1)-2) = 4l-2k+1$. So we shall only consider the case when k = 8 and the case when k = 11, since if $k \equiv 2 \pmod{3}$ and k > 11, then 4l - 2k + 1 < k, a contradiction.

Case 2.2.1 k = 8. In this case, l = 6 and $y_1 = 3$, $y_2 = 6$. Denote $c_7 = C(u_3v)$ and $c_8 = C(u_6v)$. We distinguish the following cases according to x_1 and x_2 :

Case 2.2.1.1 $x_1 = 3$ and $x_2 = 5$ (see Figure 3.8).

Then we can get from Proposition 2.2 that $\{C(u_7v'): v' \in N(u_7) \setminus V(P)\} \cap \{c_2, c_4\} = \emptyset$. So $CN(u_7) \subseteq \{C(u_ju_7): 1 \leq j \leq 6 \text{ and } u_j \in N(u_7)\} \cup \{C(u_7v'): v' \in N(u_7) \setminus V(P)\} \subseteq \{C(u_ju_7): 1 \leq j \leq 5 \text{ and } u_j \in N(u_7)\} \cup \{c_1, c_3, c_5, c_6\}.$ Since $|CN(u_7)| \geq 8$, this implies that

$$|\{C(u_j u_7) : 1 \le j \le 5 \text{ and } u_j \in N(u_7)\} \setminus \{c_1, c_3, c_5, c_6\}| \ge 4.$$
(3.8)

Now, we will consider the existence of the edge u_1u_7 in G and the color of it if it does exist.

Subcase 1 The edge u_1u_7 exists and $C(u_1u_7) = c_2$.

It is obvious that $vu_3u_4u_5u_6u_7u_1u_2$ is a rainbow path of length 7 in this subcase, a contradiction.

Subcase 2 The edge u_1u_7 exists and $C(u_1u_7) = c_4$ (see Figure 3.9).

In this case, $\{C(u_ju_7): 2 \le j \le 5 \text{ and } u_j \in N(u_7)\} \setminus \{c_1, c_3, c_4, c_5, c_6, c_7, c_8\} \ne \emptyset$, because of the inequality (3.8).

Subcase 2.1 There exists some $i \in \{2, 4, 5\}$ such that the edge $u_i u_7$ exists and the color of it does not belong to the color set $\{c_1, c_3, c_4, c_5, c_6, c_7, c_8\}$.

It is easy to check in Figure 3.9 that if i = 2, then $vu_3u_4u_5u_6u_7u_2u_1$ is a rainbow path of length 7; if i = 4, then $u_5u_6vu_3u_4u_7u_1u_2$ is a rainbow path of length 7; if i = 5, then $u_4u_3vu_6u_5u_7u_1u_2$ is a rainbow path of length 7, a contradiction.

Subcase 2.2 The edge u_3u_7 exists and the color of it does not belong to $\{c_1, c_3, c_4, c_5, c_6, c_7, c_8\}$.

In this subcase, $u_2u_1u_5u_4u_3u_7u_6v$ is a rainbow path of length 7 if $C(u_1u_5) = c_7$. On the other hand, since $5 = x_2$, so we may assume that $C(u_1u_5) = c_8$ (see Figure 3.10). Since $u_1u_2u_3vu_6u_5u_4$ is a rainbow path of length 6 with the color set $\{c_1, c_2, c_4, c_5, c_7, c_8\}$, $\{C(u_1w) : w \in N(u_1) \cap \{u_3, u_4, u_6, v\}\} \setminus \{c_1, c_2, c_4, c_5, c_6, c_7, c_8\} \neq \emptyset$. It is easy to check from Figure 3.10 that if the edge u_1u_4 exists and the color of it does not belong to the color set $\{c_1, c_2, c_4, c_5, c_6, c_7, c_8\}$, then $u_5u_4u_1u_2u_3vu_6u_7$ is a rainbow path of length 7; if the edge u_1u_6 exists and the color of it does not belong to the color set $\{c_1, c_2, c_4, c_5, c_6, c_7, c_8\}$, then $u_2u_3vu_7u_6u_1u_5u_4$ is a rainbow path of length 7; if the edge u_1v exists and the color of it does not belong to the color set $\{c_1, c_2, c_4, c_5, c_6, c_7, c_8\}$, then $u_2u_3vu_7u_6u_1u_5u_4$ is a rainbow path of length 7; if the edge u_1v exists and the color of it does not belong to the color set $\{c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8\}$, then $vu_1u_2u_3u_4u_5u_6u_7$ is a rainbow path of length 7; if the edge u_1v exists and the color of it is c_3 , then $u_2u_3u_1vu_7u_6u_5u_4$ is a rainbow path of length 7, a contradiction. So the edge u_1u_3 exists and is in a color not belonging to the color set $\{c_1, c_2, c_4, c_5, c_6, c_7, c_8\}$, which implies that the edge u_1u_3 is in a color not belonging to the color set $\{c_1, c_2, c_4, c_5, c_6, c_7, c_8\}$, since $3 = x_1$. Denote $c_9 = C(u_1u_3)$ (as shown in Figure 3.11).

From the analysis above, we now have $\{C(u_1w) : w \in N(u_1) \cap \{u_3, u_4, u_6, v\}\} \subseteq \{c_1, c_2, c_4, c_5, c_6, c_7, c_8, c_9\}$. On the other hand, because of the fact that P is a rainbow path of length 6 and Claim 1, we have $\{C(u_1w) : w \in N(u_1) \cap \{u_3, u_4, u_6, v\}\} \cap \{c_7\} = \emptyset$. So $\{C(u_1w) : w \in N(u_1) \cap \{u_3, u_4, u_6, v\}\} \subseteq \{c_1, c_2, c_4, c_5, c_6, c_8, c_9\}$, and then $\{C(u_1w) : w \in N(u_1) \cap \{u_3, u_4, \dots, u_6, u_7, v\}\} \subseteq \{c_1, c_2, c_4, c_5, c_6, c_8, c_9\}$. Since $d^c(u_1) \ge 8$ and P is a rainbow path of length 6, there exists a vertex $v' \notin \{u_1, u_2, \dots, u_7, v\}$ such that $C(u_1v') = c_3$. Then, $v'u_1u_2u_3vu_6u_5u_4$ is a rainbow path of length 7, a contradiction.

Subcase 3 The edge u_1u_7 exists and the color of it is other than c_2 and c_4 , or the edge u_1u_7 does not exist.

We can conclude from Claim 2 and the inequality (3.8) that the edges u_2u_7 , u_3u_7 , u_4u_7 , u_5u_7 all exist and $|\{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\} \setminus \{c_1, c_3, c_5, c_6\}| = 4$. Then

$$CN(u_7) = \{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\} \cup \{c_1, c_3, c_5, c_6\}.$$
(3.9)

Note that if the edge u_1u_7 exists and $C(u_1u_7) = c_3$, then $u_4u_5u_6vu_3u_2u_1u_7$ is a rainbow path of length 7; if $C(u_1u_7) = c_5$, then $u_5u_4u_3v_1u_6u_7u_1u_2$ is a rainbow path of length 7. So we can conclude from the equation (3.9) that there exist two vertices $v', v'' \notin V(P)$ such that $C(u_7v') = c_3, C(u_7v'') = c_5$. On the other hand, since $x_2 = 5$, the edge $u_1 u_5$ exists and has a color not belonging to the color set C(P). If $C(u_1u_5) \neq c_7$, then $vu_3u_2u_1u_5u_6u_7v'$ is a rainbow path of length 7, and so we assume that $C(u_1u_5) = c_7$ (as shown in Figure 3.12). Now $vu_6u_5u_1u_2u_3u_4$ is a rainbow path of length 6 with color set $\{c_1, c_2, c_3, c_5, c_7, c_8\}$, and so we get that there exists an integer $j, 1 \leq j \leq 5$, such that the edge $u_i v$ exists and $C(u_i v) \notin \{c_1, c_2, c_3, c_5, c_6, c_7, c_8\}$, since $d^c(v) \geq 8$. It is easy to check from Figure 3.12 that if the edge u_1v exists and the color of it does not belong to the color set $\{c_1, c_2, c_3, c_5, c_6, c_7, c_8\}$, then $u_4 u_3 u_2 u_1 v u_6 u_7 v''$ is a rainbow path of length 7; if the edge u_2v exists and the color of it does not belong to the color set $\{c_1, c_2, c_3, c_5, c_6, c_7, c_8\}$, then $u_4 u_3 u_2 v u_7 u_6 u_5 u_1$ is a rainbow path of length 7; if the edge u_4v exists and the color of it does not belong to the color set $\{c_1, c_2, c_3, c_5, c_6, c_7, c_8\}$, then $vu_4u_3u_2u_1u_5u_6u_7$ is a rainbow path of

Figure 3.11

Figure 3.12

length 7; if the edge u_5v exists and the color of it does not belong to the color set $\{c_1, c_2, c_3, c_5, c_6, c_7, c_8\}$, then $u_4u_3u_2u_1u_5vu_6u_7$ is a rainbow path of length 7, a contradiction.

Case 2.2.1.2 $x_1 = 3$ and $x_2 = 6$ (see Figure 3.13).

Then we can get from Proposition 2.2 that $\{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \cap \{c_2, c_5\} = \emptyset$. So $CN(u_{l+1}) \subseteq \{C(u_ju_7) : 1 \le j \le 6 \text{ and } u_j \in N(u_7)\} \cup \{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \subseteq \{C(u_ju_7) : 1 \le j \le 5 \text{ and } u_j \in N(u_7)\} \cup \{c_1, c_3, c_4, c_6\}.$ Since $|CN(u_7)| \ge 8$, this implies that

$$|\{C(u_j u_7) : 1 \le j \le 5 \text{ and } u_j \in N(u_7)\} \setminus \{c_1, c_3, c_4, c_6\}| \ge 4.$$
(3.10)

Note that if the edge u_1u_7 exists and $C(u_1u_7) = c_2$, then $vu_3u_4u_5u_6u_7u_1u_2$ is a rainbow path of length 7; if the edge u_1u_7 exists and $C(u_1u_7) = c_5$, then $u_5u_4u_3vu_6u_7u_1u_2$ is a rainbow path of length 7, a contradiction. Then we can get from Claim 2 and the inequality (3.10) that the four edges u_2u_7 , u_3u_7 , u_4u_7 , u_5u_7 all exist, and

$$|\{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\} \setminus \{c_1, c_3, c_4, c_6\}| = 4.$$
(3.11)

Now we consider the color of the edge u_2u_7 . If $C(u_2u_7) \notin \{c_1, c_3, c_4, c_5, c_6, c_7\}$, then $vu_3u_4u_5u_6u_7u_2u_1$ is a rainbow path of length 7; if $C(u_2u_7) = c_5$, then $u_5u_4u_3vu_6u_7u_2u_1$ is a rainbow path of length 7, a contradiction. So we get from the inequality (3.11) that $C(u_2u_7) = c_7$ (see Figure 3.14).

On the other hand, $u_1u_2u_3vu_6u_5u_4$ is a rainbow path of length 6 with the color set $\{c_1, c_2, c_4, c_5, c_7, c_8\}$, so we have that there exists a vertex $w \in \{u_3, u_4, u_5, u_6, v\}$ such that the edge u_1w exists and $C(u_1w) \notin \{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$ since $d^c(u_1) \geq$ 8. It is easy to check from Figure 3.14 that if the edge u_1u_3 has a color not belonging to the color set $\{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$, then $u_1u_3u_2u_7vu_6u_5u_4$ is a rainbow path of length 7; if the edge u_1u_4 exists and has a color not belonging to

Figure 3.13

Figure 3.14

the color set $\{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$, then $u_1u_4u_3u_2u_7vu_6u_5$ is a rainbow path of length 7; if the edge u_1u_5 exists and has a color not belonging to the color set $\{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$, then $u_1u_5u_4u_3u_2u_7vu_6$ is a rainbow path of length 7; if the edge u_1u_6 has a color not belonging to the color set $\{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$, then $u_1u_6u_5u_4u_3u_2u_7v$ is a rainbow path of length 7; if the edge u_1v exists and has a color not belonging to the color set $\{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$, then $u_1v_6u_5u_4u_3u_2u_7v$ is a rainbow path of length 7; if the edge u_1v exists and has a color not belonging to the color set $\{c_1, c_2, c_3, c_4, c_5, c_7, c_8\}$, then $u_1vu_7u_2u_3u_4u_5u_6$ is a rainbow path of length 7, a contradiction.

Case 2.2.1.3 $x_1 = 4$ and $x_2 = 6$ (see Figure 3.15).

Then we can get from Proposition 2.2 that $\{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \cap \{c_3, c_5\} = \emptyset$. So $CN(u_{l+1}) \subseteq \{C(u_ju_7) : 1 \le j \le 6 \text{ and } u_j \in N(u_7)\} \cup \{C(u_{l+1}v') : v' \in N(u_{l+1}) \setminus V(P)\} \subseteq \{C(u_ju_7) : 1 \le j \le 5 \text{ and } u_j \in N(u_7)\} \cup \{c_1, c_2, c_4, c_6\}.$ Since $|CN(u_7)| \ge 8$, this implies that

$$|\{C(u_j u_7) : 1 \le j \le 5 \text{ and } u_j \in N(u_7)\} \setminus \{c_1, c_2, c_4, c_6\}| \ge 4.$$
(3.12)

Note that if the edge u_1u_7 exists and $C(u_1u_7) = c_3$, then $vu_3u_2u_1u_7u_6u_5u_4$ is a rainbow path of length 7; if $C(u_1u_7) = c_5$, then $vu_6u_7u_1u_2u_3u_4u_5$ is a rainbow path of length 7, a contradiction. So we can get from Claim 2 and the inequality (3.12) that all the four edges u_2u_7 , u_3u_7 , u_4u_7 , u_5u_7 exist and

$$|\{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\} \setminus \{c_1, c_2, c_4, c_6\}| = 4,$$
(3.13)

$$CN(u_7) = \{C(u_2u_7), C(u_3u_7), C(u_4u_7), C(u_5u_7)\} \cup \{c_1, c_2, c_4, c_6\}.$$
 (3.14)

If $C(u_1u_4) \neq c_7$, then $vu_3u_2u_1u_4u_5u_6u_7$ is a rainbow path of length 7, a contradiction. So we have $C(u_1u_4) = c_7$ and then $C(u_1u_6) \notin \{c_1, c_2, c_3, c_4, c_5, c_6, c_7\}$ because $x_1 = 4$, $x_2 = 6$ and from the way we choose x_1, x_2 .

If the edge u_1u_7 exists and $C(u_1u_7) = c_2$, then $vu_3u_4u_5u_6u_7u_1u_2$ is a rainbow path of length 7, a contradiction. So we can conclude from the equations (3.13) and (3.14) that there exists a vertex $v' \notin \{u_1, u_2, u_3, u_4, u_5, u_6, u_7\}$ such that $C(u_7v') = c_2$ (see Figure 3.16). Then, $u_1u_6u_5u_4u_3vu_7v'$ is a rainbow path of length 7, a contradiction.

So, in the case k = 8, there always is a rainbow path of length 7 in G.

Case 2.2.2 k = 11, then l = 8.

Denote $c_9 = C(u_{y_1}v_1)$, $c_{10} = C(u_{y_2}v_1)$ and $c_{11} = C(u_{y_3}v_1)$.

Figure 3.15

Figure 3.16

By the two equations (3.6) and (3.7), we have $11 = k \leq |CN(u_{l+1})| \leq (l-1) + (l-2(j_0-1)-2(k-l-j_0-1)-2) = 4l-2k+1 = 11$. So we shall only consider the case when all the edges $u_1u_9, u_2u_9, \ldots, u_7u_9$ exist and

$$|\{C(u_1u_9), C(u_2u_9), \dots, C(u_7u_9)\}| = 7,$$
(3.15)

$$\{C(u_1u_9), C(u_2u_9), \dots, C(u_7u_9)\} \cap (C(P) \setminus \{c_{x_1-1}, c_{x_2-1}, c_{x_3-1}\}$$

$$\bigcup \{ c_{y_1}, c_{y_1+1}, \dots, c_{y_{j_0}-1}, c_{y_{j_0+1}}, c_{y_{j_0+1}+1}, \dots, c_{y_3-1} \})) = \emptyset,$$

$$CN(y_0) = \{ C(y_1y_0), C(y_2y_0), \dots, C(y_2y_0) \} \cup \{ C(P) \setminus \{ \{ c_{y_1}, c_{y_$$

$$\cup \{c_{y_1}, c_{y_1+1}, \dots, c_{y_{j_0}-1}, c_{y_{j_0+1}}, c_{y_{j_0+1}+1}, \dots, c_{y_{3}-1}\})),$$
(3.17)

$$|\{c_{x_1-1}, c_{x_2-1}, c_{x_3-1}\} \setminus \{c_{y_1}, c_{y_1+1}, \dots, c_{y_{j_0}-1}, c_{y_{j_0}+1}, c_{y_{j_0}+1+1}, \dots, c_{y_3-1}\}| = 2.$$
(3.18)

Now we distinguish the following two cases according to j_0 :

Case 2.2.2.1 $j_0 = 1$, then $y_1 = 3$, $y_2 = 6$ and $y_3 = 8$ (see Figure 3.17)

In this case $\{c_{y_1}, c_{y_1+1}, \ldots, c_{y_{j_0}-1}, c_{y_{j_0+1}}, c_{y_{j_0+1}+1}, \ldots, c_{y_{3}-1}\} = \{c_6, c_7\}$. So we can easily get that $\{c_{x_1-1}, c_{x_2-1}\} \cap \{c_6, c_7\} = \emptyset$ and $c_{x_3-1} \in \{c_6, c_7\}$ since $3 \leq x_1 < x_1 + 1 < x_2 < x_2 + 1 < x_3 \leq 8$ and from equation (3.18). Then we have $\{C(u_1u_9), C(u_2u_9), \ldots, C(u_7u_9)\} \cap (\{c_1, c_2, c_3, c_4, c_5, c_8\} \setminus \{c_{x_1-1}, c_{x_2-1}\}) = \emptyset$ from the equation (3.16). So, $C(u_1u_9) \in \{c_{x_1-1}, c_{x_2-1}, c_6, c_7\} \subseteq \{c_2, c_3, c_4, c_5, c_6, c_7\}$ because of Claim 2 and the equations (3.15) and (3.16). It is easy to check in Figure 3.17 that if the edge u_1u_9 has color c_2 , then $vu_3u_4u_5u_6u_7u_8u_9u_1u_2u_3v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_3 , then $u_4u_5u_6u_7u_8u_9u_1u_2u_3v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_5 , then $vu_6u_7u_8u_9u_1u_2u_3v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_5 , then $vu_6u_7u_8u_9u_1u_2u_3v_4u_5$ is a rainbow path of length 9; if the edge u_1u_9 has color c_7 , then $vu_8u_9u_1u_2u_3u_4u_5u_6v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_7 , then $vu_8u_9u_1u_2u_3u_4u_5u_6v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_7 , then $vu_8u_9u_1u_2u_3u_4u_5u_6u_7$ is a rainbow path of length 9, a contradiction. So it remains us to consider the case when $C(u_1u_9) = c_4$ and $5 \in \{x_1, x_2\}$.

Then $4 \notin \{x_1, x_2\}$ since $C(u_1u_9) \in \{c_{x_1-1}, c_{x_2-1}, c_6, c_7\}$ and $3 \le x_1 < x_1 + 1 < x_2 < x_2 + 1 < x_3 \le 8$. Therefore, we can get from the equations (3.16) and (3.17) that there exists a vertex $v' \notin V(P)$ such that $C(u_9v') = c_3$ (see Figure 3.18). Now $u_5u_6u_7u_8v_1u_3u_2u_1u_9v'$ is a rainbow path of length 9, a contradiction.

Case 2.2.2. $j_0 = 2$, then $y_1 = 3$, $y_2 = 5$ and $y_3 = 8$ (see Figure 3.20).

In this case $\{c_{y_1}, c_{y_1+1}, \ldots, c_{y_{j_0}-1}, c_{y_{j_0+1}}, c_{y_{j_0+1}+1}, \ldots, c_{y_{3}-1}\} = \{c_3, c_4\}$. So we can easily get that $x_1 = 3$, $x_2 = 5$ and $x_3 = 7$, or $x_1 = 3$, $x_2 = 5$ and

Figure 3.19

Figure 3.20

 $x_3 = 8$, or $x_1 = 4$, $x_2 = 6$ and $x_3 = 8$, since $3 \le x_1 < x_1 + 1 < x_2 < x_2 + 1 < x_3 \le 8$ and form equation (3.18). On the other hand, we have that $C(u_1u_9) \in \{c_3, c_4, c_{x_1-1}, c_{x_2-1}, c_{x_3-1}\} \subseteq \{c_2, c_3, c_4, c_5, c_6, c_7\}$ because of Claim 2 and the equations (3.15) and (3.16). It is easy to check in Figure 3.20 that if the edge u_1u_9 has color c_2 , then $vu_3u_4u_5u_6u_7u_8u_9u_1u_2$ is a rainbow path of length 9; if the edge u_1u_9 has color c_4 , then $vu_5u_6u_7u_8u_9u_1u_2u_3u_4$ is a rainbow path of length 9; if the edge u_1u_9 has color c_5 , then $u_6u_7u_8u_9u_1u_2u_3u_4u_5v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_5 , then $u_6u_7u_8u_9u_1u_2u_3u_4u_5v$ is a rainbow path of length 9; if the edge u_1u_9 has color c_7 , then $vu_8u_9u_1u_2u_3u_4u_5v$ is a rainbow path of length 9; if a contradiction. So it remains us to consider the case when $C(u_1u_9) = c_6$ and $c_6 \in \{c_{x_1-1}, c_{x_2-1}, c_{x_3-1}\}$.

Then we can conclude that $x_1 = 3$, $x_2 = 5$, and $x_3 = 7$ since $C(u_1u_9) \in \{c_3, c_4, c_{x_1-1}, c_{x_2-1}, c_{x_3-1}\}$ and $3 \leq x_1 < x_1+1 < x_2 < x_2+1 < x_3 \leq 8$. Therefore, we can get from the equations (3.16) and (3.17) that there exists a vertex $v' \notin V(P)$ such that $C(u_9v_2) = c_5$ (see Figure ??). Now $u_7u_8vu_5u_4u_3u_2u_1u_9v'$ is a rainbow path of length 9, a contradiction.

So, in the case k = 11, there always is a rainbow path of length 9 in G, a contradiction.

Up to now, from all the above contradictions we can conclude that if $d^c(v) \ge k \ge 7$ for any vertex $v \in V(G)$, then G has a rainbow path of length at least $\lceil (2k)/3 \rceil + 1$ in G.

4. Remarks

In this paper, we consider long rainbow paths in edge-colored general graphs. However, if we restrict graphs to properly edge-colored complete graphs, this is an important topic in combinatorial design [12]. If G is a properly edge-colored complete graph with n vertices, then any vertex v in G has color degree k = n - 1. Therefore, by Theorem 3.3, we can get the following conclusion.

Corollary 4.1 In every proper edge-coloring of K_n , there exists a rainbow path of length at least $\lceil (2n+1)/3 \rceil$.

This improves the result of [12], since in [12], Gyárfás and Mhalla claimed that there exists a rainbow path with at least $\lceil (2n+1)/3 \rceil$ vertices, i.e., a rainbow path of length at least $\lceil (2n+1)/3 \rceil - 1$.

References

- M. Albert, A. Frieze, B. Reed, Multicolored Hamilton cycles, Electronic J. Combin. 2 (1995), #R10.
- [2] M. Axenovich, T. Jiang, Zs. Tuza, Local anti-Ramsey numbers of graphs, Combin. Probab. Comput. 12(2003), 495-511.
- [3] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan London and Elsvier, New York (1976).
- [4] H.J. Broersma, X. Li, G. Woeginger, S. Zhang, Paths and cycles in colored graphs, Australasian J. Combin. 31(2005), 297-309.
- [5] H. Chen, X. Li, Long heterochromatic paths in edge-colored graphs, Electronic J. Combin. 12(1)(2005), #R33.
- [6] W.S. Chou, Y. Manoussakis, O. Megalaki, M. Spyratos, Zs. Tuza, Paths through fixed vertices in edge-colored graphs, Math. Inf. Sci. Hun. 32(1994), 49-58.
- [7] H.Y. Chen, X. Tan, J.L. Wu, The linear arboricity of planar graphs without 5-cycles with chords, Bull. Malays. Math. Sci. Soc. (2) 36(2013), no.2, 285-290.
- [8] A. Dong, X. Zhang, G.J. Li, Equitable coloring and equitable choosability of planar graphs without 5- and 7-cycles, Bull. Malays. Math. Sci. Soc. (2) 35(2012), no.4, 897-910.
- [9] P. Erdös, Zs. Tuza, Rainbow Hamiltonian paths and canonically colored subgraphs in infinite complete graphs, Mathematica Pannonica 1(1990), 5-13.
- [10] P. Erdös, Zs. Tuza, Rainbow subgraphs in edge-colorings of complete graphs, Ann. Discrete Math. 55(1993), 81-88.

- [11] A.M. Frieze, B.A. Reed, Polychromatic Hamilton cycles, Discrete Math. 118(1993), 69-74.
- [12] A. Gyárfás, M. Mhalla, Rainbow and orthogonal paths in factorizations of K_n , J. Combin. Designs 18(2010), 167-176.
- [13] H. Gebauer, F. Mousset, On rainbow cycles and paths, arXiv:1207.0840.
- [14] G. Hahn, C. Thomassen, Path and cycle sub-Ramsey numbers and edgecoloring conjecture, Discrete Math. 62(1)(1986), 29-33.
- [15] Y. Manoussakis, M. Spyratos, Zs. Tuza, Cycles of given color patterns, J. Graph Theory 21(1996), 153-162.
- [16] Y. Manoussakis, M. Spyratos, Zs. Tuza, M. Voigt, Minimal colorings for properly colored subgraphs, Graphs Combin. 12(1996), 345-360.
- [17] B. Wang, J.L. Wu, S.F. Tian, Total colorings of planar graphs with small maximum degree, Bull. Malays. Math. Sci. Soc. (2) 36(2013), no.3, 783-787.
- [18] R.Y. Xu, J.L. Wu, H.J. Wang, Total coloring of planar graphs without some chordal 6-cycles, Bull. Malays. Math. Sci. Soc. (2), accepted.
- [19] Q.S. Zou, H.Y. Chen, G.J. Li, Vertex-disjoint cycles of order eight with chords in a bipartite graph, Bull. Malays. Math. Sci. Soc. (2) 36(2013), no.1, 255-22.