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Abstract

For a given simple graph G, the energy of G, denoted by £(G), is defined as the sum
of the absolute values of all eigenvalues of its adjacency matrix, which was defined by I.
Gutman. The problem on determining the maximal energy tends to be complicated for a
given class of graphs. There are many approaches on the maximal energy of trees, unicyclic
graphs and bicyclic graphs, respectively. Let PS%5 denote the graph with n > 20 vertices
obtained from three copies of Cg and a path P,_1g by adding a single edge between each
of two copies of (g to one endpoint of the path and a single edge from the third Cg to the
other endpoint of the P,_15. Very recently, Aouchiche et al. [M. Aouchiche, G. Caporossi, P.
Hansen, Open problems on graph eigenvalues studied with AutoGraphiX, Furop. J. Comput.
Optim. 1(2013), 181-199] put forward the following conjecture: Let G be a tricyclic graphs
on n vertices with n = 20 or n > 22, then £(G) < E(PY%Y) with equality if and only if
G =~ pPSO5. Let G(n;a,b, k) denote the set of all connected bipartite tricyclic graphs on n
vertices with three vertex-disjoint cycles C,, Cp and Cj, where n > 20. In this paper, we
try to prove that the conjecture is true for graphs in the class G € G(n;a,b, k), but as a
consequence we can only show that this is true for most of the graphs in the class except for
9 families of such graphs.
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1 Introduction

Let G be a graph of order n and A(G) be the adjacency matrix of G. The characteristic
polynomial of A(G) is defined as

6(G,\) = det(\ — A(G)) = Z 4",

which is called the characteristic polynomial of G. The n roots of the equation
#(G,\) = 0, denoted by A1, Aa, -+, A, are the eigenvalues of G. Since A(G) is sym-
metric, all eigenvalues of G are real. It is well-known [6] that if G is a bipartite graph,

then
5]

15]
¢(G7 )\) = Zagi)\”’% = Z(_l)ib%)\nf%’
=0 i=0

where by; = (—1)%ag; and by; > 0 for all i =1,--- , [2].

The energy of G, denoted by £(G), is defined as

£(G) =Y IM,

which was proposed by Gutman in 1977 [8]. The following formula is also well-known

1 [T 1
&G == [ Sloglao(Guifa)lds
T ) oo T
where 72 = —1. Moreover, it is known from [6] that the above equality can be expressed
as the following explicit formula:
1 oo q [n/2] 2 [n/2] 2
_ i 2 i 2i+1
E(GQ) = oy /Oo ﬁlog Zz:; (—1)'agx + ; (—1)’agi1x dz,
where ay,as,...,a, are the coefficients of ¢(G,\). It is also known [11] that for a

bipartite graph G, £(G) can be also expressed as the Coulson integral formula

+oo q L5
E(G) == —In |1 byir® | dx.
@ =2 [ b

For two bipartite graphs G and Ga, if by;(G1) < boi(G2) hold for all i =1,2,--- [ 5],

we say that G7 < Gg or Gy = G1. Moreover, if by;(G1) < by;(G2) holds for some i, we



write G; < Gy or Gy = (1. Thus, for two bipartite graphs GG; and Gs, we can define

the following quasi-order relation,
Gi1 =X Gy = g(G1) < g(Gg), Gi1 <Gy = g(Gl) < g(Gg)

For more results about graph energy, we refer the readers to two surveys [9, 10] and

the book [28].

It is quite interesting to study the extremal values of the energy among some given
classes of graphs, and characterize the corresponding extremal graphs. In the mean-
time, a large number of results were obtained on the minimal energies for distinct classes
of graphs, such as acyclic conjugated graphs [25,32], bipartite graphs [30], unicyclic
graphs [13,23], bicyclic graphs [14], tricyclic graphs [26,27] and tetracyclic graphs [24].
However, the maximal energy problem seems much more difficult than the minimal
energy problem. The commonly used comparison method is the so-called quasi-order
method. When the graphs are acyclic, bipartite or unicyclic, it is almost always valid.
Nevertheless, for general graphs, the quasi-order method is invalid. For these quasi-
order incomparable problems, we found an efficient way to determine which one attains

the extremal value of the energy, see [16-22].
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Figure 1.1: Unicyclic graph Py¢.

Let P,, C,, and S, be a path, cycle and star garph with n vertices, respectively.
Gutman [8] first considered the extremal values of energy of trees and showed that
for any tree T' of order n, £(S,) < E(T) < E(P,). Let P? be the graph obtained by
connecting a vertex of the cycle C, with a terminal vertex of the path P,_, (as shown
in Figure 1.1). In order to find lower and upper bounds of the energy, Caporossi et
al. [5] used the AGX system. They proposed a conjecture on the maximal energy of

unicyclic graphs.



Conjecture 1.1 Among all unicyclic graphs on n vertices, the cycle C,, has maximal
energy if n <7 and n = 9,10,11,13 and 15. For all other values of n, the unicyclic

graph with mazimal energy is PS.

In [15], Hou et al. proved a weaker result, namely that £(PP%) is maximal within
the class of the unicyclic bipartite n-vertex graphs differing from C,,. Huo et al. [20]
and Andriantiana [1] independently proved that £(C,,) < £(PY), and then completely
determined that PS is the only graph which attains the maximum value of the energy
among all the unicyclic bipartite graphs for n = 8,12,14 and n > 16, which partially
solves the above conjecture. Finally, Huo et al. [21] and Andriantiana and Wagner [2]

completely solved this conjecture by proving the following theorem, independently.

Theorem 1.2 Among all unicyclic graphs on n wvertices, the cycle C, has maximal
energy if n < 7 but n # 4, and n = 9,10,11,13 and 15; P} has mazimal energy if

n =4. For all other values of n, the unicyclic graph with mazimal energy is PS.

The problem of finding bicyclic graphs with maximum energy was also widely studied.
Let P*® (as shown in Figure 1.2) be the graph obtained from cycles C, and Cj, by
joining a path of order n — a — b + 2. Denote by R,; the graph obtained from two
cycles C, and Cj, (a,b > 10 and a = b = 2 (mod 4)) by connecting them with an edge.

In [12], Gutman and Vidovi¢ proposed a conjecture on bicyclic graphs with maximal

a,b 6,6
Rl ]D"

energy.

Figure 1.2: Bicyclic graph P,

Conjecture 1.3 Forn = 14 and n > 16, the bicyclic molecular graph of order n with
mazximal energy is the molecular graph of the av, 3 diphenyl-polyene CsHs(C H ),,_12Cs H,
or denoted by PSS.



Furtula et al. [7] showed by numerical computation that the conjecture is true up
to n = 50. For bipartite bicyclic graphs, Li and Zhang [29] got the following result,

giving a partial solution to the above conjecture.

Theorem 1.4 If G € B, then £(G) < E(PS®) with equality if and only if G = PSS,

n

where %, denotes the class of all bipartite bicyclic graphs but not the graph Rqy.

However, they could not compare the energies of P%% and R, ;. Furtula et al. in [7]
showed by numerical computation that &(P%%) > &(R,;), which implies that the
conjecture is true for bipartite bicyclic graphs. They only performed the computation
up to a + b = 50. It is evident that a solid mathematical proof is still needed. Huo
et al. [19] completely solved this problem. However, the conjecture is still open for

non-bipartite bicyclic graphs.

Theorem 1.5 Let G be any connected, bipartite bicyclic graph with n(n > 12) ver-
tices. Then E(G) < E(PSY) with equality if and only if G =2 PSS,

Actually, Wagner [31] showed that the maximum value of the graph energy within
the set of all graphs with cyclomatic number &k (which includes, for instance, trees or
unicyclic graphs as special cases) is at most 4n/m + ¢ for some constant ¢ that only

depends on k. However, the corresponding extremal graphs are not considered.

The problem of finding the tricyclic graphs maximizing the energy remains open.
Gutman and Vidovié¢ [12] listed some tricyclic molecular graphs that might have max-
imal energy for n < 20. Very recently, in [3], experiments using AutoGraphiX led us
to conjecture the structure of tricyclic graphs that presumably maximize energy for
n = 6,...,21. For n > 22, Aouchiche et al. [3] proposed a general conjecture ob-
tained with AutoGraphiX. First, let P%%6 (as shown in Figure 1.3) denote the graph
on n > 20 obtained from three copies of C and a path P, 15 by adding a single edge
between each of two copies of Cy to one endpoint of the path and a single edge from

the third Cg to the other endpoint of the P,_1g.



Conjecture 1.6 Let G be a tricyclic graphs on n vertices with n = 20 or n > 22.

Then E(G) < E(PS5O) with equality if and only if G = P59,

n—17
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Figure 1.3: Tricyclic graph P66

Let G(n; a,b, k) denote the set of all connected bipartite tricyclic graphs on n vertices
with three disjoint cycles C,, C, and C}, where n > 20. In this paper, we try to prove
that the conjecture is true for graphs in the class G € G(n;a, b, k), but as a consequence
we can only show that this is true for most of the graphs in the class except for 9 families

of such graphs.

2 Preliminaries

The following are the elementary results on the characteristic polynomial of graphs and

graph energy, which will be used in our proof.

Lemma 2.1 [6] Let uv be an edge of G. Then

OGN = (G —uw,\) = (G —u—v,\) =2 Y ¢(G—C,\),

Cep(uv)

where p(uv) is the set of cycles containing wv. In particular, if uv is a pendant edge

of G with the pendant vertex v, then

O(G,A) = Ap(G — v, \) — (G —u—v, \).

Lemma 2.2 Let uv be an edge of a bipartite tricyclic graph G which contains three

vertex-disjoint cycles. Then

bgz(G) = sz(G — UU) + bQi_2<G —UuU— U) + 2 Z (—1)1+éb2i_l(G — Cl>,

Crep(uv)



where p(uv) is the set of cycles containing uv. In particular, if uv is a pendant edge

of G with the pendant vertex v, then

ng(G) = sz(G — UU) + bQi_Q(G —Uu— U).

Proof. By Lemma 2.1, we have

a2;(G) = agi(G — uv) — ag; (G —u —v) — 2 Z azi (G — ()

Crep(uv)
and
(_1)ia2i(G> - (_1>ia2i(G - UU) + (—1>i_1a21_2(G —Uu— U)
+2 3 (1) E(=1) " 2an (G - C).
Crep(uv)
Since by; = (—1)%ay;, then the result follows. 1

From Sachs Theorem [6], we can obtain the following properties for bipartite graphs.

Proposition 2.3 (1). If G; and Go are both bipartite graphs, then be(G1 U Gy) =
5 s (G) - bogoi(Go).

Z(:20). Let G and G + e both be bipartite graphs, where e ¢ E(G) and G + e denotes
the graph obtained from G by adding the edge e to it. If either the length of any cycle
containing e equals 2 (mod 4) or e is not contained in any cycle, then G X G + e.
(3). If Go, G1, G are all bipartite and G1 < Gsa, since byi(Go) > 0 and by (Gy) >
bai(G2) for all positive integer i, we have Gy U G = Gy U Go. Moreover, for bipartite
graphs G;, G%, i = 1,2, if G; has the same order as G, and G; < G, then G; U Gy =<
G| UG,

Lemma 2.4 [11] Let n = 4k, 4k + 1,4k + 2 or 4k + 3. Then

P, = PBUP, 3 =PiUP,_ 4> = P UP, o, = Por1 UP, 2,

= Py UP, g1 == B3UP, 3> PLUP, 1.



From the definition of G(n;a,b, k), we know that a, b and k are all even. We will
divide G(n;a,b, k) into two categories Gr(n;a,b, k;li,ls;l.) and Grr(n;a,b, k;ly, s, 13)

in the following.

We say that H is the central structure of GG if G can be viewed as the graph obtained
from H by planting some trees on it. The central structures of G;(n; a, b, k; 1, ls;.) and

Grr(n;a, b, k;ly,lo,13) are O(n;a, b, k;ly,1ls; 1) and O5;(n;a,b, k;ly, s, l3), respectively.

Or(n;a,b, k;ly,l;1.) (as shown in Figure 2.4) is the set of all the elements of
G(n;a,b, k) in which C, and C} are joined by a path P; = uy---us (ug € V(Cy))
with [; vertices, Cy and Cj, are joined by a path P, = vy -+ vy (vy € V((C})) with Iy

vertices. In addition, the smaller part us - -- vy of C, has [, vertices. Note that when

N Iy
——— ———
unn unn
uy Uy vy v}

Ca Gy Ci

Uy = Vg, We have [, = 1.

Figure 2.4: ©7(n;a,b, k;ly,ls;1.).

Orr(n;a,b,k;ly, 1o, 13) (as shown in Figure 2.5) is also a subset of G(n;a,b, k). For
any G € Opr(n;a,b, k;ly,ls,103), G has a center vertex v, C,, C, and Cj are joined
to v by paths P, = uy---v (ug € V(C,)), Po = ug---v (ug € V(Gy)), P3 = uz---v
(uz € V(Cy)), respectively. The number of vertices of Py, P, and P; are [y, I and I3,

respectively.

Ch

Figure 2.5: O7(n;a, b, k;ly, 1o, 13).



It is easy to verify that

G(n;aa b7 k) - Gf(n;a7b7k;l17l2;lc)u GII<n7a7b7k7l,17l,27lé)

Now we define two special graph classes I'; and I's as follows.

I'y consists of graphs G with the following four different possible forms:
(i) G € ©Or(n;a,4,k;l,10;2), where a > 8, k> 8,2<1; <3,2<1, <3.
(ii) G € Or(n;a,b,k;ly,12;2), wherea > 8,b>6,k>82<1 <3,2<I,<3and
{1 =l = 3 is not allowed.
(i) G € ©r(n;4,b,k;1y,12;2), where b > 6, k > 6,2 <13 <3 and 2 <[y <3.
(iv) G € O1(n;a,b,4;1;,15;2), where 2 <[5 < 3.
Whereas I'y consists of graphs G with the following five different possible forms:
(i) G € ©O5/(n;a,b,k;2,1y,13), where a > 8.
(i) G € ©77(n;a,b,k;3,3,3), where a > k > b > 8.
(i) G € Or1(n;a,4, k; 1y, 3, 13).
(iv) G € Or1(n;a,4, k; 11,2, 13).
(v) G € ©y(n;a,4,k;3,4,3), where a > k > 6.

In this paper, we first try to find the graphs with maximal energy among the two
categories of G(n;a,b, k): Gr(n;a,b, k;ly,ls;1.) and Grr(n;a, b, k; 1y, o, [3), respectively.
Then, we will obtain that P%%% = ©;(n;6,6,6;n — 17,2,2) has the maximal energy
among all graphs in G(n;a, b, k) except for two classes I'y and I'y. Our main result is

stated as follows, which gives support to Conjecture 1.6.

Theorem 2.5 For any tricyclic bipartite graph G € G(n;a,b, k) \ (1 UTs), E(G) <
E(PSSY) and the equality holds if and only if G = PS65.

3 Proof of Theorem 2.5.

By repeatedly applying the recursive formula of by;(G) in Lemma 2.2 and the third

property in Proposition 2.3, we obtain the following two lemmas.



Lemma 3.1 If G € Gi(n;a,b,k;ly, ;1) \ Or(n;a,b, k; 11,15 1.), then there ezists a
graph G' € ©r(n;a,b, k; 1}, 15;1.) such that G < G', i.e., the graph with maximal energy
among graphs in Gr(n;a, b, k;ly, lo; 1) must belong to ©r(n;a, b, k; 17, 15;1L).

Lemma 3.2 If G € Gyr(n;a, b, k;ly,la,1l3) \ Orr(n;a,b, k; 15,15, 15), then there exists a
graph G' € ©r1(n;a,b, k; 11, 15,1) such that G < G', i.e., the graph with mazimal energy
among graphs in Grr(n;a,b, k;ly, 1o, l3) must belong to ©rr(n;a, b, k; 17,15, 15).

From the results above, we know that the graph with maximal energy among graphs
in G(n;a,b, k) must belong to ©;(n;a,b, k;ly,l;1.) or Orr(n;a,b, k;ly,ls,l3). There-
fore, in the following, we will find the graph with maximal energy among graphs in

@1(71; a, b, k;ly, ly; lc) and @H(n; a,b, k; 117l2,l3)-

Lemma 3.3 For any graph G € ©;(n; a,b, k;11,1s;1.), there exists a graph H € O;(n;a,
b, k;ly,15;2) such that G < H.

Proof. We distinguish the following two cases:
Case 1. [, = 1.

For fixed parameters n, a, b, k, l; and I, let G € O;(n;a,b, k;li,ls;1) and Gy =
Or(n;a,b, k;li,ls;2) (as shown in Figure 3.6). It suffices to show that G; < Gs.

Figure 3.6: Graphs for Lemma 3.3.

By Lemma 2.2 we have

boi(G1) = boi(G1 — ugvy) + boi—o(G1 — up — vg) + (_1)1+%2b2i—b(G1 — )



= byi(G1 — ugvp) + bai—a (P4, s UPE, 5 U Py )
b
+(_1>1+§2b2z (P +l1 -2 UPI?Hsz)

and

bgi(G2> = bg,’(GQ — UU) + bzi,Q(Gg —Uu— U) -+ (—1)1+%2b2i,b(G2 — Cb)
= boi(Ga — wv) + byy_o(PY s UPE, ,UP, )
(= 1)1 22y 4(Peyy, 5 U PEyy, ).

Therefore, it suffices to show that by;(G; — ugvg) < bei(Gy — uv). By Lemma 2.2 we

have
boi(Gr — ugvo) = bai( Py, o U Plyiiy—o) + baia(Pilyy, 5 U Py, U By
boi(Ga —uv) = bai(Pyyy, o U Py, o) + baica(Pivy 5 U Py, —s)
= boi(Plyy, s U Py, o) +boia(Peyy, s UPE,, 5 U P )
+b2i-a(Pyyy, 5 U Py U Pooa).
Since bo;—4(Pgyy, _3U Pl§+1273 U Py_2) > 0, then we obtain by; (G — upvg) < by;(Go — uv).
Case 2. [, > 2.
For fixed parameters n, a, b, k, l; and Iy, let G| € O;(n;a,b,k;ly,13;1.) and G €

©;(n;a, b, k;ly,15;2) (as shown in Figure 3.7, where us belongs to the part of C, with
length b — . + 1). It suffices to show that G| < G,

Qw@w@‘,?

Figure 3.7: Graphs for Lemma 3.3.

Gy

By Lemma 2.2 we have

bgl(G ) = bQZ(G U2U3) —+ bQi_Q(Gll — Uy — Ug) + (-1)1+%2b21_b(G,1 — Cb);



bQZ(GIQ) = bQZ(Gé - UU) + bQi_Q(GIQ —Uu— ’U) + (_1)1+32b2i—b(G/2 - Ob)
Since (—1)1722by; (G} — Cy) = (=1)"722by;_(G) — C,), we only need to compare
bai (G — ugug) + ba;_o( Gy — ug — ug) with by; (G5 — uv) 4 by;_o(Gh —u—v). By applying
Lemma 2.2 repeatedly, we have
bQZ(Gll — UQUg) + bgi_g(Gll — Uy — U3)
= b2i(Pg+l1+lrS U Pf+k+lg—lc—1) + b2i72(Pg+ll+lc—4 U Plerlz—z U Pb*ls>

Hboi-2(Payy, 5y U Pl o U Pyo) + baia(Payy, s U Py, s U P2 U Py, 1),
and

b2i(Gy — uv) + bo;_o(GYH — u — v)

= boi(Pyyy 13U Byiiig i) + b2 (P pi—a U Pogyry—1,—2)
Hbai (P, o U Py, —o U Pys)

= boi(P sy i1 Y Byiiigio1) + bai2 (P im0 U Py 2 U Boy)
+boia (P 1, a U Py, g U Pomg—1) + boia(Plyy o UBLE,, s U P )

= boi(Pys Y By —1o—1) + bai2(Piyyy sy a U Py, o U Py,
+boi o (P g U PEyy, o U Pos) +boia(Plyy s UPE, sUP,_2UP,_ 1)

+02i-6(Pyy1,—3 U Piygy3 U Pl—a U Pyg 1)

Since b2i76(Pg+ll_3 U plf+l2—3 U P[C,;g U Pb,lcfl) > O, we have bQZ(Gll — UQUg) + bgifg(Gll —
ug — uz) < by (Gh — uv) + bgi_o(Gh — u — v).

Thus, the proof is complete. 1

Theorem 3.4 For any graph G € Orr(n;a,b, k;ly,la,l3) \ 'y, there exists a graph
H € 0/1(n;6,6,6;11,15,15) such that G < H.

Proof. Without loss of generality, we may assume that a > k& > b. It is obvious that
l,15,13 > 2. We distinguish the following cases:
Lh+a—2>7
Case 1. ¢, +b—-3>7
ls+k—-22>7



In this case, considering the values of 1, [ and l3, we distinguish the following four

subcases.
Subcase 1.1. [; > 3, [ > 4 andl3 > 3.

For any values of [y, I and I3, let Gy € ©1(n;a,b, k;ly, 12, 13) and Gy € O77(n;6,6,
6;11,15,15) (as shown in Figure 3.8), where I} = a+1,—6, [, = b+1,—6 and I}, = k+13—6.

1 I

[ l: <
am 7 am up1
lo {§1 A
C, ? Ci

Cy
Go Got

Figure 3.8: Graphs for Subcase 1.1.

By Lemma 2.2, we have
boi(G1) = boi(G1 — ugvy) + boi—o(G1 — ug — v1)

k b
= by Pa+k+l1+l5 3 U Pb+12 o) T2 o(Pyyy, o UP, s UB,, 3),

= boi(PyYy g U P ) + o o(PY L U B U P )

+15+9

(
(
boi(Gor) = bai(Gor — uorvor) + bai—2(Gor — o1 — vor)
(
(

= by Pc?fk+l1+lg sUP, o) +baio(Peyy s UPL,, s UPY, ).
By Proposition 2.3, we can obtain that G; < Ggy.

Subcase 1.2. [ =2, 15, >4,l13>3o0rly > 3,15 >4, 13 =2.

The graphs in this subcase belong to I'y(7), so we do not consider them.

Subcase 1.3. [; > 3, [, =3, I3 > 3.

It is easy to verify that b > 8 and then we have a > k > b > 8. Let Gy €
Orr(n;a,b, k;ly,la,l3) and Goa € O11(n;6,6,6;01,15,105), where I{ = a+ 1, — 6, I}, =
b+1ly—6and ly =Fk+13—6. If ; > 3 or I3 > 3, then with similar analysis in Subcase

1.1, we have

boi(Ga) = boi(Pyary s U Pt ) + baia(Pey s U P s UP,, ),



6,6 6 6 6 6

b2i(Goa) = ba2i( By )y g U By 1) +b2ia(Py 3 U Py U Py )
6,6 6 6 6 6

= boi(Py ity pts—3 Y Pargy o) +baia(Phyy s U Py o U B, o).

By Proposition 2.3, we can obtain that G < Gos.

If l; = Iy = I3 = 3, the graphs in this case belong to I'5(77), so we do not consider

them.

Subcase 1.4. ll23,l2:2,l3Z3OI‘Z1:Z3:2,Z2Z4OI‘Z1:2,2SZQS3,
l3230rl1Z3,2§l2§3,l3:20rl1:l3:2,2§l2§3.

The graphs in this case belong to I's(7), so we do not consider them.

11+CL—2§6
Case 2. ¢y, +b—-3>7
l3+k—2>7

In this case, it is easy to verify that a < 6, from which we have b < k < a < 6.
If a =b=Fk =6, it follows that this lemma holds. Hence, we consider the following

subcases.
Subcase 2.1. a =k =6, b=4.

It is easy to verify that [, > 6 and I3 > 3. For any values of Iy and I3, let G3 €
©11(n;6,4,6;2,1s,13) and Goz € O77(n;6,6,6;2,1,,15), where l; = Iy —2 and I} = Is.
By Lemma 2.2, we have

boi(Gs) = bu(PL01 U PR o) +bya(CeUPS,UPL,,),
b2i(G03) = bZi(Plifn U Pl§+2) + b2i72(06 U Pl?;+4 U 1312+1)‘
By Proposition 2.3, we can obtain that G3 < Gos.

Subcase 2.2. a =6, k=b=4.

It is easy to verify that [, > 6 and [3 > 5. For any values of Iy and I3, let G3 €
©11(n;6,4,4;2,1s,13) and Gz € ©17(n;6,6,6;2,15,15), where I, =1, —2 and I = I3 —2.

By Lemma 2.2, we have

boi(Ga) = bai(Piig U Pyio) + baio(Co U Py U Py,



boi(Goa) = bai(Ppyg U Pl ) 4 baia(Ce U P, U P ).
By Proposition 2.3, we can obtain that G4 < Go4.
Subcase 2.3. a =k =b=4.

It is easy to verify that [; < 4,1y > 6andl3 > 5. Ifl; =4, let G5 € Oy7(n;4,4,4;4,15,13)
and Gos € O7(n;6,6,6;2,05,15), where I}, = [y — 2 and [ = I3 — 2. By Lemma 2.2, we

have

boi(Gs) = bai( Pt U Byio) + boio(P5 U By iy U BLyy),

bsi(Gos) = bas(PtgU PE L) +baio(Ce U PE,UPE)).

Also, ¢(Pg;\) = A8 — 6X* 4+ 6)2 and ¢(Ce; \) = A% — 61 + 9\? — 4. Tt follows that
Pé < (. By Proposition 2.3, we can obtain that G5 < Gos.

If I, < 4, graphs in this case belong to I's(iii) or I's(iv), so we do not consider them.

h+a—22>7
Case 3. (b +b—-3>7
l3+k—-—2<6

In this case, it is easy to verify that £ < 6. If b < k < a < 6, with similar analysis
in Case 2 we obtain that this lemma holds. Then we consider the case a > 6 > k > b.
Without considering graphs with forms I's(i), T'5(i7) and T's(iv), there are only two

subcases as follows.
Subcase 3.1. a > 6, k=6,0=06 or 4.

It is easy to verify that I > 4 and I3 = 2. We have [; > 3 since we do not consider
graphs with form I'y(7). For any values of [; and I3, let Gg € O7(n;a,b, 6;1,1s,2) and
Gos € ©17(n;6,6,6;17,15,2), where [{ =a +1; — 6 and I, = b+ [y — 6. By Lemma 2.2,

we have

boi(Go) = boi(PeS 5 U PPy, o) + boia(Ply s UCs U P, ),

6,6
bai(Gos) = bai(Pyyy, 45U Py, _9) 4+ baia(Pyy, o UCs U B, 3).
By Proposition 2.3, we can obtain that Gg < Ggg.

Subcase 3.2. a > 6, k =b=4.



It is easy to verify that I > 6 and I3 < 4. We have [; > 3 since we do not consider
graphs with form I'5(7). For any values of [y and I3, let G7 € O7(n;a,4,4;1,13,4) and
Gor € O71(n;6,6,6;11,15,2), where I} =a+1; —6 and I}, = [, — 2. By Lemma 2.2, we

have

boi(Gr) = boi(Po s UPL ) + b a(Ply, s UPSUPE,),

boi(Gor) = bai(Pary s U PE o) + baia(PS,, ,UCsUPE ).

Also, P} < Cs. By Proposition 2.3, we can obtain that G7 < Gyy.

ll+a—227
Case 4. (b +b—-3<6
ls3+k—2>7

It is easy to verify that b < 6. Without considering graphs with forms I'y(7), I's(47),

I's(iv) and I'y(v), we can distinguish this case into the following four subcases.
Subcase 4.1. b=6, 1, =3, 1; > 3 and I3 > 3.
For any values of [; and l3, let Gs € O7(n;a,6,k;14,3,13) and Gos € O77(n;6,6,6; 1],

3,15), where I} =a+1; —6 and 5 = k + [3 — 6. By Lemma 2.2, we have
3 1 3

b2i(Gs) = bai(PHly as UPE) + baia(Plyy o UPE,, 5 U Ce),

boi(Gos) = bgi(Pfkaﬁls_?) U PP) + b (P2, o U PY,. 5 UCs).

By Proposition 2.3, we can obtain that Gg < Gog.
Subcase 4.2. b =6, I3 =2,1; > 3 and I3 > 3.
For any values of [ and I3, let Gy € O;7(n;a,6,k;11,2,13) and Gog € O7(n; 6,6, 6;

11,2,15), where Iy =a+1; —6 and I} = k + [3 — 6. By Lemma 2.2, we have

boi(Go) = boi(Pelis s1as U Co) + baioa(Piy U P,y U Ps),

b2i(Goo) = b2i(Pyly 1, 41,5 U Co) + boia(Peyy, o U Py, o U Bs).

By Proposition 2.3, we have Gy < Gog.

Subcase 4.3. b=4,13=5,1; > 3 and I3 > 3.



For any values of [; and I3, let Gip € O17(n;a,4, k; 11, 5,13) and Goip € O17(n; 6, 6, 6;
11,3,15), where Iy =a+1; —6 and I} = k + [3 — 6. By Lemma 2.2, we have
b2i(Gr0) = bai(Peliss sis—s U PF) 4 baica(Plyy s U PE, s UP),
b2i(Goro) = bai(Pylisiyis—s U PY) + baica(Poyy o U PYyy, 5 UCe).
By Proposition 2.3, we can obtain that G19 = Gpqp.
Subcase 4.4. b=4,1,=4,1; > 3 and I3 > 3.
Let G11 € Orr(n;a,4,k;11,4,13) and Goyy € O14(n;6,6,6;17,2,1), where I} = a +
li —6 and I = k +l3 — 6. By Lemma 2.2, we have
boi(Gr1) = bai(Peliss sis—s U Pe) 4 baica(Plyy o U PEyy s U P,
b2i(Got1) = bai(Pyiit s1s3 YU Ce) + baia(PL s UPE,, U Ps).

Also, ¢(Pd;A) = A5 — 303 + 2\ and ¢(Ps; \) = A° —4X\3 + 3\. So Pd < P5. Then by

Proposition 2.3, we have G11 < Go11.

l1+(l—2§6
Case 5. (b +b—-3>7
I3+k—-2<6

It is easy to verify that a < 6 and then we have b < k< a <6. fa=b=k =06, it
follows that this lemma holds. Then we focus on other subcases. Without considering
graphs with forms T'y(ii7), I'y(iv), we can distinguish this case into the following three

subcases.
Subcase 5.1. a =k =6, b=4.

It is easy to verify that [y = I3 = 2 and [, > 6. For any value of Iy, let G5 €
©11(n;6,4,6;2,105,2) and Go12 € O17(n;6,6,6;2,05,2), where I, = [l — 2. By Lemma

2.2, we have

b2i(Gr2) = bai( Py U P yp) + baioa(Co U Cs U By ),

boi(Gorz) = bzi(PféG U Pli+2) +baio(C U G U P£+1)'

By Proposition 2.3, we can obtain that G5 = Gpa.



Subcase 5.2. a =6, k=b=4, I3 =4.
It is easy to verify that [y = 2. For fixed lo, let Gz € O7(n;6,4,4;2,15,4) and
Goiz € ©17(n;6,6,6;2,105,4), where I, = [, — 2. By Lemma 2.2, we have
b2i(Gis) = boi(Pyig U C6) + baio(Ps U Py UPL ),
bai(Gois) = bzz’(Pli’_?g U Cg) + bai—a(Ps U Cg U ]312+2).
By Proposition 2.3, we have G13 < Go13.
Subcase 5.3. a=k=0b=4,1, =13 =4.
It is easy to verify that [y > 6. For fixed Iy, let G4 € Or(n;4,4,4;4,15,4) and
Gos € O17(n;6,6,6;2,105,2), where [, = [ — 2. By Lemma 2.2, we have
b2i(Gha) = bai( P U PLys) +boio( P U P U PLLY),

bQi(G()M) = bgz(Pfg;ﬁ U PZ(ZJFQ) + waL’_Q(Cﬁ U Cﬁ U Pngrl)'

Also, Pél < (Y, and by Proposition 2.3, we can obtain that G4 =< Gpy4.

l1+a—2§6
Case 6. ¢ [, +b—-3<6
Is3+k—2>7

It is easy to verify that a < 6 and then we have b< k< a <6. fa=b=k =06, it
follows that this lemma holds. Then we focus on other subcases. Without considering
graphs with forms I'y(ii7), I's(iv), we can distinguish this case into the following three

subcases.

Subcase 6.1. a=k=6,b=4,4 <[y, <5.

It is easy to verify that I; = 2, I3 > 3. For any values of [, and I3, let G5 €
@[[(n; 6,4,6; 2,[2,[3) and G5 € @][(n; 6,6, 6; 2,l/2,lé), where l/2 = [y — 2, lé = 3. By
Lemma 2.2, we have

boi(G1s) = bai(Ppig U PE ) + baio(Ce U Py U PE ),

bai(Gors) = b2z’<Pli£9 U Pli+4) + b2i—2(Cs U P12+2 U Plg+3)’

By Proposition 2.3, we can obtain that G5 < Gos.



Subcase 6.2. a =6, k=b=4,4 <1y <5.

It is easy to verify that [; = 2, I3 > 5. For any values of [, and I3, let G5 €
©11(n;6,4,4;2,19,13) and Goig € Or1(n;6,6,6;2,05,15), where Iy =1y — 2, I =13 — 2.
By Lemma 2.2, we have

boi(Grs) = bai(Pplg U BLL,) + b 2(Co U Py U P L),

boi(Gots) = bai(Ppye U P ) 4 baia(Ce U P, UPE ).
By Proposition 2.3, we can obtain that G5 =< Gos.
Subcase 6.3. a=k=0b=4,11 =4,4 <1y, <5.

It is easy to verify that I3 > 5. For any values of [y and I3, let G17 € O7(n;4,4,4;4,15,13)
and Goir € O17(n;6,6,6;2,0,,15), where I, = 1y — 2, 5 = I3 — 2. By Lemma 2.2, we

have

bai(Grr) = bau(PLlgU PR o) + by a(Pd UL, UPL,),

bai(Gorr) = bai(Pyye U PLyy) 4 baioa(Ce U PLL,) U PLLy).

Also, P} < Cg, and by Proposition 2.3, we have G17 < Goi7.

l1—|—a1—227
Case 7. ¢l +0—-3<6
l3+k—2<6

It is easy to verify that £ < 6 and b < 6. If b < k < a < 6, with similar
analysis in Case 6 we can obtain that this lemma holds. Then we consider the case of
a > 6 >k >b. Without considering graphs with forms I's(¢), ['y(di7) and I's(iv), we

can distinguish this case into the following three subcases.
Subcase 7.1. k=b=6, [, > 3.

It is easy to verify that I3 = 2 and 2 < [y < 3. For any values of [; and ls, let
Gis € 911(n;a,6,6;11,12,2) and Gy € ©17(n;6,6,6;17,15,2), where I = a+1; —6. By
Lemma 2.2, we have

b2i(Gis) = ba(Pr 11yrs U C6) + baima( Py 5 U PS, U Ps),

b2i(Gous) = bai( Py, 145U C6) + baia(Poyy o U P, U Ps).



By Proposition 2.3, it follows that G5 < Goss.
Subcase 7.2. k=6,b=4, 1, > 3.

It is easy to verify that I3 = 2 and I, < 5. We have 4 < [, < 5 since we do
not consider graphs with forms I'y(zii) and T'y(iv). For any values of 3 and I3, let
G € O17(n;a,4,6;11,15,2) and Gorg9 € O17(n;6,6,6;15,15,2), where I = a+1; —6 and
ly =1y — 2. By Lemma 2.2, we have

boi(Gho) = bai( Py 11p00 U C6) + baia( Py, s U Pyyy U Bs),

bsi(Gorg) = boi(PE5 1101 U C6) + bai—a( P, U PE, U Ps).
By Proposition 2.3, we have G19 < Gog.
Subcase 7.3. k=b=4,1; > 3, I3 =4.

Similar to Subcase 7.2, we have 4 < I, < 5. Let Gy € Opr(n;a,4,4;14,15,4) and
Gogo € O17(n;6,6,6;11,15,2), where I =a+1; —6 and [, = [, — 2. By Lemma 2.2, we

have

b2i(Gao) = boi( Py iir U Ps) + boia(Ply U P, U P),

b2i(Gozo) = bai(Pyiyiiy1 U Co) + baia(Peyy, o U PS5 U Ps).

Since P§ < Cs and Pi < Ps, by Proposition 2.3, we have Gay =< G-

l1+(11—2§6
Case 8. ([, +0—-3<6
I3+k—2<6

It is easy to verify that a < 6 and then we have b < k< a <6. fa=b=k =06, it
follows that this lemma holds. Then we focus on other subcases. Without considering
the graphs with forms I'y(4i7) and I'y(iv), we can distinguish this case into the following

three subcases.
Subcase 8.1. a =k =6, b=4.

It is easy to verify that [; = I3 = 2. Since n > 20, we have ls = 5. Let G9; €
©77(20;6,4,6;2,5,2) and Goa; € O7;7(20;6,6,6;2,3,2). By Lemma 2.2, we have

boi(Ga1) = boi( P UC) + boio(Cs U PAU Ps),



bgi(Gogl) = bQZ(P&G U 06) + bQi_Q(CG U P76 U P5)

By Proposition 2.3, it follows that Ga; < Goa;.
Subcase 8.2. a =6, k=0=4, [3 =4.

It is easy to verify that [y = 2, [y < 5. Since n > 20, we have [, = 5. Let
Gaz € ©77(20;6,4,4;2,5,4) and Goea € O7(20;6,6,6;2,3,2). By Lemma 2.2, we have
boi(Gaz) = bai(Co U PYY) + byy—o(Ps U P U P,
byi(Goza) = boi(Cs U PYS) + bys_o( Ps U Cg U PY).

By Proposition 2.3, we have Goy < Goaa.
Subcase 8.3. a=k=0b0=4,1, =13 =4.
It is easy to verify that lo < 5. Since n > 20, we have [, = 5. Let Gy €
©17(2054,4,4;4,5,4) and Goo3 € ©7/(20;6,6,6;2,3,2). By Lemma 2.2, we have
boi(Gas) = boi(Pst UPY) + by_o(PEUPIUPY,
boi(Gozs) = boi(Pry> U PE) + byi_o(Co U Cs U C).
Since Pgl < (Y, and by Proposition 2.3, we can obtain that Go3 = Gpos.

The proof is now complete. 1

Lemma 3.5 For any graph G € ©r;(n;6,6,6;1,12,13), there exists a graph H €
©11(n;6,6,6;1,15,2) such that G < H.

Proof. For fixed parameters n, [y, Iy and I3, let G € O;7(n;6,6,6;11,1s,03) and Gy €
©11(n;6,6,6;1,,15,2) (as shown in Figure 3.9). It is easy to verify that I =l + [3 — 2
and it suffices to show that G; < Gy.

By Lemma 2.2 we have
b2i<G1) = b2i(G1 - U1U1) + 521—2(G1 — U — Ul)

= boi(G1 — wv1) + bay—2(P. s U P ,UP) )

= b2i(Gr — wiv1) + bai—2(P 5 U By UCs U Py o)



Gy Gy

Figure 3.9: Graphs for Lemma 3.5.

+bai—a(P 15 U Py U Py—3 U Fs),
bai(Go) = bai(Go — ugvo) + bai—2(Go — 1o — o)
= byi(Go — ugvo) + bai—2(P) 3 U P, 5 UCs)
= by(Go — upvg) + bgi_g(PlﬁlJr?) U P£+4 UCsU P, )
+boi—a(P s UPS s UP,_3UCs).

Since be;(Gy — uyv1) = by (Go — ugvy), then we only need to compare bgj(PgJr4 U Ps)

and bgj(]312+3

U (). Also by Lemma 2.2 we have
boj(Paya U Ps) = boj(Po 3 UPsU P+ by o(P ., U Ps)
= byj(P.3 U P UP) +byjo(P ., UPLUP)
+b2j—4(P12+2 U F)
= by (P s UPsUP) +bajo(Pl, UPLUP)
+baja(Piyiy U Py U Py) + by (P U Py)
= by (P UPsUP) +bojo(Pl, UPLUP)
+boj_a(PL, UPs U Py) +byj_(Ce U Py_g U P3)
+b9;—s(P5 U P,_7 U Ps),
and
baj(Piyrs UCs) = boj(Piy i3 U Ps) + baja(Pp i3 U Pa) + 2ba;6(Fpy5)
= by;(P) 3 UPs) + byy_o(P),UPLUP)

+boj_a (P U Py) + 2baj_6( PP 5)

- b2j(P162+3 U Ps) + b2j—2(f)12+2 UP,UP)



+b2j_4(PlG?+1 UPsU P+ bQJ—G(PZiH UPR)+ 2b2j—6(P12+3)
= ij(Pngrg U Fs) + b2j72(P£+2 UP,UP)

+boj_s(PL,  UPsUP) + baj_6(Cs UP,_5UPy)

)
+b9j—s(P5 U P, U Py) + 2b2j76(PlZ+3)-

By Lemma 2.4 and Proposition 2.3 we have P¢ , U Ps < PP, , U (Cs. Also consider
lo+4 lo+3

2

Proposition 2.3, we can obtain that G; < Gy. |

Lemma 3.6 For any graph G € ©p;(n;6,6,6;l1,105,2), there exists a graph H €
O;1(n;6,6,6;1,2,2) such that G < H.

Proof. For fixed parameters n, [; and ly, let Go € ©O7;(n;6,6,6;(1,05,2) and Gy €

©;1(n;6,6,6;1,2,2) (as shown in Figure 3.10). It is easy to verify that [ = 1; 4+ [y — 2
and it suffices to show that Gy < Gs.

h ly l
—_—~
- 7 anr — am
U( (%
G

0 G2

Figure 3.10: Graphs for Lemma 3.6

By Lemma 2.2 we have

boi(Go) = bei(Go — ugvg) + bai—2(Go — ug — vp)
= by(Go — ugvo) + boi_o(P ,UP), U P5)
= by(Go — ugvg) + bai—o(P , UCs U Py_5 U Ps)
+bo;_a(P2, 4 U Ps U P, _3U Ps),
boi(G2) = boi(Go — ugva) + bo_o(Go — us — v9)
= b2i(Go — ugva) + bai—2(Py 1,42 U Cs U Ps)

= byi(Gy — ugva) + b2i—2(Pg+4 UCsU P,_2 U Ps)



+boia(P) 3 UCs U Py _3U P).

Since byi(Go — ugg) = bei(Ga — ugvs), then we only need to compare by; (PP, U Ps)
with by; (PP, ;UCs). With similar analysis in Lemma 3.5, we can obtain that Gy < Go.
]

From Theorem 3.4, Lemmas 3.5 and 3.6, we can easily obtain the following result.

Theorem 3.7 For any graph G € Or(n;a,b,k; 11,1, 13), if G is not an element of the
special graph class Ty, then there exists a graph H € O1;(n;6,6,6;n — 17,2,2) such
that G < H, and the equality holds if and only if G = H.

Theorem 3.8 For any graph G € ©1(n;a,b, k;ly,15;2) \ I'y, there exists a graph H €
©1(n;6,6,6;1],15;2) such that G < H.

Proof. Without loss of generality, we may assume that [; > l5. We will discuss the

following four cases.

{ —1>
Case 1. 1+a =9
lhb+k—-—1>28

Considering the values of [; and [y, we distinguish this case into the following four

subcases.
Subcase 1.1. [; > 4.

For any values of [; and [y, let G1 € ©;(n;a,b, k;ly,12;2) and Go; € ©1(n;6,6,6;1],1;2),

where [} = a+[; — 6. By lemma 2.2, we have
a b,k a
boi(G1) = bai(Piyy, o U B, o) + baica(Prvy 5 U Py, —s),
boi(Gor) = bai(PLyy 5 U Py o) + baica(Peiy 5 U Py, s)-
By Proposition 2.3, we can obtain that G; < Ggy.
Subcase 1.2. [; =, =3 and b > 6.

It is easy to verify that a > 8 and k > 6. Let Gy € O;(n;a,b,k;3,3;2) and
Goz € O/(n;6,6,6;11,15;2), where [ = a—3 and I}, = b+ k—9. By lemma 2.2, we have

bai(G2) = bay(Pe™) + baio(Ply UPE U Py o) + (—1)1+32622-_b(P§+1 UP),



b2i(Goz) = boi(PO) + boyo(PS  UPY s UPy) + 2by;_6(PS  UPY,_5).

a

Then we compare by;(Pf,; U P,_s) with by;(PF,,_5 U Py). By Lemma 2.2 we have

boi(PE L UP, 5) = boj(PryrUPyg) +baj oPeoUPy 5 UP),

boj (Pl s UP)) = boj(Pori—s U Ps) + bajo(Pors—11U Py U Py).
Since b > 6 and k£ > 6, by Lemma 2.4, we have Py 1 U P9 < Pyir_5 U Py and
P, oUP, oUP, < PooUP,_5UP;, = Poyp_11UP,UP;. Then we can obtain that
PF L, UP,_» X Pf, sUP,. Also, since b > 6, then k+1 < b+k—5, by Proposition 2.3
we have PF, < P{., < Bf, .. Also by Proposition 2.3, we can obtain that G5 < Gps.

Subcase 1.3. [ =1, =3, b=4 and k = 6.

It is easy to verify that a > 8. Let G5 € O;(n;a,4,6;3,3;2) and Goz € ©;(n;6,6,6;1],3;2),

where [{ = a — 5. By Lemma 2.2, we have

b2i(G3) = byi(Ps U PE) + by (P4 U Cg),
bgi(Gog,) = bQZ(P 45 U P6) + bgl ( 5+4 U 06)

From Proposition 2.3, it follows that G5 < Ggs.
Subcase 1.4. 1 =1, =3, b=4,k>8orly =3,ls=2o0r 1 =ly =2.

The graphs in this case belong to I'; (i) or (i), so we do not consider them.

l —-1<8
Case 2. 1+a -
lhb+k—1>8

It is easy to verify that a < 6. Without considering graphs of form I'y(7ii), we

distinguish this case into the following two subcases.
Subcase 2.1. a = 6.
It is easy to verify that [y = 2 or 3. If [ = 3, [y = 3, thenlet G4, € ©;(n;6,b,k;3,3;2)

and Goy = ©;(n;6,6,6;3,0,;2), where I, = b+ k — 9. By Lemma 2.2, we have

boi(Ga) = boi(Pyfsy UPY) + byia( P, U Co),

b2i(Gos) = boi( By U PY) + baioo( By, U Cs).



By Proposition 2.3, we have G4 < Go4.

If Iy =3, Iy = 2, then let G5 € O;(n;6,b,k;3,2;2) and Gos = O;(n;6,6,6;3,15;2),
where I = b+ k — 10. With similar analysis, it follows that G5 < Gos. If [} =15 = 2,
then let G¢ € ©7(n;6,b,k;2,2;2) and Gog € O7(n;6,6,6;2,1);2), where I}/ = b+k—10.

With similar analysis, we can obtain that Gg < Gog.
Subcase 2.2. a = 4:

It is easy to verify that [; < 5. Since we do not consider graphs with form I'y (¢i7), we
have 4 <13 < 5. If [ =5, let G; € ©7(n;4,b,k;5,15;2) and Gor € ©(n;6,6,6;3,05;2),
where I, = b+ k + l; — 12. By Lemma 2.2, we have

b2i(Gr) = bai(Pyiis, o UPH 4 baia(Plip, s U By,

b2i(Gor) = bai(Py s, o U PY) 4 baica(Pyyy gy 5 U Cs).
From Proposition 2.3, it follows that G; < Gor. If [} =4, let Gg € ©(n;4,b,k; 4,15;2)
and Gog € O7(n;6,6,6;2,1,;2), where I, = b+ k + Iy — 12. By Lemma 2.2, we have

b2z‘(G8) - b2i(P:fk+12—2 U Pél) + b2i—2(Plf€+k+lz—3 U P54)7

b2i(Gos) = bai(Py 1,0 U Co) + baia( Py, 5 U Ps).

Since Pg < P, then from Proposition 2.3, it follows that Gg < Gls.

l —-1>
Case 3. 1+a =9
Lh+k—-—1<7

Without considering graphs with form I'i(iv), we distinguish this case into the

following two subcases.
Subcase 3.1. k£ = 6.

It is easy to verify that I, = 2. For any value of [1, let Gy € ©;(n;a,b,6;11,2;2) and
Go € O1(n;6,6,6;11,2;2), where I} = a+ b+ [l; — 12. By Lemma 2.2, we have

b2i(Go) = bai(Pyyyey, 5 U Co) + baioa(Piyyiyy 5 U Ps),

b2i(Goo) = boi(Pytyes,—o U Co) + boia(Poyy, 5 U Ps).

By Proposition 2.3, we can obtain that Gy < Gog.



Subcase 3.2. k£ =4.

It is easy to verify that [, < 4. Since we do not consider graphs with form
[ (iv), we have I = 4. For any value of [y, let Gig € O;(n;a,b,4;1;,4;2) and
Goio € ©1(n;6,6,6;17,2;2), where I =a+ b+ 1y —12. By Lemma 2.2, we have

boi(Gro) = b2i(P5fb+zl—2 UF) + bai—2(Pyipyt,—3 U Py),

b2i(Goro) = bai(Pyty 12U Ce) + baia(Poyy, 5 U ).

Since Pi < Ps, by Proposition 2.3, we can obtain that Gig < Goro-

l —1<
Case 4. 1+a =8
L+k—-1<7

It is easy to verify that a < 6 and £ < 6. Without considering graphs with form

'y (v), we distinguish this case into the following two subcases.
Subcase 4.1. a = 6:

It is easy to verify that [; < 3. If [; = 3, then let G1; € ©;(n;6,b,k;3,12;2) and
Go1 = ©1(n;6,6,6;3,1;2), where I, = b+ k + Iy — 12. By Lemma 2.2, we have

boi(G11) = boi( Py o U PE) + baia (P syy, 5 U Cs),

boi(Gon1) = bai(Pyiisyo U PP + baia(Pf gy, 5 U Co).

By Proposition 2.3, we can obtain that G1; < Go1;1.

If I, = 2, since l; > Iy, we have Iy = 2. Let Gi2 € O7(n;6,b,k;2,2;2) and Gg12 €
©1(n;6,6,6;2,0;2), where I, = b+ k — 10. With similar analysis, it follows that
G2 = Goa.

Subcase 4.2. a = 4.

It is easy to verify that [; < 5. Since we do not consider graphs with form I'y (iv),
then we have 4 < [ < 5. If [; = 5, then let G135 € O;(n;4,b,k;5,12;2) and
Gois € ©1(n;6,6,6;3,05;2), where I = b+ k + [y — 12. By Lemma 2.2, we have
b2i(G1s) = bai( Pyl sty s U PR + boio(Pfyyyy—s U P and bai(Gots) = bog(PLlsy, o U
P9) 4 bai—2(PY, 11,5 U Cs). By Proposition 2.3, we can obtain that G35 < Gous.



Ifl; =4, then let G4 € O1(n;4,b,k;4,15;2) and Goyqy = O1(n; 6,6, 6;2,15;2), where
ly =b+ k+ Iy — 12. With similar analysis we can obtain that G4 < Goyg.

The proof is thus complete. 1

Lemma 3.9 For any graph G € ©1(n;6,6,6;1;,1s;2), there exists a graph H € ©1(n; 6,6,
6;11,2;2) such that G < H.

Proof. For fixed parameters n, a, b, k, l; and ly, let G € O;(n;a, b, k;l1,13;2) and Gy =
©r(n;a,b, k;17,2;2) (as shown in Figure 3.11). It is easy to verify that I{ =11 + 1o — 2
and it suffices to show that G| < Gy.

Gl GU

Figure 3.11: Graphs for Lemma 3.9.

By Lemma 2.2 we have

boi(G1) = b2(G1 — urvr) + boi_o(G1 — ug — v1) + 2by;_(G1 — Cp)
2(PS 4, UPS, , UP) +2by (P, UP,,),

b2¢(G0) = byi(Go — ugvo) + b2i—2(G2 — Uo — Uo) + 2b9;6(Go — 06)
+ bQi_Q(Pf/jM UCsUPy) + QbZi—G(Pl?+4 U Cs).
Since by (G — uivy) = bei(Go — upvp), and considering Proposition 2.3, we try to
compare by; (P}, , U PP ) with ij(Pf,iJr4 U ). Also by Lemma 2.2 we have

boi(PiaUPpia) = byj(P g UCsU Pyoa) + byja(F) U Pys U ),

boj (Py 14 UCs) = byj(P 14 UCsU Py s) 4 baj o(Pf 13U P35 U Cy).

With similar analysis in Lemma 3.5, we have Pfj U P < Pl? +3 U 6. Applying

Proposition 2.3, we can obtain G; < Gj. 1



Lemma 3.10 For any graph G € ©y(n;6,6,6;1,2;2), there exists a graph H €
O;1(n;6,6,6;1,2,2) such that E(G) < E(H).

Proof. For fixed parameters [; and [, let Gy € ©(n;6,6,6;1;,2;2) and Gy € O77(n;6,6,
6;1,2,2) (as shown in Figure 3.12), where [ = [; — 1, i.e., [; = [ + 1. It suffices to show
that GO < GQ.

Figure 3.12: Graphs for Lemma 3.10.

By Lemma 2.2 we have

boi(Go) = bei(Go — ugvg) + bai—2(Go — ug — vp)

= bi(Go — ugtg) + bai—2(Py 10 U Ps)

= boi(Go — ugvo) + bai—a(Ply U Ps U P5) + byi_a(P5 U Ps U Ps),
boi(Ga) = boi(Gay — ugvs) + boi_2(Gay — ug — v3)

= byi(Gg — ugvy) + by (PZJr4 UCs U Ps)

= boi(Ga — Ugva) + bai—o( Pl 4 U Ps U P5) + by;_4(P’y U Py U Ps).

Since by (Go — ugvg) = bai(Ga — ugvs), then we only need to verify Plig UPsUP; <
PP, U P, U Ps. By Lemma 2.2, we have

boi(PPs U Ps) = boi(Pr3U Ps) 4 bay_o(P_3 U Ps U Py) + 2by; (P35 U Ps),

521(1:’114 UPy) = boi(PyaUPy) 4 boio(P—oU Py U Py) + 2by;_6(P_o U Py).
From Lemma 2.4, we can obtain that P35 U Ps < Py, U P, and if l #£5, P,_3U Ps <
P_sUP,, then P_sUP;UP, < P_oUP,UP,. So from Proposition 2.3, it follows that

Pf U P; < PE,UP; and then Gy < G. If I = 5, then Gy € ©,(22;6,6,6;6,2;2) and
G € ©7/(22;6,6,6;5,2,2). By calculating, we know that £(Gy) < E(Ga).



Therefore, the proof is complete. 1

From Theorem 3.8 and Lemmas 3.3, 3.9 and 3.10, we can easily obtain the following

theorem.

Theorem 3.11 For any graph G € O;(n;a,b,k;ly,lz;1l.) and G ¢ T'y, there exists a
graph H € O77(n;6,6,6;n — 17,2,2) such that G < H, and the equality holds if and
only if G = H.

From Theorems 3.7 and 3.11, we can obtain our main result Theorem 2.5.
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