Randić Energy and Randić Eigenvalues*

Xueliang Li ${ }^{1}$, Jianfeng Wang ${ }^{1,2, \dagger}$
${ }^{1}$ Center for Combinatorics and LPMC-TJKLC, Nankai University, Tianjin 300071, China.
${ }^{2}$ Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, China.
E-mail addresses: lxl@nankai.edu.cn, jfwang@aliyun.com

(Received April 21, 2014)

Abstract

Let G be a graph of order n, and d_{i} the degree of a vertex v_{i} of G. The Randić matrix $\mathbf{R}=\left(r_{i j}\right)$ of G is defined by $r_{i j}=1 / \sqrt{d_{i} d_{j}}$ if the vertices v_{i} and v_{j} are adjacent in G and $r_{i j}=0$ otherwise. The normalized signless Laplacian matrix \mathcal{Q} is defined as $\mathcal{Q}=I+\mathbf{R}$, where I is the identity matrix. The Randić energy is the sum of absolute values of the eigenvalues of \mathbf{R}. In this paper, we find a relation between the normalized signless Laplacian eigenvalues of G and the Randić energy of its subdivision graph $S(G)$. We also give a necessary and sufficient condition for a graph to have exactly k and distinct Randić eigenvalues.

1 Introduction

All graphs considered here are simple, undirected and finite. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and degree sequence $\left(d_{1}, d_{2}, \cdots, d_{n}\right)$, where d_{i} is the degree of a vertex $v_{i}(1 \leq i \leq n)$ of G. For a graph G, let $M=M(G)$ be a corresponding graph matrix defined in a prescribed way. The M-polynomial of G is defined as $\phi_{M}(G, \lambda)=\operatorname{det}(\lambda I-M)$, where I is the identity matrix. The M-eigenvalues of G are those of its graph matrix M. It is well-known that there already exist some graph matrices, including adjacency matrix A, degree matrix D, Laplacian matrix $L=D-A$, signless Laplacian matrix $Q=D+A$ and so on.

In 1975, Milan Randić [17] invented a molecular structure descriptor defined as

$$
R(G)=\sum_{i \sim j} \frac{1}{\sqrt{d_{i} d_{j}}}
$$

[^0]where the summation goes over all pairs of adjacent vertices of the underlying (molecular) graph. This graph invariant is nowadays known under the name Randić index, for details see $[10,12,13,18]$.

Gutman et al. [11] pointed out that the Randić-index-concept is purposeful to produce a graph matrix of order n, named Randić matrix $\mathbf{R}(G)$, whose (i, j)-entry is defined as

$$
r_{i j}=\left\{\begin{array}{cl}
\frac{1}{\sqrt{d_{i} d_{j}}} & \text { if } v_{j} \text { and } v_{j} \text { are adjacent vertices } \\
0 & \text { if the vertices } v_{j} \text { and } v_{j} \text { are not adjacent } \\
0 & \text { if } i=j
\end{array}\right.
$$

In what follows, we need the convention that all graphs possess no isolated vertices. Then $\mathbf{R}(G)=D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$. Recall that the normalized Laplacian and signless Laplacian matrices [5] are respectively defined as

$$
\mathcal{L}(G)=D^{-\frac{1}{2}} L D^{-\frac{1}{2}} \quad \text { and } \quad \mathcal{Q}(G)=D^{-\frac{1}{2}} Q D^{-\frac{1}{2}} .
$$

From this point of view, the eigenvalues of above three matrices have a direct relation. As shown in [11], $\mathcal{L}(G)=I_{n}-\mathbf{R}(G)$ and $\mathcal{Q}(G)=I_{n}+\mathbf{R}(G)$. So if an \mathbf{R}-eigenvalue is ρ_{i}, then the \mathcal{L}-eigenvalue μ_{i} and \mathcal{Q}-eigenvalue θ_{i} are respectively

$$
\begin{equation*}
\mu_{i}=1-\rho_{i} \quad \text { and } \quad \theta_{i}=1+\rho_{i}, \quad 1 \leq i \leq n . \tag{1.1}
\end{equation*}
$$

For the \mathcal{L}-eigenvalues, there are numerous results; see [5] for example. From Lemmas 1.71.8 [5] it follows that $0 \leq \mu_{i} \leq 2$, and so by (1.1),

$$
\begin{equation*}
-1 \leq \rho_{i} \leq 1 \quad \text { and } \quad 0 \leq \theta_{i} \leq 2, \quad 1 \leq i \leq n . \tag{1.2}
\end{equation*}
$$

Gutman [9] introduced the (adjacency) energy of a graph G as follows

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|,
$$

which has been extended to energies of other graph matrices [14,16]. Especially, the Randić energy $\operatorname{RE}(G)[1,2]$ is defined as

$$
R E(G)=\sum_{i=1}^{n}\left|\rho_{i}\right| .
$$

So far, there are quite a few results about the Randić energy and \mathbf{R}-eigenvalues, which therefore becomes the main research objects of this paper. In the rest of the paper, we will
give a relation between the \mathcal{Q}-eigenvalues of a graph and the Randić energy of its subdivision in Section 2. We also give a necessary and sufficient condition for a graph to have exactly k and distinct R-eigenvalues in Section 3, particularly for $k=2,3$.

2 Randić energy and \mathcal{Q}-eigenvalues

Let $S(G)$ be the subdivision of a graph G that is obtained by adding a new vertex into each edge of G. Evidently, $S(G)$ is a bipartite graph, and so $V(S(G))=V_{1} \cup V(G)$, where V_{1} is the set of new added vertices of degree two.

The following lemma from matrix theory can be found in, for example, [6] p. 62.

Lemma 2.1 If M is a nonsingular square matrix, then

$$
\left|\begin{array}{cc}
M & N \\
P & F
\end{array}\right|=|M| \cdot\left|F-P M^{-1} N\right| .
$$

Lemma 2.2 Let G be a graph with order n and size m. Then

$$
\phi_{\mathbf{R}}(S(G), \lambda)=\frac{\lambda^{m-n}}{2^{n}} \phi_{\mathcal{Q}}\left(G, 2 \lambda^{2}\right)
$$

Proof. Obviously, $|V(S(G))|=n+m$. It is well-known that

$$
Q=B B^{T} \quad \text { and } \quad A(S(G))=\left(\begin{array}{cc}
O & B^{T} \\
B & O
\end{array}\right)
$$

where B is the incidence matrix of G and B^{T} is the transpose of B. Then, we partition the degree matrix $D(S(G))$ into

$$
D(S(G))=\left(\begin{array}{cc}
D_{1}^{-\frac{1}{2}} & O \\
O & D_{2}^{-\frac{1}{2}}
\end{array}\right)
$$

where $D_{1}=\operatorname{diag}(2,2, \cdots, 2)$ with order $m \times m$ and $D_{2}=D(G)$. If G has no isolated vertices, then so does $S(G)$. Consequently,

$$
\begin{aligned}
\mathbf{R}(S(G))=D^{-\frac{1}{2}} A(S(G)) D^{-\frac{1}{2}} & =\left(\begin{array}{cc}
D_{1}^{-\frac{1}{2}} & O \\
O & D_{2}^{-\frac{1}{2}}
\end{array}\right)\left(\begin{array}{cc}
O & B^{T} \\
B & O
\end{array}\right)\left(\begin{array}{cc}
D_{1}^{-\frac{1}{2}} & O \\
O & D_{2}^{-\frac{1}{2}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
O & D_{1}^{-\frac{1}{2}} B^{T} D_{2}^{-\frac{1}{2}} \\
D_{2}^{-\frac{1}{2}} B D_{1}^{-\frac{1}{2}} & O
\end{array}\right) .
\end{aligned}
$$

By Lemma 2.1 we get

$$
\begin{aligned}
\phi_{\mathbf{R}}(S(G), \lambda) & =\left|\lambda I_{m+n}-\mathbf{R}(S(G))\right|=\left|\begin{array}{cc}
\lambda I_{m} & -D_{1}^{-\frac{1}{2}} B^{T} D_{2}^{-\frac{1}{2}} \\
-D_{2}^{-\frac{1}{2}} B^{T} D_{1}^{-\frac{1}{2}} & \lambda I_{n}
\end{array}\right| \\
& =\left|\lambda I_{m}\right|\left|\lambda I_{n}-D_{2}^{-\frac{1}{2}} B D_{1}^{-\frac{1}{2}} \frac{I_{m}}{\lambda} D_{1}^{-\frac{1}{2}} B^{T} D_{2}^{-\frac{1}{2}}\right| \\
& =\lambda^{m-n}\left|\lambda^{2} I_{n}-\frac{1}{2} D_{2}^{-\frac{1}{2}} B B^{T} D_{2}^{-\frac{1}{2}}\right| \\
& =\frac{\lambda^{m-n}}{2^{n}}\left|2 \lambda^{2} I_{n}-\mathcal{Q}\right| \\
& =\frac{\lambda^{m-n}}{2^{n}} \phi_{\mathcal{Q}}\left(G, 2 \lambda^{2}\right) .
\end{aligned}
$$

This finishes the proof.

Theorem 2.3 Let G be a graph with order n and size m.
(i) If $\phi_{\mathcal{Q}}(G, \lambda)=\sum_{i=0}^{n} a_{i} \lambda^{n-i}$, then $\phi_{\mathbf{R}}(S(G), \lambda)=\lambda^{m-n} \sum_{i=0}^{n} 2^{-i} a_{i} \lambda^{n-i}$.
(ii) ρ is an \mathbf{R}-eigenvalue of $S(G)$ if and only if $2 \rho^{2}$ is a \mathcal{Q}-eigenvalue of G.
(iii) Let $\theta_{1}, \theta_{2}, \cdots, \theta_{n}$ be the \mathcal{Q}-eigenvalues of G. Then $R E(S(G))=\sqrt{2} \sum_{i=1}^{n} \sqrt{\theta_{i}}$.

Proof. For (i), by Lemma 2.2 we get

$$
\phi_{\mathbf{R}}(S(G), \lambda)=\frac{\lambda^{m-n}}{2^{n}} \phi_{\mathfrak{Q}}\left(G, 2 \lambda^{2}\right)=\frac{\lambda^{m-n}}{2^{n}} \sum_{i=0}^{n} a_{i}(\sqrt{2} \lambda)^{2(n-i)}=\lambda^{m-n} \sum_{i=0}^{n} 2^{-i} a_{i} \lambda^{n-i} .
$$

(ii) is an immediate result of Lemma 2.2. For (iii), from (1.2) we obtain $\theta_{i} \geq 0$, and so $\pm \sqrt{\theta_{i} / 2}$ is an \mathbf{R}-eigenvalue of $S(G)$ by (i). Thus, $R E(S(G))=\sqrt{2} \sum_{i=1}^{n} \sqrt{\theta_{i}}$.

Lemma 2.4 By Theorem 2.3(i), it becomes easier to compute the Randić energies of some graphs. As an example, Gutman et al. [11] conjectured that the connected graph with odd order and greatest Randić energy is the sun, which is exactly the subdivision of the star S_{n}. Easy to compute $\phi_{\mathcal{Q}}\left(S_{n}, \theta\right)=\theta(\theta-1)^{n-2}(\theta-2)$. Hence, $R E\left(S\left(S_{n}\right)\right)=\sqrt{2} n+2-2 \sqrt{2}$.

3 Connected graphs with distinct R -eigenvalues

A popular and important research field is to investigate the connected graphs with distinct eigenvalues. As van Dam said, it is an interplay between combinatorics and algebra; for
details see his thesis [7]. Inspired by his ideas, we give a necessary and sufficient condition for a graph to have k distinct \mathbf{R}-eigenvalues.

It has been proved that $\rho_{1}=1$ is the largest \mathbf{R}-eigenvalues with the Perron-Frobenius vector $\alpha^{T}=\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \cdots, \sqrt{d_{n}}\right)$; see $[4,11,15]$.

Theorem 3.1 Let G be connected graph with order $n \geq 3$ and size m. Then G has exactly $k(2 \leq k \leq n)$ and distinct \mathbf{R}-eigenvalues if and only if there are $k-1$ distinct none-one real numbers $\rho_{2}, \rho_{3}, \cdots, \rho_{k}$ satisfying
(i) $\mathbf{R}-\rho_{i} I$ is a singular matrix for $2 \leq i \leq k$;
(ii) $\prod_{i=2}^{k}\left(\mathbf{R}-\rho_{i} I\right)=\frac{\prod_{i=2}^{k}\left(1-\rho_{i}\right)}{2 m} \alpha \alpha^{T}$.

Moreover, $1, \rho_{2}, \cdots, \rho_{k}$ are exactly the k distinct \mathbf{R}-eigenvalues of G.

Proof. Let $\rho_{1}=1, \rho_{2}, \rho_{3}, \cdots, p_{k}$ be the k distinct \mathbf{R}-eigenvalues. Let α_{i} be the eigenvector belonging to $\rho_{i}(2 \leq i \leq k)$. Then, $\mathbf{R} \alpha_{i}=\rho_{i} \alpha_{i}$, and so $\left(\mathbf{R}-\rho_{i} I\right) \alpha_{i}=0$ which shows that 0 is an engenvalue of the matrix $\mathbf{R}-\rho_{i} I(2 \leq i \leq k)$. Hence, (i) follows. For (ii), since \mathbf{R} is a real symmetric matrix, it must be diagonalizable and thus the minimal polynomial of \mathbf{R} is $\left(\lambda-\rho_{1}\right)\left(\lambda-\rho_{2}\right) \cdots\left(\lambda-\rho_{k}\right)$. Hence,

$$
\Pi_{i=1}^{k}\left(\mathbf{R}-\rho_{i} I\right)=O, \quad \text { that is, } \quad\left(\mathbf{R}-\rho_{1} I\right)\left(\Pi_{i=2}^{k}\left(\mathbf{R}-\rho_{i} I\right)\right)=O
$$

Since G is connected, by Perron-Frobenius Theorem we know that the algebraic multiplicity of $\rho_{1}=1$ is one, and so is the geometric multiplicity. Consequently, each column of $H=$ $\Pi_{i=2}^{n}\left(\mathbf{R}-\rho_{i} I\right)=\left(h_{1}, h_{2}, \cdots, h_{n}\right)$ is a scalar multiple of the Perron-Frobenius vector α. Set $h_{i}=a_{i} \alpha(1 \leq i \leq n)$. So, $H=\alpha\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and thus

$$
\alpha^{T} H=\alpha^{T} \alpha\left(a_{1}, a_{2}, \cdots, a_{n}\right) .
$$

By a direct calculation we have

$$
\prod_{i=2}^{k}\left(1-\rho_{i}\right) \alpha^{T}=2 m\left(a_{1}, a_{2}, \cdots, a_{n}\right)
$$

leading to

$$
a_{i}=\frac{\prod_{i=2}^{k}\left(1-\rho_{i}\right)}{2 m} \sqrt{d_{i}}(i=1,2, \cdots, k) .
$$

The necessity thus follows.

For the sufficiency, from (i) it follows that the system of homogeneous linear equations $\left(\mathbf{R}-\rho_{i} I\right) \mathbf{x}=0$ has non-zero solution, say α_{i}, and thus $\mathbf{R} \alpha_{i}=\rho_{i} \alpha_{i}$ which indicates that ρ_{i} is an eigenvalue of matrix $\mathbf{R}(2 \leq i \leq k)$. Recall that $\rho_{1}=1$ is always an \mathbf{R}-eigenvalue. Therefore, we have shown that G has k distinct \mathbf{R}-eigenvalues $\rho_{1}=1, \rho_{2}, \cdots, \rho_{k}$.

Assume that G has an extra R-eigenvalue ρ_{k+1}. Set $f(x)=\prod_{i=2}^{k}\left(x-\rho_{i}\right)$. Easily to know $f\left(\rho_{i}\right)(1 \leq i \leq k+1)$ is the eigenvalue of $f(\mathbf{R})$. Obviously, $f\left(\rho_{1}\right) \neq 0, f\left(\rho_{i}\right)=0(2 \leq i \leq k)$ and $f\left(\rho_{k+1}\right) \neq 0$. By (ii), the rank of $f(\mathbf{R})$ is one, and so $f(\mathbf{R})$ has only one none-zero simple eigenvalue, a contradiction.

Bozkurt et al. [2] determined the connected graphs with two distinct R-eigenvalues. We now give another short proof based on the above theorem.

Corollary 3.2 A connected graph G has exactly two and distinct \mathbf{R}-eigenvalues if and only if G is a complete graph with order at least two.

Proof. It is known that the complete graph of order n has exactly two distinct \mathbf{R}-eigenvalues 1 and $-\frac{1}{n-1}$ [6]. Substituting $-\frac{1}{n-1}$ into Eq. (3.1) we get

$$
\mathbf{R}(G)=\frac{n}{2 m(n-1)} \alpha \alpha^{T}-\frac{1}{n-1} I .
$$

Considering the diagonal entries in both sides of the above equality, we have

$$
\frac{n}{2 m(n-1)} d_{i}-\frac{1}{n-1}=0
$$

and so $d_{i}=\frac{2 m}{n}(i=1,2, \cdots, n)$, i.e., G is a regular graph. Comparing the non-diagonal entries in both sides of the above equality we get $r_{i j}=\frac{1}{n-1}(i \neq j)$ and thus G is the complete graph.

For the graph with exactly three and distinct \mathbf{R}-eigenvalues, the following characterization is given. We denote the number of common neighbors by $\delta_{i j}$ if vertices v_{i} and v_{j} are adjacent, and by $\sigma_{i j}$ if they are not.

Corollary 3.3 Let $c=\frac{\prod_{i=2}^{k}\left(1-\rho_{i}\right)}{2 m}$. A connected graph G has exactly three and distinct \mathbf{R} eigenvalues $1, \rho_{2}, \rho_{3}$ if and only if the following items hold:
(i) for any vertex $u_{i}, \sum_{v_{j} \sim u_{i}} \frac{1}{d_{j}}=c d_{i}^{2}-\rho_{2} \rho_{3} d_{i}$,
(ii) for adjacent vertices u_{i} and $v_{j}, \delta_{i j}=c d_{i} d_{j}+\rho_{2}+\rho_{3}$,
(iii) for nonadjacent vertices u_{i} and $v_{j}, \sigma_{i j}=c d_{i} d_{j}$.

Proof. From Theorem 3.1 we get $\left(\mathbf{R}-\rho_{2} I\right)\left(\mathbf{R}-\rho_{3} I\right)=c \alpha \alpha^{T}$. Then the results follow by considering the diagonal entries and nondiagonal entries for both sides of this equality.

Note that a k-regular graph of order $n(0<k<n-1)$ is strong regular with parameters (n, k, δ, σ) if the number of common neighbors of any two distinct vertices equals δ if the vertices are adjacent and σ otherwise [3]. The following result follows from Corollary 3.3.

Corollary 3.4 A regular connected graph has exactly three and distinct \mathbf{R}-eigenvalues if and only if it is strong regular.

From (1.1) it follows that a connected graph has exactly k distinct \mathbf{R}-eigenvalues if and only if it has k distinct \mathcal{L}-ones. van Dam and Omidi [8] found such graphs and pointed out that a complete classification of such graphs still seems out of reach. In subsequent work, it seems interesting to determine connected graphs with exactly four or more and distinct \mathbf{R}-eigenvalues. Furthermore, due to $\mathcal{L}=I-\mathbf{R}$, it seems much simpler to investigate on this topic by the \mathbf{R}-eigenvalues.

References

[1] Ş.B. Bozkurt, A.D. Güngör, I. Gutman, A.S. Çevik, Randić matrix and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 239-250.
[2] Ş.B. Bozkurt, A.D. Güngör, I. Gutman, Randić spectral radius and Randić energy, MATCH Commun. Math. Comput. Chem. 64 (2010) 321-334.
[3] A.E. Brouwer, W.H. Haemers, Spectra of graphs, http://homepages.cwi.nl/~aeb/math/ipm.pdf (October 2010).
[4] M. Cavers, S. Fallat, S. Kirkland, On the normalized Laplacian energy and general Randić index R_{1} of graphs, Linear Algebra Appl. 433 (2010) 172-190.
[5] F.R.K. Chung, Spectral Graph Theory, Amer. Math. Soc., Providence, 1997.
[6] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs-Theory and Applications, Academic Press, New York, San Francisco, London, 1980.
[7] E.R. van Dam, Graphs with few eigenvalues: An interplay between combinatorics and algebra, PhD Thesis, Tilburg University, 1996.
[8] E.R. van Dam, G.R. Omidi, Graphs whose normalized Laplacian has three eigenvalues, Linear Algebra Appl. 435 (2011) 2560-2569.
[9] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22.
[10] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
[11] I. Gutman, B. Furtula, S.B. Bozkurt, On Randić enegy, Linear Algebra Appl. 442 (2014) 50-57.
[12] X.L. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Univ. Kragujevac, Kragujevac, 2006.
[13] X.L. Li, Y. Shi, A survey on the Randić index, MATCH Commun. Math. Comput. Chem. 59 (2008) 127-156.
[14] X.L. Li, Y. Shi, I. Gutman, Graph Energy, Springer, NewYork, 2012.
[15] B. Liu, Y. Huang, J. Feng, A note on the Randić spectral radius, MATCH Commun. Math. Comput. Chem. 68 (2012) 913-916.
[16] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475.
[17] M. Randić, On characterization of molecular branching, J. Amer. Chem. Soc. 97 (1975) 6609-6615.
[18] M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5-124.

[^0]: *Supported by NSFC No. 11101232 and 11371205, and China Postdoctoral Science Foundation.
 ${ }^{\dagger}$ Corresponding author.

