The generalized 3-edge-connectivity of lexicographic product graphs ${ }^{\star}$

Xueliang Li, Jun Yue, and Yan Zhao
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lxl@nankai.edu.cn; yuejun06@126.com; zhaoyan2010@mail.nankai.edu.cn

Abstract

The generalized k-edge-connectivity $\lambda_{k}(G)$ of a graph G is a natural generalization of the concept of edge-connectivity. The generalized edge-connectivity has many applications in networks. The lexicographic product of two graphs G and H, denoted by $G \circ H$, is an important method to construct large graphs from small ones. In this paper, we mainly study the generalized 3 -edge-connectivity of $G \circ H$, and get lower and upper bounds of $\lambda_{3}(G \circ H)$. An example is given to show that all bounds are sharp.

Keywords: edge-disjoint paths, edge-connectivity, Steiner tree, edgedisjoint Steiner trees, generalized edge-connectivity.

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation of Bondy and Murty [3]. For a graph G, the local edge-connectivity between two distinct vertices u and v, denoted by $\lambda(u, v)$, is the maximum number of pairwise edge-disjoint $u v$-paths. A nontrivial graph G is k-edge-connected if $\lambda(u, v) \geq k$ for any two distinct vertices u and v of G. The edge-connectivity $\lambda(G)$ of a graph G is the maximum value of k for which G is k-edge-connected

Naturally, the concept of edge-connectivity can be extended to a new concept, the generalized k-edge-connectivity, which was introduced by Li et al. [22]. For a graph $G=(V, E)$ and a set $S \subseteq V$ of at least two vertices, a Steiner tree connecting S (or simply, an S-tree) is a such subgraph $T=\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Two S-trees T and T^{\prime} are said to be edge-disjoint if $E(T) \cap E\left(T^{\prime}\right)=\emptyset$. The generalized local edge-connectivity $\lambda(S)$ is the maximum number of pairwise edge-disjoint Steiner trees connecting S. For an integer k with $2 \leq k \leq n$, the generalized k-edge-connectivity $\lambda_{k}(G)$ of G is defined as $\lambda_{k}(G)=$ $\min \left\{\lambda(S)|S \subseteq V(G),|S|=k\}\right.$. Obviously, $\lambda_{2}(G)=\lambda(G)$. Set $\lambda_{k}(G)=0$ if G is disconnected. Similarly, the concept of the generalized k-connectivity was

[^0]introduced by Hager in [11] and it is also studied in [5]. We refer to [17-19, 22, 24, 30] for some known results of the generalized connectivity and edge-connectivity.

The generalized edge-connectivity has a close relation to an important problem, the Steiner tree packing problem, which asks for finding a set of maximum number of edge-disjoint S-trees in a given graph G where $S \subseteq V(G)$, see $[9,31]$. An extreme of Steiner tree packing problem is the Spanning tree packing problem where $S=V(G)$. For any graph G, the spanning tree packing number or $S T P$ number, is the maximum number of edge-disjoint spanning trees contained in G. For the $S T P$ number, we refer to $[1,25,26]$. The difference between the Steiner tree packing problem and the generalized edge-connectivity is as follows: the former problem studies local properties of graphs since S is given beforehand, while the latter problem focuses on global properties of graphs since S runs over all k-subsets of $V(G)$.

The generalized edge-connectivity and the Steiner tree packing problem have applications in VLSI circuit design, see [9, 27]. In this application, a Steiner tree is needed to share an electronic signal by a set of terminal nodes. A Steiner tree is also used in computer communication networks and optical wireless communication networks, see [6,7]. Another application arises in the Internet Domain. Suppose that a given graph G represents a network. We select arbitrary k vertices as nodes. Suppose one of the nodes in G is a broadcaster and all other nodes are users. The broadcaster wants to broadcast as many streams of movies as possible, so that the users have the maximum number of choices. Each stream of movie is broadcasted via a tree connecting all the users and the broadcaster. So, in essence we need to find the maximum number of Steiner trees connecting all the users and the broadcaster, namely, we want to get $\lambda(S)$, where S is the selected k nodes. Clearly, it is a Steiner tree packing problem. Furthermore, if we want to know whether for any k nodes the network G has above properties, then we need to compute $\lambda_{k}(G)=\min \{\lambda(S)\}$ in order to prescribe the reliability and the security of the network.

From a theoretical perspective, both extremes of the generalized edge-connectivity problem are fundamental theorems in combinatorics. One extreme is when we have two terminals. In this case edge-disjoint trees are just edge-disjoint paths between the two terminals, and so the problem becomes the well-known edge version of Menger theorem. The other extreme is when all the vertices are terminals. In this case edge-disjoint trees are just spanning trees of the graph, and the problem becomes the classical Nash-Williams-Tutte theorem, see [23, 29].

Graph product is an important method to construct large graphs from small ones. So it has many applications in the design and analysis of networks, see [9, 14, 15]. The lexicographic product (or composition), Cartesian product, strong product and the direct product are the main four standard products of graphs. More information about the (edge-) connectivity of these four product graphs can be found in $[4,8,10,12,13,16,32]$. The generalized 3-edge-connectivity of Cartesian product graphs was studied and the lower bound is given in [28]. In
this paper, we study the generalized 3-edge-connectivity of lexicographic product graphs and provide both sharp lower and upper bounds.

Theorem 1. Let G and H be two non-trivial graphs such that G is connected. Then $\lambda_{3}(H)+\lambda_{3}(G)|V(H)| \leq \lambda_{3}(G \circ H) \leq \min \left\{\left\lfloor\frac{4 \lambda_{3}(G)+2}{3}\right\rfloor|V(H)|^{2}, \delta(H)+\right.$ $\delta(G)|V(H)|\}$. Moreover, the lower and upper bounds are sharp.

Note that the vertex version, the generalized 3-connectivity of Cartesian product and lexicographic product graphs, was studied in $[16,20]$. The results there are quite different from ours.

2 Preliminary and notation

Let $G=(V, E)$ be a graph and S be an s-subset of $V . G[S]$ denotes the induced subgraph of G on S and $\mathcal{E}^{|S|}$ denotes the empty graph on S, that is, the union of s isolated vertices. Connect x to S is to join x to each vertex of S for a vertex x outside S. Given two sets X, Y of vertices, we call a path P an $X Y$-path if the end-vertices of P are in X and Y, respectively, and all inner vertices are in neither X nor Y. If u and v are two vertices on a path $P, u P v$ will denote the segment of P from u to v. Two distinct paths are edge-disjoint if they have no edges in common; internally disjoint if they have no internal vertices in common; vertex-disjoint if they have no vertices in common. For $X=\left\{x_{1}, x_{2}, \cdots, x_{k}\right\}$ and $Y=\left\{y_{1}, y_{2}, \cdots, y_{k}\right\}$, an $X Y$-linkage is defined as a set Q of k vertex-disjoint $X Y$-paths $x_{i} P_{i} y_{i}, 1 \leq i \leq k$.

Let $G=\left(V_{1}, E_{1}\right)$ and $H=\left(V_{2}, E_{2}\right)$. The lexicographic product (or composition) $G \circ H$ of G and H is defined as follows: $V(G \circ H)=V_{1} \times V_{2}$, two vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent if and only if either $u u^{\prime} \in E_{1}$ or $u=u^{\prime}$, $v v^{\prime} \in E_{2}$. In other words, $G \circ H$ is obtained by substituting a copy $H(u)$ of H for every vertex u of G and joining each vertex of $H(u)$ with every vertex of $H\left(u^{\prime}\right)$ if $u u^{\prime} \in E_{1}$. The vertex set $G(v)=\left\{(u, v) \mid u \in V_{1}\right\}$ for some fixed vertex v of H is called a layer of graph G or simply a G-layer. Analogously, we define the H-layer with respect to a vertex u of G and denote it by $H(u)$. It is not hard to see that any G-layer induces a subgraph of $G \circ H$ that is isomorphic to G and any H-layer induces a subgraph of $G \circ H$ that is isomorphic to H. For any $u, u^{\prime} \in V(G)$ and $v, v^{\prime} \in V(H),(u, v),\left(u, v^{\prime}\right) \in V(H(u))$, $\left(u^{\prime}, v\right),\left(u^{\prime}, v^{\prime}\right) \in V\left(H\left(u^{\prime}\right)\right),(u, v),\left(u^{\prime}, v\right) \in V(G(v)),\left(u, v^{\prime}\right),\left(u^{\prime}, v^{\prime}\right) \in V\left(G\left(v^{\prime}\right)\right)$. We view $\left(u, v^{\prime}\right)$ and $\left(u^{\prime}, v\right)$ as the vertices corresponding to (u, v) in $G\left(v^{\prime}\right)$ and $H\left(u^{\prime}\right)$, respectively. Similarly, we can define the path and tree corresponding to some path and tree, respectively. The edge $(u, v)\left(u^{\prime}, v^{\prime}\right)$ is called a first-type edge if $u u^{\prime} \in E_{1}$ and $v=v^{\prime}$; a second-type edge if $v v^{\prime} \in E_{2}$ and $u=u^{\prime}$; a thirdtype edge if $u u^{\prime} \in E_{1}$ and $v \neq v^{\prime}$. For a subset W of $V(G)$ with $W=\left\{u_{1}, \cdots, u_{t}\right\}$, we denote $H(W)=H\left(u_{1}\right) \cup \cdots \cup H\left(u_{t}\right)$. We use K_{W} to denote a subgraph of $G \circ H$, where $V\left(K_{W}\right)=V(G[W] \circ H), E\left(K_{W}\right)=E(G[W] \circ H) \backslash E(H(W))$, namely, the end-vertices of an edge of K_{W} are in different H-layers.

Unlike the other products, the lexicographic product does not satisfy the commutative law, that is, $G \circ H$ could not be isomorphic to $H \circ G$. By a simple observation, $G \circ H$ is connected if and only if G is connected. Moreover, $\delta(G \circ H)=$ $\delta(G)|V(H)|+\delta(H)$.

Let $G=(V, E)$ be a connected graph, $S=\{x, y, z\} \subseteq V$, and T be an S-tree. We call T a type $I S$-tree if it is just a path whose end-vertices belong to S; a type $I I S$-tree if it has exactly three leaves x, y, z. Note that each vertex in a type I S-tree has degree two except the two end-vertices in S. If T is of type $I I$, every vertex in $T \backslash S$ has degree two except one vertex of degree three. By deleting some vertices and edges of an S-tree T, it is easy to check that T is of type I or $I I$. Because our aim is to get as many S-trees as possible, in this paper, each S-tree is of type I or $I I$. Therefore, we get the following proposition.

Proposition 1. Let $G=(V, E)$ be a graph with $\lambda_{3}(G)=k \geq 2, S=\{x, y, z\} \subseteq$ V. Then there exist $k-2$ edge-disjoint S-trees T_{1}, \cdots, T_{k-2} such that $E\left(T_{i}\right) \cap$ $E(G[S])=\emptyset$ where $1 \leq i \leq k-2$.

Proof. By the definition of an S-tree, we know that $\left|E\left(T_{i}\right) \cap E(G[S])\right| \leq 2$ and $\left|\left\{T_{i} \mid E\left(T_{i}\right) \cap E(G[S]) \neq \emptyset\right\}\right| \leq 3$. Let T_{1}, \cdots, T_{k} be k edge-disjoint S-trees. If $\left|\left\{T_{i} \mid E\left(T_{i}\right) \cap E(G[S]) \neq \emptyset\right\}\right| \leq 2$, we are done. Thus, it remains to consider the case when $G[S]$ is a triangle. Without loss of generality, assume that $\mid\left\{T_{i} \mid E\left(T_{i}\right) \cap\right.$ $E(G[S]) \neq \emptyset\} \mid=3$ and $E\left(T_{i}\right) \cap E(G[S]) \neq \emptyset$, where $i=1,2,3$. Then T_{1}, T_{2}, T_{3} have the structures F_{1} or F_{2} shown in Figure 1. Furthermore, we can obtain T_{1}^{\prime}, $T_{2}^{\prime}, T_{3}^{\prime}$ from T_{1}, T_{2}, T_{3} such that $E\left(T_{1}^{\prime}\right) \cap E(G[S])=\emptyset$. See figures F_{1}^{\prime} and F_{2}^{\prime} in Figure 1, where the S-tree T_{1}^{\prime} is shown by gray lines. Thus $T_{1}^{\prime}, T_{4}, \cdots, T_{k}$ are our desired $k-2$ edge-disjoint S-trees.

Fig. 1. Three S-trees of type I.

Li et al. [22,21] got the following results which will be useful for our proof.
Observation 1 ([22]) For any graph G of order $n, \lambda_{k}(G) \leq \lambda(G)$. Moreover, the upper bound is tight.

Observation 2 ([22]) If G is a connected graph, then $\lambda_{k}(G) \leq \delta(G)$. Moreover, the upper bound is tight.

Proposition 2. ([21]) Let G be a connected graph of order n with minimum degree δ. If there are two adjacent vertices of degree δ, then $\lambda_{k}(G) \leq \delta-1$ for $3 \leq k \leq n$. Moreover, the upper bound is sharp.

From Proposition 2, it is easy to get the following observation.
Observation 3 Let G be a connected graph with $\lambda_{3}(G)=k$, and x, y be two adjacent vertices of G. Then $d_{G}(x) \geq k+1$ or $d_{G}(y) \geq k+1$.

Example 1. Let G be a path of length two and H be a complete graph of order four, and T_{1}, T_{2} be two edge-disjoint S-trees in H, where $S=\{x, y, z\} \subseteq V(H)$. The structure of $G \circ\left(T_{1} \cup T_{2}\right)$ is shown as F_{a} in Figure 2, where the edges of a complete bipartite graph is simplified by bold black crossing edges. Note that $E\left(G \circ T_{1}\right) \cap E\left(G \circ T_{2}\right)=E\left(G \circ \mathcal{E}^{|S|}\right)$.

Fig. 2. The structures of $G \circ\left(T_{1} \cup T_{2}\right)$ and $\left(T_{1} \cup T_{2}\right) \circ H$.

Remark 1. Two edge-disjoint S-trees T_{1}, T_{2} in H may have other vertices in common except S. If $V\left(T_{1}\right) \cap V\left(T_{2}\right)=W$, then $E\left(G \circ T_{1}\right) \cap E\left(G \circ T_{2}\right)=E(G \circ$ $\left.\mathcal{E}^{|W|}\right)$.

Example 2. Let G be a complete graph of order four and H be an arbitrary graph, and T_{1}, T_{2} be two edge-disjoint S-trees in G, where $S=\{x, y, z\} \subseteq V(G)$. The structure of $\left(T_{1} \cup T_{2}\right) \circ H$ is shown as F_{b} in Figure 2 and $E\left(T_{1} \circ H\right) \cap E\left(T_{2} \circ\right.$ $H)=E(H(S))$.

Remark 2. Two edge-disjoint S-trees T_{1}, T_{2} in G may have other vertices in common except S. If $V\left(T_{1}\right) \cap V\left(T_{2}\right)=W$, then $E\left(T_{1} \circ H\right) \cap E\left(T_{2} \circ H\right)=E(H(W))$.

3 Lower bound of $\lambda_{3}(G \circ H)$

In this section, we mainly prove the following theorem.
Theorem 2. Let G and H be two non-trivial graphs such that G is connected. Then $\lambda_{3}(G \circ H) \geq \lambda_{3}(H)+\lambda_{3}(G)|V(H)|$. Moreover, the lower bound is sharp.

By the following corollary, we know that the bound of the above theorem is sharp.

Corollary 1. $\lambda_{3}\left(P_{s} \circ P_{t}\right)=t+1$.
Proof. By Theorem 2, $\lambda_{3}\left(P_{s} \circ P_{t}\right) \geq t+1$. On the other hand, by Observation $2, \lambda_{3}\left(P_{s} \circ P_{t}\right) \leq \delta\left(P_{s} \circ P_{t}\right)=t+1$. Thus $\lambda_{3}\left(P_{s} \circ P_{t}\right)=t+1$.

Let G be a graph with $V(G)=\left\{u_{1}, u_{2}, \cdots, u_{n_{1}}\right\}$ and $\lambda_{3}(G)=r_{1}$, and let H be a graph with $V(H)=\left\{v_{1}, v_{2}, \cdots, v_{n_{2}}\right\}$ and $\lambda_{3}(H)=r_{2}$. Set $S=\{x, y, z\} \subseteq$ $V(G \circ H)$. Firstly, we give the sketch of the proof of Theorem 2. In total, the desired $r_{2}+r_{1} n_{2} S$-trees are obtained on two stages: r_{2} edge-disjoint S-trees by first-type and second-type edges on Stage I and $r_{1} n_{2}$ edge-disjoint S-trees by the remaining first-type edges and the third-type edges on Stage $I I$. Note that if H is disconnected, then $\lambda_{3}(H)=0$ as defined, thus we omit Stage I immediately. Next we shall prove Theorem 2 by a series of lemmas according to the position of x, y, z in $G \circ H$.

Lemma 1. If x, y, z belong to the same H-layer, then there exist $r_{2}+r_{1} n_{2}$ edgedisjoint S-trees.

Proof. Without loss of generality, assume that $x, y, z \in H\left(u_{1}\right), x=\left(u_{1}, v_{1}\right)$, $y=\left(u_{1}, v_{2}\right)$ and $z=\left(u_{1}, v_{3}\right)$. On Stage I, since $\lambda_{3}(H)=r_{2}$, there are r_{2} edgedisjoint S-trees in $H\left(u_{1}\right)$. On Stage $I I$, by Observation $2, u_{1}$ has r_{1} neighbors in G, say $\beta_{1}, \beta_{2}, \cdots, \beta_{r_{1}}$. Thus $T_{i j}^{*}=x\left(\beta_{i}, v_{j}\right) \cup y\left(\beta_{i}, v_{j}\right) \cup z\left(\beta_{i}, v_{j}\right)\left(1 \leq i \leq r_{1}\right.$ and $1 \leq j \leq n_{2}$) are $r_{1} n_{2} S$-trees. These $r_{2}+r_{1} n_{2} S$-trees are obviously edge-disjoint, as desired.

Lemma 2. If exactly two of x, y and z belong to the same H-layer, then there exist $r_{2}+r_{1} n_{2}$ edge-disjoint S-trees.

Proof. Assume that $x, y \in H\left(u_{1}\right), z \in H\left(u_{2}\right)$. Let $x^{\prime \prime}$ and $y^{\prime \prime}$ be the vertices in $H\left(u_{2}\right)$ corresponding to x and y, and z^{\prime} be the vertex in $H\left(u_{1}\right)$ corresponding to z, respectively. Consider the following two cases.

Case 1. $z^{\prime} \in\{x, y\}$.
Without loss of generality, assume that $z^{\prime}=x, x=\left(u_{1}, v_{1}\right), y=\left(u_{1}, v_{2}\right)$ and $z=\left(u_{2}, v_{1}\right)$.

By Observation 1, there are r_{2} edge-disjoint $v_{1} v_{2}$-paths $P_{1}, P_{2}, \cdots, P_{r_{2}}$ in H such that $\ell\left(P_{1}\right) \leq \ell\left(P_{2}\right) \leq \cdots \leq \ell\left(P_{r_{2}}\right)$. Denote the neighbor of v_{1} in P_{i} by α_{i} $\left(1 \leq i \leq r_{2}\right)$. Set $D=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r_{2}}\right\}$. Notice that $\alpha_{p} \neq \alpha_{q}$ if $p \neq q$. Similarly, there are r_{1} edge-disjoint $u_{1} u_{2}$-paths $Q_{1}, Q_{2}, \cdots, Q_{r_{1}}$ in G such that $\ell\left(Q_{1}\right) \leq$
$\ell\left(Q_{2}\right) \leq \cdots \leq \ell\left(Q_{r_{1}}\right)$. For each i with $1 \leq i \leq r_{1}$, set $Q_{i}=u_{1} \beta_{i, 1} \beta_{i, 2} \cdots \beta_{i, t_{i}-1} u_{2}$ and $\ell\left(Q_{i}\right)=t_{i}$. Also, note that $\beta_{p, 1} \neq \beta_{q, 1}$ if $p \neq q$.

On Stage I, the desired $r_{2} S$-trees are obtained associated with the longest $u_{1} u_{2}$-path $Q_{r_{1}}$. If v_{1} and v_{2} are nonadjacent in H, then $T_{i}^{*}=P_{i}\left(u_{1}\right) \cup Q_{r_{1}}\left(\alpha_{i}\right) \cup$ $z\left(u_{2}, \alpha_{i}\right)\left(1 \leq i \leq r_{2}\right)$ are $r_{2} S$-trees as shown in Figure $3(a)$, where $P_{i}\left(u_{1}\right)$ is the path in $H\left(u_{1}\right)$ corresponding to P_{i} in H, and $Q_{r_{1}}\left(\alpha_{i}\right)$ is the path in $G\left(\alpha_{i}\right)$ corresponding to $Q_{r_{1}}$ in G. Now v_{1} and v_{2} are adjacent in H, that is, $P_{1}=v_{1} v_{2}$ and $\left(u_{1}, \alpha_{1}\right)=y$. It follows from Observation 3 that $d_{H}\left(v_{1}\right) \geq r_{2}+1$ or $d_{H}\left(v_{2}\right) \geq r_{2}+1$, without loss of generality, say $d_{H}\left(v_{1}\right) \geq r_{2}+1$. For $P_{1}, T_{1}^{*}=$ $x y \cup x\left(u_{1}, \alpha_{r_{2}+1}\right) \cup Q_{r_{1}}\left(\alpha_{r_{2}+1}\right) \cup z\left(u_{2}, \alpha_{r_{2}+1}\right)$ is an S-tree, where $\alpha_{r_{2}+1} \notin D, \alpha_{r_{2}+1}$ is a neighbor of v_{1} in H, and $Q_{r_{1}}\left(\alpha_{r_{2}+1}\right)$ is the path in $G\left(\alpha_{r_{2}+1}\right)$ corresponding to $Q_{r_{1}}$, see Figure 3(b). For $P_{i}\left(2 \leq i \leq r_{2}\right)$, set $T_{i}^{*}=P_{i}\left(u_{1}\right) \cup Q_{r_{1}}\left(\alpha_{i}\right) \cup z\left(u_{2}, \alpha_{i}\right)$. It is easy to see that these $r_{2} S$-trees are edge-disjoint. The case that $d_{H}\left(v_{2}\right) \geq r_{2}+1$ can be proved similarly.

Fig. 3. The r_{2} edge-disjoint S-trees where the edges of an S-tree are shown by the same type of lines.

Up to now, we should remark that the first-type edges incident with x and y in $G \circ H$ are not used whether or not v_{1} and v_{2} are adjacent in H. Since a vertex in $V(H) \backslash\left\{v_{1}, v_{2}\right\}$ may belong to more than one $v_{1} v_{2}$-path, we make use of either the r_{2} neighbors of v_{1} or the r_{2} neighbors of v_{2} to get our desired r_{2} edge-disjoint S-trees.

Define a new graph $(G \circ H)^{*}$ from $G \circ H$ by deleting the edges of $r_{2} S$ trees on Stage I. On Stage $I I$, with the aid of $Q_{i}\left(1 \leq i \leq r_{1}\right)$, we successively construct $r_{1} n_{2} S$-trees in $(G \circ H)^{*}$ in non-decreasing order of the length of Q_{i}. We distinguish two subcases by the length t_{1} of Q_{1}.

Subcase 1.1. $t_{1} \geq 2$.
Recall that $Q_{1}=u_{1} \beta_{1,1} \beta_{1,2} \cdots \beta_{1, t_{1}-1} u_{2}$. We will obtain n_{2} internally disjoint $x y$-paths $A_{1}, A_{2}, \cdots, A_{n_{2}}$ in $K_{u_{1}, \beta_{1,1}}$, and a $V\left(H\left(\beta_{1,1}\right)\right) V\left(H\left(\beta_{1, t_{1}-1}\right)\right)$-linkage $B_{1}, B_{2}, \cdots, B_{n_{2}}$ by third-type edges associated with $\beta_{1,1} Q_{1} \beta_{1, t_{1}-1}$. Thus, $T_{i}^{*}=$ $A_{i} \cup B_{i} \cup\left(\beta_{1, t_{1}-1}, v_{i}\right) z$ are n_{2} edge-disjoint S-trees, where the subscript $i(1 \leq$ $i \leq n_{2}$) of v_{i} is expressed module n_{2} as one of $1,2, \cdots, n_{2}$. Indeed, this can be done. Set $A_{i}=x\left(\beta_{1,1}, v_{i}\right) y$ for $1 \leq i \leq n_{2}$. If $t_{1}=2$, then $B_{i}=\emptyset$. If $t_{1} \geq 3$, then $B_{i}=\left(\beta_{1,1}, v_{i}\right)\left(\beta_{1,2}, v_{i+1}\right)\left(\beta_{1,3}, v_{i}\right)\left(\beta_{1,4}, v_{i+1}\right) \cdots\left(\beta_{1, t_{1}-1}, v_{i}\right)$ and $T_{i}^{*}=A_{i} \cup B_{i} \cup$
$\left(\beta_{1, t_{1}-1}, v_{i}\right) z$ when t_{1} is even; $B_{i}=\left(\beta_{1,1}, v_{i}\right)\left(\beta_{1,2}, v_{i+1}\right)\left(\beta_{1,3}, v_{i}\right)\left(\beta_{1,4}, v_{i+1}\right) \cdots$ $\left(\beta_{1, t_{1}-1}, v_{i+1}\right)$ and $T_{i}^{*}=A_{i} \cup B_{i} \cup\left(\beta_{1, t_{1}-1}, v_{i+1}\right) z$ when t_{1} is odd. For example, let $n_{2}=4$. Then 4 edge-disjoint S-trees are shown in Figure 4 when $t_{1}=2$, $t_{1}=3$ and $t_{1}=4$, respectively.

Fig. 4. The 4 edge-disjoint S-trees where the edges of an S-tree are shown by the same type of lines.

Subcase 1.2. $t_{1}=1$ and $Q_{1}=u_{1} u_{2}$.
Since $\lambda_{3}(G)=r_{1}$, it follows from Observation 3 that $d_{G}\left(u_{1}\right) \geq r_{1}+1$ or $d_{G}\left(u_{2}\right) \geq r_{1}+1$.

If $d_{G}\left(u_{1}\right) \geq r_{1}+1$, then denote another neighbor of u_{1} in G by $\beta_{r_{1}+1,1}$ except u_{2} and $\beta_{i, 1}\left(2 \leq i \leq r_{1}\right)$. We obtain n_{2} edge-disjoint S-trees associated with Q_{1} as follows. Let $T_{1}^{*}=\left(\beta_{r_{1}+1,1}, v_{1}\right) x \cup\left(\beta_{r_{1}+1,1}, v_{1}\right) y \cup x z, T_{2}^{*}=\left(\beta_{r_{1}+1,1}, v_{2}\right) x \cup$ $\left(\beta_{r_{1}+1,1}, v_{2}\right) y \cup y z, T_{i}^{*}=\left(u_{2}, v_{i}\right) x \cup\left(u_{2}, v_{i}\right) y \cup\left(u_{2}, v_{i}\right)\left(u_{1}, v_{i+1}\right) \cup\left(u_{1}, v_{i+1}\right) z$ for $3 \leq i \leq n_{2}-1, T_{n_{2}}^{*}=\left(u_{2}, v_{n_{2}}\right) x \cup\left(u_{2}, v_{n_{2}}\right) y \cup\left(u_{2}, v_{n_{2}}\right)\left(u_{1}, v_{3}\right) \cup\left(u_{1}, v_{3}\right) z$; see Figure 5(a).

Fig. 5. The n_{2} edge-disjoint S-trees where the edges of an S-tree are shown by the same type of lines.

If $d_{G}\left(u_{2}\right) \geq r_{1}+1$, then denote another neighbor of u_{2} in G by $\gamma_{r_{1}+1}$ except u_{1} and $\beta_{i, t_{i}-1}\left(2 \leq i \leq r_{1}\right)$. For Q_{1}, set $T_{1}^{*}=x z \cup z y, T_{2}^{*}=x y^{\prime \prime} \cup y^{\prime \prime} y \cup\left(\gamma_{r_{1}+1}, v_{1}\right) y^{\prime \prime} \cup$ $\left(\gamma_{r_{1}+1}, v_{1}\right) z, T_{i}^{*}=\left(u_{2}, v_{i}\right) x \cup\left(u_{2}, v_{i}\right) y \cup\left(u_{2}, v_{i}\right)\left(u_{1}, v_{i+1}\right) \cup\left(u_{1}, v_{i+1}\right) z$ for $3 \leq$
$i \leq n_{2}-1$, and $T_{n_{2}}^{*}=\left(u_{2}, v_{n_{2}}\right) x \cup\left(u_{2}, v_{n_{2}}\right) y \cup\left(u_{2}, v_{n_{2}}\right)\left(u_{1}, v_{3}\right) \cup\left(u_{1}, v_{3}\right) z$; see Figure 5(b).

In both subcases, similar to Subcase 1.1, we are able to get n_{2} edge-disjoint S-trees associated with $Q_{i}\left(2 \leq i \leq r_{1}\right)$, it follows that $n_{2} r_{1}$ edge-disjoint S-trees are obtained, as desired.

Case 2. $z^{\prime} \notin\{x, y\}$.
Assume that $x=\left(u_{1}, v_{1}\right), y=\left(u_{1}, v_{2}\right)$ and $z=\left(u_{2}, v_{3}\right)$. Let $S^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $S^{\prime \prime}=\left\{x, y, z^{\prime}\right\}$.

By Observation 1, there are r_{1} edge-disjoint $u_{1} u_{2}$-paths $Q_{1}, Q_{2}, \cdots, Q_{r_{1}}$ in G such that $\ell\left(Q_{1}\right) \leq \ell\left(Q_{2}\right) \leq \cdots \leq \ell\left(Q_{r_{1}}\right)$. By Proposition 1, r_{2} edge-disjoint S^{\prime}-trees $T_{1}, T_{2}, \cdots, T_{r_{2}}$ exist in H such that $0 \leq\left|\left\{T_{i} \mid E\left(T_{i}\right) \cap E\left(H\left[S^{\prime}\right]\right)\right\}\right| \leq 2$. Suppose $E\left(T_{i}\right) \cap E\left(H\left[S^{\prime}\right]\right)=\emptyset$ for $3 \leq i \leq r_{2}$. According to whether T_{1} and T_{2} share edges with $E\left(H\left[S^{\prime}\right]\right)$ or not, we get the desired S-trees in the following subcases.

Subcase 2.1. $E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right)=\emptyset$ and $E\left(T_{2}\right) \cap E\left(H\left[S^{\prime}\right]\right)=\emptyset$.
Denote the neighbor of v_{3} in T_{i} by α_{i} where $1 \leq i \leq r_{2}$. On Stage I, let $T_{i}^{*}=T_{i}\left(u_{1}\right) \cup Q_{r_{1}}\left(\alpha_{i}\right) \cup z\left(u_{2}, \alpha_{i}\right)$, where $T_{i}\left(u_{1}\right)$ is the tree in $H\left(u_{1}\right)$ corresponding to $T_{i}, Q_{r_{1}}\left(\alpha_{i}\right)$ is the path in $G\left(\alpha_{i}\right)$ corresponding to $Q_{r_{1}}$ for $1 \leq i \leq r_{2}$. On Stage $I I$, if $\ell\left(Q_{1}\right) \geq 2$, then construct $n_{2} S$-trees similar to Case 1 ; if $\ell\left(Q_{1}\right)=1$, then either u_{1} or u_{2} has a neighbor which is not in each $u_{1} u_{2}$-path Q_{i} in G. Thus n_{2} S-trees associated with Q_{1} are shown in Figure 6 (u_{1} has another neighbor in G in Figure 6(a) and u_{2} has another neighbor in G in Figure 6(b)). Similar to Case 1, we obtain $n_{2} S$-trees associated with Q_{i} for $2 \leq i \leq r_{1}$, thus there exist $r_{2}+r_{1} n_{2}$ edge-disjoint S-trees, as desired.

Fig. 6. The n_{2} edge-disjoint S-trees where the edges of an S-tree are shown by the same type of lines.

Subcase 2.2. $E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right) \neq \emptyset$ and $E\left(T_{2}\right) \cap E\left(H\left[S^{\prime}\right]\right)=\emptyset$.
Suppose $\left|E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right)\right|=1$ and $E\left(T_{2}\right) \cap E\left(H\left[S^{\prime}\right]\right)=\emptyset$. Furthermore, suppose $E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right)=v_{1} v_{2}$ and $d_{T_{1}}\left(v_{2}\right)=2$ (the other possibilities can be proved similarly). For $1 \leq i \leq r_{2}$, denote the neighbor of v_{3} in T_{i} by α_{i}. Then we are able to obtain $r_{2} S$-trees with the aid of α_{i} on Stage I and $r_{1} n_{2}$ S-trees on Stage $I I$ similar to Subcase 2.1. It remains to consider the case that $\left|E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right)\right|=2$ and $E\left(T_{2}\right) \cap E\left(H\left[S^{\prime}\right]\right)=\emptyset$. On Stage I, if $d_{Q_{r_{1}}}\left(u_{1}, u_{2}\right) \geq$ 2 and $d_{T_{1}}\left(v_{2}\right)=2$ or $d_{Q_{r_{1}}}\left(u_{1}, u_{2}\right) \geq 2$ and $d_{T_{1}}\left(v_{3}\right)=2$, then an S-tree T_{1}^{*}
associated with T_{1} has the structure as shown in Figure 7, where \bar{x} is the neighbor of $x^{\prime \prime}$ in $Q_{r_{1}}\left(v_{1}\right)$; if $d_{Q_{r_{1}}}\left(u_{1}, u_{2}\right)=1$, then $T_{1}^{*}=x y y^{\prime \prime} z$ (when u_{1} has another neighbor outside Q_{i}) or $T_{1}^{*}=x y z^{\prime} z$ (when u_{2} has another neighbor outside Q_{i}). We obtain other $r_{2}+r_{1} n_{2}-1 S$-trees similar to Subcase 2.1. Thus there exist $r_{2}+r_{1} n_{2}$ edge-disjoint S-trees, as desired.

Fig. 7. The solid lines stand for the edges of the S-tree.

Subcase 2.3. $E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right) \neq \emptyset$ and $E\left(T_{2}\right) \cap E\left(H\left[S^{\prime}\right]\right) \neq \emptyset$.
Without loss of generality, suppose $\left|E\left(T_{2}\right) \cap E\left(H\left[S^{\prime}\right]\right)\right|=1$. If $\mid E\left(T_{1}\right) \cap$ $E\left(H\left[S^{\prime}\right]\right) \mid=1$, then assume that the two S^{\prime}-trees T_{1} and T_{2} have the structure as one of $F_{3}, F_{4}, F_{5}, F_{6}$ in Figure 8, where v_{2} is marked. For $1 \leq i \leq r_{2}$, denote the neighbor of v_{2} in $T_{i} \backslash\left\{v_{1}, v_{3}\right\}$ by α_{i} and construct $r_{2}+r_{1} n_{2} S$-trees similar to Subcase 2.1. So $\left|E\left(T_{1}\right) \cap E\left(H\left[S^{\prime}\right]\right)\right|=2$, and then T_{1} and T_{2} have the structure F_{7}, where T_{1} is shown in Figure 8 by dotted lines. For $2 \leq i \leq r_{2}$, denote the neighbor of v_{2} in $T_{i} \backslash\left\{v_{1}, v_{3}\right\}$ by α_{i}. Construct an S-tree T_{1}^{*} similar to Subcase 2.2 and other $r_{2}+r_{1} n_{2}-1 S$-trees similar to Subcase 2.1. Thus, there exist $r_{2}+r_{1} n_{2}$ edge-disjoint S-trees, as desired.

Fig. 8. Two S^{\prime}-trees of type I.

Lemma 3. If x, y, z belong to distinct H-layers, then there exist $r_{2}+r_{1} n_{2}$ edgedisjoint S-trees.

Proof. Assume that $x \in H\left(u_{1}\right), y \in H\left(u_{2}\right)$ and $z \in H\left(u_{3}\right)$. Let y^{\prime}, z^{\prime} be the vertex corresponding to y, z in $H\left(u_{1}\right), x^{\prime \prime}, z^{\prime \prime}$ be the vertex corresponding to x, z in $H\left(u_{2}\right)$, and $x^{\prime \prime \prime}, y^{\prime \prime \prime}$ be the vertex corresponding to x, y in $H\left(u_{3}\right)$, respectively. We distinguish the following three cases.

Case 1. x, y, z belong to the same G-layer.
We may assume that $x=\left(u_{1}, v_{1}\right), y=\left(u_{2}, v_{1}\right), z=\left(u_{3}, v_{1}\right)$. It is easily seen that there are r_{2} neighbors of v_{1} in H, say $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r_{2}}$, and r_{1} edgedisjoint $\left\{u_{1}, u_{2}, u_{3}\right\}$-trees $T_{1}, T_{2}, \cdots, T_{r_{1}}$ in G. For a tree T_{i} in G, set by $T_{i}\left(\alpha_{j}\right)$ the corresponding tree in $G\left(\alpha_{j}\right)$ for $1 \leq i \leq r_{1}, 1 \leq j \leq r_{2}$.

On Stage $I, T_{j}^{*}=T_{1}\left(\alpha_{j}\right) \cup x\left(u_{1}, \alpha_{j}\right) \cup y\left(u_{2}, \alpha_{j}\right) \cup z\left(u_{3}, \alpha_{j}\right)\left(1 \leq j \leq r_{2}\right)$ are r_{2} edge-disjoint S-trees.

On Stage $I I$, if T_{j} is of type I for some j with $1 \leq j \leq r_{1}$, then we may assume that $d_{T_{j}}\left(u_{2}\right)=2$. Denote the neighbor of u_{1}, u_{3} in T_{j} by η_{j}, γ_{j} and the neighbors of u_{2} by $\beta_{j}, \bar{\beta}_{j}\left(\beta_{j}\right.$ is nearer to u_{1} than $\left.\bar{\beta}_{j}\right)$, where β_{j}, η_{j} and $\bar{\beta}_{j}, \gamma_{j}$ may be the same vertex. Associated with $u_{1} T_{j} u_{2}$ and $u_{2} T_{j} u_{3}$, there are n_{2} edge-disjoint $x y$-paths $A=\left\{A_{1}, \cdots, A_{n_{2}}\right\}$ and edge-disjoint $y z$-paths $B=$ $\left\{B_{1}, \cdots, B_{n_{2}}\right\}$, respectively. Then $T_{i j}^{*}=A_{i} \cup B_{i}\left(1 \leq i \leq n_{2}\right)$ are n_{2} edgedisjoint S-trees. Indeed, this can be done. We will only provide the construction of A according to $d_{T_{j}}\left(u_{1}, u_{2}\right)$, since the construction of B is similar to that of A. If $d_{T_{j}}\left(u_{1}, u_{2}\right)=1$, then set $A_{1}=x y, A_{i}=x\left(u_{2}, v_{i}\right)\left(u_{1}, v_{i+1}\right) y$ for $2 \leq i \leq n_{2}-1$, and $A_{n_{2}}=x\left(u_{2}, v_{n_{2}}\right)\left(u_{1}, v_{2}\right) y$; if $d_{T_{j}}\left(u_{1}, u_{2}\right)=2$, then set $A_{i}=x\left(\eta_{j}, v_{i}\right) y$ for $1 \leq i \leq n_{2}$. It remains to consider the case that $d_{T_{j}}\left(u_{1}, u_{2}\right) \geq 3$. Since there is a $V\left(H\left(\eta_{j}\right)\right) V\left(H\left(\beta_{j}\right)\right)$-linkage $D_{1}, D_{2}, \cdots, D_{n_{2}}$ by third-type edges of $G \circ H$ associated with $\eta_{j} T_{j} \beta_{j}$, it follows that $A_{i}=x\left(\eta_{j}, v_{i}\right) \cup D_{i} \cup\left(\beta_{j}, v_{i}\right) y$, where the subscript $i\left(1 \leq i \leq n_{2}\right)$ of v_{i} is expressed module n_{2} as one of $1,2, \cdots, n_{2}$. It remains to consider the case that T_{j} is of type $I I$. Denote the neighbor of u_{1}, u_{2}, u_{3} in T_{j} by $\eta_{j}, \beta_{j}, \gamma_{j}$ and the only one three-degree vertex in T_{j} by $w_{j}\left(\eta_{j}\right.$, β_{j}, γ_{j} and w_{j} may be the same vertex). We find a $V\left(H\left(\eta_{j}\right)\right) V\left(H\left(\beta_{j}\right)\right)$-linkage and a $V\left(H\left(\gamma_{j}\right)\right) V\left(H\left(w_{j}\right)\right)$-linkage respectively by third-type edges of $G \circ H$, and connect x, y, z respectively to $V\left(H\left(\eta_{j}\right)\right), V\left(H\left(\beta_{j}\right)\right)$ and $V\left(H\left(\gamma_{j}\right)\right)$. Thus, n_{2} edge-disjoint S-trees are obtained associated with T_{j}. Since $1 \leq j \leq r_{1}$, it follows that $r_{1} n_{2}$ edge-disjoint S-trees are obtained on Stage $I I$, as desired.

Case 2. Exactly two of x, y, z belong to the same G-layer.
We only consider the case $x=y^{\prime}$ (the other cases $x=z^{\prime}$ or $y^{\prime}=z^{\prime}$ can be proved by similar arguments). Assume that $x=\left(u_{1}, v_{1}\right), y=\left(u_{2}, v_{1}\right)$ and $z=$ $\left(u_{3}, v_{2}\right)$. Since $\lambda_{3}(H)=r_{2}$, there exist r_{2} edge-disjoint $v_{1} v_{2}$-paths $P_{1}, P_{2}, \cdots, P_{r_{2}}$ in H such that $\ell\left(P_{1}\right) \leq \ell\left(P_{2}\right) \leq \cdots \leq \ell\left(P_{r_{2}}\right)$. For $1 \leq i \leq r_{2}$, denote the neighbor of v_{1} and v_{2} in P_{i} by α_{i} and β_{i}, respectively, and denote by $P_{i}\left(u_{3}\right)$ in $H\left(u_{3}\right)$ corresponding to P_{i}. Since $\lambda_{3}(G)=r_{1}$, there are r_{1} edge-disjoint $\left\{u_{1}, u_{2}, u_{3}\right\}$ trees $T_{1}, T_{2}, \cdots, T_{r_{1}}$ in G.

On Stage I, if $\ell\left(P_{1}\right) \geq 2$, then set $T_{i}^{*}=x\left(u_{1}, \alpha_{i}\right) \cup y\left(u_{2}, \alpha_{i}\right) \cup z P_{i}\left(u_{3}\right)\left(u_{3}, \alpha_{i}\right) \cup$ $T_{1}\left(\alpha_{i}\right)$ for $1 \leq i \leq r_{2}$. Otherwise, $\ell\left(P_{1}\right)=1$, that is, v_{1} is adjacent to v_{2}. Then $d_{H}\left(v_{1}\right) \geq r_{2}+1$ or $d_{H}\left(v_{2}\right) \geq r_{2}+1$. If $d_{H}\left(v_{1}\right) \geq r_{2}+1$, then $T_{1}^{*}=$ $\left\{x\left(u_{1}, \alpha_{r_{2}+1}\right), y\left(u_{2}, \alpha_{r_{2}+1}\right), z x^{\prime \prime \prime}, x^{\prime \prime \prime}\left(u_{3}, \alpha_{r_{2}+1}\right)\right\}$
$\cup T_{1}\left(\alpha_{r_{2}+1}\right)$, where $\alpha_{r_{2}+1}$ is another neighbor of v_{1} except $\alpha_{i}\left(1 \leq i \leq r_{2}\right)$. If $d_{H}\left(v_{2}\right) \geq r_{2}+1$, then $T_{1}^{*}=\left\{x z^{\prime}, z^{\prime}\left(u_{1}, \beta_{r_{2}+1}\right), y z^{\prime \prime}, z^{\prime \prime}\left(u_{2}, \beta_{r_{2}+1}\right), z\left(u_{3}, \beta_{r_{2}+1}\right)\right\} \cup$ $T_{1}\left(\beta_{r_{2}+1}\right)$, where $\beta_{r_{2}+1}$ is another neighbor of v_{1} except $\beta_{i}\left(1 \leq i \leq r_{2}\right)$.

By similar arguments as in Case 1 of Lemma 3, $r_{1} n_{2}$ edge-disjoint S-trees can be obtained on Stage $I I$.

Case 3. x, y, z belong to different G-layers.
Assume that $x=\left(u_{1}, v_{1}\right), y=\left(u_{2}, v_{2}\right)$ and $z=\left(u_{3}, v_{3}\right)$. Let $S^{\prime}=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $S^{\prime \prime}=\left\{u_{1}, u_{2}, u_{3}\right\}$.

Since $\lambda_{3}(H)=r_{2}$, there are r_{2} edge-disjoint S^{\prime}-trees $T_{1}, T_{2}, \cdots, T_{r_{2}}$ in H. For $1 \leq i \leq r_{2}$, denote by α_{i} the vertex in T_{i} adjacent to a vertex in S^{\prime}, say v_{1}, and $\ell\left(T_{i}\right)$ denotes the size of T_{i}. Similarly, there are r_{1} edge-disjoint $S^{\prime \prime}$-trees $T_{1}^{\prime}, T_{2}^{\prime}, \cdots, T_{r_{1}}^{\prime}$ in G.

On Stage I, if $\ell\left(T_{i}\right) \geq 3$ for each i with $1 \leq i \leq r_{2}$, then let $T_{i}^{*}=x\left(u_{1}, \alpha_{i}\right) \cup$ $y T_{i}\left(u_{2}\right)\left(u_{2}, \alpha_{i}\right) \cup z T_{i}\left(u_{3}\right)\left(u_{3}, \alpha_{i}\right) \cup T_{1}^{\prime}\left(\alpha_{i}\right)$. Otherwise, similar to Case 2 of Lemma 2 , the most difficult case is that there is an S^{\prime}-tree of size two. Suppose $\ell\left(T_{1}\right)=2$ and $d_{T_{1}}\left(v_{2}\right)=2$. Thus T_{1}^{*} has three structures as shown in Figure 9 where T_{1}^{\prime} is of type $I I$ in Figure $9(a), T_{1}^{\prime}$ is of type I and $d_{T_{1}^{\prime}}\left(u_{1}\right)=2$ in Figure $9(b)$ and T_{1}^{\prime} is of type I and $d_{T_{1}^{\prime}}\left(u_{1}\right)=1$ in Figure $9(c)$.

Fig. 9. The S-tree with the aid of T_{1}^{\prime} shown by the solid lines.

On Stage $I I, r_{1} n_{2}$ edge-disjoint S-trees are obtained by similar arguments as in Case 1 of Lemma 3.

In each case, we obtain $r_{2}+r_{1} n_{2} S$-trees, and it is easily seen that these S-trees are edge-disjoint, as desired.

From the above three lemmas, Theorem 2 follows immediately.

4 Upper bound of $\lambda_{3}(G \circ H)$

In this section, we give an upper bound of the generalized 3-edge-connectivity of the lexicographic product of two graphs.

Yang and Xu [33] investigated the classical edge-connectivity of the lexicographic product of two graphs.

Theorem 3. [33] Let G and H be two non-trivial graphs such that G is connected. Then

$$
\lambda(G \circ H)=\min \left\{\lambda(G)|V(H)|^{2}, \delta(H)+\delta(G)|V(H)|\right\} .
$$

In [22], the sharp lower bound of the generalized 3-edge-connectivity of a graph is given as follows.

Proposition 3. [22] Let G be a connected graph with n vertices. For every two integers s and r with $s \geq 0$ and $r \in\{0,1,2,3\}$, if $\lambda(G)=4 s+r$, then $\lambda_{3}(G) \geq$ $3 s+\left\lceil\frac{r}{2}\right\rceil$. Moreover, the lower bound is sharp. We simply write $\lambda_{3}(G) \geq \frac{3 \lambda(G)-2}{4}$.

From the above two results, we get the following upper bound of $\lambda_{3}(G \circ H)$.
Theorem 4. Let G and H be two non-trivial graphs such that G is connected. Then

$$
\lambda_{3}(G \circ H) \leq \min \left\{\left\lfloor\frac{4 \lambda_{3}(G)+2}{3}\right\rfloor|V(H)|^{2}, \delta(H)+\delta(G)|V(H)|\right\} .
$$

Moreover, the upper bound is sharp.
Proof. By Proposition 3, $\lambda(G) \leq\left\lfloor\frac{4 \lambda_{3}(G)+2}{3}\right\rfloor$. By Proposition 1 and Theorem 3, we have $\lambda_{3}(G \circ H) \leq \lambda(G \circ H)=\min \left\{\lambda(G)|V(H)|^{2}, \delta(H)+\delta(G)|V(H)|\right\}$. It follows that $\lambda_{3}(G \circ H) \leq \min \left\{\left\lfloor\frac{4 \lambda_{3}(G)+2}{3}\right\rfloor|V(H)|^{2}, \delta(H)+\delta(G)|V(H)|\right\}$. Moreover, the example in Corollary 1 shows that the upper bound is sharp.

References

1. B. Barden, R. Libeskind-Hadas, J. Davis, W. Williams: On edge-disjoint spanning trees in hypercubes. Infor. Proces. Lett. 70(1999), 13-16.
2. L.W. Beineke, R.J. Wilson: Topics in Structural Graph Theory. Cambrige University Press, 2013.
3. J.A. Bondy, U.S.R. Murty: Graph Theory. GTM 244, Springer, 2008.
4. B. Brešar, S. Špacapan: Edge connectivity of strong products of graphs. Discuss. Math. Graph Theory 27(2007), 333-343.
5. G. Chartrand, F. Okamoto, P. Zhang: Rainbow trees in graphs and generalized connectivity. Networks $55(4)(2010), 360-367$.
6. X. Cheng, D. Du: Steiner Trees in Industry. Kluwer Academic Publisher, Dordrecht, 2001.
7. D. Du, X. Hu: Steiner tree problems in computer communication networks. World Scientific, 2008.
8. M. Feng, M. Xu, K. Wang: Identifying codes of lexicographic product of graphs. Electron. J. Comb. 19(4)(2012), 56-63
9. M. Grötschel: The Steiner tree packing problem in VLSI design. Math. Program. 78(1997), 265-281.
10. R. Hammack, W. Imrich, S. Klavžar: Handbook of Product Graphs. Secend Edition, CRC Press, 2011.
11. M. Hager: Pendant tree-connectivity. J. Combin. Theory 38(1985), 179-189.
12. W. Imrich, S. Klavžar: Product Graphs: Structure and Recognition. Wiley, New York, 2000.
13. S. Klavžar, S. Špacapan: On the edge-connectivity of Cartesian product graphs. Asian-Europ. J. Math. 1(2008), 93-98.
14. S. Ku, B. Wang, T. Hung: Constructing edge-disjoint spanning trees in product networks. Parallel and Distributed Systems, IEEE Trans. Parallel \& Disjoited Sys., $14(3)(2003), 213-221$.
15. F. Li, Z. Xu, H. Zhao, W. Wang: On the number of spanning trees of the lexicographic product of networks. Sci. China Ser. F, 42(2012), 949-959.
16. H. Li, X. Li, Y. Sun: The generalied 3-connectivity of Cartesian product graphs. Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43-54.
17. H. Li, X. Li, Y. Mao: On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices. Bull. Malays. Math. Sci. Soc. (2) 37(3)(2014), 747-756.
18. S. Li, X. Li, W. Zhou: Sharp bounds for the generalized connectivity $\kappa_{3}(G)$. Discrete Math. $310(2010)$, 2147-2163.
19. S. Li, W. Li, X. Li: The generalized connectivity of complete equipartition 3-partite graphs. Bull. Malays. Math. Sci. Soc. (2) 37(1)(2014), 103-121.
20. X. Li, Y. Mao: The generalized 3-connectivity of lexicographic product graphs. Discrete Math. Theor. Comput. Sci. 16(1)(2014), 339-354.
21. X. Li, Y. Mao: The minimal size of a graph with given generalized 3-edgeconnectivity. accepted for publication in Ars Comb.
22. X. Li, Y. Mao, Y. Sun: On the generalized (edge-)connectivity of graphs. Austral. J. Comb. 58(2014), 304-319.
23. C.St.J.A. Nash Williams: Edge-disjonint spanning trees of finite graphs. J. London Math. Soc. 36(1961), 445-450.
24. O.R. Oellermann: Connectivity and edge-connectivity in graphs: A survey. Cong. Numer. 116(1996), 231-252.
25. K. Ozeki, T. Yamashita: Spanning trees: A survey. Graphs Combin. 27(1)(2011), 1-26.
26. E. Palmer: On the spanning tree packing number of a graph: a survey. Discrete Math. 230(2001), 13-21.
27. N. Sherwani: Algorithms for VLSI Physical Design Automation, 3rd Edition. Kluwer Acad. Pub., London, 1999.
28. Y. Sun: Generalized 3-edge-connectivity of Cartesian product graphs. accepted for publication in Czech. Math. J.
29. W. Tutte: On the problem of decomposing a graph into n connected factors. J. London Math. Soc. 36(1961), 221-230.
30. L. Volkmann: Edge connectivity in p-partite graphs. J. Graph Theory 13(1)(1989) 1-6.
31. D. West, H. Wu: Packing Steiner trees and S-connectors in graphs. J. Comb. Theory, Ser.B, 102(2012), 186-205.
32. J. Xu, C. Yang: Connectivity of Cartesian product graphs. Discrete Math. 306(2006), 159-165.
33. C. Yang, J. Xu: Connectivity of lexicographic product and direct product of graphs. Ars Comb. 111(2013), 3-12.

[^0]: * Supported by NSFC No. 11371205 and PCSIRT.

