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Abstract

For a given simple graph G, the energy of G, denoted by E(G), is defined as the sum
of the absolute values of all eigenvalues of its adjacency matrix, which was defined by I.
Gutman. The problem on determining the maximal energy tends to be complicated for a
given class of graphs. There are many approaches on the maximal energy of trees, unicyclic
graphs and bicyclic graphs, respectively. Let P 6,6,6

n denote the graph with n ≥ 20 vertices
obtained from three copies of C6 and a path Pn−18 by adding a single edge between each
of two copies of C6 to one endpoint of the path and a single edge from the third C6 to the
other endpoint of the Pn−18. Very recently, Aouchiche et al. [M. Aouchiche, G. Caporossi, P.
Hansen, Open problems on graph eigenvalues studied with AutoGraphiX, Europ. J. Comput.
Optim. 1(2013), 181–199] put forward the following conjecture: Let G be a tricyclic graphs
on n vertices with n = 20 or n ≥ 22, then E(G) ≤ E(P 6,6,6

n ) with equality if and only if
G ∼= P 6,6,6

n . Let G(n; a, b, k) denote the set of all connected bipartite tricyclic graphs on n

vertices with three vertex-disjoint cycles Ca, Cb and Ck, where n ≥ 20. In this paper, we
try to prove that the conjecture is true for graphs in the class G ∈ G(n; a, b, k), but as a
consequence we can only show that this is true for most of the graphs in the class except for
9 families of such graphs.
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1 Introduction

Let G be a graph of order n and A(G) be the adjacency matrix of G. The characteristic

polynomial of A(G) is defined as

φ(G, λ) = det(λI − A(G)) =
n∑

i=0

aiλ
n−i,

which is called the characteristic polynomial of G. The n roots of the equation

φ(G, λ) = 0, denoted by λ1, λ2, · · · , λn, are the eigenvalues of G. Since A(G) is sym-

metric, all eigenvalues of G are real. It is well-known [6] that if G is a bipartite graph,

then

φ(G, λ) =

bn
2
c∑

i=0

a2iλ
n−2i =

bn
2
c∑

i=0

(−1)ib2iλ
n−2i,

where b2i = (−1)ia2i and b2i ≥ 0 for all i = 1, · · · , bn
2
c.

The energy of G, denoted by E(G), is defined as

E(G) =
n∑

i=1

|λi|,

which was proposed by Gutman in 1977 [8]. The following formula is also well-known

E(G) =
1

π

∫ +∞

−∞

1

x2
log |xnφ(G, i/x)|dx,

where i2 = −1. Moreover, it is known from [6] that the above equality can be expressed

as the following explicit formula:

E(G) =
1

2π

∫ +∞

−∞

1

x2
log






bn/2c∑
i=0

(−1)ia2ix
2i




2

+



bn/2c∑
i=0

(−1)ia2i+1x
2i+1




2
 dx,

where a1, a2, . . . , an are the coefficients of φ(G, λ). It is also known [11] that for a

bipartite graph G, E(G) can be also expressed as the Coulson integral formula

E(G) =
2

π

∫ +∞

0

1

x2
ln


1 +

bn
2
c∑

i=0

b2ix
2i


 dx.

For two bipartite graphs G1 and G2, if b2i(G1) ≤ b2i(G2) hold for all i = 1, 2, · · · , bn
2
c,

we say that G1 ¹ G2 or G2 º G1. Moreover, if b2i(G1) < b2i(G2) holds for some i, we



write G1 ≺ G2 or G2 Â G1. Thus, for two bipartite graphs G1 and G2, we can define

the following quasi-order relation,

G1 ¹ G2 ⇒ E(G1) ≤ E(G2), G1 ≺ G2 ⇒ E(G1) < E(G2).

For more results about graph energy, we refer the readers to two surveys [9, 10] and

the book [28].

It is quite interesting to study the extremal values of the energy among some given

classes of graphs, and characterize the corresponding extremal graphs. In the mean-

time, a large number of results were obtained on the minimal energies for distinct classes

of graphs, such as acyclic conjugated graphs [25, 32], bipartite graphs [30], unicyclic

graphs [13,23], bicyclic graphs [14], tricyclic graphs [26,27] and tetracyclic graphs [24].

However, the maximal energy problem seems much more difficult than the minimal

energy problem. The commonly used comparison method is the so-called quasi-order

method. When the graphs are acyclic, bipartite or unicyclic, it is almost always valid.

Nevertheless, for general graphs, the quasi-order method is invalid. For these quasi-

order incomparable problems, we found an efficient way to determine which one attains

the extremal value of the energy, see [16–22].

C
a

C6

P a

n
P 6

n

Figure 1.1: Unicyclic graph P a
n .

Let Pn, Cn and Sn be a path, cycle and star garph with n vertices, respectively.

Gutman [8] first considered the extremal values of energy of trees and showed that

for any tree T of order n, E(Sn) ≤ E(T ) ≤ E(Pn). Let P a
n be the graph obtained by

connecting a vertex of the cycle Ca with a terminal vertex of the path Pn−a (as shown

in Figure 1.1). In order to find lower and upper bounds of the energy, Caporossi et

al. [5] used the AGX system. They proposed a conjecture on the maximal energy of

unicyclic graphs.



Conjecture 1.1 Among all unicyclic graphs on n vertices, the cycle Cn has maximal

energy if n ≤ 7 and n = 9, 10, 11, 13 and 15 . For all other values of n , the unicyclic

graph with maximal energy is P 6
n .

In [15], Hou et al. proved a weaker result, namely that E(P 6
n) is maximal within

the class of the unicyclic bipartite n-vertex graphs differing from Cn . Huo et al. [20]

and Andriantiana [1] independently proved that E(Cn) < E(P 6
n), and then completely

determined that P 6
n is the only graph which attains the maximum value of the energy

among all the unicyclic bipartite graphs for n = 8, 12, 14 and n ≥ 16, which partially

solves the above conjecture. Finally, Huo et al. [21] and Andriantiana and Wagner [2]

completely solved this conjecture by proving the following theorem, independently.

Theorem 1.2 Among all unicyclic graphs on n vertices, the cycle Cn has maximal

energy if n ≤ 7 but n 6= 4, and n = 9, 10, 11, 13 and 15 ; P 3
4 has maximal energy if

n = 4 . For all other values of n , the unicyclic graph with maximal energy is P 6
n .

The problem of finding bicyclic graphs with maximum energy was also widely studied.

Let P a,b
n (as shown in Figure 1.2) be the graph obtained from cycles Ca and Cb by

joining a path of order n − a − b + 2. Denote by Ra,b the graph obtained from two

cycles Ca and Cb (a, b ≥ 10 and a ≡ b ≡ 2 ( mod 4)) by connecting them with an edge.

In [12], Gutman and Vidović proposed a conjecture on bicyclic graphs with maximal

energy.

Ca C6

P a,b
n P 6,6

n

Cb C6

Figure 1.2: Bicyclic graph P a,b
n .

Conjecture 1.3 For n = 14 and n ≥ 16, the bicyclic molecular graph of order n with

maximal energy is the molecular graph of the α, β diphenyl-polyene C6H5(CH)n−12C6H5,

or denoted by P 6,6
n .



Furtula et al. [7] showed by numerical computation that the conjecture is true up

to n = 50. For bipartite bicyclic graphs, Li and Zhang [29] got the following result,

giving a partial solution to the above conjecture.

Theorem 1.4 If G ∈ Bn, then E(G) ≤ E(P 6,6
n ) with equality if and only if G ∼= P 6,6

n ,

where Bn denotes the class of all bipartite bicyclic graphs but not the graph Ra,b.

However, they could not compare the energies of P 6,6
n and Ra,b. Furtula et al. in [7]

showed by numerical computation that E(P 6,6
n ) > E(Ra,b), which implies that the

conjecture is true for bipartite bicyclic graphs. They only performed the computation

up to a + b = 50. It is evident that a solid mathematical proof is still needed. Huo

et al. [19] completely solved this problem. However, the conjecture is still open for

non-bipartite bicyclic graphs.

Theorem 1.5 Let G be any connected, bipartite bicyclic graph with n ( n ≥ 12) ver-

tices. Then E(G) ≤ E(P 6,6
n ) with equality if and only if G ∼= P 6,6

n .

Actually, Wagner [31] showed that the maximum value of the graph energy within

the set of all graphs with cyclomatic number k (which includes, for instance, trees or

unicyclic graphs as special cases) is at most 4n/π + ck for some constant ck that only

depends on k. However, the corresponding extremal graphs are not considered.

The problem of finding the tricyclic graphs maximizing the energy remains open.

Gutman and Vidović [12] listed some tricyclic molecular graphs that might have max-

imal energy for n ≤ 20. Very recently, in [3], experiments using AutoGraphiX led us

to conjecture the structure of tricyclic graphs that presumably maximize energy for

n = 6, . . . , 21. For n ≥ 22, Aouchiche et al. [3] proposed a general conjecture ob-

tained with AutoGraphiX. First, let P 6,6,6
n (as shown in Figure 1.3) denote the graph

on n ≥ 20 obtained from three copies of C6 and a path Pn−18 by adding a single edge

between each of two copies of C6 to one endpoint of the path and a single edge from

the third C6 to the other endpoint of the Pn−18.



Conjecture 1.6 Let G be a tricyclic graphs on n vertices with n = 20 or n ≥ 22.

Then E(G) ≤ E(P 6,6,6
n ) with equality if and only if G ∼= P 6,6,6

n .

n− 17
︷ ︸︸ ︷

P
6,6,6

n

Figure 1.3: Tricyclic graph P 6,6,6
n .

Let G(n; a, b, k) denote the set of all connected bipartite tricyclic graphs on n vertices

with three disjoint cycles Ca, Cb and Ck, where n ≥ 20. In this paper, we try to prove

that the conjecture is true for graphs in the class G ∈ G(n; a, b, k), but as a consequence

we can only show that this is true for most of the graphs in the class except for 9 families

of such graphs.

2 Preliminaries

The following are the elementary results on the characteristic polynomial of graphs and

graph energy, which will be used in our proof.

Lemma 2.1 [6] Let uv be an edge of G. Then

φ(G, λ) = φ(G− uv, λ)− φ(G− u− v, λ)− 2
∑

C∈ϕ(uv)

φ(G− C, λ),

where ϕ(uv) is the set of cycles containing uv. In particular, if uv is a pendant edge

of G with the pendant vertex v, then

φ(G, λ) = λφ(G− v, λ)− φ(G− u− v, λ).

Lemma 2.2 Let uv be an edge of a bipartite tricyclic graph G which contains three

vertex-disjoint cycles. Then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v) + 2
∑

Cl∈ϕ(uv)

(−1)1+ l
2 b2i−l(G− Cl),



where ϕ(uv) is the set of cycles containing uv. In particular, if uv is a pendant edge

of G with the pendant vertex v, then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v).

Proof. By Lemma 2.1, we have

a2i(G) = a2i(G− uv)− a2i−2(G− u− v)− 2
∑

Cl∈ϕ(uv)

a2i−l(G− Cl)

and

(−1)ia2i(G) = (−1)ia2i(G− uv) + (−1)i−1a2i−2(G− u− v)

+2
∑

Cl∈ϕ(uv)

(−1)1+ l
2 (−1)i− l

2 a2i−l(G− Cl).

Since b2i = (−1)ia2i, then the result follows.

From Sachs Theorem [6], we can obtain the following properties for bipartite graphs.

Proposition 2.3 (1). If G1 and G2 are both bipartite graphs, then b2k(G1 ∪ G2) =
k∑

i=0

b2i(G1) · b2k−2i(G2).

(2). Let G and G + e both be bipartite graphs, where e /∈ E(G) and G + e denotes

the graph obtained from G by adding the edge e to it. If either the length of any cycle

containing e equals 2 (mod 4) or e is not contained in any cycle, then G ¹ G + e.

(3). If G0, G1, G2 are all bipartite and G1 ¹ G2, since b2i(G0) ≥ 0 and b2i(G1) ≥
b2i(G2) for all positive integer i, we have G0 ∪ G1 ¹ G0 ∪ G2. Moreover, for bipartite

graphs Gi, G′
i, i = 1, 2, if Gi has the same order as G′

i and Gi ¹ G′
i, then G1 ∪ G2 ¹

G′
1 ∪G′

2.

Lemma 2.4 [11] Let n = 4k, 4k + 1, 4k + 2 or 4k + 3. Then

Pn Â P2 ∪ Pn−2 Â P4 ∪ Pn−4 Â · · · Â P2k ∪ Pn−2k Â P2k+1 ∪ Pn−2k−1

Â P2k−1 ∪ Pn−2k+1 Â · · · Â P3 ∪ Pn−3 Â P1 ∪ Pn−1.



From the definition of G(n; a, b, k), we know that a, b and k are all even. We will

divide G(n; a, b, k) into two categories GI(n; a, b, k; l1, l2; lc) and GII(n; a, b, k; l1, l2, l3)

in the following.

We say that H is the central structure of G if G can be viewed as the graph obtained

from H by planting some trees on it. The central structures of GI(n; a, b, k; l1, l2; lc) and

GII(n; a, b, k; l1, l2, l3) are ΘI(n; a, b, k; l1, l2; lc) and ΘII(n; a, b, k; l1, l2, l3), respectively.

ΘI(n; a, b, k; l1, l2; lc) (as shown in Figure 2.4) is the set of all the elements of

G(n; a, b, k) in which Ca and Cb are joined by a path P1 = u1 · · ·u2 (u2 ∈ V (Cb))

with l1 vertices, Ck and Cb are joined by a path P2 = v1 · · · v2 (v2 ∈ V (Cb)) with l2

vertices. In addition, the smaller part u2 · · · v2 of Cb has lc vertices. Note that when

u2 = v2, we have lc = 1.

u1 u2 v1v2

Ca
Cb

Ck

l1 l2
︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 2.4: ΘI(n; a, b, k; l1, l2; lc).

ΘII(n; a, b, k; l1, l2, l3) (as shown in Figure 2.5) is also a subset of G(n; a, b, k). For

any G ∈ ΘII(n; a, b, k; l1, l2, l3), G has a center vertex v, Ca, Cb and Ck are joined

to v by paths P1 = u1 · · · v (u1 ∈ V (Ca)), P2 = u2 · · · v (u2 ∈ V (Cb)), P3 = u3 · · · v
(u3 ∈ V (Ck)), respectively. The number of vertices of P1, P2 and P3 are l1, l2 and l3,

respectively.

u1 u3

Ca

Cb

Ck

︷ ︸︸ ︷

l3l1
︷ ︸︸ ︷

u2

v

︷
︸
︸

︷

l2

Figure 2.5: ΘII(n; a, b, k; l1, l2, l3).



It is easy to verify that

G(n; a, b, k) = GI(n; a, b, k; l1, l2; lc) ∪ GII(n; a, b, k; l′1, l
′
2, l

′
3).

Now we define two special graph classes Γ1 and Γ2 as follows.

Γ1 consists of graphs G with the following four different possible forms:

(i) G ∈ ΘI(n; a, 4, k; l1, l2; 2), where a ≥ 8, k ≥ 8, 2 ≤ l1 ≤ 3, 2 ≤ l2 ≤ 3.

(ii) G ∈ ΘI(n; a, b, k; l1, l2; 2), where a ≥ 8, b ≥ 6, k ≥ 8, 2 ≤ l1 ≤ 3, 2 ≤ l2 ≤ 3 and

l1 = l2 = 3 is not allowed.

(iii) G ∈ ΘI(n; 4, b, k; l1, l2; 2), where b ≥ 6, k ≥ 6, 2 ≤ l1 ≤ 3 and 2 ≤ l2 ≤ 3.

(iv) G ∈ ΘI(n; a, b, 4; l1, l2; 2), where 2 ≤ l2 ≤ 3.

Whereas Γ2 consists of graphs G with the following five different possible forms:

(i) G ∈ ΘII(n; a, b, k; 2, l2, l3), where a ≥ 8.

(ii) G ∈ ΘII(n; a, b, k; 3, 3, 3), where a ≥ k ≥ b ≥ 8.

(iii) G ∈ ΘII(n; a, 4, k; l1, 3, l3).

(iv) G ∈ ΘII(n; a, 4, k; l1, 2, l3).

(v) G ∈ ΘII(n; a, 4, k; 3, 4, 3), where a ≥ k ≥ 6.

In this paper, we first try to find the graphs with maximal energy among the two

categories of G(n; a, b, k): GI(n; a, b, k; l1, l2; lc) and GII(n; a, b, k; l1, l2, l3), respectively.

Then, we will obtain that P 6,6,6
n = ΘII(n; 6, 6, 6; n − 17, 2, 2) has the maximal energy

among all graphs in G(n; a, b, k) except for two classes Γ1 and Γ2. Our main result is

stated as follows, which gives support to Conjecture 1.6.

Theorem 2.5 For any tricyclic bipartite graph G ∈ G(n; a, b, k) \ (Γ1 ∪ Γ2), E(G) ≤
E(P 6,6,6

n ) and the equality holds if and only if G ∼= P 6,6,6
n .

3 Proof of Theorem 2.5.

By repeatedly applying the recursive formula of b2i(G) in Lemma 2.2 and the third

property in Proposition 2.3, we obtain the following two lemmas.



Lemma 3.1 If G ∈ GI(n; a, b, k; l1, l2; lc) \ ΘI(n; a, b, k; l′1, l
′
2; l

′
c), then there exists a

graph G′ ∈ ΘI(n; a, b, k; l′1, l
′
2; l

′
c) such that G ≺ G′, i.e., the graph with maximal energy

among graphs in GI(n; a, b, k; l1, l2; lc) must belong to ΘI(n; a, b, k; l′1, l
′
2; l

′
c).

Lemma 3.2 If G ∈ GII(n; a, b, k; l1, l2, l3) \ ΘII(n; a, b, k; l′1, l
′
2, l

′
3), then there exists a

graph G′ ∈ ΘII(n; a, b, k; l′1, l
′
2, l

′
3) such that G ≺ G′, i.e., the graph with maximal energy

among graphs in GII(n; a, b, k; l1, l2, l3) must belong to ΘII(n; a, b, k; l′1, l
′
2, l

′
3).

From the results above, we know that the graph with maximal energy among graphs

in G(n; a, b, k) must belong to ΘI(n; a, b, k; l1, l2; lc) or ΘII(n; a, b, k; l1, l2, l3). There-

fore, in the following, we will find the graph with maximal energy among graphs in

ΘI(n; a, b, k; l1, l2; lc) and ΘII(n; a, b, k; l1, l2, l3).

Lemma 3.3 For any graph G ∈ ΘI(n; a, b, k; l1, l2; lc), there exists a graph H ∈ ΘI(n; a,

b, k; l1, l2; 2) such that G ¹ H.

Proof. We distinguish the following two cases:

Case 1. lc = 1.

For fixed parameters n, a, b, k, l1 and l2, let G1 ∈ ΘI(n; a, b, k; l1, l2; 1) and G2 =

ΘI(n; a, b, k; l1, l2; 2) (as shown in Figure 3.6). It suffices to show that G1 ¹ G2.

u1
u0

u2

CaCb

Ck

l1

l2

︷ ︸︸ ︷

︷

︸
︸

︷

u1
u

u2

CaCb

Ck

l1

l2

︷ ︸︸ ︷

︷

︸
︸

︷

v

v0

G1 G2

Figure 3.6: Graphs for Lemma 3.3.

By Lemma 2.2 we have

b2i(G1) = b2i(G1 − u0v0) + b2i−2(G1 − u0 − v0) + (−1)1+ b
2 2b2i−b(G1 − Cb)



= b2i(G1 − u0v0) + b2i−2(P
a
a+l1−2 ∪ P k

k+l2−2 ∪ Pb−2)

+(−1)1+ b
2 2b2i−b(P

a
a+l1−2 ∪ P k

k+l2−2)

and

b2i(G2) = b2i(G2 − uv) + b2i−2(G2 − u− v) + (−1)1+ b
2 2b2i−b(G2 − Cb)

= b2i(G2 − uv) + b2i−2(P
a
a+l1−2 ∪ P k

k+l2−2 ∪ Pb−2)

+(−1)1+ b
2 2b2i−b(P

a
a+l1−2 ∪ P k

k+l2−2).

Therefore, it suffices to show that b2i(G1 − u0v0) ≤ b2i(G2 − uv). By Lemma 2.2 we

have

b2i(G1 − u0v0) = b2i(P
a
a+l1−2 ∪ P k

k+b+l2−2) + b2i−2(P
a
a+l1−3 ∪ P k

k+l2−2 ∪ Pb−1)

b2i(G2 − uv) = b2i(P
a
a+l1−2 ∪ P k

k+b+l2−2) + b2i−2(P
a
a+l1−3 ∪ P k

k+b+l2−3)

= b2i(P
a
a+l1−2 ∪ P k

k+b+l2−2) + b2i−2(P
a
a+l1−3 ∪ P k

k+l2−2 ∪ Pb−1)

+b2i−4(P
a
a+l1−3 ∪ P k

k+l2−3 ∪ Pb−2).

Since b2i−4(P
a
a+l1−3∪P k

k+l2−3∪Pb−2) ≥ 0, then we obtain b2i(G1−u0v0) ≤ b2i(G2−uv).

Case 2. lc ≥ 2.

For fixed parameters n, a, b, k, l1 and l2, let G′
1 ∈ ΘI(n; a, b, k; l1, l2; lc) and G′

2 ∈
ΘI(n; a, b, k; l1, l2; 2) (as shown in Figure 3.7, where u3 belongs to the part of Cb with

length b− lc + 1). It suffices to show that G′
1 ¹ G′

2.

u1
u

u2

CaCb

Ck

l1

l2

︷ ︸︸ ︷

︷

︸
︸

︷

v

u1 u2 v1v2

Ca
Cb

Ck

l1 l2
︷ ︸︸ ︷ ︷ ︸︸ ︷u3

G
′

1 G′

2

Figure 3.7: Graphs for Lemma 3.3.

By Lemma 2.2 we have

b2i(G
′
1) = b2i(G

′
1 − u2u3) + b2i−2(G

′
1 − u2 − u3) + (−1)1+ b

2 2b2i−b(G
′
1 − Cb);



b2i(G
′
2) = b2i(G

′
2 − uv) + b2i−2(G

′
2 − u− v) + (−1)1+ b

2 2b2i−b(G
′
2 − Cb).

Since (−1)1+ b
2 2b2i−b(G

′
1 − Cb) = (−1)1+ b

2 2b2i−b(G
′
2 − Cb), we only need to compare

b2i(G
′
1−u2u3)+ b2i−2(G

′
1−u2−u3) with b2i(G

′
2−uv)+ b2i−2(G

′
2−u− v). By applying

Lemma 2.2 repeatedly, we have

b2i(G
′
1 − u2u3) + b2i−2(G

′
1 − u2 − u3)

= b2i(P
a
a+l1+lc−3 ∪ P k

b+k+l2−lc−1) + b2i−2(P
a
a+l1+lc−4 ∪ P k

k+l2−2 ∪ Pb−lc)

+b2i−2(P
a
a+l1−2 ∪ P k

k+l2−2 ∪ Pb−2) + b2i−4(P
a
a+l1−2 ∪ P k

k+l2−3 ∪ Plc−2 ∪ Pb−lc−1),

and

b2i(G
′
2 − uv) + b2i−2(G

′
2 − u− v)

= b2i(P
a
a+l1+lc−3 ∪ P k

b+k+l2−lc−1) + b2i−2(P
a
a+l1+lc−4 ∪ P k

b+k+l2−lc−2)

+b2i−2(P
a
a+l1−2 ∪ P k

k+l2−2 ∪ Pb−2)

= b2i(P
a
a+l1+lc−3 ∪ P k

b+k+l2−lc−1) + b2i−2(P
a
a+l1+lc−4 ∪ P k

k+l2−2 ∪ Pb−lc)

+b2i−4(P
a
a+l1+lc−4 ∪ P k

k+l2−3 ∪ Pb−lc−1) + b2i−2(P
a
a+l1−2 ∪ P k

k+l2−2 ∪ Pb−2)

= b2i(P
a
a+l1+lc−3 ∪ P k

b+k+l2−lc−1) + b2i−2(P
a
a+l1+lc−4 ∪ P k

k+l2−2 ∪ Pb−lc)

+b2i−2(P
a
a+l1−2 ∪ P k

k+l2−2 ∪ Pb−2) + b2i−4(P
a
a+l1−2 ∪ P k

k+l2−3 ∪ Plc−2 ∪ Pb−lc−1)

+b2i−6(P
a
a+l1−3 ∪ P k

k+l2−3 ∪ Plc−3 ∪ Pb−lc−1).

Since b2i−6(P
a
a+l1−3∪P k

k+l2−3∪Plc−3∪Pb−lc−1) ≥ 0, we have b2i(G
′
1−u2u3)+ b2i−2(G

′
1−

u2 − u3) ≤ b2i(G
′
2 − uv) + b2i−2(G

′
2 − u− v).

Thus, the proof is complete.

Theorem 3.4 For any graph G ∈ ΘII(n; a, b, k; l1, l2, l3) \ Γ2, there exists a graph

H ∈ ΘII(n; 6, 6, 6; l′1, l
′
2, l

′
3) such that G ¹ H.

Proof. Without loss of generality, we may assume that a ≥ k ≥ b. It is obvious that

l1, l2, l3 ≥ 2. We distinguish the following cases:

Case 1.





l1 + a− 2 ≥ 7

l2 + b− 3 ≥ 7

l3 + k − 2 ≥ 7



In this case, considering the values of l1, l2 and l3, we distinguish the following four

subcases.

Subcase 1.1. l1 ≥ 3, l2 ≥ 4 andl3 ≥ 3.

For any values of l1, l2 and l3, let G1 ∈ ΘII(n; a, b, k; l1, l2, l3) and G01 ∈ ΘII(n; 6, 6,

6; l′1, l
′
2, l

′
3) (as shown in Figure 3.8), where l′1 = a+l1−6, l′2 = b+l2−6 and l′3 = k+l3−6.

u1

Ca

Cb

Ck

︷ ︸︸ ︷
l3l1

︷ ︸︸ ︷

v1

︷
︸
︸

︷

l2

u01

l′
1

︷ ︸︸ ︷

v01

G01

︷ ︸︸ ︷
l′
3

︷
︸
︸

︷

l′
2

G0

Figure 3.8: Graphs for Subcase 1.1.

By Lemma 2.2, we have

b2i(G1) = b2i(G1 − u1v1) + b2i−2(G1 − u1 − v1)

= b2i(P
a,k
a+k+l1+l3−3 ∪ P b

b+l2−2) + b2i−2(P
a
a+l1−2 ∪ P k

k+l3−2 ∪ P b
b+l2−3),

b2i(G01) = b2i(G01 − u01v01) + b2i−2(G01 − u01 − v01)

= b2i(P
6,6
l′1+l′3+9 ∪ P 6

l′2+4) + b2i−2(P
6
l′1+4 ∪ P 6

l′3+4 ∪ P 6
l′2+3)

= b2i(P
6,6
a+k+l1+l3−3 ∪ P 6

b+l2−2) + b2i−2(P
6
a+l1−2 ∪ P 6

k+l3−2 ∪ P 6
b+l2−3).

By Proposition 2.3, we can obtain that G1 ¹ G01.

Subcase 1.2. l1 = 2, l2 ≥ 4, l3 ≥ 3 or l1 ≥ 3, l2 ≥ 4, l3 = 2.

The graphs in this subcase belong to Γ2(i), so we do not consider them.

Subcase 1.3. l1 ≥ 3, l2 = 3, l3 ≥ 3.

It is easy to verify that b ≥ 8 and then we have a ≥ k ≥ b ≥ 8. Let G2 ∈
ΘII(n; a, b, k; l1, l2, l3) and G02 ∈ ΘII(n; 6, 6, 6; l′1, l

′
2, l

′
3), where l′1 = a + l1 − 6, l′2 =

b + l2 − 6 and l′3 = k + l3 − 6. If l1 > 3 or l3 > 3, then with similar analysis in Subcase

1.1, we have

b2i(G2) = b2i(P
k,b
k+b+l2+l3−3 ∪ P a

a+l1−2) + b2i−2(P
a
a+l1−3 ∪ P k

k+l3−2 ∪ P b
b+l2−2),



b2i(G02) = b2i(P
6,6
l′2+l′3+9 ∪ P 6

l′1+4) + b2i−2(P
6
l′1+3 ∪ P 6

l′3+4 ∪ P 6
l′2+4)

= b2i(P
6,6
k+b+l2+l3−3 ∪ P 6

a+l1−2) + b2i−2(P
6
a+l1−3 ∪ P 6

k+l3−2 ∪ P 6
b+l2−2).

By Proposition 2.3, we can obtain that G2 ¹ G02.

If l1 = l2 = l3 = 3, the graphs in this case belong to Γ2(ii), so we do not consider

them.

Subcase 1.4. l1 ≥ 3, l2 = 2, l3 ≥ 3 or l1 = l3 = 2, l2 ≥ 4 or l1 = 2, 2 ≤ l2 ≤ 3,

l3 ≥ 3 or l1 ≥ 3, 2 ≤ l2 ≤ 3, l3 = 2 or l1 = l3 = 2, 2 ≤ l2 ≤ 3.

The graphs in this case belong to Γ2(i), so we do not consider them.

Case 2.





l1 + a− 2 ≤ 6

l2 + b− 3 ≥ 7

l3 + k − 2 ≥ 7

In this case, it is easy to verify that a ≤ 6, from which we have b ≤ k ≤ a ≤ 6.

If a = b = k = 6, it follows that this lemma holds. Hence, we consider the following

subcases.

Subcase 2.1. a = k = 6, b = 4.

It is easy to verify that l2 ≥ 6 and l3 ≥ 3. For any values of l2 and l3, let G3 ∈
ΘII(n; 6, 4, 6; 2, l2, l3) and G03 ∈ ΘII(n; 6, 6, 6; 2, l′2, l

′
3), where l′2 = l2 − 2 and l′3 = l3.

By Lemma 2.2, we have

b2i(G3) = b2i(P
6,6
l3+11 ∪ P 4

l2+2) + b2i−2(C6 ∪ P 6
l3+4 ∪ P 4

l2+1),

b2i(G03) = b2i(P
6,6
l3+11 ∪ P 6

l2+2) + b2i−2(C6 ∪ P 6
l3+4 ∪ P 6

l2+1).

By Proposition 2.3, we can obtain that G3 ¹ G03.

Subcase 2.2. a = 6, k = b = 4.

It is easy to verify that l2 ≥ 6 and l3 ≥ 5. For any values of l2 and l3, let G3 ∈
ΘII(n; 6, 4, 4; 2, l2, l3) and G03 ∈ ΘII(n; 6, 6, 6; 2, l′2, l

′
3), where l′2 = l2−2 and l′3 = l3−2.

By Lemma 2.2, we have

b2i(G4) = b2i(P
6,4
l3+9 ∪ P 4

l2+2) + b2i−2(C6 ∪ P 4
l3+2 ∪ P 4

l2+1),



b2i(G04) = b2i(P
6,6
l3+9 ∪ P 6

l2+2) + b2i−2(C6 ∪ P 6
l3+2 ∪ P 6

l2+1).

By Proposition 2.3, we can obtain that G4 ¹ G04.

Subcase 2.3. a = k = b = 4.

It is easy to verify that l1 ≤ 4, l2 ≥ 6 and l3 ≥ 5. If l1 = 4, let G5 ∈ ΘII(n; 4, 4, 4; 4, l2, l3)

and G05 ∈ ΘII(n; 6, 6, 6; 2, l′2, l
′
3), where l′2 = l2 − 2 and l′3 = l3 − 2. By Lemma 2.2, we

have

b2i(G5) = b2i(P
4,4
l3+9 ∪ P 4

l2+2) + b2i−2(P
4
6 ∪ P 4

l3+2 ∪ P 4
l2+1),

b2i(G05) = b2i(P
6,6
l3+9 ∪ P 6

l2+2) + b2i−2(C6 ∪ P 6
l3+2 ∪ P 6

l2+1).

Also, φ(P 4
6 ; λ) = λ6 − 6λ4 + 6λ2 and φ(C6; λ) = λ6 − 6λ4 + 9λ2 − 4. It follows that

P 4
6 ≺ C6. By Proposition 2.3, we can obtain that G5 ¹ G05.

If l1 < 4, graphs in this case belong to Γ2(iii) or Γ2(iv), so we do not consider them.

Case 3.





l1 + a− 2 ≥ 7

l2 + b− 3 ≥ 7

l3 + k − 2 ≤ 6

In this case, it is easy to verify that k ≤ 6. If b ≤ k ≤ a ≤ 6, with similar analysis

in Case 2 we obtain that this lemma holds. Then we consider the case a > 6 ≥ k ≥ b.

Without considering graphs with forms Γ2(i), Γ2(iii) and Γ2(iv), there are only two

subcases as follows.

Subcase 3.1. a > 6, k = 6, b = 6 or 4.

It is easy to verify that l2 ≥ 4 and l3 = 2. We have l1 ≥ 3 since we do not consider

graphs with form Γ2(i). For any values of l1 and l3, let G6 ∈ ΘII(n; a, b, 6; l1, l2, 2) and

G06 ∈ ΘII(n; 6, 6, 6; l′1, l
′
2, 2), where l′1 = a + l1 − 6 and l′2 = b + l2 − 6. By Lemma 2.2,

we have

b2i(G6) = b2i(P
a,6
a+l1+5 ∪ P b

b+l2−2) + b2i−2(P
a
a+l1−2 ∪ C6 ∪ P b

b+l2−3),

b2i(G06) = b2i(P
6,6
a+l1+5 ∪ P 6

b+l2−2) + b2i−2(P
6
a+l1−2 ∪ C6 ∪ P 6

b+l2−3).

By Proposition 2.3, we can obtain that G6 ¹ G06.

Subcase 3.2. a > 6, k = b = 4.



It is easy to verify that l2 ≥ 6 and l3 ≤ 4. We have l1 ≥ 3 since we do not consider

graphs with form Γ2(i). For any values of l1 and l3, let G7 ∈ ΘII(n; a, 4, 4; l1, l2, 4) and

G07 ∈ ΘII(n; 6, 6, 6; l′1, l
′
2, 2), where l′1 = a + l1 − 6 and l′2 = l2 − 2. By Lemma 2.2, we

have

b2i(G7) = b2i(P
a,4
a+l1+5 ∪ P 4

l2+2) + b2i−2(P
a
a+l1−2 ∪ P 4

6 ∪ P 4
l2+1),

b2i(G07) = b2i(P
6,6
a+l1+5 ∪ P 6

l2+2) + b2i−2(P
6
a+l1−2 ∪ C6 ∪ P 6

l2+1).

Also, P 4
6 ≺ C6. By Proposition 2.3, we can obtain that G7 ¹ G07.

Case 4.





l1 + a− 2 ≥ 7

l2 + b− 3 ≤ 6

l3 + k − 2 ≥ 7

It is easy to verify that b ≤ 6. Without considering graphs with forms Γ2(i), Γ2(iii),

Γ2(iv) and Γ2(v), we can distinguish this case into the following four subcases.

Subcase 4.1. b = 6, l2 = 3, l1 ≥ 3 and l3 ≥ 3.

For any values of l1 and l3, let G8 ∈ ΘII(n; a, 6, k; l1, 3, l3) and G08 ∈ ΘII(n; 6, 6, 6; l′1,

3, l′3), where l′1 = a + l1 − 6 and l′3 = k + l3 − 6. By Lemma 2.2, we have

b2i(G8) = b2i(P
a,k
a+k+l1+l3−3 ∪ P 6

7 ) + b2i−2(P
a
a+l1−2 ∪ P k

k+l3−2 ∪ C6),

b2i(G08) = b2i(P
6,6
a+k+l1+l3−3 ∪ P 6

7 ) + b2i−2(P
6
a+l1−2 ∪ P 6

k+l3−2 ∪ C6).

By Proposition 2.3, we can obtain that G8 ¹ G08.

Subcase 4.2. b = 6, l3 = 2, l1 ≥ 3 and l3 ≥ 3.

For any values of l1 and l3, let G9 ∈ ΘII(n; a, 6, k; l1, 2, l3) and G09 ∈ ΘII(n; 6, 6, 6;

l′1, 2, l
′
3), where l′1 = a + l1 − 6 and l′3 = k + l3 − 6. By Lemma 2.2, we have

b2i(G9) = b2i(P
a,k
a+k+l1+l3−3 ∪ C6) + b2i−2(P

a
a+l1−2 ∪ P k

k+l3−2 ∪ P5),

b2i(G09) = b2i(P
6,6
a+k+l1+l3−3 ∪ C6) + b2i−2(P

6
a+l1−2 ∪ P 6

k+l3−2 ∪ P5).

By Proposition 2.3, we have G9 ¹ G09.

Subcase 4.3. b = 4, l3 = 5, l1 ≥ 3 and l3 ≥ 3.



For any values of l1 and l3, let G10 ∈ ΘII(n; a, 4, k; l1, 5, l3) and G010 ∈ ΘII(n; 6, 6, 6;

l′1, 3, l
′
3), where l′1 = a + l1 − 6 and l′3 = k + l3 − 6. By Lemma 2.2, we have

b2i(G10) = b2i(P
a,k
a+k+l1+l3−3 ∪ P 4

7 ) + b2i−2(P
a
a+l1−2 ∪ P k

k+l3−2 ∪ P 4
6 ),

b2i(G010) = b2i(P
6,6
a+k+l1+l3−3 ∪ P 6

7 ) + b2i−2(P
6
a+l1−2 ∪ P 6

k+l3−2 ∪ C6).

By Proposition 2.3, we can obtain that G10 ¹ G010.

Subcase 4.4. b = 4, l2 = 4, l1 ≥ 3 and l3 ≥ 3.

Let G11 ∈ ΘII(n; a, 4, k; l1, 4, l3) and G011 ∈ ΘII(n; 6, 6, 6; l′1, 2, l
′
3), where l′1 = a +

l1 − 6 and l′3 = k + l3 − 6. By Lemma 2.2, we have

b2i(G11) = b2i(P
a,k
a+k+l1+l3−3 ∪ P 4

6 ) + b2i−2(P
a
a+l1−2 ∪ P k

k+l3−2 ∪ P 4
5 ),

b2i(G011) = b2i(P
6,6
a+k+l1+l3−3 ∪ C6) + b2i−2(P

6
a+l1−2 ∪ P 6

k+l3−2 ∪ P5).

Also, φ(P 4
5 ; λ) = λ5 − 3λ3 + 2λ and φ(P5; λ) = λ5 − 4λ3 + 3λ. So P 4

5 ≺ P5. Then by

Proposition 2.3, we have G11 ¹ G011.

Case 5.





l1 + a− 2 ≤ 6

l2 + b− 3 ≥ 7

l3 + k − 2 ≤ 6

It is easy to verify that a ≤ 6 and then we have b ≤ k ≤ a ≤ 6. If a = b = k = 6, it

follows that this lemma holds. Then we focus on other subcases. Without considering

graphs with forms Γ2(iii), Γ2(iv), we can distinguish this case into the following three

subcases.

Subcase 5.1. a = k = 6, b = 4.

It is easy to verify that l1 = l3 = 2 and l2 ≥ 6. For any value of l2, let G12 ∈
ΘII(n; 6, 4, 6; 2, l2, 2) and G012 ∈ ΘII(n; 6, 6, 6; 2, l′2, 2), where l′2 = l2 − 2. By Lemma

2.2, we have

b2i(G12) = b2i(P
6,6
13 ∪ P 4

l2+2) + b2i−2(C6 ∪ C6 ∪ P 4
l2+1),

b2i(G012) = b2i(P
6,6
13 ∪ P 6

l2+2) + b2i−2(C6 ∪ C6 ∪ P 6
l2+1).

By Proposition 2.3, we can obtain that G12 ¹ G012.



Subcase 5.2. a = 6, k = b = 4, l3 = 4.

It is easy to verify that l1 = 2. For fixed l2, let G13 ∈ ΘII(n; 6, 4, 4; 2, l2, 4) and

G013 ∈ ΘII(n; 6, 6, 6; 2, l′2, 4), where l′2 = l2 − 2. By Lemma 2.2, we have

b2i(G13) = b2i(P
4,4
l2+9 ∪ C6) + b2i−2(P5 ∪ P 4

6 ∪ P 4
l2+2),

b2i(G013) = b2i(P
6,6
l2+9 ∪ C6) + b2i−2(P5 ∪ C6 ∪ P 6

l2+2).

By Proposition 2.3, we have G13 ¹ G013.

Subcase 5.3. a = k = b = 4, l1 = l3 = 4.

It is easy to verify that l2 ≥ 6. For fixed l2, let G14 ∈ ΘII(n; 4, 4, 4; 4, l2, 4) and

G014 ∈ ΘII(n; 6, 6, 6; 2, l′2, 2), where l′2 = l2 − 2. By Lemma 2.2, we have

b2i(G14) = b2i(P
4,4
13 ∪ P 4

l2+2) + b2i−2(P
4
6 ∪ P 4

6 ∪ P 4
l2+1),

b2i(G014) = b2i(P
6,6
13 ∪ P 6

l2+2) + b2i−2(C6 ∪ C6 ∪ P 6
l2+1).

Also, P 4
6 ≺ C6, and by Proposition 2.3, we can obtain that G14 ¹ G014.

Case 6.





l1 + a− 2 ≤ 6

l2 + b− 3 ≤ 6

l3 + k − 2 ≥ 7

It is easy to verify that a ≤ 6 and then we have b ≤ k ≤ a ≤ 6. If a = b = k = 6, it

follows that this lemma holds. Then we focus on other subcases. Without considering

graphs with forms Γ2(iii), Γ2(iv), we can distinguish this case into the following three

subcases.

Subcase 6.1. a = k = 6, b = 4, 4 ≤ l2 ≤ 5.

It is easy to verify that l1 = 2, l3 ≥ 3. For any values of l2 and l3, let G15 ∈
ΘII(n; 6, 4, 6; 2, l2, l3) and G015 ∈ ΘII(n; 6, 6, 6; 2, l′2, l

′
3), where l′2 = l2 − 2, l′3 = l3. By

Lemma 2.2, we have

b2i(G15) = b2i(P
6,4
l2+9 ∪ P 6

l3+4) + b2i−2(C6 ∪ P 4
l2+2 ∪ P 6

l3+3),

b2i(G015) = b2i(P
6,6
l2+9 ∪ P 6

l3+4) + b2i−2(C6 ∪ P 6
l2+2 ∪ P 6

l3+3).

By Proposition 2.3, we can obtain that G15 ¹ G015.



Subcase 6.2. a = 6, k = b = 4, 4 ≤ l2 ≤ 5.

It is easy to verify that l1 = 2, l3 ≥ 5. For any values of l2 and l3, let G16 ∈
ΘII(n; 6, 4, 4; 2, l2, l3) and G016 ∈ ΘII(n; 6, 6, 6; 2, l′2, l

′
3), where l′2 = l2 − 2, l′3 = l3 − 2.

By Lemma 2.2, we have

b2i(G16) = b2i(P
6,4
l2+9 ∪ P 4

l3+2) + b2i−2(C6 ∪ P 4
l2+2 ∪ P 4

l3+1),

b2i(G016) = b2i(P
6,6
l2+9 ∪ P 6

l3+2) + b2i−2(C6 ∪ P 6
l2+2 ∪ P 6

l3+1).

By Proposition 2.3, we can obtain that G16 ¹ G016.

Subcase 6.3. a = k = b = 4, l1 = 4, 4 ≤ l2 ≤ 5.

It is easy to verify that l3 ≥ 5. For any values of l2 and l3, let G17 ∈ ΘII(n; 4, 4, 4; 4, l2, l3)

and G017 ∈ ΘII(n; 6, 6, 6; 2, l′2, l
′
3), where l′2 = l2 − 2, l′3 = l3 − 2. By Lemma 2.2, we

have

b2i(G17) = b2i(P
4,4
l2+9 ∪ P 4

l3+2) + b2i−2(P
4
6 ∪ P 4

l2+2 ∪ P 4
l3+1),

b2i(G017) = b2i(P
6,6
l2+9 ∪ P 6

l3+2) + b2i−2(C6 ∪ P 6
l2+2) ∪ P 6

l3+1).

Also, P 4
6 ≺ C6, and by Proposition 2.3, we have G17 ¹ G017.

Case 7.





l1 + a1 − 2 ≥ 7

l2 + b− 3 ≤ 6

l3 + k − 2 ≤ 6

It is easy to verify that k ≤ 6 and b ≤ 6. If b ≤ k ≤ a ≤ 6, with similar

analysis in Case 6 we can obtain that this lemma holds. Then we consider the case of

a > 6 ≥ k ≥ b. Without considering graphs with forms Γ2(i), Γ2(iii) and Γ2(iv), we

can distinguish this case into the following three subcases.

Subcase 7.1. k = b = 6, l1 ≥ 3.

It is easy to verify that l3 = 2 and 2 ≤ l2 ≤ 3. For any values of l1 and l2, let

G18 ∈ ΘII(n; a, 6, 6; l1, l2, 2) and G018 ∈ ΘII(n; 6, 6, 6; l′1, l2, 2), where l′1 = a+ l1−6. By

Lemma 2.2, we have

b2i(G18) = b2i(P
a,6
a+l1+l2+3 ∪ C6) + b2i−2(P

a
a+l1−2 ∪ P 6

l2+4 ∪ P5),

b2i(G013) = b2i(P
6,6
a+l1+l2+3 ∪ C6) + b2i−2(P

6
a+l1−2 ∪ P 6

l2+4 ∪ P5).



By Proposition 2.3, it follows that G18 ¹ G018.

Subcase 7.2. k = 6, b = 4, l1 ≥ 3.

It is easy to verify that l3 = 2 and l2 ≤ 5. We have 4 ≤ l2 ≤ 5 since we do

not consider graphs with forms Γ2(iii) and Γ2(iv). For any values of l1 and l3, let

G19 ∈ ΘII(n; a, 4, 6; l1, l2, 2) and G019 ∈ ΘII(n; 6, 6, 6; l′1, l
′
2, 2), where l′1 = a+ l1− 6 and

l′2 = l2 − 2. By Lemma 2.2, we have

b2i(G19) = b2i(P
a,4
a+l1+l2+1 ∪ C6) + b2i−2(P

a
a+l1−2 ∪ P 4

l2+2 ∪ P5),

b2i(G019) = b2i(P
6,6
a+l1+l2+1 ∪ C6) + b2i−2(P

6
a+l1−2 ∪ P 6

l2+2 ∪ P5).

By Proposition 2.3, we have G19 ¹ G019.

Subcase 7.3. k = b = 4, l1 ≥ 3, l3 = 4.

Similar to Subcase 7.2, we have 4 ≤ l2 ≤ 5. Let G20 ∈ ΘII(n; a, 4, 4; l1, l2, 4) and

G020 ∈ ΘII(n; 6, 6, 6; l′1, l
′
2, 2), where l′1 = a + l1 − 6 and l′2 = l2 − 2. By Lemma 2.2, we

have

b2i(G20) = b2i(P
a,4
a+l1+l2+1 ∪ P 4

6 ) + b2i−2(P
a
a+l1−2 ∪ P 4

l2+2 ∪ P5),

b2i(G020) = b2i(P
6,6
a+l1+l2+1 ∪ C6) + b2i−2(P

6
a+l1−2 ∪ P 6

l2+2 ∪ P5).

Since P 4
6 ≺ C6 and P 4

5 ≺ P5, by Proposition 2.3, we have G20 ¹ G020.

Case 8.





l1 + a1 − 2 ≤ 6

l2 + b− 3 ≤ 6

l3 + k − 2 ≤ 6

It is easy to verify that a ≤ 6 and then we have b ≤ k ≤ a ≤ 6. If a = b = k = 6, it

follows that this lemma holds. Then we focus on other subcases. Without considering

the graphs with forms Γ2(iii) and Γ2(iv), we can distinguish this case into the following

three subcases.

Subcase 8.1. a = k = 6, b = 4.

It is easy to verify that l1 = l3 = 2. Since n ≥ 20, we have l2 = 5. Let G21 ∈
ΘII(20; 6, 4, 6; 2, 5, 2) and G021 ∈ ΘII(20; 6, 6, 6; 2, 3, 2). By Lemma 2.2, we have

b2i(G21) = b2i(P
6,4
14 ∪ C6) + b2i−2(C6 ∪ P 4

7 ∪ P5),



b2i(G021) = b2i(P
6,6
14 ∪ C6) + b2i−2(C6 ∪ P 6

7 ∪ P5).

By Proposition 2.3, it follows that G21 ¹ G021.

Subcase 8.2. a = 6, k = b = 4, l3 = 4.

It is easy to verify that l1 = 2, l2 ≤ 5. Since n ≥ 20, we have l2 = 5. Let

G22 ∈ ΘII(20; 6, 4, 4; 2, 5, 4) and G022 ∈ ΘII(20; 6, 6, 6; 2, 3, 2). By Lemma 2.2, we have

b2i(G22) = b2i(C6 ∪ P 4,4
14 ) + b2i−2(P5 ∪ P 4

6 ∪ P 4
7 ),

b2i(G022) = b2i(C6 ∪ P 6,6
14 ) + b2i−2(P5 ∪ C6 ∪ P 6

7 ).

By Proposition 2.3, we have G22 ¹ G022.

Subcase 8.3. a = k = b = 4, l1 = l3 = 4.

It is easy to verify that l2 ≤ 5. Since n ≥ 20, we have l2 = 5. Let G23 ∈
ΘII(20; 4, 4, 4; 4, 5, 4) and G023 ∈ ΘII(20; 6, 6, 6; 2, 3, 2). By Lemma 2.2, we have

b2i(G23) = b2i(P
4,4
13 ∪ P 4

7 ) + b2i−2(P
4
6 ∪ P 4

6 ∪ P 4
6 ),

b2i(G023) = b2i(P
6,6
13 ∪ P 6

7 ) + b2i−2(C6 ∪ C6 ∪ C6).

Since P 4
6 ≺ C6, and by Proposition 2.3, we can obtain that G23 ¹ G023.

The proof is now complete.

Lemma 3.5 For any graph G ∈ ΘII(n; 6, 6, 6; l1, l2, l3), there exists a graph H ∈
ΘII(n; 6, 6, 6; l′1, l

′
2, 2) such that G ≺ H.

Proof. For fixed parameters n, l1, l2 and l3, let G1 ∈ ΘII(n; 6, 6, 6; l1, l2, l3) and G0 ∈
ΘII(n; 6, 6, 6; l1, l

′
2, 2) (as shown in Figure 3.9). It is easy to verify that l′2 = l2 + l3 − 2

and it suffices to show that G1 ≺ G0.

By Lemma 2.2 we have

b2i(G1) = b2i(G1 − u1v1) + b2i−2(G1 − u1 − v1)

= b2i(G1 − u1v1) + b2i−2(P
6
l1+3 ∪ P 6

l2+4 ∪ P 6
l3+4)

= b2i(G1 − u1v1) + b2i−2(P
6
l1+3 ∪ P 6

l2+4 ∪ C6 ∪ Pl3−2)



u1

l1
︷ ︸︸ ︷

v1

G1

︷ ︸︸ ︷

l2

u0

l1
︷ ︸︸ ︷

v0

G0

︷ ︸︸ ︷

l
′

2

︷
︸
︸

︷

l3

Figure 3.9: Graphs for Lemma 3.5.

+b2i−4(P
6
l1+3 ∪ P 6

l2+4 ∪ Pl3−3 ∪ P5),

b2i(G0) = b2i(G0 − u0v0) + b2i−2(G0 − u0 − v0)

= b2i(G0 − u0v0) + b2i−2(P
6
l1+3 ∪ P 6

l2+l3+2 ∪ C6)

= b2i(G0 − u0v0) + b2i−2(P
6
l1+3 ∪ P 6

l2+4 ∪ C6 ∪ Pl3−2)

+b2i−4(P
6
l1+3 ∪ P 6

l2+3 ∪ Pl3−3 ∪ C6).

Since b2i(G1 − u1v1) = b2i(G0 − u0v0), then we only need to compare b2j(P
6
l2+4 ∪ P5)

and b2j(P
6
l2+3 ∪ C6). Also by Lemma 2.2 we have

b2j(P
6
l2+4 ∪ P5) = b2j(P

6
l2+3 ∪ P5 ∪ P1) + b2j−2(P

6
l2+2 ∪ P5)

= b2j(P
6
l2+3 ∪ P5 ∪ P1) + b2j−2(P

6
l2+2 ∪ P4 ∪ P1)

+b2j−4(P
6
l2+2 ∪ P3)

= b2j(P
6
l2+3 ∪ P5 ∪ P1) + b2j−2(P

6
l2+2 ∪ P4 ∪ P1)

+b2j−4(P
6
l2+1 ∪ P3 ∪ P1) + b2j−6(P

6
l2
∪ P3)

= b2j(P
6
l2+3 ∪ P5 ∪ P1) + b2j−2(P

6
l2+2 ∪ P4 ∪ P1)

+b2j−4(P
6
l2+1 ∪ P3 ∪ P1) + b2j−6(C6 ∪ Pl2−6 ∪ P3)

+b2j−8(P5 ∪ Pl2−7 ∪ P3),

and

b2j(P
6
l2+3 ∪ C6) = b2j(P

6
l2+3 ∪ P6) + b2j−2(P

6
l2+3 ∪ P4) + 2b2j−6(P

6
l2+3)

= b2j(P
6
l2+3 ∪ P6) + b2j−2(P

6
l2+2 ∪ P4 ∪ P1)

+b2j−4(P
6
l2+1 ∪ P4) + 2b2j−6(P

6
l2+3)

= b2j(P
6
l2+3 ∪ P6) + b2j−2(P

6
l2+2 ∪ P4 ∪ P1)



+b2j−4(P
6
l2+1 ∪ P3 ∪ P1) + b2j−6(P

6
l2+1 ∪ P2) + 2b2j−6(P

6
l2+3)

= b2j(P
6
l2+3 ∪ P6) + b2j−2(P

6
l2+2 ∪ P4 ∪ P1)

+b2j−4(P
6
l2+1 ∪ P3 ∪ P1) + b2j−6(C6 ∪ Pl2−5 ∪ P2)

+b2j−8(P5 ∪ Pl2−6 ∪ P2) + 2b2j−6(P
6
l2+3).

By Lemma 2.4 and Proposition 2.3 we have P 6
l2+4 ∪ P5 ≺ P 6

l2+3 ∪ C6. Also consider

Proposition 2.3, we can obtain that G1 ≺ G0.

Lemma 3.6 For any graph G ∈ ΘII(n; 6, 6, 6; l1, l2, 2), there exists a graph H ∈
ΘII(n; 6, 6, 6; l, 2, 2) such that G ≺ H.

Proof. For fixed parameters n, l1 and l2, let G0 ∈ ΘII(n; 6, 6, 6; l1, l2, 2) and G2 ∈
ΘII(n; 6, 6, 6; l, 2, 2) (as shown in Figure 3.10). It is easy to verify that l = l1 + l2 − 2

and it suffices to show that G0 ≺ G2.

u2

v2

G2

︷ ︸︸ ︷

l

u0

l1
︷ ︸︸ ︷

v0

G0

︷ ︸︸ ︷

l2

Figure 3.10: Graphs for Lemma 3.6

By Lemma 2.2 we have

b2i(G0) = b2i(G0 − u0v0) + b2i−2(G0 − u0 − v0)

= b2i(G0 − u0v0) + b2i−2(P
6
l1+4 ∪ P 6

l2+4 ∪ P5)

= b2i(G0 − u0v0) + b2i−2(P
6
l2+4 ∪ C6 ∪ Pl1−2 ∪ P5)

+b2i−4(P
6
l2+4 ∪ P5 ∪ Pl1−3 ∪ P5),

b2i(G2) = b2i(G2 − u2v2) + b2i−2(G2 − u2 − v2)

= b2i(G2 − u2v2) + b2i−2(P
6
l1+l2+2 ∪ C6 ∪ P5)

= b2i(G2 − u2v2) + b2i−2(P
6
l2+4 ∪ C6 ∪ Pl1−2 ∪ P5)



+b2i−4(P
6
l2+3 ∪ C6 ∪ Pl1−3 ∪ P5).

Since b2i(G0 − u0v0) = b2i(G2 − u2v2), then we only need to compare b2j(P
6
l2+4 ∪ P5)

with b2j(P
6
l2+3∪C6). With similar analysis in Lemma 3.5, we can obtain that G0 ≺ G2.

From Theorem 3.4, Lemmas 3.5 and 3.6, we can easily obtain the following result.

Theorem 3.7 For any graph G ∈ ΘII(n; a, b, k; l1, l2, l3), if G is not an element of the

special graph class Γ2, then there exists a graph H ∈ ΘII(n; 6, 6, 6; n − 17, 2, 2) such

that G ¹ H, and the equality holds if and only if G ∼= H.

Theorem 3.8 For any graph G ∈ ΘI(n; a, b, k; l1, l2; 2) \ Γ1, there exists a graph H ∈
ΘI(n; 6, 6, 6; l′1, l

′
2; 2) such that G ¹ H.

Proof. Without loss of generality, we may assume that l1 ≥ l2. We will discuss the

following four cases.

Case 1.

{
l1 + a− 1 ≥ 9

l2 + k − 1 ≥ 8

Considering the values of l1 and l2, we distinguish this case into the following four

subcases.

Subcase 1.1. l1 ≥ 4.

For any values of l1 and l2, let G1 ∈ ΘI(n; a, b, k; l1, l2; 2) and G01 ∈ ΘI(n; 6, 6, 6; l′1, l
′
2; 2),

where l′1 = a + l1 − 6. By lemma 2.2, we have

b2i(G1) = b2i(P
a
a+l1−2 ∪ P b,k

b+k+l2−2) + b2i−2(P
a
a+l1−3 ∪ P k

b+k+l2−3),

b2i(G01) = b2i(P
6
a+l1−2 ∪ P 6,6

b+k+l2−2) + b2i−2(P
6
a+l1−3 ∪ P 6

b+k+l2−3).

By Proposition 2.3, we can obtain that G1 ¹ G01.

Subcase 1.2. l1 = l2 = 3 and b ≥ 6.

It is easy to verify that a ≥ 8 and k ≥ 6. Let G2 ∈ ΘI(n; a, b, k; 3, 3; 2) and

G02 ∈ ΘI(n; 6, 6, 6; l′1, l
′
2; 2), where l′1 = a−3 and l′2 = b+k−9. By lemma 2.2, we have

b2i(G2) = b2i(P
a,k
n ) + b2i−2(P

a
a+1 ∪ P k

k+1 ∪ Pb−2) + (−1)1+ b
2 2b2i−b(P

a
a+1 ∪ P k

k+1),



b2i(G02) = b2i(P
6,6
n ) + b2i−2(P

6
a+1 ∪ P 6

b+k−5 ∪ P4) + 2b2i−6(P
6
a+1 ∪ P 6

b+k−5).

Then we compare b2j(P
k
k+1 ∪ Pb−2) with b2j(P

6
b+k−5 ∪ P4). By Lemma 2.2 we have

b2j(P
k
k+1 ∪ Pb−2) = b2j(Pk+1 ∪ Pb−2) + b2j−2(Pk−2 ∪ Pb−2 ∪ P1),

b2j(P
6
b+k−5 ∪ P4) = b2j(Pb+k−5 ∪ P4) + b2j−2(Pb+k−11 ∪ P4 ∪ P4).

Since b ≥ 6 and k ≥ 6, by Lemma 2.4, we have Pk+1 ∪ Pb−2 ≺ Pb+k−5 ∪ P4 and

Pk−2 ∪ Pb−2 ∪ P1 ≺ Pk−2 ∪ Pb−5 ∪ P4 ¹ Pb+k−11 ∪ P4 ∪ P4. Then we can obtain that

P k
k+1∪Pb−2 ¹ P 6

b+k−5∪P4. Also, since b ≥ 6, then k +1 ≤ b+k−5, by Proposition 2.3

we have P k
k+1 ¹ P 6

k+1 ¹ P 6
b+k−5. Also by Proposition 2.3, we can obtain that G2 ¹ G02.

Subcase 1.3. l1 = l2 = 3, b = 4 and k = 6.

It is easy to verify that a ≥ 8. Let G3 ∈ ΘI(n; a, 4, 6; 3, 3; 2) and G03 ∈ ΘI(n; 6, 6, 6; l′1, 3; 2),

where l′1 = a− 5. By Lemma 2.2, we have

b2i(G3) = b2i(P
a,4
a+5 ∪ P 6

7 ) + b2i−2(P
a
a+4 ∪ C6),

b2i(G03) = b2i(P
6,6
a+5 ∪ P 6

7 ) + b2i−2(P
6
a+4 ∪ C6).

From Proposition 2.3, it follows that G3 ¹ G03.

Subcase 1.4. l1 = l2 = 3, b = 4, k ≥ 8 or l1 = 3, l2 = 2 or l1 = l2 = 2.

The graphs in this case belong to Γ1(i) or Γ1(ii), so we do not consider them.

Case 2.

{
l1 + a− 1 ≤ 8

l2 + k − 1 ≥ 8

It is easy to verify that a ≤ 6. Without considering graphs of form Γ1(iii), we

distinguish this case into the following two subcases.

Subcase 2.1. a = 6.

It is easy to verify that l1 = 2 or 3. If l1 = 3, l2 = 3, then let G4 ∈ ΘI(n; 6, b, k; 3, 3; 2)

and G04 = ΘI(n; 6, 6, 6; 3, l′2; 2), where l′2 = b + k − 9. By Lemma 2.2, we have

b2i(G4) = b2i(P
b,k
b+k+1 ∪ P 6

7 ) + b2i−2(P
k
b+k ∪ C6),

b2i(G04) = b2i(P
6,6
b+k+1 ∪ P 6

7 ) + b2i−2(P
6
b+k ∪ C6).



By Proposition 2.3, we have G4 ¹ G04.

If l1 = 3, l2 = 2, then let G5 ∈ ΘI(n; 6, b, k; 3, 2; 2) and G05 = ΘI(n; 6, 6, 6; 3, l′′2 ; 2),

where l′′2 = b + k − 10. With similar analysis, it follows that G5 ¹ G05. If l1 = l2 = 2,

then let G6 ∈ ΘI(n; 6, b, k; 2, 2; 2) and G06 ∈ ΘI(n; 6, 6, 6; 2, l′′′2 ; 2), where l′′′2 = b+k−10.

With similar analysis, we can obtain that G6 ¹ G06.

Subcase 2.2. a = 4:

It is easy to verify that l1 ≤ 5. Since we do not consider graphs with form Γ1(iii), we

have 4 ≤ l1 ≤ 5. If l1 = 5, let G7 ∈ ΘI(n; 4, b, k; 5, l2; 2) and G07 ∈ ΘI(n; 6, 6, 6; 3, l′2; 2),

where l′2 = b + k + l2 − 12. By Lemma 2.2, we have

b2i(G7) = b2i(P
b,k
b+k+l2−2 ∪ P 4

7 ) + b2i−2(P
k
b+k+l2−3 ∪ P 4

6 ),

b2i(G07) = b2i(P
6,6
b+k+l2−2 ∪ P 6

7 ) + b2i−2(P
6
b+k+l2−3 ∪ C6).

From Proposition 2.3, it follows that G7 ¹ G07. If l1 = 4, let G8 ∈ ΘI(n; 4, b, k; 4, l2; 2)

and G08 ∈ ΘI(n; 6, 6, 6; 2, l′2; 2), where l′2 = b + k + l2 − 12. By Lemma 2.2, we have

b2i(G8) = b2i(P
b,k
b+k+l2−2 ∪ P 4

6 ) + b2i−2(P
k
b+k+l2−3 ∪ P 4

5 ),

b2i(G08) = b2i(P
6,6
b+k+l2−2 ∪ C6) + b2i−2(P

6
b+k+l2−3 ∪ P5).

Since P 4
5 ≺ P5, then from Proposition 2.3, it follows that G8 ¹ G08.

Case 3.

{
l1 + a− 1 ≥ 9

l2 + k − 1 ≤ 7

Without considering graphs with form Γ1(iv), we distinguish this case into the

following two subcases.

Subcase 3.1. k = 6.

It is easy to verify that l2 = 2. For any value of l1, let G9 ∈ ΘI(n; a, b, 6; l1, 2; 2) and

G09 ∈ ΘI(n; 6, 6, 6; l′1, 2; 2), where l′1 = a + b + l1 − 12. By Lemma 2.2, we have

b2i(G9) = b2i(P
a,b
a+b+l1−2 ∪ C6) + b2i−2(P

a
a+b+l1−3 ∪ P5),

b2i(G09) = b2i(P
6,6
a+b+l1−2 ∪ C6) + b2i−2(P

6
a+b+l1−3 ∪ P5).

By Proposition 2.3, we can obtain that G9 ¹ G09.



Subcase 3.2. k = 4.

It is easy to verify that l2 ≤ 4. Since we do not consider graphs with form

Γ1(iv), we have l2 = 4. For any value of l1, let G10 ∈ ΘI(n; a, b, 4; l1, 4; 2) and

G010 ∈ ΘI(n; 6, 6, 6; l′1, 2; 2), where l′1 = a + b + l1 − 12. By Lemma 2.2, we have

b2i(G10) = b2i(P
a,b
a+b+l1−2 ∪ P 4

6 ) + b2i−2(P
a
a+b+l1−3 ∪ P 4

5 ),

b2i(G010) = b2i(P
6,6
a+b+l1−2 ∪ C6) + b2i−2(P

6
a+b+l1−3 ∪ P5).

Since P 4
5 ≺ P5, by Proposition 2.3, we can obtain that G10 ¹ G010.

Case 4.

{
l1 + a− 1 ≤ 8

l2 + k − 1 ≤ 7

It is easy to verify that a ≤ 6 and k ≤ 6. Without considering graphs with form

Γ1(v), we distinguish this case into the following two subcases.

Subcase 4.1. a = 6:

It is easy to verify that l1 ≤ 3. If l1 = 3, then let G11 ∈ ΘI(n; 6, b, k; 3, l2; 2) and

G011 = ΘI(n; 6, 6, 6; 3, l′2; 2), where l′2 = b + k + l2 − 12. By Lemma 2.2, we have

b2i(G11) = b2i(P
b,k
b+k+l2−2 ∪ P 6

7 ) + b2i−2(P
k
b+k+l2−3 ∪ C6),

b2i(G011) = b2i(P
6,6
b+k+l2−2 ∪ P 6

7 ) + b2i−2(P
6
b+k+l2−3 ∪ C6).

By Proposition 2.3, we can obtain that G11 ¹ G011.

If l1 = 2, since l1 ≥ l2, we have l2 = 2. Let G12 ∈ ΘI(n; 6, b, k; 2, 2; 2) and G012 ∈
ΘI(n; 6, 6, 6; 2, l′2; 2), where l′2 = b + k − 10. With similar analysis, it follows that

G12 ¹ G012.

Subcase 4.2. a = 4.

It is easy to verify that l1 ≤ 5. Since we do not consider graphs with form Γ1(iv),

then we have 4 ≤ l1 ≤ 5. If l1 = 5 , then let G13 ∈ ΘI(n; 4, b, k; 5, l2; 2) and

G013 ∈ ΘI(n; 6, 6, 6; 3, l′2; 2), where l′2 = b + k + l2 − 12. By Lemma 2.2, we have

b2i(G13) = b2i(P
b,k
b+k+l2−2 ∪ P 4

7 ) + b2i−2(P
k
b+k+l2−3 ∪ P 4

6 ) and b2i(G013) = b2i(P
6,6
b+k+l2−2 ∪

P 6
7 ) + b2i−2(P

6
b+k+l2−3 ∪ C6). By Proposition 2.3, we can obtain that G13 ¹ G013.



If l1 = 4 , then let G14 ∈ ΘI(n; 4, b, k; 4, l2; 2) and G014 = ΘI(n; 6, 6, 6; 2, l′2; 2), where

l′2 = b + k + l2 − 12. With similar analysis we can obtain that G14 ¹ G014.

The proof is thus complete.

Lemma 3.9 For any graph G ∈ ΘI(n; 6, 6, 6; l1, l2; 2), there exists a graph H ∈ ΘI(n; 6, 6,

6; l′1, 2; 2) such that G ≺ H.

Proof. For fixed parameters n, a, b, k, l1 and l2, let G1 ∈ ΘI(n; a, b, k; l1, l2; 2) and G0 =

ΘI(n; a, b, k; l′1, 2; 2) (as shown in Figure 3.11). It is easy to verify that l′1 = l1 + l2 − 2

and it suffices to show that G1 ≺ G0.

u1

l1

l2

︷ ︸︸ ︷

︷

︸
︸

︷

v1

u0

l
′

1

v0

G1

︷ ︸︸ ︷

G0

Figure 3.11: Graphs for Lemma 3.9.

By Lemma 2.2 we have

b2i(G1) = b2i(G1 − u1v1) + b2i−2(G1 − u1 − v1) + 2b2i−6(G1 − C6)

= b2i(G1 − u1v1) + b2i−2(P
6
l1+4 ∪ P 6

l2+4 ∪ P4) + 2b2i−6(P
6
l1+4 ∪ P 6

l2+4),

b2i(G0) = b2i(G0 − u0v0) + b2i−2(G2 − u0 − v0) + 2b2i−6(G0 − C6)

= b2i(G0 − u0v0) + b2i−2(P
6
l′1+4 ∪ C6 ∪ P4) + 2b2i−6(P

6
l′1+4 ∪ C6).

Since b2i(G1 − u1v1) = b2i(G0 − u0v0), and considering Proposition 2.3, we try to

compare b2j(P
6
l1+4 ∪ P 6

l2+4) with b2j(P
6
l′1+4 ∪ C6). Also by Lemma 2.2 we have

b2j(P
6
l1+4 ∪ P 6

l2+4) = b2j(P
6
l1+4 ∪ C6 ∪ Pl2−2) + b2j−2(P

6
l1+4 ∪ Pl2−3 ∪ P5),

b2j(P
6
l′1+4 ∪ C6) = b2j(P

6
l1+4 ∪ C6 ∪ Pl2−2) + b2j−2(P

6
l1+3 ∪ Pl2−3 ∪ C6).

With similar analysis in Lemma 3.5, we have P 6
l1+4 ∪ P5 ≺ P 6

l1+3 ∪ C6. Applying

Proposition 2.3, we can obtain G1 ≺ G0.



Lemma 3.10 For any graph G ∈ ΘI(n; 6, 6, 6; l1, 2; 2), there exists a graph H ∈
ΘII(n; 6, 6, 6; l, 2, 2) such that E(G) < E(H).

Proof. For fixed parameters l1 and l, let G0 ∈ ΘI(n; 6, 6, 6; l1, 2; 2) and G2 ∈ ΘII(n; 6, 6,

6; l, 2, 2) (as shown in Figure 3.12), where l = l1 − 1, i.e., l1 = l + 1. It suffices to show

that G0 ≺ G2.

u0

l1

v0

︷ ︸︸ ︷

G0

u2

l
︷ ︸︸ ︷

v2

G2

Figure 3.12: Graphs for Lemma 3.10.

By Lemma 2.2 we have

b2i(G0) = b2i(G0 − u0v0) + b2i−2(G0 − u0 − v0)

= b2i(G0 − u0v0) + b2i−2(P
6
l+10 ∪ P5)

= b2i(G0 − u0v0) + b2i−2(P
6
l+4 ∪ P6 ∪ P5) + b2i−4(P

6
l+3 ∪ P5 ∪ P5),

b2i(G2) = b2i(G2 − u2v2) + b2i−2(G2 − u2 − v2)

= b2i(G2 − u2v2) + b2i−2(P
6
l+4 ∪ C6 ∪ P5)

= b2i(G2 − u2v2) + b2i−2(P
6
l+4 ∪ P6 ∪ P5) + b2i−4(P

6
l+4 ∪ P4 ∪ P5).

Since b2i(G0 − u0v0) = b2i(G2 − u2v2), then we only need to verify P 6
l+3 ∪ P5 ∪ P5 ≺

P 6
l+4 ∪ P4 ∪ P5. By Lemma 2.2, we have

b2i(P
6
l+3 ∪ P5) = b2i(Pl+3 ∪ P5) + b2i−2(Pl−3 ∪ P5 ∪ P4) + 2b2i−6(Pl−3 ∪ P5),

b2i(P
6
l+4 ∪ P4) = b2i(Pl+4 ∪ P4) + b2i−2(Pl−2 ∪ P4 ∪ P4) + 2b2i−6(Pl−2 ∪ P4).

From Lemma 2.4, we can obtain that Pl+3 ∪ P5 ≺ Pl+4 ∪ P4 and if l 6= 5, Pl−3 ∪ P5 ≺
Pl−2∪P4, then Pl−3∪P5∪P4 ≺ Pl−2∪P4∪P4. So from Proposition 2.3, it follows that

P 6
l+3 ∪ P5 ≺ P 6

l+4 ∪ P4 and then G0 ≺ G2. If l = 5, then G0 ∈ ΘI(22; 6, 6, 6; 6, 2; 2) and

G2 ∈ ΘII(22; 6, 6, 6; 5, 2, 2). By calculating, we know that E(G0) < E(G2).



Therefore, the proof is complete.

From Theorem 3.8 and Lemmas 3.3, 3.9 and 3.10, we can easily obtain the following

theorem.

Theorem 3.11 For any graph G ∈ ΘI(n; a, b, k; l1, l2; lc) and G /∈ Γ1, there exists a

graph H ∈ ΘII(n; 6, 6, 6; n − 17, 2, 2) such that G ¹ H, and the equality holds if and

only if G ∼= H.

From Theorems 3.7 and 3.11, we can obtain our main result Theorem 2.5.
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