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Abstract. Let ∆xf(x, y) = f(x+ 1, y)− f(x, y) and ∆yf(x, y) = f(x, y+ 1)− f(x, y) be the
difference operators with respect to x and y. A rational function f(x, y) is called summable
if there exist rational functions g(x, y) and h(x, y) such that f(x, y) = ∆xg(x, y) + ∆yh(x, y).
Recently, Chen and Singer presented a method for deciding whether a rational function is
summable. To implement their method in the sense of algorithms, we need to solve two prob-
lems. The first is to determine the shift equivalence of two bivariate polynomials. We solve
this problem by presenting an algorithm for computing the dispersion sets of any two bivari-
ate polynomials. The second is to solve a univariate difference equation in an algebraically
closed field. By considering the irreducible factorization of the denominator of f(x, y) in a
general field, we present a new criterion which requires only finding a rational solution of a
bivariate difference equation. We give a new estimation of the universal denominators based
on the m-fold Gosper representation and transform the bivariate difference equation to a
system of linear difference equations in one variable. Combining these algorithms, we can
decide the summability of a bivariate rational function.

Keywords: summability, bivariate rational function, Gosper’s algorithm, dispersion set.

1 Introduction

In 1971, Abramov [1] presented an algorithm to solve the indefinite rational summations.
Then in 1978, Gosper [16] presented the celebrated algorithm which solves the problem of
determining whether a given hypergeometric term is equal to the difference of another hy-
pergeometric term. Based on Gosper’s algorithm, Zeilberger [27,28] gave a fast algorithm for
proving terminating hypergeometric identities. Zeilberger’s method was further extended to
the multivariate case by Wilf and Zeilberger himself in [26]. Paule [22] gave an interpreta-
tion of Gosper’s algorithm in terms of the greatest factorial factorizations. Chen, Paule and
Saad [15] derived an easy understanding version of Gosper’s algorithm by considering the
convergence of the greatest common divisors of two polynomial sequences.

Other approaches to the summability of rational functions were given by Abramov [2–4],
Pirastu and Strehl [24], Ash and Catoiu [10]. The key idea of these methods is to rewrite a
rational function α as α = ∆(β) +γ, where ∆ is the difference operator, β and γ are rational
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functions such that the denominator of γ is shift-free. Then α is summable if and only if γ
is zero.

Passing from univariate to multivariate, Zeilberger’s algorithm has been discussed by
Zeilberger himself [9, 21], Koutschan [20], Schneider [25], Barkatou [11], Chen et.al. [14].
These algorithms are useful in practice. However, they did not provide a complete answer to
the summability problem of bivariate hypergeometric terms. Only very recently, Chen and
Singer [13] presented criteria for deciding the summability of bivariate rational functions.

Let f(x, y) be a rational function over the field K. Chen and Singer considered the partial
fraction decomposition of f(x, y) in the field K(x)(y). After merging the summands whose
denominators are shift equivalent, they showed that f(x, y) is summable if and only if each

summand is summable. Moreover, they proved that the ratio α(x)
(y−β(x))j is summable if and

only if there exist integers s, t and c ∈ K such that β(x) = s
tx+c and there exists γ(x) ∈ K(x)

such that
α(x) = γ(x+ t)− γ(x). (1.1)

We notice that when applying their criteria, one will encounter two problems. The first
one is how to determine whether two bivariate polynomials are shift equivalent. The second
one is how to solve the difference equation (1.1) in the field K(x). The main aim of the present
paper is to overcome these problems and give an algorithm for deciding the summability of
bivariate rational functions. We remark that the general question considered in this paper
was raised by Andrews and Paule in [8].

For the first problem, we show that the dispersion set of two bivariate polynomials is
computable. Then two polynomials are shift equivalent if and only if the dispersion set is
not empty. For the second problem, we present a variation of the criteria by considering the
partial fraction decomposition in the field K(x)(y) instead of the filed K(x)(y). To apply
the new criteria, we need only to find rational solutions of a bivariate difference equation.
By a discussion similar to Gosper’s algorithm, we derive a universal denominator which is a
factor of Abramov’s universal denominator. Then we reduce the problem of finding rational
solutions of the bivariate difference equation to the problem of finding polynomials solutions
of a system of linear difference equations in one variable. Abramov and Bronstein have
presented an algorithm on solving such systems [6]. Combining these algorithms, we finally
obtain an algorithm for deciding the summability of bivariate rational functions.

The paper is organized as follows. In Section 2, we give an algorithm for computing the
dispersion set of two bivariate polynomials. In Section 3, we first reduce the summability of
a general rational function to that of a rational function whose denominator is a power of an
irreducible polynomial. Then we present a criterion on the summability of this special kind of
rational functions. This criterion reduces the summability problem to the problem of finding
rational solutions of a bivariate difference equation. In Section 4, we give an algorithm for
solving the bivariate difference equation. Finally, we present two examples to illustrate the
algorithms in Section 5.

Throughout the paper, we take Q, the field of rational numbers, as the ground field. It
should be mentioned that the discussions work also for other fields, such as the extension
field Q(α1, . . . , αr) where α1, . . . , αr are either algebraic or transcendental over Q.
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We follow the notations used in [13]. Let f(x, y) ∈ Q(x, y) be a bivariate rational function.
The shift operators σx and σy are given by

σxf(x, y) = f(x+ 1, y) and σyf(x, y) = f(x, y + 1).

A function f ∈ Q(x, y) is said to be (σx, σy)-summable if there exist two rational functions
g, h ∈ Q(x, y) such that

f = σxg − g + σyh− h.

The summability problem is closely related to the classical problem of the indefinite and
definite summation. In practice, when dealing with double summations like

∑x−1
n=0

∑y−1
k=0 f(n, k),

we can first test the summability of f(n, k). Suppose f = σng − g + σkh − h, then we can
reduce the above summation into single summations which can be handled by the Gosper
algorithm. If f is not summable, it’s easy to prove that the double summation does not have
a close form.

2 Dispersion set and shift equivalence

Let Z denote the set of integers. Recall that given two univariate polynomials, say f(x) and
g(x), their dispersion set is defined by

Dispx(f, g) = {n ∈ Z | f(x) = g(x+ n)}.

It is known that unless f and g are the same constant polynomial, the dispersion set
Dispx(f, g) is finite and is computable. For the algorithm, see [23, page 79]. We can ex-
tend this concept to the bivariate case.

Definition 2.1. Let f, g be two bivariate polynomials in Q[x, y] and σx, σy be the shift oper-
ators. The dispersion set of f and g is defined by

Disp(f, g) = {(m,n) ∈ Z2 | f = σmx σ
n
y g}.

If Disp(f, g) is not empty, we say f and g are shift equivalent.

In particular, when f = σmx g (resp. f = σny g), we say f, g in the same σx-orbit (resp.
σy-orbit), denoted by f ∼x g and f ∼y g respectively.

We remark that testing shift equivalence over fields have been considered by Grigoriev
and Karpinski [17–19]. More precisely, they gave algorithms to find shifts (α1, . . . , αr) ∈ F r
such that

f(x1 + α1, . . . , xr + αr) = g(x1, . . . , xr),

where F is a field and f, g ∈ F [x1, . . . , xr]. Instead of considering shifts over a field, we focus
on integer shifts, i.e., m,n ∈ Z.

In the univariate case, the dispersion set of any two polynomials is computable. The
following theorem shows that the dispersion set is also computable in the bivariate case.

Theorem 2.2. Let f, g ∈ Q[x, y] be two polynomials. Then we can determine the dispersion
set Disp(f, g).
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Proof. Since the shift operators σx and σy preserve the degree, we get that Disp(f, g) = ∅
unless degx f = degx g.

When f = 0 or degx(f) = 0, the computation of Disp(f, g) reduces to the univariate case.
More precisely, we have

Disp(f, g) = Z×Dispy(f, g).

Now assume that degx f = d > 0 and write f, g as

f =

d∑
k=0

ak(y)xk, g =

d∑
k=0

bk(y)xk.

Suppose that (m,n) ∈ Disp(f, g). By comparing the leading coefficient with respect to x, we
see that n falls in the dispersion set

N = Dispy(ad(y), bd(y)).

If N is a finite set, we then have

Disp(f, g) =
⋃
n0∈N

Dispx(f(x, y), g(x, y + n0))× {n0}.

Otherwise, we may assume ad(y) = bd(y) = c, where c is a non-zero constant. By comparing
the second leading coefficient with respect to x, we see that

ad−1(y) = d · c ·m+ bd−1(y + n). (2.1)

According to the degree of ad−1(y) in variable y, there are three cases.

Case 1. deg ad−1(y) > 1. Then Disp(f, g) = ∅ unless the leading term of ad−1(y) and that of
bd−1(y) coincide. Assume

ad−1(y) =

h∑
j=0

pjy
j and bd−1(y) =

h∑
j=0

qjy
j .

By comparing the coefficients of yh−1 in the expansions of ad−1(y) and bd−1(y + n), we see
that n is uniquely determined by

hqhn+ qh−1 = ph−1. (2.2)

Suppose that n0 is an integer solution of (2.2). We then have

Disp(f, g) = Dispx(f(x, y), g(x, y + n0))× {n0}.

Case 2. deg ad−1(y) = 1. We also have Disp(f, g) = ∅ unless the leading term of ad−1(y) and
that of bd−1(y) coincide. Assume

ad−1(y) = p̂y + p0 and bd−1(y) = p̂y + q0.

Then (2.1) leads to
(d · c) ·m+ p̂ · n = p0 − q0, (2.3)
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which is a linear Diophantine equation in unknowns m,n. Either there is no solution, or the
solutions are of the form

m = ut+ v, and n = u′t+ v′,

where u, v, u′, v′ are explicit integers and t runs over Z. Now by setting all coefficients of x, y
in the expansion of f(x, y)− g(x+ ut+ v, y + u′t+ v′) to be zeros, we arrive at a system of
polynomial equations in t. The set of integer solutions of each equation is computable (see,
for example [23, page 79]). The final dispersion set of f and g is the intersection of these
solution sets.

Case 3. deg ad−1(y) = 0 or ad−1(y) = 0. If degy bd−1(y) > 0, we then have Disp(f, g) = ∅.
Otherwise, m is uniquely determined by (2.1). Suppose m0 is an integer solution of (2.1), we
have

Disp(f, g) = {m0} ×Dispy(f(x, y), g(x+m0, y)).

This completes the proof.

Based on the proof as above, we can describe an algorithm for computing the dispersion
set of two polynomials in Q[x, y].

Algorithm DispSet

Input: Two polynomials f =
∑d1

k=0 ak(y)xk and g =
∑d2

k=0 bk(y)xk.

Output: The dispersion set Disp(f, g).

1. If d1 6= d2, return ∅. Else set d = d1 = d2.

2. If d ≤ 0, return the set Z×Dispy(f, g). Else continue the following steps.

3. If deg ad(y) > 0, compute N = {n | ad(y) = bd(y + n)} and for each n0 ∈ N , compute
the set Sn0 of integers m such that f = σmx σ

n0
y g. Return the set⋃

n0∈N
Sn0 × {n0}.

Else set c := ad(y) and continue the following steps.

4. If degy ad−1(y) > 1, compute the unique n0 according to (2.2). If n0 is an integer, then
return Dispx(f(x, y), g(x, y + n0))× {n0}. Else return ∅.

5. If degy ad−1(y) = 1. If the leading terms of ad−1(y) and bd−1(y) are different, then
return ∅. Else solve the linear Diophantine equation (2.3). Suppose that the solutions
are of the form

m = ut+ v and n = u′t+ v′.

Substituting m by ut+v and n by u′t+v′ in f = σmx σ
n
y g and comparing the coefficients

of each power of x and y to get a system of polynomial equations in t. Return all integer
solutions if there are. Else return ∅.
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6. If degy ad−1(y) = 0 or ad−1(y) = 0. If degy bd−1(y) > 0 then return ∅. Else compute
the unique m0 satisfying (2.1). If m0 is not an integer, then return ∅. Else return the
set

{m0} ×Dispy(f(x, y), g(x+m0, y)).

The following is an example which shows how to determine the shift equivalence of any
two given bivariate polynomials.

Example 2.3. Let

f = 2x2 + 2xy + y2 + y + 1 and g = 2x2 + 2xy + y2 + 2x+ y + 1.

We try to determine whether f and g are shift equivalent according to the proof of Theo-
rem 2.2. Rewrite f, g as

f = 2x2 + (2y)x+ (y2 + y + 1), and g = 2x2 + (2y + 2)x+ (y2 + y + 1).

It’s easy to check that this meets Case 2 in the proof. Thus m,n satisfy the linear equation
2m+ n = −1 whose solutions are

m = t and n = −2t− 1, t ∈ Z.

Now by setting all coefficients of x, y in the expansion of f(x, y)− g(x+ t, y − 2t− 1) to be
zeros, we obtain an integer solution t = −1. It means that f(x, y) = g(x− 1, y + 1) and thus
f, g are shift equivalent.

3 Summability criterion

As stated in the introduction, one can decompose a univariate rational function α into the
form α = ∆β+ γ. The goal of this section is to introduce a bivariate variant of such additive
decomposition and thus reduce the bivariate summability problem of a general rational func-
tion to that of a rational function whose denominator is a power of an irreducible polynomial.
We then present a criterion for the summability of this kind of special rational functions.

Let f ∈ Q(x, y) be a bivariate rational function. Assume that the irreducible factorization
of the denominator D(x, y) of f(x, y) is

D(x, y) =
m∏
i=1

dni
i (x, y),

where di(x, y) are irreducible polynomials and ni are positive integers. Viewing f as a rational
function of y over the field Q(x), we have the partial fraction decomposition

f = P +

m∑
i=1

ni∑
j=1

ai,j

dji
, (3.1)

where P ∈ Q(x)[y], ai,j ∈ Q(x)[y] and degy(ai,j) < degy(di). It is well known that the
polynomial P is the difference of a polynomial w.r.t. y.
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Now suppose that di(x, y) = dk(x+m, y + n) for some index i 6= k. Then we have

ai,j

dji
= σx(g)− g + σy(h)− h+

σ−mx σ−ny (ai,j)

djk
,

where

g =


m−1∑̀
=0

σ`−m
x (ai,j)

σ`
xσ

n
y (d

j
k)
, if m ≥ 0,

−
−m−1∑̀

=0

σ`
x(ai,j)

σm+`
x σn

y (d
j
k)
, if m < 0,

and

h =


n−1∑̀
=0

σ`−n
y σ−m

x (ai,j)

σ`
y(d

j
k)

, if n ≥ 0,

−
−n−1∑̀
=0

σ`
yσ
−m
x (ai,j)

σn+`
y (djk)

, if n < 0.

Repeating the above transformation, we arrive at the following decomposition.

Lemma 3.1. For a rational function f ∈ Q(x, y), we can decompose it into the form

f = ∆x(g) + ∆y(h) + r,

where g, h ∈ Q(x, y) and r is of the form

r =
m∑
i=1

ni∑
j=1

ai,j(x, y)

dji (x, y)
, (3.2)

with ai,j ∈ Q(x)[y], degy(ai,j) < degy(di), di ∈ Q[x, y] are irreducible polynomials, and di
and di′ are not shift equivalent for any 1 ≤ i 6= i′ ≤ m.

From Lemma 3.1, we see that f is (σx, σy)-summable if and only if r is (σx, σy)-summable.
The following lemma shows that the summability of r is equivalent to the summability of
each summand of r.

Lemma 3.2. Let r ∈ Q(x, y) be of the form (3.2). Then r is (σx, σy)-summable if and only

if
ai,j(x,y)

dji (x,y)
is (σx, σy)-summable for all 1 ≤ i ≤ m and 1 ≤ j ≤ ni.

Proof. The sufficiency follows from the linearity of the difference operators ∆x and ∆y. It
suffices to prove the necessity. Assume that r is (σx, σy)-summable, then there exist g, h ∈
Q(x, y) such that r = σx(g)− g + σy(h)− h. We can always decompose g, h as

g =
A1

D1
+
A2

D2
and h =

B1

C1
+
B2

C2
,

whereAi, Bi, Ci, Di(i = 1, 2) are polynomials in y overQ(x), degy(A1) < degy(D1), degy(B1) <
degy(C1), D1 (resp. C1) contains only irreducible factors that are shift equivalent to di, while

D2 (resp. C2) contains no such factors. Let ri =
∑ni

j=1
ai,j(x,y)

dji (x,y)
. We then have

ri −
(
σx
A1

D1
− A1

D1
+ σy

B1

C1
− B1

C1

)
= σx

A2

D2
− A2

D2
+ σy

B2

C2
− B2

C2
−
∑
j 6=i

rj .

7



Note that σx, σy preserve the (σx, σy)-equivalence. Therefore, we have

ri = σx
A1

D1
− A1

D1
+ σy

B1

C1
− B1

C1
,

which means ri is (σx, σy)-summable.

By the same observation as in [13, Page 330], we see that σx and σy preserve the multi-

plicities of the fractions ai,j/d
j
i . This implies that ri is (σx, σy)-summable if and only if each

summand ai,j/d
j
i is (σx, σy)-summable. This concludes the proof.

Now we only need to study the summability problem of rational functions of the form
a/dj , where d ∈ Q[x, y] is irreducible, a ∈ Q(x)[y], and degy(a) < degy(d). For this kind of
rational functions, we have the following criterion for their summability.

Theorem 3.3. Let f = a(x,y)
dj(x,y)

, where d(x, y) ∈ Q[x, y] is an irreducible polynomial, a ∈
Q(x)[y] is non-zero and degy(a) < degy(d). Then f is (σx, σy)-summable if and only if

(1) there exist integers t, ` with t 6= 0 such that

σtxd(x, y) = σ`yd(x, y), (3.3)

(2) for the smallest positive integer t such that (3.3) holds, we have

a = σtxσ
−`
y p− p, (3.4)

for some p ∈ Q(x)[y] with degy(p) < degy(d).

The rest part of this section is devoted to proving this Theorem.

Firstly, we need some preparations. Analogue to the discrete residue given by Chen and
Singer [13], we introduce the concept of polynomial residues. Let K be a field and f ∈ K(x).
By partial fraction decomposition, f can be written as

f = p(x) +

m∑
i=1

ni∑
j=1

ki,j∑
`=0

ai,j,`(x)

σ`xd
j
i (x)

, (3.5)

where p(x) ∈ K[x], m,ni, ki,j ∈ N, degx(ai,j,`) < degx(di), and di(x) (i = 1, . . . ,m) are
irreducible polynomials that in distinct σx-orbits. The summation

ki,j∑
`=0

σ−`x (ai,j,`)

is called the polynomial residue of f at the σx-orbit of di(x) of multiplicity j, denoted by
resx(f(x), di(x), j).

The necessary and sufficient conditions on the summability of rational functions in K(x)
can be given in terms of polynomial residues. The proof is similar to the case of discrete
residue [12,13] and is omitted.
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Proposition 3.4. Let f(x) ∈ K(x) be of the form (3.5). Then f(x) is σx-summable in K(x)
if and only if the polynomial residue resx(f(x), di(x), j) is zero for any polynomial di(x) and
any multiplicity j.

Now we are ready to prove Theorem 3.3. For the sufficiency, let g =
∑t−1

k=0
σk
x(p)

σk
x(d

j)
, then

we will get

a

dj
− (σxg − g) =

a

dj
− σtxp

σtxd
j

+
p

dj
=
a+ p

dj
− σtxp

σ`yd
j

= −σ`y

(
σtxσ

−`
y p

dj

)
+
σtxσ

−`
y p

dj
, (3.6)

which means a
dj

is (σx, σy)-summable.

For the necessity, suppose f = a/dj is (σx, σy)-summable and assume that

f = σxg − g + σyh− h, (3.7)

where g, h ∈ Q(x, y). As a univariate analogue to Lemma 3.1, we can decompose g into the
form

g = σyg1 − g1 + g2 +
λ1

σµ1x dj
+ · · ·+ λs

σµsx dj
,

where g1, g2 ∈ Q(x, y) with g2 containing no term of the form λ
σu
xd

j in its partial fraction

decomposition with respect to y, µ` ∈ Z, λ` ∈ Q(x)[y], and σµ`x d (` = 1, . . . , s) are irreducible
polynomials in distinct σy-orbits.

Claim 1. Let
Λ := {σµ1x d, . . . , σµsx d, σµ1+1

x d, . . . , σµs+1
x d}.

Then

(a) At least one element of Λ is in the same σy-orbit as d.

(b) For each element η ∈ Λ, there is one element of Λ\{η}
⋃
{d} that is in the same σy-orbit

as η.

Proof of Claim 1. (a) Suppose there is no element of Λ that is in the same σy-orbit as d.
Since f = a/dj , we have resy(f, d, j) = a 6= 0. While by (3.7) and Proposition 3.4, we deduce
that

resy(f, d, j) = resy(σxg − g, d, j) = 0,

which is a contradiction.

(b) The assertion follows from the same argument when considering the polynomial
residues of η on both sides of (3.7).

Claim 1 implies that either d ∼y σ
µ′1
x d or d ∼y σ

µ′1+1
x d for some µ′1 ∈ {µ1, . . . , µs}. We

will only consider the first case. The second case can be treated similarly.

Claim 2. Assume d ∼y σ
µ′1
x d. We have the following assertions.
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(a) Suppose k ≥ 2 be an integer such that σlxd �y d for 1 ≤ l ≤ k − 1. Then there exist
µ′1, . . . , µ

′
k ∈ {µ1, . . . , µs} such that

σ
µ′1+1
x d ∼y σ

µ′2
x d, σ

µ′2+1
x d ∼y σ

µ′3
x d, . . . , σ

µ′k−1+1
x d ∼y σ

µ′k
x d,

and
σk−1x d ∼y σ

µ′k
x d.

(b) There exists a positive integer t ≤ s such that σtxd ∼y d.

Proof of Claim 2. (a) From Claim 1(b), we derive that σ
µ′1+1
x d is σy-equivalent to an element

of Λ\{σµ
′
1+1
x d}

⋃
{d}. If σ

µ′1+1
x d ∼y d, then σ

µ′1+1
x d ∼y σ

µ′1
x d and thus σxd ∼y d, which

contradicts to the hypothese on k. If σ
µ′1+1
x d ∼y σ

µ′l+1
x d, then σ

µ′1
x d ∼y σ

µ′l
x d for some l, which

contradicts to the assumption that σµ`x are in distinct σy-orbits. Therefore we are left with

the only possibility that σ
µ′1+1
x d ∼y σ

µ′2
x d for some µ′2 ∈ {µ1, . . . , µs} \ {µ′1}. Continue this

process, we will find µ′3, . . . , µ
′
k such that

σ
µ′2+1
x d ∼y σ

µ′3
x d, . . . , σ

µ′k−1+1
x d ∼y σ

µ′k
x d.

Finally, we have

σ
µ′k
x d ∼y σ

µ′1+k−1
x d ∼y σk−1x d.

(b) If such t does not exist, then one could find {µ′1, . . . , µ′s+1} satisfying the constraints

in (a). Thus, it holds that µ′r = µ′t for some r > t. Hence σ
µ′1+r
x d ∼y σ

µ′1+t
x d, which leads to

σr−tx d ∼y d, a contradiction.

Suppose t is the smallest integer such that σtxd ∼y d. Then taking k = t in Claim 2(a),
we derive that there exist µ′1, . . . , µ

′
t ∈ {µ1, . . . , µs} such that

σ
µ′1+1
x d ∼y σ

µ′2
x d, σ

µ′2+1
x d ∼y σ

µ′3
x d, . . . , σ

µ′t−1+1
x d ∼y σ

µ′t
x d,

and
σ
µ′t+1
x d ∼y σtxd ∼y d.

Recall that σ
µ′1
x d ∼y d. By the definition of ∼y, there exist integers s0, s1, . . . , st such that

σ
µ′k+1
x d = σ

µ′k+1
x σ

sk+1
y d, 1 ≤ k ≤ t− 1, σ

µ′t+1
x d = σs1y d, and σ

µ′1
x d = σs0y d.

Hence,

σs0y d = σ
µ′1
x d = σ

µ′2−1
x σs2y d = σ

µ′3−2
x σs2+s3y d = · · · = σ

µ′t−t+1
x σs2+s3+···+sty d = σs1+···+sty σ−tx d.

Setting ` = s1 + · · ·+ st − s0, we then have σtxd = σ`yd.

Now we compare the polynomial residues on both sides of (3.7). We list the residues in
Table 1, where the first column consists of the σy-orbits of elements in Λ and the second
column consists of the equations obtained by equating the corresponding polynomial residues
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σy-orbit Comparison of two sides of (3.7)

d, σ
µ′t+1
x d a = σxσ

−s0
y λ′t − σ−s1y λ′1

σ
µ′t−1+1
x d, σ

µ′t
x d 0 = σxσ

−st
y λ′t−1 − λ′t

σ
µ′t−2+1
x d, σ

µ′t−1
x d 0 = σxσ

−st−1
y λ′t−2 − λ′t−1

...
...

σ
µ′2+1
x d, σ

µ′3
x d 0 = σxσ

−s3
y λ′2 − λ′3

σ
µ′1+1
x d, σ

µ′2
x d 0 = σxσ

−s2
y λ′1 − λ′2

Table 1: Orbits and their corresponding polynomial residues.

on both sides of (3.7). By investigating the equations in Table 1 from bottom to top, we find
that

a = σtxσ
−`
y p− p,

where p = σ−s1y λ′1(x, y). Since degy λ
′
1 < degy d, we have degy p < degy d. This completes the

proof of Theorem 3.3.

The criterion (3.3) can be tested by computing the dispersion set Disp(d, d). In the next
section, we will give an algorithm for solving the equation (3.4). Then combining Lemma 3.1,
Lemma 3.2 and Theorem 3.3, we will obtain an algorithm for determining whether a bivariate
rational function is summable.

4 Rational solutions of bivariate difference equations

Let d0 be a positive integer and u be a polynomial in y over Q(x) with degy(u) < d0. In
this section, we present a method of finding solutions p ∈ Q(x)[y] with degy(p) < d0 to the
following difference equation

u = σmx σ
−n
y p− p, (4.1)

where m,n are given integers and m > 0.

Noting that degy(p) < d0, we may assume

p = p0(x) + p̂(x)y + · · ·+ pd0−1(x)yd0−1, pi(x) ∈ Q(x).

Comparing the coefficients of each power of y on both sides of (4.1), we obtain a system
of linear difference equations on pi(x). Abramov and coauthors have presented algorithms
for finding a universal denominator for the system (see, for example [5, 7]). That is, we can
compute a polynomial d(x) such that p̂i(x) = pi(x)d(x) is a polynomial in x for each i. The
universal denominator can also be obtained by using the convergence argument introduced
by Chen, Paule and Saad [15].
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Assume that u(x, y) = a(x, y)/b(x), where a, b are polynomials in x and y. Abramov’s
universal denominator d(x) can be computed as follows. Let

N = Dispx(b, b)
⋂
{m, 2m, 3m, . . .} = {s1 > s2 > · · · > sr}. (4.2)

Initially, let f1 = g1 = b. For i = 1, 2, . . . , r, set

hi(x) = gcd(fi(x), gi(x+ si)),

fi+1(x) = fi(x)/hi(x), gi+1(x) = gi(x)/hi(x− si).

Then

d(x) =

r∏
i=1

si/m∏
j=1

hi(x−mj). (4.3)

We will show that Abramov’s universal denominator can be reduced for the special equa-
tion (4.1). Recall that an m-fold Gosper representation [23, page 80] of a rational function
r(x) of x is

r(x) =
A(x)

B(x)

C(x+m)

C(x)
,

where A(x), B(x), C(x) are polynomials in x and

gcd(A(x), B(x+mh)) = 1, ∀h = 1, 2, . . . .

The following theorem says that a universal denominator can be deduced from an m-fold
Gosper representation of b(x)/b(x+m).

Theorem 4.1. Let (A(x), B(x), C(x)) be an m-fold Gosper representation of b(x)
b(x+m) . Then

each solution p(x, y) ∈ Q(x)[y] to Equation (4.1) is of the form

p(x, y) =
B(x−m)p̂(x, y)

b(x)C(x)
,

where p̂(x, y) is a polynomial in both x and y.

Proof. Rewrite Equation (4.1) as

a(x, y) =
b(x)

b(x+m)
σmx σ

−n
y (b(x)p(x, y))− b(x)p(x, y). (4.4)

Assume that

b(x)p(x, y) =
g(x, y)

q(x)C(x)
, (4.5)

where g(x, y) ∈ Q[x, y], q(x) ∈ Q[x] is a monic polynomial and gcd(q(x), g(x, y)) = 1. By the
definition of m-fold Gosper representations, we have

b(x)

b(x+m)
=
A(x)

B(x)

C(x+m)

C(x)
. (4.6)
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Substituting (4.5) and (4.6) into Equation (4.4), we deduce that

a(x, y)B(x)C(x)q(x)q(x+m) = A(x)g(x+m, y − n)q(x)−B(x)g(x, y)q(x+m). (4.7)

It’s easy to check that
q(x) | g(x, y)B(x)q(x+m).

Since gcd(q(x), g(x, y)) = 1, we obtain

q(x) | B(x)q(x+m).

Using this divisibility repeatedly, we get

q(x) | B(x)B(x+m) · · ·B(x+ (r − 1)m)q(x+ rm).

When r > max Dispx(q(x), q(x)), we have gcd(q(x), q(x+ rm)) = 1, and thus

q(x) | B(x)B(x+m) · · ·B(x+ (r − 1)m).

From Equation (4.7), we also derive that

q(x+m) | g(x+m, y − n)A(x)q(x).

By a similar discussion, we arrive at

q(x) | A(x−m)A(x− 2m) · · ·A(x− rm).

By the definition of Gosper representation, we know that gcd(A(x), B(x+ hm)) = 1 for any
h ∈ N. Thus the only opportunity for q(x) is q(x) = 1.

When q(x) = 1, Equation (4.7) will be reduced to

a(x, y)B(x)C(x) = A(x)g(x+m, y − n)−B(x)g(x, y).

It’s easy to see that
B(x) | A(x)g(x+m, y − n),

and hence B(x) | g(x+m, y − n). Setting g(x, y) = B(x−m)p̂(x, y) concludes the proof.

Let N be the dispersion set of b(x) itself given by (4.2). A minimal m-fold Gosper
representation of the ratio b(x)/b(x+m) can be computed as follow. Initially, let fr = gr = b.
For i = r, r − 1, . . . , 1, set

h̃i(x) = gcd(fi(x), gi(x+ si)),

fi−1(x) = fi(x)/h̃i(x), gi−1(x) = gi(x)/h̃i(x− si).

Then

A(x) = f0(x), B(x) = g0(x+m), C(x) =
r∏
i=1

si/m−1∏
j=1

h̃i(x−mj).

Hence the universal denominator given by Theorem 4.1 is

d̃(x) =
b(x)C(x)

B(x−m)
=

r∏
i=1

si/m∏
j=1

h̃i(x−mj). (4.8)

The difference between the new universal denominator d̃(x) given by (4.8) and Abramov’s
universal denominator d(x) given by (4.3) lies in the order of elements inN . By the properties
of Gosper representations, d̃(x) is a factor of d(x).
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Example 4.2. Let m and ` be two positive integers and let b(x) = x2(x+m`)(x+m`+m).
Abramov’s universal denominator is

(x+m`)
`−1∏
i=0

(x+mi)2

and the universal denominator given by (4.8) is

∏̀
i=0

(x+mi).

Substituting p(x, y) = B(x−m)p̂(x,y)
b(x)C(x) into (4.4), we obtain

a(x, y)C(x) = A(x)p̂(x+m, y − n)−B(x−m)p̂(x, y). (4.9)

Assume that
p̂(x, y) = p̂0(x) + p̂1(x)y + · · ·+ p̂d0−1(x)yd0−1.

Equation (4.9) is equivalent to a linear system of difference equations on p̂0(x), . . . , p̂d0−1(x).
Abramov and Bronstein have presented an algorithm on solving such systems [6].

5 Examples

In this section, we give two examples to illustrate how to use our criterion for deciding the
summability of some rational functions.

Example 5.1. Decide whether

f(x, y) = − (x+ y + 4)

(x2 + 2x+ 2xy − 1 + 2y + y2)(x2 + 2xy + y2 − 2)
.

is summable.

The first step is to find the partial fraction decomposition of f(x, y) in variable y. By
standard Maple command, we find that

f(x, y) =
y + x+ 2

x2 + 2xy + y2 + 2x+ 2 y − 1
+

−y − x
x2 + 2xy + y2 − 2

Denote

d(x, y) = x2 + 2xy + y2 − 2 and d′(x, y) = x2 + 2xy + y2 + 2x+ 2 y − 1.

By computing the dispersion set of d′ and d, we find that d′(x, y) = d(x + 1, y). Therefore,
by applying the (σx, σy)-reduction, we derive that

f(x, y) = ∆x(g1) + r(x, y), (5.1)
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where

g1(x, y) =
x+ y + 1

d(x, y)
and r(x, y) =

1

d(x, y)
.

It remains to decide whether r(x, y) is summable. By computing the dispersion of d itself,
we find that σxd(x, y) = σyd(x, y). Thus we need to find p(x, y) ∈ Q(x)[y] such that

p(x+ 1, y − 1)− p(x, y) = 1 and degy p < degy d = 2.

The universal denominator is 1 and we may assume

p(x, y) = p0(x) + p1(x)y,

where p0(x) and p1(x) are polynomials in x. By the Maple package LinearFunctionalSystems,
we find that

p0(x) = p1(x) = −1.

By Equation (3.6), we deduce that

r(x, y) = σxg2(x, y)− g2(x, y) + σyh(x, y)− h(x, y),

where

g2(x, y) =
−y − 1

d(x, y)
and h(x, y) =

y

d(x, y)
.

Substituting into (5.1), we finally derive that

f(x, y) = σxg(x, y)− g(x, y) + σyh(x, y)− h(x, y),

where
g(x, y) =

x

(x+ y)2 − 2
, and h(x, y) =

y

(x+ y)2 − 2
.

Example 5.2. Decide whether

f(x, y) =
1

(x+ y)x

is summable.

According to Theorem 3.3, it’s easy to see that we only need to check whether

1/x = σxσ
−1
y p− p (5.2)

is satisfied for some p ∈ Q(x). However Theorem 4.1 implies that p(x) satisfying Equation 5.2
must be a polynomial in x which is impossible. Thus 1

(x+y)x is not (σx, σy)-summable.
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