
The generalized 3-edge-connectivity
of lexicographic product graphs⋆

Xueliang Li, Jun Yue, and Yan Zhao

Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; yuejun06@126.com;

zhaoyan2010@mail.nankai.edu.cn

Abstract. The generalized k-edge-connectivity λk(G) of a graph G is
a natural generalization of the concept of edge-connectivity. The gen-
eralized edge-connectivity has many applications in networks. The lex-
icographic product of two graphs G and H , denoted by G ◦ H , is an
important method to construct large graphs from small ones. In this pa-
per, we mainly study the generalized 3-edge-connectivity of G ◦H , and
get lower and upper bounds of λ3(G ◦H). An example is given to show
that all bounds are sharp.

Keywords: edge-disjoint paths, edge-connectivity, Steiner tree, edge-
disjoint Steiner trees, generalized edge-connectivity.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow
the terminology and notation of Bondy and Murty [3]. For a graph G, the local
edge-connectivity between two distinct vertices u and v, denoted by λ(u, v), is
the maximum number of pairwise edge-disjoint uv-paths. A nontrivial graph G
is k-edge-connected if λ(u, v) ≥ k for any two distinct vertices u and v of G. The
edge-connectivity λ(G) of a graph G is the maximum value of k for which G is
k-edge-connected.

Naturally, the concept of edge-connectivity can be extended to a new concept,
the generalized k-edge-connectivity, which was introduced by Li et al. [22]. For
a graph G = (V,E) and a set S ⊆ V of at least two vertices, a Steiner tree
connecting S (or simply, an S-tree) is a such subgraph T = (V ′, E′) of G that
is a tree with S ⊆ V ′. Two S-trees T and T ′ are said to be edge-disjoint if
E(T)∩E(T ′) = ∅. The generalized local edge-connectivity λ(S) is the maximum
number of pairwise edge-disjoint Steiner trees connecting S. For an integer k with
2 ≤ k ≤ n, the generalized k-edge-connectivity λk(G) of G is defined as λk(G) =
min{λ(S) |S ⊆ V (G), |S| = k}. Obviously, λ2(G) = λ(G). Set λk(G) = 0 if
G is disconnected. Similarly, the concept of the generalized k-connectivity was

⋆ Supported by NSFC No. 11371205 and PCSIRT.

2 The generalized 3-edge-connectivity of lexicographic product graphs

introduced by Hager in [11] and it is also studied in [5]. We refer to [17–19, 22, 24,
30] for some known results of the generalized connectivity and edge-connectivity.

The generalized edge-connectivity has a close relation to an important prob-
lem, the Steiner tree packing problem, which asks for finding a set of maximum
number of edge-disjoint S-trees in a given graph G where S ⊆ V (G), see [9, 31].
An extreme of Steiner tree packing problem is the Spanning tree packing problem
where S = V (G). For any graph G, the spanning tree packing number or STP
number, is the maximum number of edge-disjoint spanning trees contained in G.
For the STP number, we refer to [1, 25, 26]. The difference between the Steiner
tree packing problem and the generalized edge-connectivity is as follows: the
former problem studies local properties of graphs since S is given beforehand,
while the latter problem focuses on global properties of graphs since S runs over
all k-subsets of V (G).

The generalized edge-connectivity and the Steiner tree packing problem have
applications in V LSI circuit design, see [9, 27]. In this application, a Steiner tree
is needed to share an electronic signal by a set of terminal nodes. A Steiner tree
is also used in computer communication networks and optical wireless commu-
nication networks, see [6, 7]. Another application arises in the Internet Domain.
Suppose that a given graph G represents a network. We select arbitrary k ver-
tices as nodes. Suppose one of the nodes in G is a broadcaster and all other
nodes are users. The broadcaster wants to broadcast as many streams of movies
as possible, so that the users have the maximum number of choices. Each stream
of movie is broadcasted via a tree connecting all the users and the broadcaster.
So, in essence we need to find the maximum number of Steiner trees connecting
all the users and the broadcaster, namely, we want to get λ(S), where S is the
selected k nodes. Clearly, it is a Steiner tree packing problem. Furthermore, if we
want to know whether for any k nodes the network G has above properties, then
we need to compute λk(G) = min{λ(S)} in order to prescribe the reliability and
the security of the network.

From a theoretical perspective, both extremes of the generalized edge-connec-
tivity problem are fundamental theorems in combinatorics. One extreme is when
we have two terminals. In this case edge-disjoint trees are just edge-disjoint
paths between the two terminals, and so the problem becomes the well-known
edge version of Menger theorem. The other extreme is when all the vertices are
terminals. In this case edge-disjoint trees are just spanning trees of the graph,
and the problem becomes the classical Nash-Williams-Tutte theorem, see [23,
29].

Graph product is an important method to construct large graphs from small
ones. So it has many applications in the design and analysis of networks, see [9,
14, 15]. The lexicographic product (or composition), Cartesian product, strong
product and the direct product are the main four standard products of graphs.
More information about the (edge-) connectivity of these four product graphs
can be found in [4, 8, 10, 12, 13, 16, 32]. The generalized 3-edge-connectivity of
Cartesian product graphs was studied and the lower bound is given in [28]. In

The generalized 3-edge-connectivity of lexicographic product graphs 3

this paper, we study the generalized 3-edge-connectivity of lexicographic product
graphs and provide both sharp lower and upper bounds.

Theorem 1. Let G and H be two non-trivial graphs such that G is connected.

Then λ3(H) + λ3(G)|V (H)| ≤ λ3(G ◦ H) ≤ min
{⌊

4λ3(G)+2
3

⌋

|V (H)|2, δ(H) +

δ(G)|V (H)|
}

. Moreover, the lower and upper bounds are sharp.

Note that the vertex version, the generalized 3-connectivity of Cartesian
product and lexicographic product graphs, was studied in [16, 20]. The results
there are quite different from ours.

2 Preliminary and notation

Let G = (V,E) be a graph and S be an s-subset of V . G[S] denotes the induced
subgraph of G on S and E |S| denotes the empty graph on S, that is, the union
of s isolated vertices. Connect x to S is to join x to each vertex of S for a vertex
x outside S. Given two sets X , Y of vertices, we call a path P an XY -path if
the end-vertices of P are in X and Y , respectively, and all inner vertices are in
neither X nor Y . If u and v are two vertices on a path P , uPv will denote the
segment of P from u to v. Two distinct paths are edge-disjoint if they have no
edges in common; internally disjoint if they have no internal vertices in common;
vertex-disjoint if they have no vertices in common. For X = {x1, x2, · · · , xk} and
Y = {y1, y2, · · · , yk}, an XY -linkage is defined as a set Q of k vertex-disjoint
XY -paths xiPiyi, 1 ≤ i ≤ k.

Let G = (V1, E1) and H = (V2, E2). The lexicographic product (or com-
position) G ◦ H of G and H is defined as follows: V (G ◦ H) = V1 × V2, two
vertices (u, v) and (u′, v′) are adjacent if and only if either uu′ ∈ E1 or u = u′,
vv′ ∈ E2. In other words, G ◦ H is obtained by substituting a copy H(u) of
H for every vertex u of G and joining each vertex of H(u) with every vertex
of H(u′) if uu′ ∈ E1. The vertex set G(v) = {(u, v)|u ∈ V1} for some fixed
vertex v of H is called a layer of graph G or simply a G-layer. Analogously,
we define the H-layer with respect to a vertex u of G and denote it by H(u).
It is not hard to see that any G-layer induces a subgraph of G ◦ H that is
isomorphic to G and any H-layer induces a subgraph of G ◦H that is isomor-
phic to H . For any u, u′ ∈ V (G) and v, v′ ∈ V (H), (u, v), (u, v′) ∈ V (H(u)),
(u′, v), (u′, v′) ∈ V (H(u′)), (u, v), (u′, v) ∈ V (G(v)), (u, v′), (u′, v′) ∈ V (G(v′)).
We view (u, v′) and (u′, v) as the vertices corresponding to (u, v) in G(v′) and
H(u′), respectively. Similarly, we can define the path and tree corresponding to
some path and tree, respectively. The edge (u, v)(u′, v′) is called a first-type
edge if uu′ ∈ E1 and v = v′; a second-type edge if vv′ ∈ E2 and u = u′; a third-
type edge if uu′ ∈ E1 and v 6= v′. For a subset W of V (G) with W = {u1, · · · , ut},
we denote H(W) = H(u1) ∪ · · · ∪ H(ut). We use KW to denote a subgraph of
G ◦ H , where V (KW) = V (G[W] ◦ H), E(KW) = E(G[W] ◦ H) \ E(H(W)),
namely, the end-vertices of an edge of KW are in different H-layers.

4 The generalized 3-edge-connectivity of lexicographic product graphs

Unlike the other products, the lexicographic product does not satisfy the
commutative law, that is, G ◦H could not be isomorphic to H ◦G. By a simple
observation,G◦H is connected if and only ifG is connected. Moreover, δ(G◦H) =
δ(G)|V (H)|+ δ(H).

Let G = (V,E) be a connected graph, S = {x, y, z} ⊆ V , and T be an S-tree.
We call T a type I S-tree if it is just a path whose end-vertices belong to S; a
type II S-tree if it has exactly three leaves x, y, z. Note that each vertex in a
type I S-tree has degree two except the two end-vertices in S. If T is of type
II, every vertex in T \ S has degree two except one vertex of degree three. By
deleting some vertices and edges of an S-tree T , it is easy to check that T is of
type I or II. Because our aim is to get as many S-trees as possible, in this paper,
each S-tree is of type I or II. Therefore, we get the following proposition.

Proposition 1. Let G = (V,E) be a graph with λ3(G) = k ≥ 2, S = {x, y, z} ⊆
V . Then there exist k − 2 edge-disjoint S-trees T1, · · · , Tk−2 such that E(Ti) ∩
E(G[S]) = ∅ where 1 ≤ i ≤ k − 2.

Proof. By the definition of an S-tree, we know that |E(Ti) ∩ E(G[S])| ≤ 2 and
|{Ti |E(Ti) ∩ E(G[S]) 6= ∅}| ≤ 3. Let T1, · · · , Tk be k edge-disjoint S-trees. If
|{Ti |E(Ti) ∩ E(G[S]) 6= ∅}| ≤ 2, we are done. Thus, it remains to consider the
case when G[S] is a triangle. Without loss of generality, assume that |{Ti |E(Ti)∩
E(G[S]) 6= ∅}| = 3 and E(Ti) ∩ E(G[S]) 6= ∅, where i = 1, 2, 3. Then T1, T2, T3

have the structures F1 or F2 shown in Figure 1. Furthermore, we can obtain T ′
1,

T ′
2, T

′
3 from T1, T2, T3 such that E(T ′

1) ∩E(G[S]) = ∅. See figures F ′
1 and F ′

2 in
Figure 1, where the S-tree T ′

1 is shown by gray lines. Thus T ′
1, T4, · · · , Tk are our

desired k − 2 edge-disjoint S-trees.

F ′
1 F2

a a
F ′
2

a
F1

a

Fig. 1. Three S-trees of type I .

Li et al. [22, 21] got the following results which will be useful for our proof.

Observation 1 ([22]) For any graph G of order n, λk(G) ≤ λ(G). Moreover,
the upper bound is tight.

Observation 2 ([22]) If G is a connected graph, then λk(G) ≤ δ(G). Moreover,
the upper bound is tight.

Proposition 2. ([21]) Let G be a connected graph of order n with minimum
degree δ. If there are two adjacent vertices of degree δ, then λk(G) ≤ δ − 1 for
3 ≤ k ≤ n. Moreover, the upper bound is sharp.

The generalized 3-edge-connectivity of lexicographic product graphs 5

From Proposition 2, it is easy to get the following observation.

Observation 3 Let G be a connected graph with λ3(G) = k, and x, y be two
adjacent vertices of G. Then dG(x) ≥ k + 1 or dG(y) ≥ k + 1.

Example 1. Let G be a path of length two and H be a complete graph of order
four, and T1, T2 be two edge-disjoint S-trees in H , where S = {x, y, z} ⊆ V (H).
The structure of G ◦ (T1 ∪ T2) is shown as Fa in Figure 2, where the edges of
a complete bipartite graph is simplified by bold black crossing edges. Note that
E(G ◦ T1) ∩E(G ◦ T2) = E(G ◦ E |S|).

↓

x

y z

w

x

y

x

y

x

y

x

y

z

x

y

w

z

H

T1

T2

G ◦ (T1 ∪ T2) G ◦ T1 G ◦ T2

x

y z

w

x

y

x

y

x

y

G

H(x)

H(z)H(y)

H(w)

H(x)

H(z)H(y)

H(x)

H(z)H(y)

H(w)

(T1 ∪ T2) ◦H T1 ◦H T2 ◦H

↓
x

y z

x

y

w

z

T1
T2

Fa

Fb

Fig. 2. The structures of G ◦ (T1 ∪ T2) and (T1 ∪ T2) ◦H .

Remark 1. Two edge-disjoint S-trees T1, T2 in H may have other vertices in
common except S. If V (T1) ∩ V (T2) = W , then E(G ◦ T1) ∩E(G ◦ T2) = E(G ◦
E |W |).

Example 2. Let G be a complete graph of order four and H be an arbitrary
graph, and T1, T2 be two edge-disjoint S-trees in G, where S = {x, y, z} ⊆ V (G).
The structure of (T1∪T2)◦H is shown as Fb in Figure 2 and E(T1 ◦H)∩E(T2 ◦
H) = E(H(S)).

Remark 2. Two edge-disjoint S-trees T1, T2 in G may have other vertices in
common except S. If V (T1)∩V (T2) = W , then E(T1◦H)∩E(T2◦H) = E(H(W)).

6 The generalized 3-edge-connectivity of lexicographic product graphs

3 Lower bound of λ3(G ◦ H)

In this section, we mainly prove the following theorem.

Theorem 2. Let G and H be two non-trivial graphs such that G is connected.
Then λ3(G ◦H) ≥ λ3(H) + λ3(G)|V (H)|. Moreover, the lower bound is sharp.

By the following corollary, we know that the bound of the above theorem is
sharp.

Corollary 1. λ3(Ps ◦ Pt) = t+ 1.

Proof. By Theorem 2, λ3(Ps ◦ Pt) ≥ t + 1. On the other hand, by Observation
2, λ3(Ps ◦ Pt) ≤ δ(Ps ◦ Pt) = t+ 1. Thus λ3(Ps ◦ Pt) = t+ 1.

Let G be a graph with V (G) = {u1, u2, · · · , un1
} and λ3(G) = r1, and let H

be a graph with V (H) = {v1, v2, · · · , vn2
} and λ3(H) = r2. Set S = {x, y, z} ⊆

V (G ◦ H). Firstly, we give the sketch of the proof of Theorem 2. In total, the
desired r2 + r1n2 S-trees are obtained on two stages: r2 edge-disjoint S-trees by
first-type and second-type edges on Stage I and r1n2 edge-disjoint S-trees by the
remaining first-type edges and the third-type edges on Stage II. Note that if H
is disconnected, then λ3(H) = 0 as defined, thus we omit Stage I immediately.
Next we shall prove Theorem 2 by a series of lemmas according to the position
of x, y, z in G ◦H .

Lemma 1. If x, y, z belong to the same H-layer, then there exist r2+r1n2 edge-
disjoint S-trees.

Proof. Without loss of generality, assume that x, y, z ∈ H(u1), x = (u1, v1),
y = (u1, v2) and z = (u1, v3). On Stage I, since λ3(H) = r2, there are r2 edge-
disjoint S-trees in H(u1). On Stage II, by Observation 2, u1 has r1 neighbors in
G, say β1, β2, · · · , βr1 . Thus T

∗
ij = x(βi, vj)∪ y(βi, vj)∪ z(βi, vj) (1 ≤ i ≤ r1 and

1 ≤ j ≤ n2) are r1n2 S-trees. These r2+r1n2 S-trees are obviously edge-disjoint,
as desired.

Lemma 2. If exactly two of x, y and z belong to the same H-layer, then there
exist r2 + r1n2 edge-disjoint S-trees.

Proof. Assume that x, y ∈ H(u1), z ∈ H(u2). Let x
′′ and y′′ be the vertices in

H(u2) corresponding to x and y, and z′ be the vertex in H(u1) corresponding
to z, respectively. Consider the following two cases.

Case 1. z′ ∈ {x, y}.
Without loss of generality, assume that z′ = x, x = (u1, v1), y = (u1, v2) and

z = (u2, v1).
By Observation 1, there are r2 edge-disjoint v1v2-paths P1, P2, · · · , Pr2 in H

such that ℓ(P1) ≤ ℓ(P2) ≤ · · · ≤ ℓ(Pr2). Denote the neighbor of v1 in Pi by αi

(1 ≤ i ≤ r2). Set D = {α1, α2, · · · , αr2}. Notice that αp 6= αq if p 6= q. Similarly,
there are r1 edge-disjoint u1u2-paths Q1, Q2, · · · , Qr1 in G such that ℓ(Q1) ≤

The generalized 3-edge-connectivity of lexicographic product graphs 7

ℓ(Q2) ≤ · · · ≤ ℓ(Qr1). For each i with 1 ≤ i ≤ r1, set Qi = u1βi,1βi,2 · · ·βi,ti−1u2

and ℓ(Qi) = ti. Also, note that βp,1 6= βq,1 if p 6= q.
On Stage I, the desired r2 S-trees are obtained associated with the longest

u1u2-path Qr1 . If v1 and v2 are nonadjacent in H , then T ∗
i = Pi(u1)∪Qr1(αi)∪

z(u2, αi) (1 ≤ i ≤ r2) are r2 S-trees as shown in Figure 3(a), where Pi(u1)
is the path in H(u1) corresponding to Pi in H , and Qr1(αi) is the path in
G(αi) corresponding to Qr1 in G. Now v1 and v2 are adjacent in H , that is,
P1 = v1v2 and (u1, α1) = y. It follows from Observation 3 that dH(v1) ≥ r2 + 1
or dH(v2) ≥ r2+1, without loss of generality, say dH(v1) ≥ r2+1. For P1, T

∗
1 =

xy∪x(u1, αr2+1)∪Qr1(αr2+1)∪z(u2, αr2+1) is an S-tree, where αr2+1 /∈ D, αr2+1

is a neighbor of v1 in H , and Qr1(αr2+1) is the path in G(αr2+1) corresponding to
Qr1 , see Figure 3(b). For Pi (2 ≤ i ≤ r2), set T

∗
i = Pi(u1)∪Qr1(αi)∪z(u2, αi). It

is easy to see that these r2 S-trees are edge-disjoint. The case that dH(v2) ≥ r2+1
can be proved similarly.

...

...

x
(u1, α1)

(u1, α2)

(u1, αr2)

y

z

Qr1(v1)

...

...

x(u1, αr2+1)
(u1, α2)

(u1, αr2)

y

z

Qr1(v1)

(a) (b)

Fig. 3. The r2 edge-disjoint S-trees where the edges of an S-tree are shown by the
same type of lines.

Up to now, we should remark that the first-type edges incident with x and
y in G ◦ H are not used whether or not v1 and v2 are adjacent in H . Since a
vertex in V (H) \ {v1, v2} may belong to more than one v1v2-path, we make use
of either the r2 neighbors of v1 or the r2 neighbors of v2 to get our desired r2
edge-disjoint S-trees.

Define a new graph (G ◦ H)∗ from G ◦ H by deleting the edges of r2 S-
trees on Stage I. On Stage II, with the aid of Qi (1 ≤ i ≤ r1), we successively
construct r1n2 S-trees in (G ◦H)∗ in non-decreasing order of the length of Qi.
We distinguish two subcases by the length t1 of Q1.

Subcase 1.1. t1 ≥ 2.
Recall thatQ1 = u1β1,1β1,2 · · ·β1,t1−1u2. We will obtain n2 internally disjoint

xy-paths A1, A2, · · · , An2
in Ku1,β1,1

, and a V (H(β1,1))V (H(β1,t1−1))-linkage
B1, B2, · · · , Bn2

by third-type edges associated with β1,1Q1β1,t1−1. Thus, T
∗
i =

Ai ∪ Bi ∪ (β1,t1−1, vi)z are n2 edge-disjoint S-trees, where the subscript i (1 ≤
i ≤ n2) of vi is expressed module n2 as one of 1, 2, · · · , n2. Indeed, this can be
done. Set Ai = x(β1,1, vi)y for 1 ≤ i ≤ n2. If t1 = 2, then Bi = ∅. If t1 ≥ 3, then
Bi = (β1,1, vi)(β1,2, vi+1)(β1,3, vi)(β1,4, vi+1) · · · (β1,t1−1, vi) and T ∗

i = Ai ∪Bi ∪

8 The generalized 3-edge-connectivity of lexicographic product graphs

(β1,t1−1, vi)z when t1 is even; Bi = (β1,1, vi)(β1,2, vi+1)(β1,3, vi)(β1,4, vi+1) · · ·
(β1,t1−1, vi+1) and T ∗

i = Ai ∪Bi ∪ (β1,t1−1, vi+1)z when t1 is odd. For example,
let n2 = 4. Then 4 edge-disjoint S-trees are shown in Figure 4 when t1 = 2,
t1 = 3 and t1 = 4, respectively.

t1 = 2 t1 = 3 t1 = 4

x y

z

x

x

y

y

z
z

Fig. 4. The 4 edge-disjoint S-trees where the edges of an S-tree are shown by the same
type of lines.

Subcase 1.2. t1 = 1 and Q1 = u1u2.
Since λ3(G) = r1, it follows from Observation 3 that dG(u1) ≥ r1 + 1 or

dG(u2) ≥ r1 + 1.
If dG(u1) ≥ r1+1, then denote another neighbor of u1 in G by βr1+1,1 except

u2 and βi,1 (2 ≤ i ≤ r1). We obtain n2 edge-disjoint S-trees associated with Q1

as follows. Let T ∗
1 = (βr1+1,1, v1)x ∪ (βr1+1,1, v1)y ∪ xz, T ∗

2 = (βr1+1,1, v2)x ∪
(βr1+1,1, v2)y ∪ yz, T ∗

i = (u2, vi)x ∪ (u2, vi)y ∪ (u2, vi)(u1, vi+1) ∪ (u1, vi+1)z for
3 ≤ i ≤ n2 − 1, T ∗

n2
= (u2, vn2

)x ∪ (u2, vn2
)y ∪ (u2, vn2

)(u1, v3) ∪ (u1, v3)z; see
Figure 5(a).

(b)

· · ·

x y

z

· · ·

(a)

· · ·

x y

z

· · ·

(βℓ1+1,1, v1) (βℓ1+1,1, v2)

(γℓ1+1,1, v1)

Fig. 5. The n2 edge-disjoint S-trees where the edges of an S-tree are shown by the
same type of lines.

If dG(u2) ≥ r1+1, then denote another neighbor of u2 in G by γr1+1 except u1

and βi,ti−1 (2 ≤ i ≤ r1). ForQ1, set T
∗
1 = xz∪zy, T ∗

2 = xy′′∪y′′y∪(γr1+1, v1)y
′′∪

(γr1+1, v1)z, T
∗
i = (u2, vi)x ∪ (u2, vi)y ∪ (u2, vi)(u1, vi+1) ∪ (u1, vi+1)z for 3 ≤

The generalized 3-edge-connectivity of lexicographic product graphs 9

i ≤ n2 − 1, and T ∗
n2

= (u2, vn2
)x ∪ (u2, vn2

)y ∪ (u2, vn2
)(u1, v3) ∪ (u1, v3)z; see

Figure 5(b).
In both subcases, similar to Subcase 1.1, we are able to get n2 edge-disjoint

S-trees associated with Qi (2 ≤ i ≤ r1), it follows that n2r1 edge-disjoint S-trees
are obtained, as desired.

Case 2. z′ /∈ {x, y}.
Assume that x = (u1, v1), y = (u1, v2) and z = (u2, v3). Let S

′ = {v1, v2, v3}
and S′′ = {x, y, z′}.

By Observation 1, there are r1 edge-disjoint u1u2-paths Q1, Q2, · · · , Qr1 in
G such that ℓ(Q1) ≤ ℓ(Q2) ≤ · · · ≤ ℓ(Qr1). By Proposition 1, r2 edge-disjoint
S′-trees T1, T2, · · · , Tr2 exist in H such that 0 ≤ |{Ti|E(Ti) ∩ E(H [S′])}| ≤ 2.
Suppose E(Ti) ∩ E(H [S′]) = ∅ for 3 ≤ i ≤ r2. According to whether T1 and T2

share edges with E(H [S′]) or not, we get the desired S-trees in the following
subcases.

Subcase 2.1. E(T1) ∩ E(H [S′]) = ∅ and E(T2) ∩ E(H [S′]) = ∅.
Denote the neighbor of v3 in Ti by αi where 1 ≤ i ≤ r2. On Stage I, let

T ∗
i = Ti(u1)∪Qr1(αi)∪z(u2, αi), where Ti(u1) is the tree inH(u1) corresponding

to Ti, Qr1(αi) is the path in G(αi) corresponding to Qr1 for 1 ≤ i ≤ r2. On Stage
II, if ℓ(Q1) ≥ 2, then construct n2 S-trees similar to Case 1; if ℓ(Q1) = 1, then
either u1 or u2 has a neighbor which is not in each u1u2-path Qi in G. Thus n2

S-trees associated with Q1 are shown in Figure 6 (u1 has another neighbor in
G in Figure 6(a) and u2 has another neighbor in G in Figure 6(b)). Similar to
Case 1, we obtain n2 S-trees associated with Qi for 2 ≤ i ≤ r1, thus there exist
r2 + r1n2 edge-disjoint S-trees, as desired.

(b)

· · ·

x y

z

· · ·

(a)

z
· · ·

· · ·
x y

Fig. 6. The n2 edge-disjoint S-trees where the edges of an S-tree are shown by the
same type of lines.

Subcase 2.2. E(T1) ∩ E(H [S′]) 6= ∅ and E(T2) ∩ E(H [S′]) = ∅.
Suppose |E(T1) ∩ E(H [S′])| = 1 and E(T2) ∩ E(H [S′]) = ∅. Furthermore,

suppose E(T1) ∩ E(H [S′]) = v1v2 and dT1
(v2) = 2 (the other possibilities can

be proved similarly). For 1 ≤ i ≤ r2, denote the neighbor of v3 in Ti by αi.
Then we are able to obtain r2 S-trees with the aid of αi on Stage I and r1n2

S-trees on Stage II similar to Subcase 2.1. It remains to consider the case that
|E(T1)∩E(H [S′])| = 2 and E(T2)∩E(H [S′]) = ∅. On Stage I, if dQr1

(u1, u2) ≥
2 and dT1

(v2) = 2 or dQr1
(u1, u2) ≥ 2 and dT1

(v3) = 2, then an S-tree T ∗
1

10 The generalized 3-edge-connectivity of lexicographic product graphs

associated with T1 has the structure as shown in Figure 7, where x̄ is the neighbor
of x′′ in Qr1(v1); if dQr1

(u1, u2) = 1, then T ∗
1 = xyy′′z (when u1 has another

neighbor outside Qi) or T
∗
1 = xyz′z (when u2 has another neighbor outside Qi).

We obtain other r2 + r1n2 − 1 S-trees similar to Subcase 2.1. Thus there exist
r2 + r1n2 edge-disjoint S-trees, as desired.

x y

z

z′

x′′ y′′

x̄

Qr1(v1)

x y

z

z′

x′′ y′′

x̄

Qr1(v1)

Fig. 7. The solid lines stand for the edges of the S-tree.

Subcase 2.3. E(T1) ∩ E(H [S′]) 6= ∅ and E(T2) ∩ E(H [S′]) 6= ∅.
Without loss of generality, suppose |E(T2) ∩ E(H [S′])| = 1. If |E(T1) ∩

E(H [S′])| = 1, then assume that the two S′-trees T1 and T2 have the struc-
ture as one of F3, F4, F5, F6 in Figure 8, where v2 is marked. For 1 ≤ i ≤ r2,
denote the neighbor of v2 in Ti \ {v1, v3} by αi and construct r2 + r1n2 S-trees
similar to Subcase 2.1. So |E(T1) ∩E(H [S′])| = 2, and then T1 and T2 have the
structure F7, where T1 is shown in Figure 8 by dotted lines. For 2 ≤ i ≤ r2,
denote the neighbor of v2 in Ti \ {v1, v3} by αi. Construct an S-tree T ∗

1 similar
to Subcase 2.2 and other r2+r1n2−1 S-trees similar to Subcase 2.1. Thus, there
exist r2 + r1n2 edge-disjoint S-trees, as desired.

F3 F4 F5 F6 F7
v2 v2 v2 v2

v1

v2v3

Fig. 8. Two S′-trees of type I .

Lemma 3. If x, y, z belong to distinct H-layers, then there exist r2+ r1n2 edge-
disjoint S-trees.

Proof. Assume that x ∈ H(u1), y ∈ H(u2) and z ∈ H(u3). Let y′, z′ be the
vertex corresponding to y, z in H(u1), x

′′, z′′ be the vertex corresponding to x, z
in H(u2), and x′′′, y′′′ be the vertex corresponding to x, y in H(u3), respectively.
We distinguish the following three cases.

The generalized 3-edge-connectivity of lexicographic product graphs 11

Case 1. x, y, z belong to the same G-layer.

We may assume that x = (u1, v1), y = (u2, v1), z = (u3, v1). It is easily
seen that there are r2 neighbors of v1 in H , say α1, α2, · · · , αr2 , and r1 edge-
disjoint {u1, u2, u3}-trees T1, T2, · · · , Tr1 in G. For a tree Ti in G, set by Ti(αj)
the corresponding tree in G(αj) for 1 ≤ i ≤ r1, 1 ≤ j ≤ r2.

On Stage I, T ∗
j = T1(αj) ∪ x(u1, αj) ∪ y(u2, αj) ∪ z(u3, αj) (1 ≤ j ≤ r2) are

r2 edge-disjoint S-trees.

On Stage II, if Tj is of type I for some j with 1 ≤ j ≤ r1, then we may
assume that dTj

(u2) = 2. Denote the neighbor of u1, u3 in Tj by ηj , γj and
the neighbors of u2 by βj , β̄j (βj is nearer to u1 than β̄j), where βj , ηj and
β̄j , γj may be the same vertex. Associated with u1Tju2 and u2Tju3, there are
n2 edge-disjoint xy-paths A = {A1, · · · , An2

} and edge-disjoint yz-paths B =
{B1, · · · , Bn2

}, respectively. Then T ∗
ij = Ai ∪ Bi (1 ≤ i ≤ n2) are n2 edge-

disjoint S-trees. Indeed, this can be done. We will only provide the construction
of A according to dTj

(u1, u2), since the construction of B is similar to that of A.
If dTj

(u1, u2) = 1, then set A1 = xy, Ai = x(u2, vi)(u1, vi+1)y for 2 ≤ i ≤ n2−1,
and An2

= x(u2, vn2
)(u1, v2)y; if dTj

(u1, u2) = 2, then set Ai = x(ηj , vi)y for
1 ≤ i ≤ n2. It remains to consider the case that dTj

(u1, u2) ≥ 3. Since there
is a V (H(ηj))V (H(βj))-linkage D1, D2, · · · , Dn2

by third-type edges of G ◦ H
associated with ηjTjβj , it follows that Ai = x(ηj , vi) ∪Di ∪ (βj , vi)y, where the
subscript i (1 ≤ i ≤ n2) of vi is expressed module n2 as one of 1, 2, · · · , n2. It
remains to consider the case that Tj is of type II. Denote the neighbor of u1,
u2, u3 in Tj by ηj , βj , γj and the only one three-degree vertex in Tj by wj (ηj ,
βj , γj and wj may be the same vertex). We find a V (H(ηj))V (H(βj))-linkage
and a V (H(γj))V (H(wj))-linkage respectively by third-type edges of G ◦ H ,
and connect x, y, z respectively to V (H(ηj)), V (H(βj)) and V (H(γj)). Thus,
n2 edge-disjoint S-trees are obtained associated with Tj . Since 1 ≤ j ≤ r1, it
follows that r1n2 edge-disjoint S-trees are obtained on Stage II, as desired.

Case 2. Exactly two of x, y, z belong to the same G-layer.

We only consider the case x = y′ (the other cases x = z′ or y′ = z′ can be
proved by similar arguments). Assume that x = (u1, v1), y = (u2, v1) and z =
(u3, v2). Since λ3(H) = r2, there exist r2 edge-disjoint v1v2-paths P1, P2, · · · , Pr2

in H such that ℓ(P1) ≤ ℓ(P2) ≤ · · · ≤ ℓ(Pr2). For 1 ≤ i ≤ r2, denote the neighbor
of v1 and v2 in Pi by αi and βi, respectively, and denote by Pi(u3) in H(u3)
corresponding to Pi. Since λ3(G) = r1, there are r1 edge-disjoint {u1, u2, u3}-
trees T1, T2, · · · , Tr1 in G.

On Stage I, if ℓ(P1) ≥ 2, then set T ∗
i = x(u1, αi)∪y(u2, αi)∪zPi(u3)(u3, αi)∪

T1(αi) for 1 ≤ i ≤ r2. Otherwise, ℓ(P1) = 1, that is, v1 is adjacent to v2.
Then dH(v1) ≥ r2 + 1 or dH(v2) ≥ r2 + 1. If dH(v1) ≥ r2 + 1, then T ∗

1 =
{x(u1, αr2+1), y(u2, αr2+1), zx

′′′, x′′′(u3, αr2+1)}
∪ T1(αr2+1), where αr2+1 is another neighbor of v1 except αi (1 ≤ i ≤ r2). If
dH(v2) ≥ r2+1, then T ∗

1 = {xz′, z′(u1, βr2+1), yz
′′, z′′(u2, βr2+1), z(u3, βr2+1)}∪

T1(βr2+1), where βr2+1 is another neighbor of v1 except βi (1 ≤ i ≤ r2).

By similar arguments as in Case 1 of Lemma 3, r1n2 edge-disjoint S-trees
can be obtained on Stage II.

12 The generalized 3-edge-connectivity of lexicographic product graphs

Case 3. x, y, z belong to different G-layers.
Assume that x = (u1, v1), y = (u2, v2) and z = (u3, v3). Let S

′ = {v1, v2, v3}
and S′′ = {u1, u2, u3}.

Since λ3(H) = r2, there are r2 edge-disjoint S′-trees T1, T2, · · · , Tr2 in H .
For 1 ≤ i ≤ r2, denote by αi the vertex in Ti adjacent to a vertex in S′, say
v1, and ℓ(Ti) denotes the size of Ti. Similarly, there are r1 edge-disjoint S′′-trees
T ′
1, T

′
2, · · · , T

′
r1

in G.
On Stage I, if ℓ(Ti) ≥ 3 for each i with 1 ≤ i ≤ r2, then let T ∗

i = x(u1, αi) ∪
yTi(u2)(u2, αi)∪zTi(u3)(u3, αi)∪T ′

1(αi). Otherwise, similar to Case 2 of Lemma
2, the most difficult case is that there is an S′-tree of size two. Suppose ℓ(T1) = 2
and dT1

(v2) = 2. Thus T ∗
1 has three structures as shown in Figure 9 where T ′

1 is
of type II in Figure 9(a), T ′

1 is of type I and dT ′

1
(u1) = 2 in Figure 9(b) and T ′

1

is of type I and dT ′

1
(u1) = 1 in Figure 9(c).

x

y

z

y
′

z
′

x
′′

z
′′

y
′′′

x
′′′

x

y

z

y
′

z
′

x
′′

z
′′

y
′′′

x

y

z

x
′′ z

′′

z
′

y
′

x
′′′

y
′′′

(a) (b) (c)

x
′′′

Fig. 9. The S-tree with the aid of T ′

1 shown by the solid lines.

On Stage II, r1n2 edge-disjoint S-trees are obtained by similar arguments
as in Case 1 of Lemma 3.

In each case, we obtain r2 + r1n2 S-trees, and it is easily seen that these
S-trees are edge-disjoint, as desired.

From the above three lemmas, Theorem 2 follows immediately.

4 Upper bound of λ3(G ◦ H)

In this section, we give an upper bound of the generalized 3-edge-connectivity
of the lexicographic product of two graphs.

Yang and Xu [33] investigated the classical edge-connectivity of the lexico-
graphic product of two graphs.

Theorem 3. [33] Let G and H be two non-trivial graphs such that G is con-
nected. Then

λ(G ◦H) = min{λ(G)|V (H)|2, δ(H) + δ(G)|V (H)|}.

The generalized 3-edge-connectivity of lexicographic product graphs 13

In [22], the sharp lower bound of the generalized 3-edge-connectivity of a
graph is given as follows.

Proposition 3. [22] Let G be a connected graph with n vertices. For every two
integers s and r with s ≥ 0 and r ∈ {0, 1, 2, 3}, if λ(G) = 4s+ r, then λ3(G) ≥

3s+⌈ r
2⌉. Moreover, the lower bound is sharp. We simply write λ3(G) ≥ 3λ(G)−2

4 .

From the above two results, we get the following upper bound of λ3(G ◦H).

Theorem 4. Let G and H be two non-trivial graphs such that G is connected.
Then

λ3(G ◦H) ≤ min
{⌊4λ3(G) + 2

3

⌋

|V (H)|2, δ(H) + δ(G)|V (H)|
}

.

Moreover, the upper bound is sharp.

Proof. By Proposition 3, λ(G) ≤ ⌊ 4λ3(G)+2
3 ⌋. By Proposition 1 and Theorem 3,

we have λ3(G ◦H) ≤ λ(G ◦H) = min{λ(G)|V (H)|2, δ(H)+ δ(G)|V (H)|}. It fol-

lows that λ3(G◦H) ≤ min
{⌊

4λ3(G)+2
3

⌋

|V (H)|2, δ(H)+δ(G)|V (H)|
}

. Moreover,

the example in Corollary 1 shows that the upper bound is sharp.

References

1. B. Barden, R. Libeskind-Hadas, J. Davis, W. Williams: On edge-disjoint spanning
trees in hypercubes. Infor. Proces. Lett. 70(1999), 13–16.

2. L.W. Beineke, R.J. Wilson: Topics in Structural Graph Theory. Cambrige University
Press, 2013.

3. J.A. Bondy, U.S.R. Murty: Graph Theory. GTM 244, Springer, 2008.
4. B. Brešar, S. Špacapan: Edge connectivity of strong products of graphs. Discuss.

Math. Graph Theory 27(2007), 333–343.
5. G. Chartrand, F. Okamoto, P. Zhang: Rainbow trees in graphs and generalized

connectivity. Networks 55(4)(2010), 360–367.
6. X. Cheng, D. Du: Steiner Trees in Industry. Kluwer Academic Publisher, Dordrecht,

2001.
7. D. Du, X. Hu: Steiner tree problems in computer communication networks. World

Scientific, 2008.
8. M. Feng, M. Xu, K. Wang: Identifying codes of lexicographic product of graphs.

Electron. J. Comb. 19(4)(2012), 56–63.
9. M. Grötschel: The Steiner tree packing problem in V LSI design. Math. Program.

78(1997), 265–281.
10. R. Hammack, W. Imrich, S. Klavz̆ar: Handbook of Product Graphs. Secend Edi-

tion, CRC Press, 2011.
11. M. Hager: Pendant tree-connectivity. J. Combin. Theory 38(1985), 179–189.
12. W. Imrich, S. Klavžar: Product Graphs: Structure and Recognition. Wiley, New

York, 2000.
13. S. Klavžar, S. Špacapan: On the edge-connectivity of Cartesian product graphs.

Asian-Europ. J. Math. 1(2008), 93–98.

14 The generalized 3-edge-connectivity of lexicographic product graphs

14. S. Ku, B. Wang, T. Hung: Constructing edge-disjoint spanning trees in product
networks. Parallel and Distributed Systems, IEEE Trans. Parallel & Disjoited Sys.,
14(3)(2003), 213–221.

15. F. Li, Z. Xu, H. Zhao, W. Wang: On the number of spanning trees of the lexico-
graphic product of networks. Sci. China Ser. F, 42(2012), 949–959.

16. H. Li, X. Li, Y. Sun: The generalied 3-connectivity of Cartesian product graphs.
Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43–54.

17. H. Li, X. Li, Y. Mao: On extremal graphs with at most two internally disjoint Stein-
er trees connecting any three vertices. Bull. Malays. Math. Sci. Soc. (2) 37(3)(2014),
747–756.

18. S. Li, X. Li, W. Zhou: Sharp bounds for the generalized connectivity κ3(G). Dis-
crete Math. 310(2010), 2147–2163.

19. S. Li, W. Li, X. Li: The generalized connectivity of complete equipartition 3-partite
graphs. Bull. Malays. Math. Sci. Soc. (2) 37(1)(2014), 103–121.

20. X. Li, Y. Mao: The generalized 3-connectivity of lexicographic product graphs.
Discrete Math. Theor. Comput. Sci. 16(1)(2014), 339–354.

21. X. Li, Y. Mao: The minimal size of a graph with given generalized 3-edge-
connectivity. accepted for publication in Ars Comb.

22. X. Li, Y. Mao, Y. Sun: On the generalized (edge-)connectivity of graphs. Austral.
J. Comb. 58(2014), 304–319.

23. C.St.J.A. Nash Williams: Edge-disjonint spanning trees of finite graphs. J. London
Math. Soc. 36(1961), 445–450.

24. O.R. Oellermann: Connectivity and edge-connectivity in graphs: A survey. Cong.
Numer. 116(1996), 231–252.

25. K. Ozeki, T. Yamashita: Spanning trees: A survey. Graphs Combin. 27(1)(2011),
1–26.

26. E. Palmer: On the spanning tree packing number of a graph: a survey. Discrete
Math. 230(2001), 13–21.

27. N. Sherwani: Algorithms for V LSI Physical Design Automation, 3rd Edition. K-
luwer Acad. Pub., London, 1999.

28. Y. Sun: Generalized 3-edge-connectivity of Cartesian product graphs. accepted for
publication in Czech. Math. J.

29. W. Tutte: On the problem of decomposing a graph into n connected factors. J.
London Math. Soc. 36(1961), 221–230.

30. L. Volkmann: Edge connectivity in p-partite graphs. J. Graph Theory 13(1)(1989)
1–6.

31. D. West, H. Wu: Packing Steiner trees and S-connectors in graphs. J. Comb.
Theory, Ser.B, 102(2012), 186–205.

32. J. Xu, C. Yang: Connectivity of Cartesian product graphs. Discrete Math.
306(2006), 159–165.

33. C. Yang, J. Xu: Connectivity of lexicographic product and direct product of graphs.
Ars Comb. 111(2013), 3–12.

