The (k, ℓ)-rainbow index of random graphs*

Qingqiong Cai, Xueliang Li, Jiangli Song
Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China

Email: cqqnjnu620@163.com, lxl@nankai.edu.cn, songjiangli@mail.nankai.edu.cn

Abstract

A tree in an edge-colored graph G is said to be a rainbow tree if no two edges on the tree share the same color. Given two positive integers k, ℓ with $k \geq 3$, the (k, ℓ)-rainbow index $r x_{k, \ell}(G)$ of G is the minimum number of colors needed in an edge-coloring of G such that for any set S of k vertices of G, there exist ℓ internally disjoint rainbow trees connecting S. This concept was introduced by Chartrand et. al., and there have been very few known results about it. In this paper, we establish a sharp threshold function for $r x_{k, \ell}\left(G_{n, p}\right) \leq k$ and $r x_{k, \ell}\left(G_{n, M}\right) \leq k$, respectively, where $G_{n, p}$ and $G_{n, M}$ are the usually defined random graphs.

Keywords: rainbow index, random graphs, threshold function
AMS subject classification 2010: 05C05, 05C15, 05C80, 05D40.

1 Introduction

All graphs in this paper are undirected, finite and simple. We follow [3] for graph theoretical notation and terminology not defined here. Let G be a nontrivial connected graph with an edge-coloring $c: E(G) \rightarrow\{1,2, \cdots, t\}, t \in \mathbb{N}$, where adjacent edges may be colored the same. A path of G is said to be a rainbow path if no two edges on the path have the same color. An edge-colored graph G is called rainbow connected if for every pair of distinct vertices of G there exists a rainbow path connecting them. The rainbow

[^0]connection number of a graph G, denoted by $r c(G)$, is defined as the minimum number of colors that are needed in order to make G rainbow connected. For any two vertices u and v of G, a rainbow $u-v$ geodesic in G is a rainbow $u-v$ path of length $d(u, v)$, where $d(u, v)$ is the distance between u and v. The graph G is strongly rainbow connected if there exists a rainbow $u-v$ geodesic for any pair of vertices u and v in G. Similarly, we define the strong rainbow connection number of a connected graph G, denoted by $\operatorname{src}(G)$, as the smallest number of colors that are needed in order to make G strongly rainbow connected. Clearly, we have $\operatorname{diam}(G) \leq r c(G) \leq \operatorname{src}(G) \leq m$, where $\operatorname{diam}(G)$ denotes the diameter of G and m is the number of edges of G. The rainbow k-connectivity of G, denoted by $r c_{k}(G)$, is defined as the minimum number of colors in an edge-coloring of G such that every two distinct vertices of G are connected by k internally disjoint rainbow paths. These concepts were introduced by Chartrand et al. in $[7,8]$. Recently, a lot of relevant results have been published; see $[5,6,10,11,12,18]$. The interested readers can see $[16,17]$ for a survey on this topic.

Here we recall the concept of generalized connectivity. Let G be a connected graph of order n and size m. For $S \subseteq V(G)$, an S-tree is a tree connecting the vertices of S. Suppose that $\left\{T_{1}, T_{2}, \cdots, T_{\ell}\right\}$ is a set of S-trees. They are called internally disjoint if $E\left(T_{i}\right) \cap E\left(T_{j}\right)=\emptyset$ and $V\left(T_{i}\right) \cap V\left(T_{j}\right)=S$ for every pair of distinct integers i, j with $1 \leq i, j \leq \ell$ (note that the trees are vertex-disjoint in $G \backslash S$). For a set S of k vertices of G, let $\kappa(S)$ denote the maximum number of internally disjoint S-trees in G. The k connectivity $\kappa_{k}(G)$ of G is defined by $\kappa_{k}(G)=\min \{\kappa(S)\}$, where the minimum is taken over all k-element subsets S of $V(G)$. We refer to $[9,13,14,15]$ for more details about the generalized connectivity.

A tree T in an edge-colored graph G is called a rainbow tree if no two edges of T have the same color. Given two positive integers k, ℓ with $2 \leq k \leq n$ and $1 \leq \ell \leq \kappa_{k}(G)$, the (k, ℓ)-rainbow index $r x_{k, \ell}(G)$ of G is the minimum number of colors needed in an edgecoloring of G such that for any set S of k vertices of G, there exist ℓ internally disjoint rainbow S-trees. In particular, for $\ell=1$, we often write $r x_{k}(G)$ rather than $r x_{k, 1}(G)$ and call it the k-rainbow index. It is easy to see that $r x_{2, \ell}(G)=r c_{\ell}(G)$. So the (k, ℓ)-rainbow index can be viewed as a generalization of the rainbow connectivity. In the sequel, we always assume $k \geq 3$.

The concept of (k, ℓ)-rainbow index was also introduced by Chartrand et al.; see [9]. They determined the k-rainbow index of all unicyclic graphs and the $(3, \ell)$-rainbow index of complete graphs for $\ell=1,2$. In [4], we investigated the (k, ℓ)-rainbow index of complete graphs for every pair of integers k, ℓ. We proved that for every pair of positive integers k, ℓ with $k \geq 3$, there exists a positive integer $N=N(k, \ell)$ such that $r x_{k, \ell}\left(K_{n}\right)=k$ for
every integer $n \geq N$, which settled down the two conjectures in [9].
In this paper, we study the (k, ℓ)-rainbow index of random graphs and establish a sharp threshold function for the property $r x_{k, \ell}\left(G_{n, p}\right) \leq k$ and $r x_{k, \ell}\left(G_{n, M}\right) \leq k$, respectively, where $G_{n, p}$ and $G_{n, M}$ are defined as usual; see [2].

2 Basic notation on random graphs

The two most frequently occurring probability models of random graphs are $\mathcal{G}(n, p)$ and $\mathcal{G}(n, M)$. The model $\mathcal{G}(n, p)$ consists of all graphs on n vertices, in which the edges are chosen independently and randomly with probability p; whereas the model $\mathcal{G}(n, M)$ consists of all graphs on n vertices and M edges, in which each graph has the same probability. Let $G_{n, p}, G_{n, M}$ stand for random graphs from the models $\mathcal{G}(n, p)$ and $\mathcal{G}(n, M)$. We say that an event $E=E(n)$ happens almost surely (or a.s. for short) if $\lim _{n \rightarrow \infty} \operatorname{Pr}[E(n)]=1$. Let K, G, H be three graphs on n vertices. A property Q is said to be monotone if whenever $G \subseteq H$ and G satisfies Q, then H also satisfies Q. Moreover, We call a property Q convex if whenever $K \subset G \subset H$, and K satisfies Q and H satisfies Q, then G also satisfies Q. For a graph property Q, a function $p(n)$ is called a threshold function of Q if

- $\frac{p^{\prime}(n)}{p(n)} \rightarrow 0$, then $G_{n, p^{\prime}(n)}$ almost surely does not satisfy Q; and
- $\frac{p^{\prime \prime}(n)}{p(n)} \rightarrow \infty$, then $G_{n, p^{\prime \prime}(n)}$ almost surely satisfies Q.

Furthermore, $p(n)$ is called a sharp threshold function of Q if there are two positive constants c and C such that

- for every $p^{\prime}(n) \leq c p(n), G_{n, p^{\prime}(n)}$ almost surely does not satisfy Q; and
- for every $p^{\prime \prime}(n) \geq C p(n), G_{n, p^{\prime \prime}(n)}$ almost surely satisfies Q.

Similarly, we can define $M(n)$ as a threshold function of Q in the model $\mathcal{G}(n, M)$; see [2].

It is well known that all monotone graph properties have a threshold function [2]. Obviously, for every pair of positive integers k, ℓ, the property that the (k, ℓ)-rainbow index is at most k is monotone, and thus has a threshold.

3 Main results

As Caro et al. pointed out, the random graph setting poses several intriguing questions. In [5], Caro et al. proved that $p=\sqrt{\log n / n}$ is a sharp threshold for the property $r c\left(G_{n, p}\right) \leq 2$. This was generalized by Fujita et al. [10], who obtained that $p=\sqrt{\log n / n}$
is a sharp threshold for the property $r c_{k}\left(G_{n, p}\right) \leq 2$ and $M=\sqrt{n^{3} \log n}$ is a sharp threshold for the property $r c_{k}\left(G_{n, M}\right) \leq 2$ for all integer $k \geq 1$. In this section, we employ similar methods to study the (k, ℓ)-rainbow index of random graphs $G_{n, p}$ and $G_{n, M}$.

Theorem 1. For every pair of positive integers k, ℓ with $k \geq 3, \sqrt[k]{\frac{\log _{a} n}{n}}$ is a sharp threshold function for the property $r x_{k, \ell}\left(G_{n, p}\right) \leq k$, where $a=\frac{k^{k}}{k^{k}-k!}$.

Proof. The proof will be two-fold. For the first part, we show that there exists a positive constant c_{1} such that for every $p \geq c_{1} \sqrt[k]{\frac{\log _{a} n}{n}}$, almost surely $r x_{k, \ell}\left(G_{n, p}\right) \leq k$, which can be derived from the following two claims.
$\boldsymbol{C l a i m}$ 1: For any $c_{1} \geq 3$, if $p \geq c_{1} \sqrt[k]{\frac{\log _{a} n}{n}}$, then almost surely any k vertices in $G_{n, p}$ have at least $2 k \log _{a} n$ common neighbors.

For any $S \subseteq V\left(G_{n, p}\right)$ with $|S|=k$, let $D(S)$ denote the event that the vertices in S have at least $2 k \log _{a} n$ common neighbors. Then it suffices to prove that, for $p=c_{1} \sqrt[k]{\frac{\log _{a} n}{n}}$, $\operatorname{Pr}\left[\bigcap_{S} D(S)\right] \rightarrow 1$, as $n \rightarrow \infty$. Define X as the number of common neighbors of all the vertices in S. Then $X \sim \operatorname{Bin}\left(n-k,\left(c_{1} \sqrt[k]{\frac{\log _{a} n}{n}}\right)^{k}\right)$ and $E(X)=\frac{n-k}{n} c_{1}^{k} \log _{a} n$. Assume that $n>\frac{c_{1}^{k} k}{c_{1}^{k}-2 k}$. Using the Chernoff Bound [1], we get that

$$
\begin{aligned}
\operatorname{Pr}[\overline{D(S)}] & =\operatorname{Pr}\left[X<2 k \log _{a} n\right] \\
& =\operatorname{Pr}\left[X<\frac{c_{1}^{k}(n-k)}{n} \log _{a} n\left(1-\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{c_{1}^{k}(n-k)}\right)\right] \\
& \leq e^{-\frac{-c_{1}^{k}(n-k)}{2 n} \log _{a} n\left(\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{c_{1}^{k}(n-k)}\right)^{2}} \\
& <n^{-\frac{c_{1}^{k}(n-k)}{2 n}\left(\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{c_{1}^{k}(n-k)}\right)^{2}} .
\end{aligned}
$$

Note that the assumption $n>\frac{c_{1}^{k} k}{c_{1}^{k}-2 k}$ ensures $\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{c_{1}^{k}(n-k)}>0$. So we can apply the Chernoff Bound to scaling the above inequalities. The last inequality holds, since $1<a=\frac{k^{k}}{k^{k}-k!}<e$ and then $\log _{a} n>\ln n$.

It follows from the union bound that

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcap_{S} D(S)\right] & =1-\operatorname{Pr}\left[\bigcup_{S} \overline{D(S)}\right] \\
& \geq 1-\sum_{S} \operatorname{Pr}[\overline{D(S)}]
\end{aligned}
$$

$$
\begin{aligned}
& >1-\binom{n}{k} n^{-\frac{c_{1}^{k}(n-k)}{2 n}\left(\frac{\left(c_{1}^{k}-2 k\right) n-k_{1}^{k} k}{c_{1}^{k}(n-k)}\right)^{2}} \\
& >1-n^{k-\frac{c_{1}^{k}(n-k)}{2 n}\left(\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{c_{1}^{k}(n-k)}\right)^{2}} .
\end{aligned}
$$

It is not hard to see that $c_{1}>3$ can guarantee $k-\frac{c_{1}^{k}(n-k)}{2 n}\left(\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{c_{1}^{k}(n-k)}\right)^{2}<0$ for sufficiently large n. Then $\left.\lim _{n \rightarrow \infty} 1-n^{k-\frac{c_{1}^{k}(n-k)}{2 n}\left(\frac{\left(c_{1}^{k}-2 k\right) n-c_{1}^{k} k}{1}\right.} \frac{c_{1}^{k}(n-k)}{}\right)^{2}=1$, which implies that $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\bigcap_{S} D(S)\right]=$ 1 as desired.

Claim 2: If any k vertices in $G_{n, p}$ have at least $2 k \log _{a} n$ common neighbors, then there exists a positive integer $N=N(k)$ such that $r x_{k, \ell}\left(G_{n, p}\right) \leq k$ for every integer $n \geq N$.

Let $C=\{1,2, \cdots, k\}$ be a set of k different colors. We color the edges of $G_{n, p}$ with the colors from C randomly and independently. For $S \subseteq V\left(G_{n, p}\right)$ with $|S|=k$, define $F(S)$ as the event that there exist at least ℓ internally disjoint rainbow S-trees. It suffices to prove that $\operatorname{Pr}\left[\bigcap_{S} F(S)\right]>0$.

Suppose $S=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$. For any common neighbor u of the vertices in S, let $T(u)$ denote the star with $V(T(u))=\left\{u, v_{1}, v_{2}, \cdots, v_{k}\right\}$ and $E(T(u))=\left\{u v_{1}, u v_{2}, \cdots, u v_{k}\right\}$. Set $\mathcal{T}=\{T(u) \mid u$ is a common neighbor of the vertices in $S\}$. Then \mathcal{T} is a set of at least $2 k \log _{a} n$ internally disjoint S-trees. It is easy to see that $q:=\operatorname{Pr}[\mathrm{T} \in \mathcal{T}$ is a rainbow tree] $=\frac{k!}{k^{k}}<\frac{1}{2}$. So $1-q>q$. Define Y as the number of rainbow S-trees in \mathcal{T}. Then we have

$$
\begin{aligned}
\operatorname{Pr}[\overline{F(S)}] & \leq \operatorname{Pr}[Y \leq \ell-1] \\
& \leq \sum_{i=0}^{\ell-1}\binom{2 k \log _{a} n}{i} q^{i}(1-q)^{2 k \log _{a} n-i} \\
& \leq(1-q)^{2 k \log _{a} n} \sum_{i=0}^{\ell-1}\binom{2 k \log _{a} n}{i} \\
& \leq(1-q)^{2 k \log _{a} n}\left(1+2 k \log _{a} n\right)^{\ell-1} \\
& =\frac{\left(1+2 k \log _{a} n\right)^{\ell-1}}{n^{2 k}} .
\end{aligned}
$$

It yields that

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcap_{S} F(S)\right] & =1-\operatorname{Pr}\left[\bigcup_{S} \overline{F(S)}\right] \\
& \geq 1-\sum_{S} \operatorname{Pr}[\overline{F(S)}] \\
& \geq 1-\binom{n}{k} \frac{\left(1+2 k \log _{a} n\right)^{\ell-1}}{n^{2 k}} \\
& >1-\frac{\left(1+2 k l o g_{a} n\right)^{\ell-1}}{n^{k}} .
\end{aligned}
$$

Obviously, $\lim _{n \rightarrow \infty} 1-\frac{\left(1+2 k l o g_{a} n\right)^{\ell-1}}{n^{k}}=1$, and then $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\bigcap_{S} F(S)\right]=1$. Thus there exists a positive integer $N=N(k)$ such that $\operatorname{Pr}\left[\bigcap_{S} F(S)\right]>0$ for every integer $n \geq N$.

For the other direction, we show that there exists a positive constant c_{2} such that for every $p \leq c_{2} \sqrt[k]{\frac{\log _{a} n}{n}}$, almost surely $r x_{k, \ell}\left(G_{n, p}\right) \geq k+1$.

It suffices to prove that for a sufficiently small constant c_{2}, the random graph $G_{n, p}$ with $p=c_{2} \sqrt[k]{\frac{\log _{a} n}{n}}$ almost surely contains a set S of k vertices satisfying
(i) S is an independent set;
(ii) the vertices in S have no common neighbors.

Clearly, for such S there exists no rainbow S-trees in any k-edge-coloring, which implies that $r x_{k, \ell}\left(G_{n, p}\right) \geq k+1$.

Fix a set H of $n^{1 /(2 k+1)}$ vertices in $G_{n, p}$ (we may and will assume that $n^{1 /(2 k+1)} / k$ is an integer). Let E_{1} be the event that H is an independent set. Then

$$
\operatorname{Pr}\left[E_{1}\right]=\left(1-c_{2} \sqrt[k]{\frac{\log _{a} n}{n}}\right)\left(\left(^{n^{1 /(2 k+1)}} 2\right)=1-o(1)\right.
$$

where $o(1)$ denotes a function tending to 0 as n tends to infinity.
Partition H into t subsets $H_{1}, H_{2} \ldots, H_{t}$ arbitrarily, where $t=n^{1 /(2 k+1)} / k$ and $\left|H_{1}\right|=$ $\left|H_{2}\right|=\ldots=\left|H_{t}\right|=k$. Let E_{2} be the event that there exists some H_{i} without common neighbors in $V\left(G_{n, p}\right) \backslash H$. Then, for sufficiently small c_{2},

$$
\operatorname{Pr}\left[E_{2}\right]=1-\left(1-\left(1-c_{2}^{k} \frac{\log _{a} n}{n}\right)^{n-n^{1 /(2 k+1)}}\right)^{n^{1 /(2 k+1)} / k}=1-o(1) .
$$

So, almost surely there exists some set H_{i} of k vertices satisfying properties (i) and (ii). Thus, for sufficiently small c_{2} and every $p \leq c_{2} \sqrt[k]{\frac{\log _{a} n}{n}}$, almost surely $r x_{k, \ell}\left(G_{n, p}\right) \geq k+1$. The proof is thus complete.

Next we will turn to another well-known random graph model $\mathcal{G}(n, M)$. We start with a useful lemma which reveals the relationship between $\mathcal{G}(n, p)$ and $\mathcal{G}(n, M)$. Set $N=\binom{n}{2}$.

Lemma 2. [2] If Q is a convex property and $p(1-p) N \rightarrow \infty$, then $G_{n, p}$ almost surely has Q if and only if for every fixed $x, G_{n, M}$ almost surely has Q, where $M=\lfloor p N+$ $\left.x(p(1-p) N)^{1 / 2}\right\rfloor$.

Clearly, the property that the (k, ℓ)-rainbow index of a given graph is at most k, is a convex property. By Theorem 1 and Lemma 2, we get the following result.

Corollary 3. For every pair of positive integers k, ℓ with $k \geq 3, M(n)=\sqrt[k]{n^{2 k-1} \log _{a} n}$ is a sharp threshold function for the property $r x_{k, \ell}\left(G_{n, M}\right) \leq k$, where $a=\frac{k^{k}}{k^{k}-k!}$.

Remark: If p is a threshold function for a given property Q, then so is λp for any positive constant λ. It follows that $p(n)=\sqrt[k]{\frac{\operatorname{logn}}{n}}\left(M(n)=\sqrt[k]{n^{2 k-1} \log n}\right)$ is also a sharp threshold function for the property $r x_{k, \ell}\left(G_{n, p}\right) \leq k\left(r x_{k, \ell}\left(G_{n, M}\right) \leq k\right)$, which corresponds to the results in [10].
Acknowledgement. The authors are very grateful to the reviewers for their helpful comments and suggestions.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, John Wiley \& Sons, 2004.
[2] B. Bollobás, Random Graphs, Cambridge University Press, 2001.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[4] Q. Cai, X. Li, J. Song, Solutions to conjectures on the (k, ℓ)-rainbow index of complete graphs, Networks 62(2013), 220-224.
[5] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15(1)(2008), R57.
[6] L. Chandran, A. Das, D. Rajendraprasad, N. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory 71(2)(2012), 206-218.
[7] G. Chartrand, G. Johns, K. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[8] G. Chartrand, G. Johns, K. McKeon, P. Zhang, The rainbow connectivity of a graph, Networks 54(2)(2009), 75-81.
[9] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(2010), 360-367.
[10] S. Fujita, H. Liu, C. Magnant, Rainbow k-connection in dense graphs, Electron. Notes Discrete Math. 38(2011), 361-366, or, J. Combin. Math. Combin. Comput., to appear.
[11] X. Huang, X. Li, Y. Shi, Note on the hardness of rainbow connections for planar and line graphs, Bull. Malays. Math. Sci. Soc.(2), in press.
[12] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(3)(2010), 185-191.
[13] H. Li, X. Li, Y. Mao, On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices, Bull. Malays. Math. Sci. Soc.(2), in press.
[14] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104(2012), 65-79.
[15] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition 3-partite graphs, Bull. Malays. Math. Sci. Soc.(2) 37(1)(2014), 103-121.
[16] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A Survey, Graphs \& Combin. 29(1)(2013), 1-38.
[17] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Math., Springer, New York, 2012.
[18] X. Li, Y. Sun, On the strong rainbow connection of a graph, Bull. Malays. Math. Sci. Soc.(2) 36(2)(2013), 299-311.

[^0]: *Supported by NSFC No. 11371205 and 11071130.

