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Abstract25

Let G be a nontrivial connected graph with an edge-coloring c : E(G) →26

{1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree27

T in G is called a rainbow tree if no two edges of T receive the same color.28

For a vertex set S ⊆ V (G), a tree that connects S in G is called an S-tree.29

The minimum number of colors that are needed in an edge-coloring of G30

such that there is a rainbow S-tree for every set S of k vertices of V (G) is31

called the k-rainbow index of G, denoted by rxk(G). Notice that a lower32
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bound and an upper bound of the k-rainbow index of a graph with order n33

is k − 1 and n − 1, respectively. Chartrand et al. got that the k-rainbow34

index of a tree with order n is n− 1 and the k-rainbow index of a unicyclic35

graph with order n is n − 1 or n − 2. Li and Sun raised the open problem36

of characterizing the graphs of order n with rxk(G) = n − 1 for k ≥ 3. In37

early papers we characterized the graphs of order n with 3-rainbow index 238

and n− 1. In this paper, we focus on k = 4, and characterize the graphs of39

order n with 4-rainbow index 3 and n− 1, respectively.40

Keywords: rainbow S-tree, k-rainbow index.41

2010 Mathematics Subject Classification: Type 2010 Mathematics42

05C05, 05C15, 05C75.43

1. Introduction44

All graphs considered in this paper are simple, finite and undirected. We45

follow the terminology and notation of Bondy and Murty [1]. Let G be a nontrivial46

connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where47

adjacent edges may be colored the same. A path of G is a rainbow path if any two48

edges of the path have distinct colors. G is rainbow connected if any two vertices49

of G are connected by a rainbow path. The minimum number of colors required50

to make G rainbow connected is called its rainbow connection number, denoted by51

rc(G). Results on the rainbow connectivity can be found in [2, 3, 4, 5, 6, 10, 11].52

These concepts were introduced by Chartrand et al. in [4]. In [7], they53

generalized the concept of rainbow path to rainbow tree. A tree T in G is called54

a rainbow tree if no two edges of T receive the same color. For S ⊆ V (G), a55

rainbow S-tree is a rainbow tree that connects S. Given a fixed integer k with56

2 ≤ k ≤ n, the edge-coloring c of G is called a k-rainbow coloring of G if, for57

every set S of k vertices of G, there exists a rainbow S-tree, and we say that58

G is k-rainbow connected. The k-rainbow index rxk(G) of G is the minimum59

number of colors that are needed in a k-rainbow coloring of G. Clearly, when60

k = 2, rx2(G) is nothing new but the rainbow connection number rc(G) of G.61

For every connected graph G of order n, it is easy to see that rx2(G) ≤ rx3(G) ≤62

· · · ≤ rxn(G).63

The Steiner distance dG(S) of a set S of vertices in G is the minimum64

size (number of edges) of a tree in G that connects S. Such a tree is called a65

Steiner S-tree or simply an S-tree. The k-Steiner diameter sdiamk(G) of G is66

the maximum Steiner distance of S among all sets S with k vertices in G. Then67

there is a simple upper bound and lower bound for rxk(G).68

Observation 1.1 [7]. For every connected graph G of order n ≥ 3 and each69

integer k with 3 ≤ k ≤ n, we have k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.70
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It is easy to get the following observations.71

Observation 1.2 [7]. Let G be a connected graph of order n containing two72

bridges e and f . For each integer k with 2 ≤ k ≤ n, every k-rainbow coloring of73

G must assign distinct colors to e and f .74

Observation 1.3 [8]. Let G be a connected graph of order n, and H be a con-75

nected spanning subgraph of G. Then rxk(G) ≤ rxk(H).76

The following is an immediate consequence of the observations above. Namely,77

trees attain the upper bound of k-rainbow index, regardless of the value of k.78

Proposition 1.4 [7]. Let T be a tree of order n ≥ 3. For each integer k with79

3 ≤ k ≤ n, rxk(T ) = n− 1.80

In [7], they also showed that the k-rainbow index of a unicyclic graph is n−181

or n− 2.82

Theorem 1.5 [7]. If G is a unicyclic graph of order n ≥ 3 and girth g ≥ 3, then

rxk(G) =

{
n− 2, k = 3 and g ≥ 4;
n− 1, g = 3 or 4 ≤ k ≤ n.

(1)

Notice that a lower bound and an upper bound of the k-rainbow index of83

a graph with order n is k − 1 and n − 1, respectively. In [10], the authors84

raised an open problem: for k ≥ 3, characterize the graphs of order n with85

rxk(G) = n − 1. It is not easy to settle down the problem for general k. In86

[8] and [12], we characterized the graphs of order n with 3-rainbow index 2 and87

n − 1, respectively. In this paper we mainly deal with the 4-rainbow index of88

graphs with order n. More specifically, characterize the graphs of order n whose89

4-rainbow index is 3 and n− 1, respectively.90

2. Characterization of graphs with rx4(G)= 391

First we give a necessary and sufficient condition for rx4(G) = 3. Note that92

if a connected graph of order 4 has three colors, then it has a rainbow spanning93

tree. Thus, the following lemma holds.94

Lemma 2.1. Let G be a connected graph of order n (n ≥ 4). Then rx4(G) = 395

if and only if each induced subgraph of G with order 4 is connected and has three96

different colors.97

Next we give some necessary conditions for rx4(G) = 3. By Lemma 2.1, it is98

easy to get the following proposition.99
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Proposition 2.2. Let G be a graph of order n with rx4(G) = 3, where n ≥ 5.100

Then δ(G) ≥ n− 3 and ∆(G) ≤ 2. In other words, G is the union of some paths101

(may be trivial) and cycles.102

For fixed integers p, q, an edge-coloring of a complete graph Kn is called103

a (p, q)-coloring if the edges of every Kp ⊆ Kn are colored with at least q dis-104

tinct colors. Clearly, (p, 2)-colorings are the classical Ramsey colorings with-105

out monochromatic Kp as subgraphs. Let f(n, p, q) be the minimum number106

of colors needed for a (p, q)-coloring of Kn. In [9], Erdös and Gyárfás got that107

f(10, 4, 3) = 4, and so the following proposition holds.108

Proposition 2.3. Let G be a graph of order n with rx4(G) = 3. Then n ≤ 9.109

By Lemma 2.1 and Theorem 1.5, we get the following proposition.110

Proposition 2.4. Let G be a connected graph of order n (n ≥ 4) with rx4(G) = 3.111

Then G contains neither C4 nor C5.112

When G is a graph of order 4, it is obvious that rx4(G) = 3 if and only if G113

is connected. Hence, for the remaining values of n with 5 ≤ n ≤ 9 we distinguish114

five cases.115

Lemma 2.5. Let G be a connected graph of order 5. Then rx4(G) = 3 if and116

only if G is a subgraph of P5 or K2 ∪K3.117

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, it is easy to118

check that if G is not a subgraph of P5 or K2 ∪K3, then G is isomorphic to C4119

or C5, a contradiction by Proposition 2.4.120

Conversely, by Observation 1.3, we need to provide an edge-coloring C : E →121

{1, 2, 3} of G when G is isomorphic to P5 or K2 ∪K3. Suppose G is isomorphic122

to P5, denote V (G) = {v1, · · · , v5} and E(G) = {v1v2, v2v3, v3v4, v4v5}. Set123

c(v1v3) = 2, c(v1v4) = 1, c(v1v5) = 3, c(v2v4) = 3, c(v2v5) = 2, c(v3v5) = 1.124

Suppose G is isomorphic to K2 ∪K3, denote V (G) = {v1, · · · , v5} and E(G) =125

{v1v2, v2v3, v1v3, v4v5}. Set c(v1v4) = 1, c(v1v5) = 2, c(v2v4) = 2, c(v2v5) = 3,126

c(v3v4) = 3, c(v3v5) = 1. It is easy to show that the two edge-colorings make G127

4-rainbow connected.128

Lemma 2.6. Let G be a graph of order 6. Then rx4(G) = 3 if and only if G is129

a subgraph of C6 or 2K3.130

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a131

subgraph of C6 or 2K3, then G contains C4 or C5, a contradiction by Proposition132

2.4.133

Conversely, by Observation 1.3, we need to provide an edge-coloring C : E →134

{1, 2, 3} of G when G is isomorphic to C6 or 2K3. Suppose G is isomorphic to135
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C6, denote V (G) = {v1, · · · , v6} and E(G) = {v1v2, v2v3, v3v4, v4v5, v5v6, v6v1}.136

Set c(v1v3) = 2, c(v1v4) = 3, c(v1v5) = 1, c(v2v4) = 1, c(v2v5) = 2, c(v2v6) =137

3, c(v3v5) = 3, c(v3v6) = 1, c(v4v6) = 2. Suppose G is isomorphic to 2K3,138

denote V (G) = {v1, · · · , v6} and E(G) = {v1v2, v1v3, v2v3, v4v5, v4v6, v5v6}. Set139

c(v1v4) = 3, c(v1v5) = 2, c(v1v6) = 1, c(v2v4) = 1, c(v2v5) = 3, c(v2v6) = 2,140

c(v3v4) = 2, c(v3v5) = 1, c(v3v6) = 3. It is easy to show that the two edge-141

colorings make G 4-rainbow connected.142

It is a tedious work to check whether a graph is 4-rainbow connected when143

7 ≤ n ≤ 9. Hence we introduce an algorithm with the idea of backtracking to deal144

with such cases. Given a graph G = (V (G), E(G)) with V (G) = {v1, v2, . . . , vn},145

we color E(G) with colors {1,2,3} in a proper order: at the beginning, consider146

the edge of the subgraph induced by {v1, v2}, namely the edge v1v2, and color147

it with 1 initially. Once all edges of the subgraph induced by {v1, v2, . . . , vs} are148

colored, we come to deal with the new edges of the larger subgraph by adding149

vs+1 to the former one. For a new edge e, we color it with 1, 2 or 3, and if150

the subgraph induced by the vertices incident with already colored edges is 4-151

rainbow connected, we go on to the next edge of e. Otherwise if all 1, 2 and152

3 are not available, we go back to the former edge of e and give it a new color153

and repeat the procedure. Clearly, the procedure always terminates. We should154

point out that the algorithm has a good performance when n ≤ 9, although the155

time complexity is not polynomial. In fact, we need the algorithm only to test156

whether four graphs have 4-rainbow colorings in the following three lemmas.157

Algorithm The 4-rainbow coloring of a graph

Input: a graph G = (V, E) with V = {v1, v2, ..., vn}, E = {e1, e2, ..., em}.
Output: give a 4-rainbow coloring colorlist[m] of G, or verify that G has no

4-rainbow coloring.
1. reorder the edge sequence e1, e2, ..., em, to make sure E(G[v1, ..., vt]) = {e1, ..., es},

where s denotes the number of edges of G[v1, ..., vt], where 1 ≤ t ≤ n.
2. fix the color of e1 with 1. Initialize i = 2 and colorlist = [1, 0, 0, ..., 0];
3. while i ≥ 2

if i > m
show colorlist; stop;
colorlist[i] = colorlist[i] + 1;

if colorlist[i] > 3
colorlist[i] = 0; i−−;

else if Boolean CHECK(ei)
i + +;

4. there is no 4-rainbow coloring; stop.
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Boolean CHECK(es)
Input: a graph G = (V, E) with V = {v1, v2, ..., vn}, E = {e1, e2, ..., em} with the

order described above. Set es = (vp, vq), where p < q. Give a coloring of
the first s edges of E(G).

Output: determine whether the given coloring is not 4-rainbow.
1. for i = 1 up to q − 2 and i 6= p

for j = i + 1 up to q − 1 and j 6= p
if all edges of the induced subgraph G[vi, vj , vp, vq] are colored but

G[vi, vj , vp, vq] is not 4-rainbow colored.
return false; stop;

2. return true; stop.

Lemma 2.7. Let G be a graph of order 7. Then rx4(G) = 3 if and only if G is158

a subgraph of C6 or 2K2 ∪K3 or P5 ∪K2 or 2K3.159

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a160

subgraph of C6 or 2K2 ∪ K3 or P5 ∪ K2 or 2K3, then by Proposition 2.4, G is161

isomorphic to P4 ∪ P3 or P4 ∪K3 or P7 or C7. By Observation 1.3, we need only162

to verify that rx4(G) 6= 3 when G is isomorphic to P4 ∪ P3. By the algorithm,163

rx4(G) 6= 3.164

Conversely, by Observation 1.3 again, we need to provide an edge-coloring165

of G when G is isomorphic to C6 or 2K2 ∪ K3 or P5 ∪ K2 or 2K3. The four166

colorings are shown in Figure 1. It is easy to show that these four colorings make167

G 4-rainbow connected.168

Figure 1. Graphs for Lemma 2.7 (lines of the same type have the same color).

Lemma 2.8. Let G be a graph of order 8. Then rx4(G) = 3 if and only if G is169

a subgraph of K2 ∪ 2K3 or P6 ∪K2.170

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a171

subgraph of K2∪2K3 or P6∪K2, then by Proposition 2.4, it is easy to check that172
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either G contains P4 ∪ P3 ∪K1 or G is isomorphic to C6 ∪ 2K1. By Observation173

1.3, we need to verify that rx4(G) 6= 3 when G is isomorphic to P4 ∪ P3 ∪K1 or174

G is isomorphic to C6 ∪ 2K1. If G is isomorphic to P4 ∪P3 ∪K1, then by Lemma175

2.7, rx4(G) 6= 3. If G is isomorphic to C6 ∪ 2K1, by the algorithm, rx4(G) 6= 3.176

Conversely, by Observation 1.3 again, we need to provide an edge-coloring177

of G when G is isomorphic to K2 ∪ 2K3 or P6 ∪ K2. The two edge-colorings178

are shown in the first two graphs of Figure 2. It is easy to show that the two179

edge-colorings make G 4-rainbow connected.180

Figure 2. Graphs for Lemma 2.8, 2.9.

Lemma 2.9. Let G be a graph of order 9. Then rx4(G) = 3 if and only if G is181

a subgraph of 3K3 or P3 ∪ 3K2.182

Proof. Let G be a graph with rx4(G) = 3. By Proposition 2.2, if G is not a183

subgraph of 3K3 or P3 ∪ 3K2, then by Proposition 2.4, it is easy to check that184

either G contains P4 or G is isomorphic to K3 ∪ 3K2. By Observation 1.3, we185

need to verify that rx4(G) 6= 3 when G is isomorphic to P4 or K3 ∪ 3K2, by the186

algorithm, in each case, rx4(G) 6= 3.187

Conversely, by Observation 1.3 again, we need only to provide an edge-188

coloring of G when G is isomorphic to 3K3 or P3 ∪ 3K2. The two edge-colorings189

are shown in the last two graphs of Figure 2. It is easy to show that the two190

edge-colorings make G 4-rainbow connected.191

Combining the preceding five lemmas, we are ready to characterize the graphs192

whose 4-rainbow index is 3.193

Theorem 2.10. Let G be a connected graph of order n ≥ 4. Then rx4(G) = 3 if194

and only if G is one of the following graphs: (1) G is a connected graph of order195

4; (2) G is of order 5 and G is a subgraph of P5 or K2 ∪K3; (3) G is of order196

6 and G is a subgraph of C6 or 2K3; (4) G is of order 7 and G is a subgraph of197

C6 or 2K2 ∪K3 or P5 ∪K2 or 2K3; (5) G is of order 8 and G is a subgraph of198

K2∪2K3 or P6∪K2; (6) G is of order 9 and G is a subgraph of 3K3 or P3∪3K2.199
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3. Characterization of graphs with rx4(G)= n− 1200

First of all, we need some notation and basic results.201

Definition 3.1. Let G be a connected graph with n vertices and m edges. Define202

the cyclomatic number of G as c(G) = m− n + 1. A graph G with c(G) = k is203

called a k-cyclic graph. According to this definition, if a graph G meets c(G) = 0,204

1, 2 or 3, then G is called acyclic (or a tree), unicyclic, bicyclic, or tricyclic,205

respectively.206

Definition 3.2. For a subgraph H of a connected graph G and v ∈ V (G), let207

d(v, H) = min{dG(v, x) : x ∈ V (H)}.208

Let G be a connected graph. To contract an edge e = uv is to delete e and209

replace its ends by a single vertex incident to all the edges which were incident to210

either u or v. Let G
′
be the graph obtained by contracting some edges of G and211

suppose that the resulting graph G
′
is a simple graph. Given a rainbow coloring212

of G
′
, when it comes back to G, every modified edge takes the following operation:213

assign the color of uv to uw and a fresh color to the edge wv if an edge uv of G
′
is214

expanded into two edges uw, wv between the ends of the contracted edge. Then215

G can be made to be 4-rainbow connected if G′ is 4-rainbow connected. Hence,216

the following lemma holds.217

Lemma 3.3. Let G be a connected graph, and G
′
be a connected graph by con-218

tracting some edges of G. Then rx4(G) ≤ rx4(G
′
) + |V (G)| − |V (G

′
)|.219

The Θ-graph is a graph consisting of three internally disjoint paths with220

common end vertices and of lengths a, b, and c, respectively, such that a ≤ b ≤ c.221

It follows that if a Θ-graph has order n, then a + b + c = n + 1.222

Let G be a connected graph of order n, to subdivide an edge e is to delete e,223

add a new vertex x, and join x to the ends of e. We will first give some sufficient224

conditions to make sure that the 4-rainbow index of G never attains the upper225

bound n− 1.226

G1
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3 1 2
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G2 G4

Figure 3. Graphs for Lemma 3.4.
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Lemma 3.4. Let G be a connected graph of order n. If G contains three edge-227

disjoint cycles, or a Θ-graph of order at least 5 as subgraphs, then rx4(G) ≤ n−2.228

Proof. Consider two graphs G1, G2 in Figure 3, and by checking the given edge-229

coloring in the figure, we have rx4(Gi) ≤ |V (Gi)|−2, i = 1, 2. Then if G contains230

three edge-disjoint cycles C1, C2, C3, we can extend the three triangles of G1 or231

G2 to C1, C2 and C3 respectively by a sequence of operations of subdivision.232

Then add to the cycles an additional set of edges, to get a spanning subgraph233

G′ of G. By Observation 1.3 and Lemma 3.3, we have rx4(G) ≤ rx4(G′) ≤234

rx4(Gi) + |V (G
′
)| − |V (Gi)| ≤ n− 2.235

Let G be the set of Θ-graphs whose order is exactly 5. Then G = {G3, G4} (see236

Figure 3). By checking the given edge-coloring, we have rx4(Gi) ≤ |V (Gi)| − 2,237

i = 3, 4. Similarly, rx4(G) ≤ n− 2 follows.238

A graph G is a cactus if every edge is part of at most one cycle in G.239

Lemma 3.5. Let G be a cactus of order n and c(G) = 2. Then rx4(G) = n− 1.240

Proof. Let the two cycles of G be C1 and C2, where C1 = v1v2 · · · v`v1, C2 =241

v′1v
′
2 · · · v′`′v′1, the unique path connecting the two cycles be viPv′j , where the242

two end-vertices vi and v′j may coincide. Suppose we have a color set C and243

|C| = n − 2. Set C = {1, 2, · · · , n − 2} and Ei is the set of edges colored244

with i, ci = |Ei|, 1 ≤ i ≤ n − 2. Without loss of generality, we always set245

c1 ≥ c2 ≥ · · · ≥ cn−2. Notice that
∑n−2

i=1 ci = n + 1. We distinguish the following246

cases.247

Case 1. c1 = 4, c2 = c3 = · · · = cn−2 = 1. We have the following claim.248

Claim 1. No three edges of C1 or C2 have the same color.249

Proof. Suppose c(v1v2) = c(vpvp+1) = c(vqvq+1), where v1v2, vpvp+1, vqvq+1250

are three distinct edges. Let S = {v1, vp, vq}. It is easy to check that any251

tree connecting S contains at least two edges of v1v2, vpvp+1 and vqvq+1, this252

contradiction proves the claim.253

By Observation 1.2 and Claim 1, at least 3 edges of E1 exist on cycles and254

each cycle has at most two of them. Suppose v1v2 and vpvp+1 of C1 have color 1,255

we distinguish two subcases: (1) there is a cut edge uu′ in E1. Suppose d(u,C1) ≥256

d(u′, C1) and d(u, vi) = d(u,C1), where 2 ≤ i ≤ p. Any tree connecting v1 and u257

contains at least two edges colored with 1. (2) no cut edge has color 1. Then at258

least two edges, say v′1v
′
2 and v′qv′q+1 of C2 have color 1, and the end-vertices of259

the path connecting C1 and C2 are vi and v′j , where 2 ≤ i ≤ p, 2 ≤ j ≤ q. Again,260

any tree connecting v1 and v′1 contains at least two edges in E1.261

Case 2. c1 = 3, c2 = 2, c3 = · · · = cn−2 = 1. We also have the following262

claim.263

Claim 2. No four edges of a cycle can have only two colors.264
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Proof. Suppose otherwise four edges, v1v2, vpvp+1, vqvq+1, vrvr+1 of C1 have265

color a or b, where a, b ∈ C. Set S = {v1, vp, vq, vr}. It is easy to check that any266

tree connecting S contains at least three of the four edges above. By the Pigeon267

Hole Principle, one of the two colors occurs at least twice, a contradiction.268

By Claim 2, at most three edges of Ci(i = 1, 2) can have colors 1 and 2.269

Notice that |E1 ∪E2| = 5. Since no two cut edges can have the same color, there270

are the following possibilities: (1) three edges of E1 ∪ E2 are in a cycle, say C1.271

Then there exist cut edges in E1 ∪ E2, or the other two edges of E1 ∪ E2 are272

both in C2. Similar to Case 1, we can choose three vertices such that no rainbow273

tree connects them. (2) two edges of E1 ∪E2 are in each cycle. Then a cut edge274

uu′ exists in E1 ∪ E2. There are two situations according to the positions of uu′275

and the other four edges of E1 ∪ E2 in cycles. We can always find three vertices276

such that any tree connecting them contains at least three edges of E1 ∪E2. (3)277

two edges of E1 ∪E2 are in one cycle, and other two of them are cut edges. The278

argument is similar, and it also produces a contradiction.279

Case 3. c1 = c2 = c3 = 2, c4 = · · · = cn−2 = 1. In a number of subcases280

similar to those in Cases 1 and 2, a set S of vertices can be found such that a281

tree connecting them contains at least four edges from E1 ∪ E2 ∪ E3. So by the282

Pigeon Hole Principle again, one of the three colors occurs at least twice.283

By the analysis above, all the possibilities of an (n − 2)-coloring lead to a284

contradiction, thus we have rx4(G) ≥ n− 1. On the other hand, by Observation285

1.1, it follows that rx4(G) = n− 1.286

To characterize all the graphs with 4-rainbow index n− 1, we need to intro-287

duce more graphs. Let G1 be the set of graphs by identifying each vertex of K4288

with an end-vertex of an arbitrary path, and G2 be the set of graphs by identifying289

each vertex of K4 − e with the root of an arbitrary tree.290

Lemma 3.6. Let G be a connected graph of order n. If G ∈ G1 ∪ G2, then291

rx4(G) = n− 1.292

Proof. Suppose G ∈ G1, and v1, v2, v3 and v4 are the four pendant vertices of293

G. We have dG(v1, v2, v3, v4) = n− 1. Combining with Observation 1.1, we have294

rx4(G) = n − 1. Let G ∈ G2. Denote by H the induced subgraph K4 − e of G,295

where E(H) = {v1v2, v2v3, v3v4, v4v1, v2v4} and denote by Ti the tree rooted at296

vi, i = 1, 2, 3, 4. We have the following claim.297

Claim 3. No three edges of H share colors with the cut edges.298

Proof. Let v′iv
′′
i , 1 ≤ i ≤ 3, be the cut edges whose colors exist in H. We may299

assume that d(v′i,H) ≥ d(v′′i ,H). Notice that the deletion of any three edges of H300

disconnects G, and we will get some components. Let v be an arbitrary vertex of301

H in the component different from the one containing v′1. Set S = {v, v′1, v
′
2, v

′
3}.302

There is no rainbow tree connecting S, which verifies Claim 3.303
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Now we are aiming to prove that H needs at least three fresh colors different304

from the n − 4 colors of cut edges to make sure that G is 4-rainbow connected.305

Then we get the conclusion rx4(G) = n− 1. Since rx4(H) = 3 and by Claim 3,306

one or two edges of H have the color of cut edges. Assume first that the colors307

of cut edges v′1v
′′
1 , v′2v

′′
2 appear in H. Suppose d(v′i,H) ≥ d(v′′i ,H), i = 1, 2.308

Since the deletion of two edges incident to a vertex of degree two disconnects309

H, the position of the two edges of H having the colors of cut edges may have310

the following possibilities: v1v4, v2v4 or v1v4, v3v4 or v1v2, v3v4. Notice that the311

remaining three edges can only have fresh colors. If only two colors are used, then312

at least two edges of H have the same color. It is easy to find two vertices vi, vj313

of H, such that no rainbow tree connects S, where S = {v′1, v′2, vi, vj}. Assume314

then only one edge of H has the color of cut edge, say v′1v
′′
1 of Ti. Suppose315

d(v′1,H) ≥ d(v′′1 ,H). Then any tree connecting v′1 and the three vertices of H316

except vi makes use of at least three edges of H, namely at least three new distinct317

colors are needed in H. Thus the result follows.318

G5 G6 G7

2
21

1
33

4

4

1
1

22 33

4

4

1

1
2

23

3 4

4

Figure 4. Graphs for Theorem 3.7.

Now we are prepared to characterize the graphs of order n whose 4-rainbow319

index is n− 1.320

Theorem 3.7. Let G be a graph of order n. Then rx4(G) = n− 1 if and only if321

G is a tree, or a unicyclic graph, or a cactus with c(G) = 2, or G ∈ G1 ∪ G2.322

Proof. By Lemma 3.3, 3.4, 3.5, 3.6, we only need to prove the necessity. Let323

G be a graph with rx4(G) = n − 1. By Proposition 1.4, Theorem 1.5, Lemma324

3.4 and Lemma 3.5, we know that if G is not a tree or a unicyclic graph or a325

cactus with c(G) = 2, then G contains a K4 or K4 − e as an induced subgraph.326

Now suppose that G contains a K4 or K4 − e but G /∈ G1 ∪ G2. Consider the327

three graphs G5, G6, G7. By checking the given coloring in Figure 4, we have328

rx4(Gi) ≤ n− 2, i = 5, 6, 7. Thus we can extend G5, G6 or G7 to get a spanning329

subgraph G′ of G, then rx4(G) ≤ rx4(G′) ≤ n− 2, a contradiction.330
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