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Abstract

The maximum local connectivity was first introduced by Bollobás. The problem

of determining the maximum number of edges in a graph with κ ≤ ℓ has been studied

extensively. We consider a generalization of the above concept and problem. For

S ⊆ V (G) and |S| ≥ 2, the generalized local connectivity κ(S) is the maximum

number of internally disjoint trees connecting S in G. The parameter κk(G) =

max{κ(S)|S ⊆ V (G), |S| = k} is called the maximum generalized local connectivity

of G. In this paper the problem of determining the largest number f(n;κk ≤ ℓ) of

edges for graphs of order n that have maximum generalized local connectivity at

most ℓ is considered. The exact value of f(n;κk ≤ ℓ) for k = n, n− 1 is determined.

For a general k, we construct a graph to obtain a sharp lower bound.

Keywords: (edge-)connectivity, Steiner tree, internally (edge-)disjoint trees, gen-

eralized local (edge-)connectivity.

AMS subject classification 2010: 05C40, 05C05, 05C35, 05C75.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to [7] for

graph theoretical notation and terminology not described here. For any two distinct ver-

tices x and y in G, the local connectivity κG(x, y) is the maximum number of internally dis-

joint paths connecting x and y. Then κ(G) = min{κG(x, y)|x, y ∈ V (G), x 6= y} is defined

∗Supported by NSFC No.11071130, and the “973” program.
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to be the connectivity of G. In contrast to this parameter, κ(G) = max{κG(x, y)|x, y ∈

V (G), x 6= y}, first introduced by Bollobás (see [4] for example), is called the maximum

local connectivity of G. As we have seen, the connectivity and maximum local connec-

tivity are two extremes of the local connectivity of a graph. A invariant lying between

these two extremes is the average connectivity κ̂(G) of a graph, which is defined to be

κ̂(G) =
∑

x,y∈V (G) κG(x, y)/
(
n

2

)
; see [3]. The problem of determining the smallest number

of edges, h1(n; κ ≥ r), which guarantees that any graph with n vertices and h1(n; κ ≥ r)

edges will contain a pair of vertices joined by r internally disjoint paths was posed by

Erdös and Gallai; see [1] for details. Bollobás [4] considered the problem of determining

the largest number of edges, f(n; κ ≤ ℓ), for graphs with n vertices and local connectivity

at most ℓ, that is, f(n; κ ≤ ℓ) = max{e(G)||V (G)| = n and κ(G) ≤ ℓ}. One can see

that h1(n; κ ≥ ℓ + 1) = f(n; κ ≤ ℓ) + 1. Similarly, let λG(x, y) denote the local edge-

connectivity connecting x and y in G. Then λ(G) = min{λG(x, y)|x, y ∈ V (G), x 6= y},

λ(G) = max{λG(x, y)|x, y ∈ V (G), x 6= y} and λ̂(G) =
∑

x,y∈V (G) κG(x, y)/
(
n

2

)
are the

edge-connectivity, maximum local edge-connectivity and average edge-connectivity, respec-

tively. For the connectivity and edge-connectivity, Oellermann gave a survey paper on

this subject; see [34] for details. For more details on the average (edge-)connectivity,

we refer to [2]. The edge version of the above problems can be defined similarly. Set

g(n;λ ≤ ℓ) = max{e(G)||V (G)| = n and λ(G) ≤ ℓ}. Let h2(n;λ ≥ r) denote the small-

est number of edges which guarantees that any graph with n vertices and h2(n; κ ≥ r)

edges will contain a pair of vertices joined by r edge-disjoint paths. Similarly, h2(n;λ ≥

ℓ+ 1) = g(n;λ ≤ ℓ) + 1. The problem of determining the precise value of the parameters

f(n; κ ≤ ℓ), g(n;λ ≤ ℓ), h1(n; κ ≥ r), or h2(n; κ ≥ r) has obtained wide attention and

many results have been obtained; see [4, 5, 6, 18, 19, 20, 28, 29, 36].

Mader was one of the first authors that considered the ‘connectedness’ properties of

sets of vertices in a graph other than just 2-sets; see [29, 30]. In [30], he studied an

extension of Menger’s theorem to independent sets of three or more vertices. We know

that from Menger’s theorem that if S = {u, v} is a set of two independent vertices in

a graph G, then the maximum number of internally disjoint u-v paths in G equals the

minimum number of vertices that separate u and v. For a set S = {u1, u2, · · · , uk} (k ≥ 2)

in a graph G, an S-path is defined as a path between a pair of vertices of S that contains

no other vertices of S. Two S-paths P1 and P2 are said to be internally disjoint if they are

vertex-disjoint except possibly for the vertices in S. If S is a set of independent vertices

of a graph G, then a vertex set U ⊆ V (G) with U ∩ S = ∅ is said to totally separate S

if every two vertices of S belong to different components of G \ U . Let S be a set of at

least three independent vertices in a graph G. Let µ(G) denote the maximum number

of internally disjoint S-paths and µ′(G) the minimum number of vertices that totally

separate S. A natural extension of Menger’ s theorem may well be suggested, namely: If
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S is a set of independent vertices of a graph G and |S| ≥ 3, then µ(S) = µ′(S). However,

the statement is not true in general. Take for example, the graph H1 obtained from a

triangle with vertex set {v1, v2, v3} by adding three new vertices u1, u2, u3 and joining vi

to ui by an edge for 1 ≤ i ≤ 3. For S = {v1, v2, v3}, µ(S) = 1 but µ′(S) = 2. Mader [31]

proved that µ(S) ≥ 1
2
µ′(S). Moreover, the bound is sharp. Lovász conjectured an edge

analogue of this result and Mader proved this conjecture and established its sharpness.

For more details, we refer to [30, 31, 33].

For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or

a Steiner tree connecting S (a Steiner tree for short) is a such subgraph T (V ′, E ′) of G

that is a tree with S ⊆ V ′. Note that when |S| = 2 a Steiner tree connecting S is just

a path connecting S. Two Steiner trees T and T ′ connecting S are internally disjoint if

E(T ) ∩ E(T ′) = ∅ and V (T ) ∩ V (T ′) = S. For S ⊆ V (G) and |S| ≥ 2, the generalized

local connectivity κ(S) is the maximum number of internally disjoint trees connecting S in

G. For an integer k with 2 ≤ k ≤ n, the k-tree-connectivity or generalized k-connectivity

is defined as κk(G) = min{κ(S)|S ⊆ V (G), |S| = k}. Thus, κ2(G) = κ(G). We knew

this concept from [9] for the first time. There the authors obtained the exact value of

the generalized k-connectivity of complete graphs. From [12], we know that the concept

was introduced actually by Hager in his another paper, but we do not know whether his

this paper has been published, yet. Except for the concept of tree-connectivity, Hager

also introduced another tree-connectivity parameter, called the pendant tree-connectivity

of a graph in [12]. For the tree-connectivity, we only search for edge-disjoint trees which

include S and are vertex-disjoint with the exception of the vertices in S. But pendant tree-

connectivity further requests the degree of each vertex of S in a Steiner tree connecting

S is equal to one. Note that it is a specialization of the tree-connectivity. For results on

the generalized connectivity or tree-connectivity, see [11, 13, 22, 23, 24, 25, 26].

Chartrand et al. [8] introduced the concept of the k-connectivity of a graph, which

is another generalization of the concept of the classical connectivity. Recall that there is

another equivalent definition of the connectivity. The connectivity of G, written κ(G), is

the minimum size of a vertex set S ⊆ V (G) such that G\S is disconnected or has only one

vertex. Note that we find the above minimum vertex set without regard the number of

components of G \ S. Two graphs with the same connectivity may have different degrees

of vulnerability in the sense that the deletion of a vertex cut-set of minimum cardinality

from one graph may produce a graph with considerably more components than in the

case of the other graph. For example, the star K1,n and the path Pn+1 (n ≥ 3) are

both trees of order n + 1 and therefore connectivity 1, but the deletion of a cut-vertex

from K1,n produces a graph with n components while the deletion of a cut-vertex from

Pn+1 produces only two components. For an integer k (k ≥ 2) and a graph G of order

n (n ≥ k), the k-connectivity κ′

k(G) is the smallest number of vertices whose removal
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from G of order n (n ≥ k) produces a graph with at least k components or a graph

with fewer than k vertices. Thus, for k = 2, κ′

2(G) = κ(G). For more details about the

k-connectivity, we refer to [8, 10, 34, 35]. Note that the generalized k-connectivity (or

k-tree-connectivity) and k-connectivity of a graph are indeed different. Take the above

graph H1 for an example. Clearly, κ3(H1) = 1 but κ′

3(H1) = 2.

In [21], we generalized the above classical problems. Similar to the classical maximum

local connectivity, we introduced the parameter κk(G) = max{κ(S)|S ⊆ V (G), |S| = k},

which is called the maximum generalized local connectivity of G. There we considered

the problem of determining the largest number of edges, f(n; κk ≤ ℓ), for graphs with n

vertices and maximum generalized local connectivity at most ℓ, that is, f(n; κk ≤ ℓ) =

max{e(G)||V (G)| = n and κk(G) ≤ ℓ}. We also considered the smallest number of edges,

h1(n; κk ≥ r), which guarantees that any graph with n vertices and h1(n; κk ≥ r) edges

will contain a set S of k vertices such that there are r internally disjoint S-trees. It is

easy to check that h1(n; κk ≥ ℓ+1) = f(n; κk ≤ ℓ) + 1 for 0 ≤ ℓ ≤ n−⌈k/2⌉− 1. In [21],

we determined that f(n; κ3 ≤ 2) = 2n−3 for n ≥ 3 and n 6= 4, and f(n; κ3 ≤ 2) = 2n−2

for n = 4. Furthermore, we characterized graphs attaining these values. For a general ℓ,

we constructed graphs to show that f(n; κ3 ≤ ℓ) ≥ ℓ+2
2
(n− 2) + 1

2
for both n and k odd,

and f(n; κ3 ≤ ℓ) ≥ ℓ+2
2
(n− 2) + 1 otherwise.

We continue to study the above problems in this paper. The edge version of these

problems are also introduced and investigated. For S ⊆ V (G) and |S| ≥ 2, the generalized

local edge-connectivity λ(S) is the maximum number of edge-disjoint trees connecting S

in G. For an integer k with 2 ≤ k ≤ n, the generalized k-edge-connectivity [27] is defined

as λk(G) = min{λ(S)|S ⊆ V (G), |S| = k}. The parameter λk(G) = max{λ(S)|S ⊆

V (G), |S| = k} is called the maximum generalized local edge-connectivity of G. Similarly,

g(n;λk ≤ ℓ) = max{e(G)||V (G)| = n and λk(G) ≤ ℓ}, and h2(n;λk ≥ r) is the smallest

number of edges, h2(n;λk ≥ r), which guarantees that any graph with n vertices and

h2(n;λk ≥ r) edges will contain a set S of k vertices such that there are r edge-disjoint

S-trees. Similarly, h2(n;λk ≥ ℓ+ 1) = g(n;λk ≤ ℓ) + 1 for 0 ≤ ℓ ≤ n− ⌈k/2⌉ − 1.

The following result, due to Nash-Williams and Tutte, will be used later.

Theorem 1. (Nash-Williams [32],Tutte [37]) A multigraph G contains a system of ℓ

edge-disjoint spanning trees if and only if

‖G/P‖ ≥ ℓ(|P| − 1)

holds for every partition P of V (G), where ‖G/P‖ denotes the number of edges in G

between distinct blocks of P.

The following corollary can be easily derived from Theorem 1.
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Corollary 1. Every 2ℓ-edge-connected graph contains a system of ℓ edge-disjoint spanning

trees.

A subset S ⊆ V (G) is called ℓ-edge-connected, if λG(x, y) ≥ ℓ for all x 6= y in S.

Kriesell [15] conjectured that this Corollary 1 can be generalized for Steiner trees.

Conjecture 1. (Kriesell [15]) If a set S of vertices of G is 2ℓ-edge-connected, then there

is a set of ℓ edge-disjoint Steiner trees connecting S in G.

This conjecture has obtained wide attention and many results have been worked out;

see [14, 15, 16, 17, 38].

With the help of Theorem 1, we determine the exact value of f(n; κk ≤ ℓ) and g(n;λk ≤

ℓ) for k = n, n − 1. The graphs attaining these values are also characterized. It is not

easy to solve these problems for a general k (3 ≤ k ≤ n). So we construct a graph class

to give them a sharp lower bound for a general k (3 ≤ k ≤ n− 2).

To start with, the following two observations are easily seen.

Observation 1. Let G be a connected graph of order n. Then

(1) κk(G) ≤ λk(G) and κk(G) ≤ λk(G);

(2) κk(G) ≤ κk(G) and λk(G) ≤ λk(G).

Observation 2. If H is a spanning subgraph of G of order n, then κk(H) ≤ κk(G),

λk(H) ≤ λk(G), κk(H) ≤ κk(G) and λk(H) ≤ λk(G).

In [27], we obtained the exact value of λk(Kn).

Lemma 1. [27] Let k, n be two integers with 3 ≤ k ≤ n. Then

λk(Kn) = n− ⌈k/2⌉

From Lemma 1, we can derive sharp bounds of λk(G).

Observation 3. Let k, n be two integers with 3 ≤ k ≤ n, and let G be a connected graph

G of order n. Then 1 ≤ λk(G) ≤ n − ⌈k/2⌉. Moreover, the upper and lower bounds are

sharp.

Proof. From the definitions of λk(G) and λk(G) and the symmetry of a complete graph,

λk(Kn) = λk(Kn) = n − ⌈k
2
⌉. So for a connected graph G of order n it follows that

λk(G) ≤ λk(Kn) = n−⌈k
2
⌉. Since G is connected, λk(G) ≥ 1. So 1 ≤ λk(G) ≤ n−⌈k

2
⌉.
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One can easily check that the complete Kn attains the upper bound and any tree T

of order n attains the lower bound. Combining Observation 3 with (1) of Observation 1,

the following observation is immediate.

Observation 4. Let k, n be two integers with 3 ≤ k ≤ n, and let G be a connected graph

G of order n. Then 1 ≤ κk(G) ≤ n − ⌈k/2⌉. Moreover, the upper and lower bounds are

sharp.

2 The case k = n

In this section, we determine the exact value of g(n;λk ≤ ℓ) for the case k = n. This is

also a preparation for the next section. From Observation 3, 1 ≤ λn(G) ≤ ⌊n
2
⌋. In order

to make the parameter g(n;λn ≤ ℓ) to be meaningful, we assume that 1 ≤ ℓ ≤ ⌊n
2
⌋. Let

us focus on the case 1 ≤ ℓ ≤ ⌊n−4
2
⌋ and begin with a lemma derived from Theorem 1.

Lemma 2. Let G be a connected graph of order n (n ≥ 5). If e(G) ≥
(
n−1
2

)
+ ℓ (1 ≤ ℓ ≤

⌊n−4
2
⌋) and δ(G) ≥ ℓ+ 1, then G contains ℓ+ 1 edge-disjoint spanning trees.

Proof. Let P =
⋃p

i=1 Vi be a partition of V (G) with |Vi| = ni (1 ≤ i ≤ p), and Ep be the

set of edges between distinct blocks of P in G. It suffices to show |Ep| ≥ (ℓ + 1)(p− 1)

so that we can use Theorem 1.

The case p = 1 is trivial, thus we assume p ≥ 2. For p = 2, we have P = V1 ∪ V2. Set

|V1| = n1. Then |V2| = n−n1. If n1 = 1 or n1 = n−1, then |E2| = |EG[V1, V2]| ≥ ℓ+1 since

δ(G) ≥ ℓ+1. Suppose 2 ≤ n1 ≤ n−2. Then |E2| = |EG[V1, V2]| ≥
(
n−1
2

)
+ℓ−

(
n1

2

)
−
(
n−n1

2

)
=

−n2
1 + nn1 + ℓ− (n− 1). Since 2 ≤ n1 ≤ n− 2, one can see that |E2| attains its minimum

value when n1 = 2 or n1 = n− 2. Thus |E2| ≥ n− 3+ ℓ ≥ ℓ+1. So the conclusion is true

for p = 2 by Theorem 1.

Consider the case p = n. To have |En| ≥ (ℓ + 1)(n − 1), we must have
(
n−1
2

)
+ ℓ ≥

(ℓ + 1)(n − 1), that is, (n − 2ℓ − 3)(n − 2) ≥ 2. Since ℓ ≤ ⌊n−4
2
⌋, this inequality holds.

The case p = n − 1 can be proved similarly. Since |En−1| ≥
(
n−1
2

)
+ ℓ − 1, we need the

inequality (n−1)(n−2)
2

+ ℓ− 1 ≥ (ℓ+ 1)(n− 2), that is, (n− 2ℓ− 3)(n− 3) + (n− 5) ≥ 0.

Since ℓ ≤ ⌊n−4
2
⌋ and n ≥ 5, this inequality holds.

Let us consider the remaining case p for 3 ≤ p ≤ n − 2. Clearly, |Ep| ≥ e(G) −∑p

i=1

(
ni

2

)
≥

(
n−1
2

)
+ℓ−

∑p

i=1

(
ni

2

)
. We will show that

(
n−1
2

)
+ℓ−

∑p

i=1

(
ni

2

)
≥ (ℓ+1)(p−1),

that is,
(
n−1
2

)
+ ℓ − (ℓ + 1)(p − 1) ≥

∑p

i=1

(
ni

2

)
. Actually, we only need to prove that

(n−1)(n−2)
2

− (ℓ + 1)(p − 2) − 1 ≥ max{
∑p

i=1

(
ni

2

)
}. Since f(n1, n2, · · · , np) =

∑p

i=1

(
ni

2

)

achieves its maximum value when n1 = n2 = · · · = np−1 = 1 and np = n − p + 1,

we need the inequality (n−1)(n−2)
2

− (ℓ + 1)(p − 2) − 1 ≥
(
1
2

)
(p − 1) +

(
n−p+1

2

)
, that is,
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(n−1)(n−2)−2(ℓ+1)(p−2)−2 ≥ (n−p+1)(n−p). Thus this inequality is equivalent

to (p− 2)(2n− p− 2ℓ− 3) ≥ 2. Since 1 ≤ ℓ ≤ ⌊n−4
2
⌋ and 3 ≤ p ≤ n− 2, one can see that

the inequality holds. Thus, |Ep| ≥ (ℓ + 1)(p − 1). From Theorem 1, we know that there

exist ℓ+ 1 edge-disjoint spanning trees, as desired.

In [27], the graphs with κk(G) = n − ⌈k
2
⌉ and λk(G) = n − ⌈k

2
⌉ were characterized,

respectively.

Lemma 3. [27] Let k, n be two integers with 3 ≤ k ≤ n, and let G be a connected graph

G of order n. Then κk(G) = n − ⌈k
2
⌉ or λk(G) = n − ⌈k

2
⌉ if and only if G = Kn for k

even; G = Kn \M for k odd, where M is an edge set such that 0 ≤ |M | ≤ k−1
2
.

Note that κn(G) = λn(G) = κn(G) = λn(G). From the above lemma, we can derive

the following corollary.

Corollary 2. For a connected graph G of order n, κn(G) = κn(G) = λn(G) = λn(G) =

⌊n
2
⌋ if and only if G = Kn for n even; G = Kn \ M for n odd, where M is an edge set

such that 0 ≤ |M | ≤ n−1
2
.

Let Gn be a graph class obtained from a complete graph Kn−1 by adding a vertex v

and joining v to ℓ vertices of Kn−1.

Theorem 2. Let G be a connected graph of order n (n ≥ 6). If λn(G) ≤ ℓ (1 ≤ ℓ ≤ ⌊n
2
⌋),

then

e(G) ≤





(
n−1
2

)
+ ℓ, if 1 ≤ ℓ ≤ ⌊n−4

2
⌋;(

n−1
2

)
+ n− 2, if ℓ = ⌊n−2

2
⌋ and n is even;(

n−1
2

)
+ n−3

2
, if ℓ = ⌊n−2

2
⌋ and n is odd;(

n

2

)
, if ℓ = ⌊n

2
⌋.

with equality if and only if G ∈ Gn for 1 ≤ ℓ ≤ ⌊n−4
2
⌋; G = Kn \ e where e ∈ E(Kn) for

ℓ = ⌊n−2
2
⌋ and n even; G = Kn \M where M ⊆ E(Kn) and |M | = n+1

2
for ℓ = ⌊n−2

2
⌋ and

n odd; G = Kn for ℓ = ⌊n
2
⌋.

Proof. For 1 ≤ ℓ ≤ ⌊n−4
2
⌋, if e(G) ≥

(
n−1
2

)
+ (ℓ+ 1), then δ(G) ≥ ℓ + 1. From Lemma 2,

λn(G) ≥ ℓ + 1, which contradicts to λn(G) ≤ ℓ. So e(G) ≤
(
n−1
2

)
+ ℓ for 1 ≤ ℓ ≤ ⌊n−4

2
⌋.

For ℓ = ⌊n−2
2
⌋ and n even, e(G) ≤

(
n−1
2

)
+ n − 2 by Corollary 2. By the same reason,

e(G) ≤
(
n−1
2

)
+ n−3

2
for ℓ = ⌊n−2

2
⌋ and n odd. If ℓ = ⌊n

2
⌋, then for any connected graph G

λn(G) ≤ ℓ by Observation 3. So e(G) ≤
(
n

2

)
.

Now we characterize the graphs attaining the upper bounds. Consider the case 1 ≤

ℓ ≤ ⌊n−4
2
⌋. Suppose that G is a connected graph such that e(G) =

(
n−1
2

)
+ ℓ. Clearly,
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δ(G) ≥ ℓ. Assume δ(G) ≥ ℓ + 1. Since e(G) =
(
n−1
2

)
+ ℓ, G contains ℓ + 1 edge-disjoint

spanning trees by Lemma 2, namely, λn(G) ≥ ℓ + 1, a contradiction. So δ(G) = ℓ, and

hence there exists a vertex v such that dG(v) = ℓ. Clearly, e(G − v) =
(
n−1
2

)
. Thus

G − v is a clique of order n − 1. Therefore, G ∈ Gn. For n even and ℓ = ⌊n−2
2
⌋, let

e(G) =
(
n−1
2

)
+n−2. Obviously, G = Kn \e, where e ∈ E(Kn). For n odd and ℓ = ⌊n−2

2
⌋,

let e(G) =
(
n−1
2

)
+ n−3

2
. Clearly, G = Kn \ M , where M ⊆ E(Kn) and |M | = n+1

2
. For

ℓ = ⌊n
2
⌋, if e(G) =

(
n

2

)
, then G = Kn.

Corollary 3. For 1 ≤ ℓ ≤ ⌊n
2
⌋ and n ≥ 6,

f(n; κn ≤ ℓ) = g(n;λn ≤ ℓ) =





(
n−1
2

)
+ ℓ, if 1 ≤ ℓ ≤ ⌊n−4

2
⌋ or ℓ = ⌊n−2

2
⌋ and n is odd;(

n−1
2

)
+ 2ℓ, if ℓ = ⌊n−2

2
⌋ and n is even;(

n

2

)
, if ℓ = ⌊n

2
⌋.

3 The case k = n− 1

Before giving our main results, we need some preparations. From Observation 4, we

know that 1 ≤ κn−1(G) ≤ ⌊n+1
2
⌋. So we only need to consider 1 ≤ ℓ ≤ ⌊n+1

2
⌋. In order to

determine the exact value of f(n; κn−1 ≤ ℓ) for a general ℓ (1 ≤ ℓ ≤ ⌊n+1
2
⌋), we first focus

on the cases ℓ = ⌊n+1
2
⌋ and ⌊n−1

2
⌋. This is also because by characterizing the graphs with

κn−1(G) = ⌊n+1
2
⌋ and ⌊n−1

2
⌋, we can deal with the difficult case ℓ = ⌊n−3

2
⌋.

3.1 The subcases ℓ = ⌊n+1
2 ⌋ and ℓ = ⌊n−1

2 ⌋

Let us begin this subsection with a useful lemma in [27].

Let S ⊆ V (G) such that |S| = k, and T be a maximum set of edge-disjoint trees in

G connecting S. Let T1 be the set of trees in T whose edges belong to E(G[S]), and T2

be the set of trees containing at least one edge of EG[S, S̄], where S̄ = V (G) \ S. Thus,

T = T1 ∪ T2 (Throughout this paper, T , T1, T2 are defined in this way).

Lemma 4. [27] Let S ⊆ V (G), |S| = k and T be a tree connecting S. If T ∈ T1, then T

uses k−1 edges of E(G[S])∪EG[S, S̄]; If T ∈ T2, then T uses k edges of E(G[S])∪EG[S, S̄].

The following results can be derived from Lemma 4.

Lemma 5. Let G = Kn \M be a connected graph of order n (n ≥ 4), where M ⊆ E(Kn).

(1) If n is odd and |M | ≥ 1, then λn−1(G) < n+1
2
;

(2) If n is even and |M | ≥ n
2
, then λn−1(G) < n

2
.
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Proof. (1) For any S ⊆ V (G) such that |S| = n−1, obviously, |S̄| = 1 and e ∈ E(G[S])∪

EG[S, S̄] for all e ∈ E(G). Let |T1| = x and |T | = y. Then |T2| = y − x. Clearly, |T1| ≤

⌊
(n−1

2
)

n−2
⌋ = n−1

2
. From Lemma 4, since (n− 2)|T1|+ (n− 1)|T2| ≤ |E(G[S]) ∪EG[S, S̄]|, it

follows that (n−2)x+(n−1)(y−x) ≤
(
n

2

)
−1. Then λ(S) = |T | = y ≤ x

n−1
+ n

2
− 1

n−1
≤

n+1
2

− 1
n−1

< n+1
2
. So λn−1(G) < n+1

2
.

(2) In this case, for any S ⊆ V (G) such that |S| = n − 1, we have |S̄| = 1 and

e ∈ E(G[S]) ∪ EG[S, S̄] for all e ∈ E(G). Let |T1| = x and |T | = y. Then |T2| = y − x.

Clearly, |T1| ≤ ⌊
(n−1

2
)

n−2
⌋ = ⌊n−1

2
⌋ = n−2

2
. From Lemma 4, since (n− 2)|T1|+ (n− 1)|T2| ≤

|E(G[S]) ∪ EG[S, S̄]|, it follows that (n − 2)x + (n − 1)(y − x) ≤
(
n

2

)
− n

2
. Then λ(S) =

|T | = y ≤ x
n−1

+ n
2
− n

2(n−1)
≤ n

2
− 1

n−1
< n

2
. So λn−1(G) < n

2
.

With the help of Lemmas 3 and 5 and Observation 1, the graphs with κn−1(G) = ⌊n+1
2
⌋

can be characterized now.

Proposition 1. For a connected graph G of order n (n ≥ 4), κn−1(G) = ⌊n+1
2
⌋ if and

only if G = Kn for n odd; G = Kn \ M for n even, where M is an edge set such that

0 ≤ |M | ≤ n−2
2
.

Proof. Consider the case n odd. Suppose that G is a connected graph such that κn−1(G) =
n+1
2
. In fact, the complete graph Kn is a unique graph attaining this value. Let G = Kn\e

where e ∈ E(Kn). From (1) of Lemma 5 and Observation 1, κn−1(G) ≤ λn−1(G) < n+1
2
,

a contradiction. So G = Kn. Conversely, if G = Kn, then κn−1(G) ≥ κn−1(G) = n+1
2

by

Lemma 3. Combining this with Observation 4, we have κn−1(G) = n+1
2
.

Now consider the case n even. Suppose that G is a connected graph such that

κn−1(G) = n
2
. If G = Kn \ M such that |M | ≥ n

2
, then κn−1(G) ≤ λn−1(G) < n

2
by

(2) of Lemma 5, a contradiction. So G = Kn \M , where 0 ≤ |M | ≤ n−2
2
. Conversely, if

G = Kn \M such that 0 ≤ |M | ≤ n−2
2
, then κn−1(G) ≥ κn−1(G) = n

2
by Lemma 3. From

this together with Observation 4, we have κn−1(G) = n
2
.

Furthermore, graphs with λn−1(G) = ⌊n+1
2
⌋ can also be characterized.

Proposition 2. For a connected graph G of order n (n ≥ 4), λn−1(G) = ⌊n+1
2
⌋ if and

only if G = Kn for n odd; G = Kn \ M for n even, where M is an edge set such that

0 ≤ |M | ≤ n−2
2
.

Proof. Assume that G is a connected graph satisfying the conditions of Proposition 2.

From Observation 1 and Proposition 1, it follows that λn−1(G) ≥ κn−1(G) = ⌊n+1
2
⌋.

Combining this with Observation 3, λn−1(G) = ⌊n+1
2
⌋. Conversely, suppose λn−1(G) =

⌊n+1
2
⌋. For n odd, if G = Kn \ e where e ∈ E(Kn), then κn−1(G) ≤ λn−1(G) < n+1

2
by
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(1) of Lemma 5. So the complete graph Kn is a unique graph attaining this value. For n

even, if G = Kn \M where M ∈ E(Kn) such that |M | ≥ n
2
, then λn−1(G) < ⌊n+1

2
⌋ by (2)

of Lemma 5. So G = Kn \M , where 0 ≤ |M | ≤ n−2
2
.

We now focus our attention on the case ℓ = ⌊n−1
2
⌋. Before characterizing the graphs

with λn−1(G) = ⌊n−1
2
⌋, we need the following four lemmas. The notion of a second

minimal degree vertex in a graph G will be used in the sequel. If G has two or more

minimum degree vertices, then, choosing one of them as the first minimum degree vertex,

a second minimal degree vertex is defined as any one of the rest minimum degree vertices

of G. If G has only one minimum degree vertex, then a second minimal degree vertex is

as its name, defined as any one of vertices that have the second minimal degree. Note

that a second minimal degree vertex is usually not unique.

Lemma 6. Let G = Kn \M be a connected graph of order n, where M ⊆ E(Kn).

(1) If n (n ≥ 10) is even and |M | ≥ 3n−4
2

, then λn−1(G) < n−1
2
;

(2) If n (n ≥ 10) is even, n + 1 ≤ |M | ≤ 3n−6
2

and there is a second minimal degree

vertex, say u1, such that dG(u1) ≤
n−4
2
, then λn−1(G) < n−2

2
;

(3) If n (n ≥ 8) is odd and |M | ≥ n− 1, then λn−1(G) < n−1
2
.

Proof. (1) For any S ⊆ V (G) such that |S| = n−1, obviously, |S̄| = 1 and e ∈ E(G[S])∪

EG[S, S̄] for all e ∈ E(G). Set S = V (G)\v where v ∈ V (G). Since G is connected graph,

it follows that dG(v) ≥ 1 and hence dKn[M ](v) ≤ n−2. So |M∩Kn[S]| ≥
3n−4
2

−(n−2) = n
2

and |E(G[S])| ≤
(
n−1
2

)
− n

2
. Therefore, |T1| ≤

(n−1

2
)−n

2

n−2
= n−2

2
− 1

n−2
< n−2

2
, namely,

|T1| ≤
n−4
2
. Let |T1| = x and |T | = y. Then |T2| = y−x. Since (n−2)|T1|+(n−1)|T2| ≤

|E(G[S]) ∪ EG[S, S̄]|, it follows that (n − 2)x + (n − 1)(y − x) ≤
(
n

2

)
− 3n−4

2
. Then

λ(S) = |T | = y ≤ x
n−1

+ n
2
− 3n−4

2(n−1)
≤ n−2

2
− 1

n−1
< n−2

2
. So λn−1(G) < n−2

2
.

(2) Let v be a vertex such that dG(v) = δ(G). Then dG(v) ≤ dG(u1) ≤ n−4
2
. For

any S ⊆ V (G) with |S| = n − 1, at least one of u1, v belongs to S, say u1 ∈ S. Hence

λ(S) ≤ dG(u1) ≤
n−4
2

< n−2
2
. So λn−1(G) < n−2

2
.

(3) The proof of (3) is similar to that of (1), and thus omitted.

Lemma 7. Let H be a connected graph of order n− 1.

(1) If n (n ≥ 5) is odd, e(H) ≥
(
n−2
2

)
, δ(H) ≥ n−3

2
and any two vertices of degree n−3

2

are nonadjacent, then H contains n−3
2

edge-disjoint spanning trees.

(2) If n (n ≥ 7) is even, e(H) ≥
(
n−2
2

)
− n−2

2
, δ(H) ≥ n−4

2
and any two vertices of

degree n−4
2

are nonadjacent, then H contains n−4
2

edge-disjoint spanning trees.
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Proof. We only give the proof of (1), (2) can be proved similarly. Let P =
⋃p

i=1 Vi be a

partition of V (H) with |Vi| = ni (1 ≤ i ≤ p), and Ep be the set of edges between distinct

blocks of P in H . It suffices to show |Ep| ≥
n−3
2
(|P| − 1) so that we can use Theorem 1.

The case p = 1 is trivial, thus we assume p ≥ 2. For p = 2, we have P = V1 ∪ V2. Set

|V1| = n1. Then |V2| = n− 1− n1. If n1 = 1 or n1 = n− 2, then |E2| = |EG[V1, V2]| ≥
n−3
2

since δ(H) ≥ n−3
2
. Suppose 2 ≤ n1 ≤ n− 3. Clearly, |E2| = |EG[V1, V2]| ≥

(
n−2
2

)
−

(
n1

2

)
−(

n−1−n1

2

)
= −n2

1 + (n− 1)n1 − (n− 2). Since 2 ≤ n1 ≤ n− 3, one can see that |E2| attains

its minimum value when n1 = 2 or n1 = n− 3. Thus |E2| ≥ n− 4 ≥ n−3
2

since n ≥ 5. So

the conclusion holds for p = 2 by Theorem 1.

Now consider the remaining case p with 3 ≤ p ≤ n−1. Since |Ep| ≥ e(H)−
∑p

i=1

(
ni

2

)
≥(

n−2
2

)
−
∑p

i=1

(
ni

2

)
, we need to show that

(
n−2
2

)
−
∑p

i=1

(
ni

2

)
≥ n−3

2
(p− 1), that is,

(
n−2
2

)
−

n−3
2
(p − 1) ≥

∑p

i=1

(
ni

2

)
. Furthermore, we only need to prove that

(
n−2
2

)
− n−3

2
(p − 1) ≥

max{
∑p

i=1

(
ni

2

)
}. Since f(n1, n2, · · · , np) =

∑p

i=1

(
ni

2

)
attains its maximum value when

n1 = n2 = · · · = np−1 = 1 and np = n − p, we need the inequality
(
n−2
2

)
− n−3

2
(p − 1) ≥(

1
2

)
(p−1)+

(
n−p

2

)
, that is, (p−3)(n−p−1) ≥ 0. Since 3 ≤ p ≤ n−1, one can see that the

inequality holds. Thus, |Ep| ≥
n−3
2
(p− 1). From Theorem 1, there exist n−3

2
edge-disjoint

spanning trees, as desired.

The following theorem, due to Dirac, is well-known.

Theorem 3. [7](p-485) Let G be a simple graph of order n (n ≥ 3) and minimum degree

δ. If δ ≥ n
2
, then G is Hamiltonian.

Lemma 8. If n (n ≥ 8) is odd and G = Kn \M such that |M | = n− 2, then κn−1(G) ≥
n−1
2
.

Proof. Clearly, e(G) =
(
n−1
2

)
+ 1. Let δ(G) = r and v be a vertex such that dG(v) =

δ(G) = r. Choose S = V (G) \ v. Then |S| = n − 1. We distinguish the following two

cases to show this lemma.

Case 1. 1 ≤ δ(G) ≤ n−1
2
.

If δ(G) = r = 1, then e(G− v) =
(
n−1
2

)
, which implies that G− v is a clique of order

n− 1. Obviously, G− v contains n−1
2

edge-disjoint spanning trees connecting S, namely,

κn−1(G− v) ≥ n−1
2
. Therefore, κn−1(G) ≥ n−1

2
, as desired.

Suppose δ(G) = r ≥ 2. Since dG(v) ≤
n−1
2
, it follows that dKn[M ](v) ≥ n− 1 − n−1

2
=

n−1
2
. Combining this with |M | = n − 2, we have |M ∩ E(Kn[S])| ≤ n − 2 − n−1

2
≤ n−3

2
,

namely, G[S] is a graph obtained from a clique of order n−1 by deleting at most n−3
2

edges.

So δ(G[S]) ≥ n− 2 − n−3
2

= n−1
2
. We claim that there exists at most one vertex in G[S]

such that its degree is n−1
2

or n+1
2
. Assume, to the contrary, that there exist two vertices
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in S, say u1, u2, such that dG[S](uj) ≤ n+1
2

(j = 1, 2). Then dG(uj) ≤ n+3
2
, and hence

dKn[M ](uj) ≥ n− 1− n+3
2

= n−5
2
. Therefore, |M | ≥ dKn[M ](v) + dKn[M ](u1) + dKn[M ](u2) ≥

n−1
2

+ 2 · n−5
2

= 3n−11
2

> n − 2, a contradiction. So we conclude that there exists at

most one vertex in G[S] such that its degree is n−1
2

or n+1
2
. Since δ(G[S]) ≥ n−1

2
, from

Theorem 3 G[S] is Hamiltonian and hence G[S] contains a Hamilton cycle, say C. Let

S = {u1, u2, · · · , un−1} such that vuj ∈ E(G) (1 ≤ j ≤ r). Clearly, vuj ∈ M (r+1 ≤ j ≤

n−1). Then the vertices u1, u2, · · · , ur divide the cycle C into r paths, say P1, P2, · · · , Pr;

see Figure 1 (a).

(a) (b)

ur−2
u3

u2

u1

ur−1

ur

v

uq ut

u1
up

ut+1

ut+2

ur

v

S2 S1

P1

P2
Pr−2

Pr−1

Pr

Figure 1. Graphs for Lemmas 8 and 9.

Now we find a Steiner tree connecting S with its root v in G, say T , such that G1[S]

satisfies the conditions of (1) in Lemma 7, where G1 = G \E(T ). If there exists a vertex

us ∈ S of degree n−1
2

in G[S] such that us ∈ {u1, u2, · · · , ur} and e(Ps−1) = e(Ps) = 1,

then there exists a vertex ut ∈ {ur+1, ur+2, · · · , un−1} such that usut ∈ E(G[S]) since

dG[S](us) = n−1
2

and r ≤ n−1
2
. Then ut is an internal vertex of some path, without loss

of generality, let ut ∈ V (Pq) (1 ≤ q ≤ r, q 6= s − 1, s). For each path Pi (1 ≤ i ≤ r),

we choose one edge ei ∈ E(Pi) (1 ≤ i ≤ r) to delete. Since ut is an internal vertex of

Pq, it follows that, after deleting the edge eq from Pq, there exists an edge e′q in Pq that

is incident with ut such that eq and e′q lie in different sides of ut in Pq. Then the tree

T = (vu1∪vu2∪· · · vur∪ (P1 \e1)∪ (P2 \e2) · · · (Pr \er)∪usut)\e
′

q is our desired tree. Set

G1 = G \ E(T ). Observe that δ(G1[S]) ≥
n−3
2

and there is at most one vertex of degree
n−3
2

in G1[S]. Combining this with e(G1[S]) = e(G)− (n− 1) =
(
n−1
2

)
− (n− 2) =

(
n−2
2

)
,

G1[S] contains
n−3
2

spanning trees by (1) of Lemma 7. These trees together with the tree

T are n−1
2

internally disjoint trees connecting S, namely, κn−1(G) ≥ n−1
2
, as desired.

Except the above case, we also have the following five cases to consider. For each case,

we choose one edge ei ∈ E(Pi) (1 ≤ i ≤ r) to delete that satisfies the following conditions:

❶ if there is no vertex of degree n−1
2

in G[S], then ei (1 ≤ i ≤ r) is chosen as any edge

in Pi;

❷ if there exists a vertex us of degree
n−1
2

in G[S] such that us ∈ {ur+1, ur+2, · · · , un−1},
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then ei (1 ≤ i ≤ r) is chosen as any edge in Pi;

❸ if there exists a vertex us of degree n−1
2

in G[S] such that us ∈ {u1, u2, · · · , ur},

e(Ps−1) ≥ 2 and e(Ps) ≥ 2, then es−1 is the edge that is incident with us−1, es is the edge

that is incident with us+1, and ei (1 ≤ i ≤ r, i 6= s− 1, s) is chosen as any edge in Pi;

❹ if there exists a vertex us of degree n−1
2

in G[S] such that us ∈ {u1, u2, · · · , ur},

e(Ps−1) ≥ 2 and e(Ps) = 1, then es−1 is the edge that is incident with us−1, and ei (1 ≤

i ≤ r, i 6= s− 1) is chosen as any edge in Pi;

❺ if there exists a vertex us of degree n−1
2

in G[S] such that us ∈ {u1, u2, · · · , ur},

e(Ps−1) = 1 and e(Ps) ≥ 2, then es is the edge that is incident with us+1, and ei (1 ≤ i ≤

r, i 6= s) is chosen as any edge in Pi;

Then T = vu1∪vu2∪· · · vur∪(P1\e1)∪(P2\e2) · · · (Pr\er) is a Steiner tree connecting S.

Set G1 = G\E(T ). One can also check that δ(G1[S]) ≥
n−3
2

and there is at most one vertex

of degree n−3
2
. Combining this with e(G1[S]) = e(G)− (n− 1) =

(
n−1
2

)
− (n− 2) =

(
n−2
2

)
,

G1[S] contains
n−3
2

spanning trees by (1) of Lemma 7. These trees together with the tree

T are n−1
2

internally disjoint trees connecting S, namely, κn−1(G) ≥ n−1
2
, as desired.

Case 2. n+1
2

≤ δ(G) ≤ n− 1.

Let S = V (G)\v = {u1, · · · , un−1}. Without loss of generality, let S1 = {u1, u2, · · · , ur}

such that vuj ∈ E(G) (1 ≤ j ≤ r). Then n+1
2

≤ r ≤ n − 1, and S2 = S \ S1 =

{ur+1, ur+2, · · · , un−1}. Since dG(v) = δ(G) ≥ n+1
2
, it follows that |S1| = r = δ(G) ≥ n+1

2

and |S2| = n−1−r ≤ n−1−n+1
2

= n−3
2
. For each uj ∈ S2 (r+1 ≤ j ≤ n−1), uj has at most

n−5
2

neighbors in S2 and hence |EG[uj, S1]| ≥
n+1
2

− n−5
2

= 3 since dG(uj) ≥ δ(G) ≥ n+1
2
.

Clearly, the tree T ′ = vu1 ∪ vu2 ∪ · · · ∪ vur is a Steiner tree connecting S1. Our idea is

to seek for n − 1 − r edges in EG[S1, S2] and combine them with T ′ to form a Steiner

tree connecting S. Choose the one with the smallest subscript among all the vertices of

S2 with the maximum degree in G[S], say u′

1. Then we search for the vertex adjacent to

u′

1 with the smallest subscript among all the vertices of S1 with the maximum degree in

G[S], say u′′

1. Let e1 = u′

1u
′′

1. Consider the graph G1 = G \ e1, and pick up the one with

the smallest subscript among all the vertices of S2\u
′

1 with the maximum degree in G1[S],

say u′

2. Then we search for the vertex adjacent to u′

2 with the smallest subscript among all

the vertices of S1 with the maximum degree in G1[S], say u′′

2. Set e2 = u′

2u
′′

2. We consider

the graph G2 = G1 \ e1 = G \ {e1, e2}. Choose the one with the smallest subscript among

all the vertices of S2 \ {u′

1, u
′

2} with the maximum degree in G2[S], say u′

3, and search

for the vertex adjacent to u′

3 with the smallest subscript among all the vertices of S1

with the maximum degree in G2[S], say u′′

3. Set e3 = u′

3u
′′

3. We now consider the graph

G3 = G2 \ e3 = G \ {e1, e2, e3}. For each ui ∈ S2 (r + 1 ≤ i ≤ n− 1), we proceed to find

e4, e5, · · · , en−1−r in the same way. Let M ′ = {e1, e2, · · · , en−1−r} and Gn−1−r = G \M ′.
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Then Gn−1−r[S] = G[S] \M ′ and the tree T = vu1∪ vu2∪ · · ·∪ vur ∪ e1 ∪ e2∪ · · ·∪ en−1−r

is our desired tree. Set G′ = G \ E(T ) (note that G′[S] = Gn−1−r[S]).

Claim 1. For each uj ∈ S1 (1 ≤ j ≤ r), dG′[S](uj) ≥
n−1
2
.

Proof of Claim 1. Assume, to the contrary, that there exists one vertex up ∈ S1 such

that dG′[S](up) ≤ n−3
2
. By the above procedure, there exists a vertex uq ∈ S2 such that

when we pick up the edge ei = upuq from Gi−1[S] the degree of up in Gi[S] is equal to
n−3
2
. That is dGi[S](up) =

n−3
2

and dGi−1[S](up) =
n−1
2
. From our procedure, |EG[uq, S1]| =

|EGi−1
[uq, S1]|. Without loss of generality, let |EG[uq, S1]| = t and uquj ∈ E(G) for

1 ≤ j ≤ t; see Figure 1 (b). Thus up ∈ {u1, u2, · · · , ut}. Recall that |EG[uj, S1]| ≥ 3 for

each uj ∈ S2 (r + 1 ≤ j ≤ n − 1). Since uq ∈ S2, we have t ≥ 3. Clearly, uquj /∈ E(G)

and hence uquj ∈ M for t+ 1 ≤ j ≤ r by our procedure, namely, |EKn[M ][uq, S1]| = r− t.

Since dGi−1[S](up) =
n−1
2
, by our procedure dGi−1[S](uj) ≤

n−1
2

for each uj ∈ S1 (1 ≤ j ≤ t).

Assume, to the contrary, that there is a vertex us (1 ≤ s ≤ t) such that dGi−1[S](us) ≥
n+1
2
. Then we should choose the edge uqus instead of ei = uqup by our procedure, a

contradiction. We conclude that dGi−1[S](uj) ≤
n−1
2

for each uj ∈ S1 (1 ≤ j ≤ t). Clearly,

there are at least n − 2 − n−1
2

edges incident to each uj (1 ≤ j ≤ t) that belong to

M ∪ {e1, e2, · · · , ei−1}. Since i ≤ n− 1− r, we have
∑t

j=1 dKn[M ](uj) ≥ (n− 2− n−1
2
)t−

(i−1) > n−3
2
t−(n−1−r) and hence |M | ≥ dKn[M ](v)+

∑t

j=1 dKn[M ](uj)+|EKn[M ][uq, S1]| >

(n − 1 − r) + n−3
2
t − (n − 1 − r) + (r − t) = r + n−5

2
t ≥ n+1

2
+ 3(n−5)

2
= 2n − 7, which

contradicts to |M | = n− 2.

From Claim 1, dG′[S](uj) ≥
n−1
2

for each uj ∈ S1 (1 ≤ j ≤ r). For each uj ∈ S2 (r+1 ≤

j ≤ n− 1), dG′[S](uj) = dG[S](uj)− 1 = dG(uj)− 1 ≥ δ(G)− 1 ≥ n−1
2
. So δ(G′[S]) ≥ n−1

2
.

Combining this with e(G′[S]) = e(G) − (n − 1) =
(
n−2
2

)
, G′[S] contains n−3

2
spanning

trees by (1) of Lemma 7. These trees together with the tree T are n−1
2

trees connecting

S, namely, κn−1(G) ≥ n−1
2
, as desired.

Lemma 9. If n (n ≥ 10) is even and G = Kn\M such that |M | = 3n−6
2

and dG(u1) ≥
n−2
2
,

then κn−2(G) ≥ n−2
2
, where u1 is a second minimal degree vertex in G.

Proof. It is clear that e(G) =
(
n−2
2

)
+ n

2
=

(
n−1
2

)
− n−4

2
. Let δ(G) = r and v be a

vertex such that dG(v) = δ(G) = r. Let S = V (G) \ v = {u1, u2, · · · , un−1}. Without

loss of generality, let S1 = {u1, u2, · · · , ur} such that vuj ∈ E(G) (1 ≤ j ≤ r). Then

S2 = S \ S1 = {ur+1, ur+2, · · · , un−1} such that vuj ∈ M (r + 1 ≤ j ≤ n − 1). We have

the following two cases to consider.

Case 1. 1 ≤ δ(G) ≤ n−2
2
.

If dG(v) = δ(G) = 1, then e(G − v) =
(
n−1
2

)
− n−2

2
, which implies that G − v is a

graph obtained from a clique of order n − 1 by deleting n−2
2

edges. From Corollary 2,
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κn−1(G − v) = n−2
2
. Therefore, κn−1(G) ≥ n−2

2
. Suppose δ(G) ≥ 2. Since δ(G) ≤ n−2

2
,

it follows that dKn[M ](v) ≥ n − 1 − n−2
2

= n
2
and hence |M ∩ Kn[S]| ≤ n − 3. Since

dG(u1) ≥
n−2
2

where u1 is a second minimal degree vertex, we have δ(G[S]) ≥ n−4
2
.

First, we consider the case δ(G[S]) ≥ n
2
. We claim that there are at most two vertices

of degree n
2
in G[S]. Assume, to the contrary, that there are three vertices of degree n

2

in G[S], say u1, u2, u3. Then dG(uj) ≤ n+2
2

for j = 1, 2, 3 and hence dKn[M ](uj) ≥ n−4
2
.

Therefore, |M | ≥ dKn[M ](v) +
∑3

j=1 dKn[M ](uj) ≥
n
2
+ 3 · n−4

2
= 4n−12

2
= 2n − 6 > 3n−6

2
,

a contradiction. From the above, we conclude that there exist at most two vertices of

degree n
2
in G[S]. Since δ(G[S]) ≥ n

2
> n−1

2
, from Theorem 3 G[S] is Hamiltonian and

hence G[S] contains a Hamilton cycle, say C. Then the vertices u1, u2, · · · , ur divide the

cycle C into r paths, say P1, P2, · · · , Pr; see Figure 1 (a).

Now we find a Steiner tree connecting S with its root v in G, say T , such that G1[S]

satisfies the conditions of (2) in Lemma 7, where G1 = G\E(T ). If there exist two adjacent

vertices us, up ∈ S of degree n
2
in G[S] such that us, up ∈ {u1, u2, · · · , ur}, then p = s+ 1

and Ps = usus+1 (1 ≤ s ≤ r − 1). Since dG[S](us) =
n
2
and r ≤ n−2

2
, it follows that there

exists a vertex ut ∈ {ur+1, ur+2, · · · , un−1} such that usut ∈ E(G). It is clear that ut is an

internal vertex of some path, without loss of generality, let ut ∈ V (Pq) (1 ≤ q ≤ r, q 6= s).

For each path Pi (1 ≤ i ≤ r), we choose one edge ei ∈ E(Pi) (1 ≤ i ≤ r) to delete. Since

ut is an internal vertex of Pq, it follows that, after deleting the edge eq in Pq, there exists

an edge e′q in Pq that is incident with ut such that eq and e′q lie in different sides of ut in Pq.

Then the tree T = (vu1∪vu2∪· · · vur∪(P1\e1)∪(P2\e2) · · · (Pr\er)∪usut)\e
′

q is our desired

tree. Set G1 = G \ E(T ). Observe that δ(G1[S]) ≥
n−4
2

and there is at most one vertex

of degree n−4
2

in G1[S]. Combining this with e(G1[S]) = e(G) − (n − 1) =
(
n−2
2

)
− n−2

2
,

G1[S] contains
n−4
2

spanning trees by (2) of Lemma 7. These trees together with the tree

T are n−2
2

trees connecting S, namely, κn−1(G) ≥ n−2
2
, as desired.

Except the above case, we also have the following five cases to consider. For each case,

we choose one edge ei ∈ E(Pi) (1 ≤ i ≤ r) to delete that satisfies the following conditions:

❶ if there is at most one vertex of degree n
2
, then ei (1 ≤ i ≤ r) is chosen as any edge

in Pi.

❷ if there exist two adjacent vertices us, ut ∈ S of degree n
2
in G[S] such that us ∈

{u1, u2, · · · , ur} and ut ∈ {ur+1, ur+2, · · · , un−1}, then es is the edge that is incident with

us+1, and ei (1 ≤ i ≤ r, i 6= s) is chosen as any edge in Pi;

❸ if there exist two adjacent vertices us, ut ∈ S of degree n
2
in G[S] such that us ∈

{ur+1, ur+2, · · · , un−1} and ut ∈ {u1, u2, · · · , ur}, then et−1 is the edge that is incident

with ut−1, and ei (1 ≤ i ≤ r, i 6= t− 1) is chosen as any edge in Pi;

❹ if there exist two adjacent vertices us, ut ∈ S of degree n
2
in G[S] such that us, ut ∈
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{ur+1, ur+2, · · · , un−1}, then ei (1 ≤ i ≤ r) is chosen as any edge in Pi;

❺ if there exist two nonadjacent vertices us, ut ∈ S of degree n−1
2

in G[S], then ei (1 ≤

i ≤ r) is chosen as any edge in Pi;

Then T = vu1∪vu2∪· · · vur∪(P1\e1)∪(P2\e2) · · · (Pr \er) is a Steiner tree connecting

S. Set G1 = G \ E(T ). Obviously, δ(G1[S]) ≥ n−4
2

and there is at most one vertex of

degree n−4
2
. Combining this with e(G1[S]) = e(G)− (n−1) =

(
n−2
2

)
− n−2

2
, G1[S] contains

n−4
2

spanning trees by (2) of Lemma 7. These trees together with the tree T are n−2
2

trees

connecting S, namely, κn−1(G) ≥ n−2
2
, as desired.

Next, we focus on the case that δ(G[S]) = n−2
2

and δ(G[S]) = n−4
2
. If δ(G[S]) = n−4

2
,

then there exists a vertex, say u1, such that dG[S](u1) =
n−4
2
. Since the degree of a second

minimal degree vertex is not less than n−2
2
, we have u1 ∈ S1. Thus dG(u1) = n−2

2
and

u1 ∈ S1. If δ(G[S]) = n−2
2
, then there exists a vertex, say u1, such that dG[S](u1) =

n−2
2

and

u1 ∈ S1, or dG[S](u1) =
n−2
2

and u1 ∈ S2. Thus dG(u1) =
n
2
and u1 ∈ S1, or dG(u1) =

n−2
2

and u1 ∈ S2. We only give the proof of the case that dG(u1) =
n
2
and u1 ∈ S1. The other

two cases can be proved similarly.

Suppose dG(u1) =
n
2
and u1 ∈ S1. Similar to the proof of Lemma 8, we want to find

out a tree connecting S with root v, say T . Let G1 = G \ E(T ). We hope that the

graph G1[S] satisfies the conditions of (2) in Lemma 7. Then there are n−4
2

spanning trees

connecting S in G1[S], and these trees together with the tree T are n−2
2

internally disjoint

trees connecting S, namely, κn−1(G) ≥ n−2
2
. Let S ′

1 = S1 \ u1 and S ′ = S ′

1 ∪ S2. Let us

focus on the graph G[S ′

1]. If r = 2, then G[S ′] is a graph obtained from a clique of order

n−2 by deleting one edge since dKn[M ](u1) =
n−2
2

and dKn[M ](v) = n−3 and |M | = 3n−6
2

.

Without loss of generality, let NG(v) = {u1, u2}. Clearly, G[S ′] contains a Hamilton path

P with u2 as one of its endpoints. Then T = vu1 ∪ vu2 ∪ P . Set G1 = G \ E(T ). Thus

δ(G1[S
′]) = δ(G[S ′])−2 ≥ n−4−2 = n−6 ≥ n−2

2
. Combining this with dG1[S](u1) =

n−2
2
,

the result follows by (2) of Lemma 7. We now assume r ≥ 3. Since dKn[M ](u1) = n−2
2
,

dKn[M ](v) ≥
n
2
and |M | = 3n−6

2
, G[S ′] is a graph obtained from the complete graph Kn−2

by deleting at most n−4
2

edges and hence δ(G[S ′]) ≥ n − 3 − n−4
2

= n−2
2
. It is clear that

there exist at least two vertices of degree n − 3 in G[S ′], and there is also at most one

vertex of degree n−2
2

in G[S ′]. Without loss of generality, let ui1, ui2 be two vertices of

degree n− 3.

If ui1, ui2 ∈ S ′

1, without loss of generality, let ui1 = u2 and ui2 = ur, then the tree T =

vu1∪· · ·∪vur∪u2ur+1∪· · ·∪u2ur+n−4

2

∪urur+n−4

2
+1∪· · ·∪urun−1 is a Steiner tree connecting

S; see Figure 2 (a). Set G1 = G \ E(T ). Observe that dG1[S](u1) = n−2
2
, dG1[S](u2) ≥

n−3−n−4
2

= n−2
2

and dG1[S](ur) = (n−3)−(n−1−r−n−4
2
) = r−2+n−4

2
≥ n−2

2
. For uj ∈ S2

(r+1 ≤ j ≤ n−1), dG1[S](uj) ≥
n−4
2

and there is at most one vertex of degree n−4
2

in G1[S].

So δ(G1[S]) ≥
n−4
2

and there is at most one vertex of degree n−4
2

in G1[S], as desired. If
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Figure 2. Graphs for Case 1 of Lemma 9.

ui1 ∈ S ′

1 and ui2 ∈ S2, without loss of generality, let ui1 = u2 and ui2 = un−1, then the tree

T = vu1∪· · ·∪vur∪u2ur+1∪· · ·∪u2ur+n−4

2

∪un−1ur+n−4

2
+1∪· · ·∪un−1un−2∪un−1ur is our

desired tree; see Figure 2 (b). Set G1 = G \ E(T ). One can see that δ(G1[S]) ≥
n−4
2

and

there is at most one vertex of degree n−4
2

inG1[S], as desired. Let us consider the remaining

case ui1, ui2 ∈ S2. Without loss of generality, let ui1 = un−1 and ui2 = un−2. The tree T =

vu1∪· · ·∪vur∪un−2ur+1∪· · ·∪un−2ur+n−4

2

∪un−1ur+n−4

2
+1∪· · ·∪un−1un−3∪u2un−2∪un−1ur

is our desired tree; see Figure 2 (c). Set G1 = G \E(T ). One can see that δ(G1[S]) ≥
n−4
2

and there is at most one vertex of degree n−4
2

in G1[S]. Using (2) of Lemma 7, we can get

κn−1(G) ≥ n−2
2
, as desired.

Case 2. n
2
≤ δ(G) ≤ n− 1.

Recall that S1 = {u1, u2, · · · , ur} with vuj ∈ E(G) (1 ≤ j ≤ r) and S2 = S \ S1 =

{ur+1, ur+2, · · · , un−1}. Obviously, |S1| = r = δ(G) ≥ n
2
and |S2| = n−1−r ≤ n−1− n

2
=

n−2
2
. For each uj ∈ S2 (r + 1 ≤ j ≤ n − 1), uj has at most n−4

2
neighbors in S2

and hence |EG[uj, S1]| ≥ n
2
− n−4

2
= 2 since dG(uj) ≥ δ(G) ≥ n

2
. Clearly, the tree

T ′ = vu1∪ vu2∪ · · ·∪ vur is a Steiner tree connecting S1. Our idea is to seek for n− 1− r

edges in EG[S1, S2] and combine them with T ′ to form a Steiner tree connecting S. We

employ the method used in Case 2 of Lemma 8. Choose the one with the smallest subscript

among all the vertices of S2 with the maximum degree in G[S], say u′

1. Then we search

for the vertex adjacent to u′

1 with the smallest subscript among all the vertices of S1 with

the maximum degree in G[S], say u′′

1. Let e1 = u′

1u
′′

1. Consider the graph G1 = G \ e1,

and pick up the one with the smallest subscript among all the vertices of S2 \ u′

1 with

the maximum degree in G1[S], say u′

2. Then we search for the vertex adjacent to u′

2 with

the smallest subscript among all the vertices of S1 with the maximum degree in G1[S],

say u′′

2. Set e2 = u′

2u
′′

2. We consider the graph G2 = G1 \ e1 = G \ {e1, e2}. For each

uj ∈ S2 (r + 1 ≤ j ≤ n − 1), we proceed to find e3, e4, · · · , en−1−r in the same way. Let

M ′ = {e1, e2, · · · , en−1−r} and Gn−1−r = G \ M ′. Then Gn−1−r[S] = G[S] \ M ′ and the

tree T = vu1∪vu2∪· · ·∪vur∪ e1∪ e2∪· · ·∪ en−1−r is our desired tree. Set G′ = G\E(T )

(note that G′[S] = Gn−1−r[S]).
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Claim 2. For each uj ∈ S1 (1 ≤ j ≤ r), dG′[S](uj) ≥
n−4
2

and there exists at most one

vertex of degree n−4
2

in G′[S].

Proof of Claim 2. First, we prove that for each uj ∈ S1 (1 ≤ j ≤ r), dG′[S](uj) ≥ n−4
2
.

Assume, to the contrary, that there exists one vertex up ∈ S1 such that dG′[S](up) ≤
n−6
2
.

By the above procedure, there exists a vertex uq ∈ S2 such that when we pick up the edge

ei = upuq from Gi−1[S] the degree of up in Gi[S] is equal to
n−6
2
. That is dGi[S](up) =

n−6
2

and dGi−1[S](up) =
n−4
2
. From our procedure, |EG[uq, S1]| = |EGi−1

[uq, S1]|. Without loss

of generality, let |EG[uq, S1]| = t and uquj ∈ E(G) for 1 ≤ j ≤ t; see Figure 1 (b). Thus

up ∈ {u1, u2, · · · , ut}. Recall that |EG[uj, S1]| ≥ 2 for each uj ∈ S2 (r + 1 ≤ j ≤ n − 1).

Since uq ∈ S2, we have t ≥ 2. Observe that uquj /∈ E(G) and hence uquj ∈ M for

t+1 ≤ j ≤ r by our procedure, namely, |EKn[M ][uq, S1]| = r− t. Since dGi−1[S](up) =
n−4
2
,

by our procedure dGi−1[S](uj) ≤ n−4
2

for each uj ∈ S1 (1 ≤ j ≤ t). Assume, to the

contrary, that there is a vertex us (1 ≤ s ≤ t) such that dGi−1[S](us) ≥ n−2
2
. Then we

should choose the edge uqus instead of ei = uqup by our procedure, a contradiction. We

conclude that dGi−1[S](uj) ≤
n−4
2

for each uj ∈ S1 (1 ≤ j ≤ t). Clearly, there are at least

n−2−n−4
2

edges incident to each uj (1 ≤ j ≤ t) that belong toM∪{e1, e2, · · · , ei−1}. Since

i ≤ n−1−r, we have
∑t

j=1 dKn[M ](uj) ≥ (n−2− n−4
2
)t−(i−1) ≥ n

2
t−(n−2−r) and hence

|M | ≥ dKn[M ](v)+
∑t

j=1 dKn[M ](uj)+|EKn[M ][uq, S1]| ≥ (n−1−r)+n
2
t−(n−2−r)+(r−t) =

r + 1 + n−2
2
t ≥ n

2
+ 1 + 2(n−2)

2
= 3n−2

2
, which contradicts to |M | = 3n−6

2
.

Next, we consider to prove that there exists at most one vertex of degree n−4
2

in

G′[S]. Assume, to the contrary, that there exist two vertices of degree n−4
2

in G′[S], say

up′, up. By the above procedure, there exists a vertex uq′ ∈ S2 such that when we pick

up the edge ei′ = up′uq′ from Gi′−1[S] the degree of up in Gi′ [S] is equal to n−4
2
, that is

dG
i′
[S](up′) =

n−4
2
. By the same reason, there exists a vertex uq ∈ S2 such that when we

pick up the edge ei = upuq from Gi−1[S] the degree of up in Gi[S] is equal to
n−4
2
, that is,

dGi[S](up) =
n−4
2

and dGi−1[S](up) =
n−2
2
. Without loss of generality, let i′ < i. From our

procedure, |EG[uq, S1]| = |EGi−1
[uq, S1]|. Without loss of generality, let |EG[uq, S1]| = t

and uquj ∈ E(G) for 1 ≤ j ≤ t; see Figure 1 (b). Thus up ∈ {u1, u2, · · · , ut}. Recall

that |EG[uj, S1]| ≥ 2 for each uj ∈ S2 (r + 1 ≤ j ≤ n − 1). Since uq ∈ S2, we have

t ≥ 2. Then uquj /∈ E(G) and hence uquj ∈ M for t + 1 ≤ j ≤ r by our procedure,

namely, |EKn[M ][uq, S1]| = r− t. Since dGi−1[S](up) =
n−2
2
, by our procedure dGi−1[S](uj) ≤

n−2
2

for each uj ∈ S1 (1 ≤ j ≤ t). Assume, to the contrary, that there is a vertex

us (1 ≤ s ≤ t) such that dGi−1[S](us) ≥
n
2
. Then we should choose the edge uqus instead

of ei = uqup by our procedure, a contradiction. We conclude that dGi−1[S](uj) ≤
n−2
2

for

each uj ∈ S1 (1 ≤ j ≤ t). If up′ ∈ {u1, · · · , ut}, without loss of generality, let up′ = u1,

then dKn[M ](u1) +
∑t

j=2 dKn[M ](uj) ≥ (n − 2 − dGi−1[S](u1)) + (n − 2 − n−2
2
)(t − 1) −

(i − 1) ≥ (n − 2 − dG
i′
[S](u1)) +

n−2
2
(t − 1) − (i − 1) ≥ (n − 2 − n−4

2
) + n−2

2
(t − 1) −

(n − 2 − r) = n−2
2
t − n + 3 + r since i ≤ n − 1 − r. Since t ≥ 2 and r ≥ n

2
, we have
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|M | ≥ dKn[M ](v)+dKn[M ](u1)+
∑t

j=2 dKn[M ](uj)+|EKn[M ][uq, S1]| ≥ (n−1−r)+(n−2
2
t−n+

3+ r) + (r− t) = n−4
2
t+ r+ 2 ≥ 2(n−4)

2
+ n

2
+ 2 ≥ 3n−4

2
, which contradicts to |M | = 3n−6

2
.

If up′ /∈ {u1, · · · , ut}, then up′ ∈ {ut+1, · · · , ur} and dKn[M ](up′) +
∑t

j=1 dKn[M ](uj) ≥

(n− 2− dGi−1[S](up′)) + (n− 2− n−2
2
)t− (i− 1) ≥ (n− 2− dG

i′
[S](up′)) +

n−2
2
t− (i− 1) ≥

(n−2− n−4
2
)+ n−2

2
t−(n−2−r) = n−2

2
(t+1)−n+3+r since i ≤ n−1−r. Since t ≥ 2 and

r ≥ n
2
, we have |M | ≥ dKn[M ](v)+dKn[M ](up′)+

∑p

j=1 dKn[M ](uj)+(|EKn[M ][uq, S1]|−1) ≥

(n−1−r)+n−2
2
(t+1)−n+3+r+(r−1−t) = r+1+n−4

2
t+n−2

2
≥ n

2
+1+ 2(n−4)

2
+n−2

2
= 2n−4,

which contradicts to |M | = 3n−6
2

. The proof of this claim is complete.

From Claim 2, dG′[S](uj) ≥ n−4
2

for each uj ∈ S1 (1 ≤ j ≤ r) and and there exists

at most one vertex of degree n−4
2

in G′[S]. For each uj ∈ S2 (r + 1 ≤ j ≤ n − 1),

dG′[S](uj) = dG[S](uj) − 1 = dG(uj) − 1 ≥ δ(G) − 1 ≥ n−2
2
. So δ(G′[S]) ≥ n−4

2
and

there exists at most one vertex of degree n−4
2

in G′[S]. Combining this with e(G′[S]) =

e(G) − (n − 1) =
(
n−2
2

)
− n−2

2
, G′[S] contains n−4

2
spanning trees by (2) of Lemma 7.

These trees together with the tree T are n−2
2

trees connecting S, namely, κn−1(G) ≥ n−2
2
,

as desired.

After above preparations, we now characterize the graphs with κn−1(G) = ⌊n−1
2
⌋.

Proposition 3. For a connected graph G of order n (n ≥ 11), κn−1(G) = ⌊n−1
2
⌋ if and

only if G = Kn \M and M ⊆ E(Kn) satisfies one of the following conditions:

• 1 ≤ |M | ≤ n− 2 for n odd;

• n
2
≤ |M | ≤ n for n even;

• n + 1 ≤ |M | ≤ 3n−6
2

and dG(u1) ≥
n−2
2

where u1 is a second minimal degree vertex

in G for n even.

Proof. For n odd, if G is a connected graph of order n such that κn−1(G) = n−1
2
, then we

can consider G as the graph obtained from a complete graph Kn by deleting some edges.

Set G = Kn \M where M ⊆ E(Kn). From Proposition 1, |M | ≥ 1. Combining this with

(3) of Lemma 6, 1 ≤ |M | ≤ n− 2. For n even, if G is a connected graph of order n such

that κn−1(G) = n−2
2
, then we let G = Kn \ M , where M ⊆ E(Kn). From Proposition

1, |M | ≥ n
2
. Combining this with (1) of Lemma 6, n

2
≤ |M | ≤ 3n−6

2
. Furthermore, for

n + 1 ≤ |M | ≤ 3n−6
2

we have dG(u1) ≥ n−2
2

by (2) of Lemma 6, where u1 is a second

minimal degree vertex. So n
2
≤ |M | ≤ n, or n + 1 ≤ |M | ≤ 3n−6

2
and dG(u1) ≥

n−2
2
.

Conversely, assume thatG is a graph satisfying one of the conditions of this proposition.

Then we will show κn−1(G) = ⌊n−1
2
⌋. For n odd, G = Kn \M and M ⊆ E(Kn) such that

1 ≤ |M | ≤ n − 2. In fact, we only need to show that κn−1(G) ≥ ⌊n−1
2
⌋ for |M | = n − 2.

It follows by Lemma 8. Combining with Proposition 1, κn−1(G) = ⌊n−1
2
⌋. For n even,

G = Kn \ M and M ⊆ E(Kn) such that n
2
≤ |M | ≤ n, or n + 1 ≤ |M | ≤ 3n−6

2
and
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dG(u1) ≥
n−2
2

where u1 is a second minimal degree vertex. Actually, for n
2
≤ |M | ≤ n,

we claim that dG(u1) ≥
n−2
2
, where u1 is a second minimal degree vertex. Otherwise, let

dG(u1) ≤
n−4
2
. Let v be a vertex in G such that dG(v) = δ(G). From the definition of the

second minimal degree vertex, dG(v) ≤ dG(u1) ≤
n−4
2

and hence dKn[M ](v) ≥ dKn[M ](u1) ≥

n − 1 − n−4
2

= n+2
2
. Therefore, |M | ≥ dKn[M ](v) + dKn[M ](u1) ≥ n + 2, a contradiction.

So we only need to show that κn−1(G) ≥ ⌊n−1
2
⌋ for |M | = 3n−6

2
and dG(u1) ≥

n−2
2

where

u1 is a second minimal degree vertex. It follows by Lemma 9. From this together with

Proposition 1, κn−1(G) = ⌊n−1
2
⌋.

Furthermore, graphs with λn−1(G) = ⌊n−1
2
⌋ can also be characterized.

Proposition 4. For a connected graph G of order n (n ≥ 11), λn−1(G) = ⌊n−1
2
⌋ if and

only if G = Kn \M and M ⊆ E(Kn) satisfies one of the following conditions.

• 1 ≤ |M | ≤ n− 2 for n odd;

• n
2
≤ |M | ≤ n for n even;

• n + 1 ≤ |M | ≤ 3n−6
2

and dG(u1) ≥
n−2
2

where u1 is a second minimal degree vertex

in G for n even.

Proof. Assume that G is a connected graph satisfying the conditions of Proposition 4.

From Observation 1 and Proposition 3, it follows that λn−1(G) ≥ κn−1(G) = ⌊n−1
2
⌋.

Combining this with Proposition 2, λn−1(G) = ⌊n−1
2
⌋. Conversely, if λn−1(G) = ⌊n−1

2
⌋,

then from Lemma 6 we have G = Kn \M for n odd, where M is an edge set such that

1 ≤ |M | ≤ n−2; G = Kn \M for n even, where M is an edge set such that n
2
≤ |M | ≤ n,

or n + 1 ≤ |M | ≤ 3n−6
2

and dG(u1) ≥
n−2
2
.

3.2 The subcase 1 ≤ ℓ ≤ ⌊n−5
2 ⌋

Now we consider the case 1 ≤ ℓ ≤ ⌊n−5
2
⌋.

Lemma 10. Let H is a connected graph of order n− 1 (n ≥ 12). If e(H) =
(
n−2
2

)
+2ℓ−

(n− 1) (1 ≤ ℓ ≤ ⌊n−5
2
⌋) and δ(H) ≥ ℓ and any two vertices of degree ℓ are nonadjacent,

then H contains ℓ edge-disjoint spanning trees.

Proof. Let P =
⋃p

i=1 Vi be a partition of V (G) with |Vi| = ni (1 ≤ i ≤ p), and Ep be the

set of edges between distinct blocks of P in G. It suffices to show |Ep| ≥ ℓ(|P| − 1) so

that we can use Theorem 1.

The case p = 1 is trivial, thus we assume p ≥ 2. For p = 2, we have P = V1 ∪ V2. Set

|V1| = n1. Then |V2| = n−1−n1. If n1 = 1, 2, n−2, n−1, then |E2| = |EG[V1, V2]| ≥ ℓ since
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δ(H) ≥ ℓ and any two vertices of degree ℓ are nonadjacent. Suppose 3 ≤ n1 ≤ n−4. Then

|E2| = |EG[V1, V2]| ≥
(
n−2
2

)
+2ℓ−(n−1)−

(
n1

2

)
−
(
n−1−n1

2

)
= −n2

1+(n−1)n1+2ℓ−(2n−3).

Since 3 ≤ n1 ≤ n − 4, one can see that |E2| attains its minimum value when n1 = 3 or

n1 = n− 4. Thus |E2| ≥ n− 9 + 2ℓ ≥ ℓ. So the conclusion holds for p = 2 by Theorem 1.

Consider the case p = 3. We will show |E3| ≥ 2ℓ. Let P = V1 ∪ V2 ∪ V3 and

|Vi| = ni (i = 1, 2, 3) where n1 + n2 + n3 = n − 1. If there are two of n1, n2, n3 that

equals 1, say n1 = n2 = 1, then |E3| ≥ 2ℓ since δ(H) ≥ ℓ and any two vertices of degree

ℓ are nonadjacent. If there is at most one of n1, n2, n3 that equals 1, then we need to

prove that |E3| ≥
(
n−2
2

)
+ 2ℓ− (n − 1)−

∑3
i=1

(
ni

2

)
≥ 2ℓ. Since f(n1, n2, n3) =

∑3
i=1

(
ni

2

)

attains its maximum value when n1 = 1, n2 = 2 and n3 = n − 4, we need the inequality(
n−2
2

)
+2ℓ−(n−1)−

(
n−4
2

)
−1 ≥ 2ℓ. Since n ≥ 12, the inequality holds. So the conclusion

holds for p = 3 by Theorem 1. For p = n− 1, we will show |En−1| ≥ ℓ(n− 2) so that we

can use Theorem 1. That is
(
n−2
2

)
+2ℓ− (n− 1) ≥ ℓ(n− 2). Thus we need the inequality

(n − 2 − 2ℓ)(n − 4) − n ≥ 0. Since ℓ ≤ ⌊n−5
2
⌋, the inequality holds. For p = n − 2, it

suffices to prove |En−2| ≥ ℓ(n− 3). Clearly, |En−2| ≥
(
n−2
2

)
+ 2ℓ− (n− 1)− 1 ≥ ℓ(n− 3).

Thus we need the inequality (n− 2− 2ℓ)(n− 5)− 4 ≥ 0. Since ℓ ≤ ⌊n−5
2
⌋, this inequality

holds.

Let us consider the remaining case p with 4 ≤ p ≤ n − 4. Clearly, we need to

prove that |Ep| ≥
(
n−2
2

)
+ 2ℓ − (n − 1) −

∑p

i=1

(
ni

2

)
≥ ℓ(p − 1), that is, (n−2)(n−3)

2
+

2ℓ − (n − 1) − ℓp + ℓ ≥
∑p

i=1

(
ni

2

)
. Since f(n1, n2, · · · , np) =

∑p

i=1

(
ni

2

)
achieves its

maximum value when n1 = n2 = · · · = np−1 = 1 and np = n− p, we need the inequality
(n−2)(n−3)

2
+3ℓ− (n−1)−ℓp ≥ (n−p)(n−p−1)

2
. It is equivalent to (2n−2ℓ−p−4)(p−3) ≥ 4.

One can see that the inequality holds since ℓ ≤ n−5
2

and 4 ≤ p ≤ n − 4. From Theorem

1, we know that there exist ℓ edge-disjoint spanning trees.

Lemma 11. Let G be a connected graph of order n (n ≥ 12). If e(G) ≥
(
n−2
2

)
+ 2ℓ (1 ≤

ℓ ≤ ⌊n−5
2
⌋), δ(G) ≥ ℓ + 1 and any two vertices of degree ℓ + 1 are nonadjacent, then

κn−1(G) ≥ ℓ+ 1.

Proof. The following claim can be easily proved.

Claim 3. ∆(G) ≥ n− 4.

Proof of Claim 3. Assume, to the contrary, that ∆(G) ≤ n−5. Then (n−2)(n−3)+4ℓ =

2e(G) ≤ n∆(G) ≤ n(n− 5), which implies that 4ℓ+ 6 ≤ 0, a contradiction.

From Claim 3, n − 4 ≤ ∆(G) ≤ n − 1. Our basic idea is to find out a Steiner tree T

connecting S = V (G) \ v, where v ∈ V (G) such that dG(v) = ∆(G). Let G1 = G \E(T ).

Then we prove that G1[S] satisfies the conditions of Lemma 10 so that G1[S] contains

ℓ edge-disjoint spanning trees. These trees together with the tree T are ℓ + 1 internally
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disjoint trees connecting S, which implies that κn−1(G) ≥ ℓ+1, as desired. We distinguish

the following four cases to show this lemma.

If ∆(G) = n − 1, then there exists a vertex v ∈ V (G) such that dG(v) = n − 1. Let

S = V (G) \ v = {u1, u2, · · · , un−1}. Then the tree T = u1v∪u2v∪ · · ·∪un−1v is a Steiner

tree connecting S. Set G1 = G \E(T ). Since δ(G) ≥ ℓ+1 and any two vertices of degree

ℓ + 1 are nonadjacent, it follows that δ(G1[S]) ≥ ℓ and any two vertices of degree ℓ are

nonadjacent. From Lemma 10, G1[S] contains ℓ edge-disjoint spanning trees, as desired.

Consider the case ∆(G) = n− 4. We claim that δ(G) ≥ ℓ+ 4. Otherwise, let δ(G) ≤

ℓ+3. Then there exists a vertex u such that dG(u) ≤ ℓ+3. Then 2[
(
n−2
2

)
+2ℓ] = 2e(G) =∑

u∈V (G) d(u) ≤ dG(u) + (n− 1)∆(G) ≤ (ℓ+3)+ (n− 1)(n− 4), which results in ℓ ≤ 1
3
, a

contradiction. So δ(G) ≥ ℓ+4. Since ∆(G) = n− 4, there exists a vertex v ∈ V (G) such

that dG(v) = n− 4. Let S = V (G) \ v = {u1, · · · , un−1} such that vun−1, vun−2, vun−3 /∈

E(G). Pick up ui ∈ NG(un−1), uj ∈ NG(un−2), uk ∈ NG(un−3) (note that ui, uj, uk are not

necessarily different). Then the tree T = vu1∪vu2∪· · ·∪vun−4∪uiun−1∪ujun−2∪ukun−1 is

our desired tree. Set G1 = G\E(T ). Since δ(G) ≥ ℓ+4, one can check that δ(G1) ≥ ℓ+4

and there is at most one vertex of degree ℓ in G1[S], as desired.

If ∆(G) = n − 2, then there exists a vertex of degree n − 2 in G, say v. Let S =

G \ v = {u1, u2, · · · , un−1} such that un−1 is the unique vertex with un−1v /∈ E(G).

Let dG(un−1) = x. Without loss of generality, let NG(un−1) = {u1, · · · , ux}. Since

δ(G) ≥ ℓ + 1, it follows that x ≥ ℓ+ 1 ≥ 2. First, we consider the case x ≥ 3. We claim

that there exists a vertex, say ui (1 ≤ i ≤ x), such that dG(ui) ≥ ℓ + 3. Assume, to the

contrary, that dG(uj) ≤ ℓ+2 for each uj (1 ≤ j ≤ x). Then (n−2)(n−3)+4ℓ = 2e(G) ≤

dG(un−1)+dG(v)+
∑x

j=1 dG(uj)+
∑n−2

j=x+1 dG(uj) ≤ x+(n−2)+(ℓ+2)x+(n−2−x)(n−2)

and hence x ≤ 2n−4ℓ−4
n−ℓ−5

. Since x ≥ 3, it follows that n + ℓ − 11 ≤ 0, which contradicts

to n ≥ 12. So there exists a vertex, say ui (1 ≤ i ≤ x), such that dG(ui) ≥ ℓ + 3. Then

the tree T = vu1 ∪ vu2 ∪ · · · ∪ vun−2 ∪ un−1ui is our desired tree. Set G1 = G \ E(T ).

Since δ(G) ≥ ℓ + 1 and any two vertices of degree ℓ + 1 are nonadjacent, one can check

that δ(G1[S]) ≥ ℓ and any two vertices of degree ℓ are nonadjacent, as desired. Next, we

consider the case x = 2. Since ℓ + 1 ≤ x, it follows that ℓ = 1 and hence dG(un−1) = 2

and NG(un−1) = {u1, u2}. Let p be the number of vertices of degree 2 in G. We claim

that 0 ≤ p ≤ 3. Otherwise, let p ≥ 4. Then 2
(
n−2
2

)
+ 4 = 2e(G) =

∑
v∈V (G) d(v) ≤

2p+(n−p)(n−2) and hence p ≤ 3n−10
n−4

. Since p ≥ 4, it follows that n ≤ 6, a contradiction.

So 0 ≤ p ≤ 3. If p = 3, then there are three vertices of degree 2, say v1, v2, v3. Let

G1 = G \ {v1, v2, v3}. Since the three vertices are pairwise nonadjacent, |V (G1)| = n− 3

and e(G1) =
(
n−2
2

)
+ 2 − 6 =

(
n−2
2

)
− 4 >

(
n−3
2

)
, a contradiction. So we can assume

0 ≤ p ≤ 2. If p = 2, then there are two vertices of degree 2, say v1, v2. LetG1 = G\{v1, v2}.

Then G1 is a graph obtained from a clique of order n − 2 by deleting 2 edges and hence
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κn−2(G1) ≥ ⌊n−2
2
⌋ − 2 ≥ 2, that is, G1 contains two edge-disjoint spanning trees, say

T ′

1, T
′

2. Let NG(v1) = {u1, u2}, the trees Ti = T ′

i ∪ v1ui (i = 1, 2) are two internally

disjoint Steiner trees connecting S = V (G) \ v2, which implies that κn−1(G) ≥ 2, as

desired. So we now assume 0 ≤ p ≤ 1. Consider the case p = 1. If dG(un−1) = 2, then

dG(uj) ≥ 3 for each uj (1 ≤ j ≤ n − 2). Recall that NG(un−1) = {u1, u2}, certainly

we have dG(uj) ≥ 3 (j = 1, 2). Then the tree T = vu1 ∪ vu2 ∪ · · · ∪ vun−2 ∪ u1un−1 is

a Steiner tree connecting S = V (G) \ v. Set G1 = G \ E(T ). Clearly, dG1[S](u1) ≥ 1,

dG1[S](un−1) = 1 and u1un−1 /∈ E(G1[S]). In addition, the degree of the other vertices in

G1[S] is at least 2, as desired. Suppose dG(un−1) ≥ 3. Let ui be the vertex of degree 2 in

V (G) \ {v, un−1}. If ui ∈ NG(un−1), then there is another vertex uj ∈ NG(un−1) such that

dG(uj) ≥ 3 since p = 1. Then the tree T = vu1 ∪ vu2 ∪ · · · ∪ vun−2 ∪ ujun−1 is our desired

tree. Set G1 = G \ E(T ). Obviously, dG1[S](ui) = 1, dG1[S](uj) ≥ 1, dG1[S](un−1) ≥ 2,

uiuj /∈ E(G1[S]) and the degree of the other vertices in G1[S] is at least 2, as desired.

If ui /∈ NG(un−1), then there exists a vertex uj ∈ NG(un−1) such that dG(uj) ≥ 3 and

uiuj /∈ E(G). Thus the tree T = vu1 ∪ vu2 ∪ · · · ∪ vun−2 ∪ ujun−1 is our desired tree. Set

G1 = G \ E(T ). Clearly, dG1[S](ui) = 1, dG1[S](ut) ≥ 1, dG1[S](un−1) ≥ 2, uiuj /∈ E(G1[S])

and the degree of the other vertices inG1[S] is at least 2, as desired. For the remaining case

p = 0, we choose a vertex uj ∈ NG(un−1) and the tree T = vu1∪vu2∪· · ·∪vun−2∪ujun−1

is our desired tree. Set G1 = G \ E(T ). Clearly, δ(G1[S]) ≥ 1 and there is at most one

vertex of degree 1, as desired.

Let us consider the remaining case ∆(G) = n− 3. Then there exists a vertex of degree

n− 3, say v. Let p be the number of vertices of degree ℓ+ 1. Since (n− 2)(n− 3) + 4ℓ =

2e(G) ≤ p(ℓ+1)+(n−p)(n−3), it follows that p ≤ 2n−4ℓ−6
n−ℓ−4

. Consider the case ℓ ≥ 2. Since

p ≤ 2n−4ℓ−6
n−ℓ−4

, if p ≥ 2 then ℓ ≤ 1, a contradiction. So 0 ≤ p ≤ 1 for 2 ≤ ℓ ≤ ⌊n−5
2
⌋. Let

V (G) \ v = {u1, u2, · · · , un−1} such that vun−1, vun−2 /∈ E(G). Without loss of generality,

let dG(un−1) ≥ dG(un−2). For the vertex v ∈ V (G), we choose ℓ+1 vertices in NG(v) and

the following claim can be easily proved.

Claim 4. For ℓ ≥ 2 and any ℓ + 1 vertices in NG(v), there exists one of them, say ui,

such that dG(ui) ≥ ℓ+ 4.

Proof of Claim 4. Assume, to the contrary, that for any ℓ + 1 vertices in NG(v), say

u1, u2, · · · , uℓ+1, dG(uj) ≤ ℓ + 3 (1 ≤ j ≤ ℓ + 1). Then (n − 2)(n − 3) + 4ℓ = 2e(G) ≤

(ℓ+ 1)(ℓ+ 3) + (n− ℓ− 1)(n− 3) and hence (ℓ− 1)(n− 3) ≤ ℓ2 + 3. So n− 3 ≤ ℓ2+3
ℓ−1

=

ℓ+ 1 + 4
ℓ−1

≤ ℓ+ 5 ≤ n+5
2
, which contradicts to n ≥ 12.

First, we consider the case un−1un−2 ∈ E(G). Recall that 0 ≤ p ≤ 1 for 2 ≤ ℓ ≤ ⌊n−5
2
⌋,

that is, there is at most one vertex of degree ℓ + 1 in G. If dG(un−2) = ℓ + 1, then

dG(un−1) ≥ dG(un−2) = ℓ+2 and hence there exists a vertex ui ∈ NG(un−1)\un−2 such that

dG(ui) ≥ ℓ+4 by Claim 4, where 1 ≤ i ≤ ℓ+1. Then the tree T = vu1∪vu2∪· · ·∪vun−3∪
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uiun−1∪un−1un−2 is a Steiner tree connecting S = V (G)\v. Let G1 = G\E(T ). Observe

that dG1[S](un−1) ≥ dG(un−1) − 2 ≥ ℓ, dG1[S](un−2) = dG(un−2) − 1 = ℓ and un−2un−1 /∈

E(G1). In addition, dG1[S](ui) ≥ dG(ui)− 2 ≥ ℓ + 2 and dG1[S](uj) ≥ dG(uj) − 1 ≥ ℓ + 1

for each uj ∈ V (G)\{un−1, un−2, ui, v}. Thus δ(G1[S]) ≥ ℓ and any two vertices of degree

ℓ are nonadjacent, as desired. If dG(un−2) ≥ ℓ + 2, then dG(un−1) ≥ dG(un−2) ≥ ℓ + 2.

From Claim 4, there exist two vertices, say ui, uj, such that ui ∈ NG(un−1) \ un−2, uj ∈

NG(un−2) \ un−1, dG(ui) ≥ ℓ + 4 and dG(uj) ≥ ℓ + 4 (note that ui, uj are not necessarily

different). Then the tree T = vu1∪ vu2 ∪ · · · ∪ vun−3 ∪uiun−1 ∪ujun−2 is our desired. Set

G1 = G \ E(T ). One can see that G1[S] satisfies the conditions of Lemma 10. Next, we

consider the case un−1un−2 /∈ E(G). Then dG(un−1) ≥ dG(un−2) ≥ ℓ + 1. From Claim 4,

there exist two vertices, say ui, uj, such that ui ∈ NG(un−1) \ un−2, uj ∈ NG(un−2) \ un−1,

dG(ui) ≥ ℓ+4 and dG(uj) ≥ ℓ+4 (note that ui, uj are not necessarily different). Thus the

tree T = vu1 ∪ vu2 ∪ · · · ∪ vun−3 ∪ uiun−1 ∪ ujun−2 is our desired tree. Set G1 = G \E(T )

and S = V (G) \ v. One can check that δ(G1[S]) ≥ ℓ and there is at most one vertex of

degree ℓ, as desired. Similar to the proof of the case ∆(G) = n − 2, we can prove that

the conclusion holds for ℓ = 1. The proof is now complete.

3.3 Results for the maximum generalized local (edge-)connectivity

Let Hn be a graph class obtained from the complete graph of order n−2 by adding two

nonadjacent vertices and joining each of them to any ℓ vertices of Kn−2. The following

theorem summarizes the results for a general ℓ.

Theorem 4. Let G be a connected graph of order n (n ≥ 12). If κn−1(G) ≤ ℓ (1 ≤ ℓ ≤

⌊n+1
2
⌋), then

e(G) ≤





(
n−2
2

)
+ 2ℓ, if 1 ≤ ℓ ≤ ⌊n−5

2
⌋;(

n−2
2

)
+ n− 2, if ℓ = ⌊n−3

2
⌋ and n is odd;(

n−2
2

)
+ n− 4, if ℓ = ⌊n−3

2
⌋ and n is even;(

n−1
2

)
+ n− 2, if ℓ = ⌊n−1

2
⌋ and n is odd;(

n−1
2

)
+ n−2

2
, if ℓ = ⌊n−1

2
⌋ and n is even;(

n

2

)
, if ℓ = ⌊n+1

2
⌋.

with equality if and only if G ∈ Hn for 1 ≤ ℓ ≤ ⌊n−5
2
⌋; G = Kn \M where |M | = n − 1

for ℓ = ⌊n−3
2
⌋ and n odd; G ∈ Hn for ℓ = ⌊n−3

2
⌋ and n even; G = Kn \ e where e ∈ E(Kn)

for ℓ = ⌊n−1
2
⌋ and n odd; G = Kn \M where |M | = n

2
for ℓ = ⌊n−1

2
⌋ and n even; G = Kn

for ℓ = ⌊n+1
2
⌋.

Proof. For 1 ≤ ℓ ≤ ⌊n−5
2
⌋, we assume that e(G) ≥

(
n−2
2

)
+ 2ℓ + 1. Then the following

claim is immediate.
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Claim 5. δ(G) ≥ ℓ+ 1.

Proof of Claim 5. Assume, to the contrary, that δ(G) ≤ ℓ. Then there exists a vertex

v ∈ V (G) such that dG(v) = δ(G) ≤ ℓ, which results in e(G−v) ≥ e(G)−ℓ ≥
(
n−2
2

)
+ℓ+1.

Since 1 ≤ ℓ ≤ ⌊n−5
2
⌋, it follows that κn−1(G− v) ≥ ℓ + 1 by Theorem 2, which results in

κn−1(G) ≥ ℓ+ 1, a contradiction.

From Claim 5, δ(G) ≥ ℓ + 1. If any two vertices of degree ℓ + 1 are nonadjacent,

then κn−1(G) ≥ ℓ + 1 by Lemma 11, a contradiction. So we assume that v1 and v2

are two vertices of degree ℓ + 1 such that v1v2 ∈ E(G). Let G1 = G \ {v1, v2} and

V (G1) = {u1, u2, · · · , un−2}. Then e(G1) ≥ e(G) − (2ℓ + 1) =
(
n−2
2

)
and hence G1 is a

clique of order n − 2. Furthermore, G1 contains ⌊n−2
2
⌋ ≥ ℓ + 1 edge-disjoint spanning

trees, say T ′

1, T
′

2, · · · , T
′

ℓ+1. Without loss of generality, let NG(v1) = {u1, u2, · · · , uℓ, v2}.

Choose S = {u1, u2, · · · , un−2, v1}. Then the trees Ti = T ′

i ∪ v1ui (1 ≤ i ≤ ℓ) together

with Tℓ+1 = T ′

ℓ+1 ∪ v1v2 ∪ v2ut are ℓ + 1 internally disjoint trees connecting S where

ut ∈ NG(v2)\v1, which implies that κn−1(G) ≥ ℓ+1, a contradiction. So e(G) ≤
(
n−2
2

)
+2ℓ

for 1 ≤ ℓ ≤ ⌊n−5
2
⌋. From Proposition 3, e(G) ≤

(
n−2
2

)
+n−2 for ℓ = ⌊n−3

2
⌋ and n odd, and

e(G) ≤
(
n−2
2

)
+n−4 for ℓ = ⌊n−3

2
⌋ and n even. From Proposition 1, e(G) ≤

(
n−1
2

)
+n−2

for ℓ = ⌊n−1
2
⌋ and n odd, and e(G) ≤

(
n−1
2

)
+ n−2

2
for ℓ = ⌊n−1

2
⌋ and n even. If ℓ = ⌊n+1

2
⌋,

then for any connected graph G it follows that κn−1(G) ≤ ℓ by Observation 4 and hence

e(G) ≤
(
n

2

)
.

Now we characterize the graphs attaining these upper bounds. For ℓ = ⌊n+1
2
⌋, if

e(G) =
(
n

2

)
, then G = Kn. For ℓ = ⌊n−1

2
⌋ and n odd, if e(G) =

(
n−1
2

)
+ n − 2, then

G = Kn \ e where e ∈ E(Kn). For ℓ = ⌊n−1
2
⌋ and n even, if e(G) =

(
n−1
2

)
+ n−2

2
, then

G = Kn \ M where |M | = n
2
. For ℓ = ⌊n−3

2
⌋ and n odd, if e(G) =

(
n−2
2

)
+ n − 2, then

G = Kn \M where |M | = n− 1. Suppose that e(G) =
(
n−2
2

)
+ n− 4 for ℓ = ⌊n−3

2
⌋ and n

even. From Proposition 3, G is a graph obtained from a complete graph Kn−2 by adding

two nonadjacent vertices and adding n−4
2

edges between each of them and the complete

graph Kn−2, that is, G ∈ Hn.

Let us now focus on the case 1 ≤ ℓ ≤ ⌊n−5
2
⌋. Suppose e(G) =

(
n−2
2

)
+ 2ℓ. Similar

to the proof of Claim 5, we can get δ(G) ≥ ℓ. Furthermore, we prove that δ(G) = ℓ.

If δ(G) ≥ ℓ + 2, or δ(G) = ℓ + 1 and any two vertices of degree ℓ + 1 are nonadjacent,

then κn−1(G) ≥ ℓ+ 1 by Lemma 11, a contradiction. If there exist two vertices of degree

ℓ + 1, say v1 and v2, such that v1v2 ∈ E(G), then G1 = G \ {v1, v2} is a graph obtained

from a complete graph of order n − 2 by deleting an edge. For n odd, from Corollary

2 we have κn−2(G1) = ⌊n−2
2
⌋ = n−3

2
≥ ℓ + 1 since ℓ ≤ ⌊n−5

2
⌋ = n−5

2
. For n even, from

Corollary 2, it follows that κn−2(G1) ≥ ⌊n−2
2
⌋ − 1 = n−4

2
≥ ℓ + 1 since ℓ ≤ ⌊n−5

2
⌋ = n−6

2
.

We conclude that G1 contains ℓ+1 edge-disjoint spanning trees, say T ′

1, T
′

2, · · · , T
′

ℓ+1. Set

NG(v1) = {u1, u2, · · · , uℓ, v2}. Then the trees Ti = T ′

i ∪ v1ui (1 ≤ i ≤ ℓ) together with
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Tℓ+1 = T ′

ℓ+1 ∪ v1v2 ∪ v1ut are ℓ + 1 internally disjoint trees connecting S = V (G) \ v2

where ut ∈ NG(v2)\ v1, which implies that κn−1(G) ≥ ℓ+1, a contradiction. So δ(G) = ℓ.

If there exist two vertices of degree ℓ, say v1, v2, such that v1v2 ∈ E(G), then we set

G1 = G \ {v1, v2}. Thus |V (G1)| = n− 2 and e(G1) =
(
n−2
2

)
+ 1, a contradiction.

So we assume that any two vertices of degree ℓ are nonadjacent in G. Let p be the

number of vertices of degree ℓ. The following claim can be easily proved.

Claim 6. 2 ≤ p ≤ 3.

Proof of Claim 6. Assume p ≥ 4. Then 2
(
n−2
2

)
+ 4ℓ = 2e(G) =

∑
v∈V (G) d(v) ≤ pℓ+ (n−

p)(n− 1) and hence p ≤ 4n−4ℓ−6
n−ℓ−1

. Since p ≥ 4, it follows that 4n− 4ℓ− 4 ≤ 4n− 4ℓ− 6,

a contradiction. Assume p = 1, that is, G contains exactly one vertex of degree ℓ, say

v1. Set G1 = G \ v1. Clearly, e(G1) = e(G) − ℓ =
(
n−2
2

)
+ ℓ. Since κn−1(G) ≤ ℓ, it

follows that κn−1(G1) ≤ κn−1(G) ≤ ℓ. From Theorem 2, G1 is a graph obtained from

a clique of order n − 2 by adding a vertex of degree ℓ, say v2. Since p = 1, we have

dG(v1) = ℓ, dG(v2) = ℓ + 1 and v1v2 ∈ E(G). Observe that G2 = G \ {v1, v2} is a

clique of order n − 2. Thus G2 contains ⌊n−2
2
⌋ ≥ ℓ + 1 edge-disjoint spanning trees, say

T ′

1, T
′

2, · · · , T
′

ℓ+1. Without loss of generality, let NG(v1) = {v2, u1, u2, · · · , uℓ}. Then the

trees Ti = v1ui ∪ T ′

i (1 ≤ i ≤ ℓ) together with Tℓ+1 = T ′

ℓ+1 ∪ v1v2 ∪ v2ut form ℓ + 1

edge-disjoint trees connecting S = V (G) \ v2, where ut ∈ NG(v2) \ v1. This implies that

κn−1(G) ≥ ℓ+ 1, a contradiction.

From Claim 6, we know that p = 2, 3. If p = 3, then G contains three vertices of

degree ℓ, say v1, v2, v3. Set G1 = G \ {v1, v2, v3}. Then |V (G1)| = n − 3 and e(G1) =(
n−2
2

)
+ 2ℓ− 3ℓ =

(
n−2
2

)
− ℓ >

(
n−3
2

)
since 1 ≤ ℓ ≤ ⌊n−5

2
⌋, a contradiction. If p = 2, then

G contains two vertices of degree ℓ, say v1, v2. Set G1 = G \ {v1, v2}. Since v1 and v2 are

nonadjacent, it follows that e(G1) = e(G)− 2ℓ =
(
n−2
2

)
and hence G1 is a complete graph

of order n− 2, which implies that G ∈ Hn.

The following corollary is immediate from Theorem 4.

Corollary 4. For 1 ≤ ℓ ≤ ⌊n+1
2
⌋ and n ≥ 12,

f(n; κn−1 ≤ ℓ) =





(
n−2
2

)
+ 2ℓ, if 1 ≤ ℓ ≤ ⌊n−5

2
⌋, or ℓ = ⌊n−3

2
⌋ and n is even;(

n−2
2

)
+ 2ℓ+ 1, if ℓ = ⌊n−3

2
⌋ and n is odd;(

n−1
2

)
+ ℓ, if ℓ = ⌊n−1

2
⌋ and n is even;(

n−1
2

)
+ 2ℓ− 1, if ℓ = ⌊n−1

2
⌋ and n is odd;(

n

2

)
, if ℓ = ⌊n+1

2
⌋.

Now we focus on the edge case.
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Theorem 5. Let G be a connected graph of order n (n ≥ 12). If λn−1(G) ≤ ℓ (1 ≤ ℓ ≤

⌊n+1
2
⌋), then

e(G) ≤





(
n−2
2

)
+ 2ℓ, if 1 ≤ ℓ ≤ ⌊n−5

2
⌋;(

n−2
2

)
+ n− 2, if ℓ = ⌊n−3

2
⌋ and n is odd;(

n−2
2

)
+ n− 4, if ℓ = ⌊n−3

2
⌋ and n is even;(

n−1
2

)
+ n− 2, if ℓ = ⌊n−1

2
⌋ and n is odd;(

n−1
2

)
+ n−2

2
, if ℓ = ⌊n−1

2
⌋ and n is even;(

n

2

)
, if ℓ = ⌊n+1

2
⌋.

with equality if and only if G ∈ Hn for 1 ≤ ℓ ≤ ⌊n−5
2
⌋; G = Kn \M where |M | = n − 1

for ℓ = ⌊n−3
2
⌋ and n odd; G ∈ Hn for ℓ = ⌊n−3

2
⌋ and n even; G = Kn \ e where e ∈ E(Kn)

for ℓ = ⌊n−1
2
⌋ and n odd; G = Kn \M where |M | = n

2
for ℓ = ⌊n−1

2
⌋ and n even; G = Kn

for ℓ = ⌊n+1
2
⌋.

Proof. Since λn−1(G) ≤ ℓ (1 ≤ ℓ ≤ ⌊n−5
2
⌋), it follows that κn−1(G) ≤ λn−1(G) ≤ ℓ

and hence e(G) ≤
(
n−2
2

)
+ 2ℓ by Theorem 4. Suppose e(G) =

(
n−2
2

)
+ 2ℓ. Since

κn−1(G) ≤ λn−1(G) ≤ ℓ, we have G ∈ Hn by Theorem 4. For ℓ = ⌊n+1
2
⌋, ⌊n−1

2
⌋ and

⌊n−3
2
⌋, respectively, the conclusion holds by Propositions 2 and 4.

Corollary 5. For 1 ≤ ℓ ≤ ⌊n+1
2
⌋ and n ≥ 12,

g(n;λn−1 ≤ ℓ) =





(
n−2
2

)
+ 2ℓ, if 1 ≤ ℓ ≤ ⌊n−5

2
⌋, or ℓ = ⌊n−3

2
⌋ and n is even;(

n−2
2

)
+ 2ℓ+ 1, if ℓ = ⌊n−3

2
⌋ and n is odd;(

n−1
2

)
+ ℓ, if ℓ = ⌊n−1

2
⌋ and n is even;(

n−1
2

)
+ 2ℓ− 1, if ℓ = ⌊n−1

2
⌋ and n is odd;(

n

2

)
, if ℓ = ⌊n+1

2
⌋.

Remark. It is not easy to determine the exact value of f(n; κk ≤ ℓ) and g(n;λk ≤ ℓ) for

a general k. So we hope to give a sharp lower bound of them. We construct a graph G

of order n as follows: Choose a complete graph Kk−1 (1 ≤ ℓ ≤ ⌊k−1
2
⌋). For the remaining

n − k + 1 vertices, we join each of them to any ℓ vertices of Kk−1. Clearly, κn−1(G) ≤

λn−1(G) ≤ ℓ and e(G) =
(
k−1
2

)
+ (n− k+ 1)ℓ. So f(n; κk ≤ ℓ) ≥

(
k−1
2

)
+ (n− k+ 1)ℓ and

g(n;λk ≤ ℓ) ≥
(
k−1
2

)
+ (n − k + 1)ℓ. From Theorems 4 and 5, we know that these two

bounds are sharp for k = n, n− 1.
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