ON ADDITIVE BASES II

WEIDONG GAO, DONGCHUN HAN, GUOYOU QIAN, YONGKE QU, AND HANBIN ZHANG

Abstract

Let G be an additive finite abelian group, and let S be a sequence over G. We say that S is regular if for every proper subgroup $H \subseteq G, S$ contains at most $|H|-1$ terms from H. Let $c_{0}(G)$ be the smallest integer t such that every regular sequence S over G of length $|S| \geq t$ forms an additive basis of G, i.e., every element of G can be expressed as the sum over a nonempty subsequence of S. The constant $c_{0}(G)$ has been determined previously only for the elementary abelian groups. In this paper, we determine $c_{0}(G)$ for some groups including the cyclic groups, the groups of order even, the groups of rank at least five, and all the p-groups except $G=C_{p} \oplus C_{p^{n}}$ with $n \geq 2$.

1. Introduction

Let G be a finite abelian group, p be the smallest prime dividing $|G|$, and let $\mathrm{r}(G)$ denote the rank of G. Let S be a sequence over G. We say that S is an additive basis of G if every element of G can be expressed as the sum over a nonempty subsequence of S. Let $\mathrm{c}(G)$ denote the smallest integer t such that every subset of G of cardinality at least t is an additive basis of G. In 1964, Erdős and Heilbronn [1] proposed the problem to determine c (G), and it had been completely determined till 2009 through many authors' effort (see [5], [2] and their references). For every subgroup H of G, let S_{H} denote the subsequence of S consisting of all terms of S contained in H. We say that S is a regular sequence over G if $\left|S_{H}\right| \leq|H|-1$ holds for every subgroup $H \subsetneq G$. Let $c_{0}(G)$ denote the smallest integer t such that every regular sequence over G of length at least t is an additive basis of G. The problem to determine $\mathrm{c}_{0}(G)$ was first proposed by Olson and then studied by Peng ([10], [11]) in 1987, he determined $\mathrm{c}_{0}(G)$ for all the elementary abelian groups. Let

$$
m(G)=\left\{\begin{array}{l}
|G|, \text { if } G \text { is cyclic } \\
\frac{|G|}{p}+p-1, \text { if } G=C_{p} \oplus C_{\frac{|G|}{p}} \text { and } p \left\lvert\, \frac{|G|}{p}\right., \\
\frac{|G|}{p}+p-2, \text { otherwise }
\end{array}\right.
$$

[^0]In this paper we determine $\mathrm{c}_{0}(G)$ for more groups and our main result is the following.

Theorem 1.1. Let G be a finite abelian group, and let p be the smallest prime dividing $|G|$. Then, $\mathrm{c}_{0}(G)=m(G)$ if one of the following conditions holds.
(1) G is cyclic;
(2) $|G|$ is even;
(3) $\mathrm{r}(G) \geq 5$;
(4) $\mathrm{r}(G) \in\{3,4\}$ and $p \geq 17$;
(5) $\mathrm{r}(G) \geq 2$ and G is a p-group except $G=C_{p} \oplus C_{p^{n}}$ with $n \geq 2$.

2. Preliminaries

Let G be an additive finite abelian group. A sequence S over G will be written in the form

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}, \quad \text { with } \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { for all } g \in G
$$

and we call
$|S|=\ell \in \mathbb{N}_{0} \quad$ the length and $\quad \sigma(S)=\sum_{i=1}^{\ell} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G \quad$ the sum of S.
Let $\operatorname{supp}(S)=\left\{g \in G: \mathrm{v}_{g}(S)>0\right\}$. Define

$$
\sum(S)=\{\sigma(T): 1 \neq T \mid S\}
$$

where $T \mid S$ means T is a subsequence of S, and 1 denotes the empty sequence.

We say that S is a zero-sum sequence if $\sigma(S)=0$.
We say that a subset $A \subset G \backslash\{0\}$ is a 2 -zero-sum free $|A|$-subset if A contains no two distinct elements with sum zero.

Let $A \subset \operatorname{supp}(S)$ be a subset of the maximal cardinality such that A is 2-zero-sum free. Define

$$
\left|\operatorname{supp}^{+}(S)\right|=|A| .
$$

Let $\mathrm{D}(G)$ denote the Davenport constant of G, which is defined as the smallest integer t such that, every sequence S over G of length $|S| \geq t$ contains a nonempty zero-sum subsequence.

For every subset A of G, denote by $\langle A\rangle$ the subgroup generated by A. Let $\operatorname{st}(A)=\{g \in G: g+A=A\}$. Then $\operatorname{st}(A)$ is the maximal subgroup H of G with $H+A=A$. We need the following well known Kneser's theorem. For the detailed proofs, the readers can refer to $[6,8,9]$.

Lemma 2.1. (Kneser) Let A_{1}, \ldots, A_{r} be finite nonempty subsets of an abelian group, and let $H=\operatorname{st}\left(A_{1}+\cdots+A_{r}\right)$. Then,

$$
\left|A_{1}+\cdots+A_{r}\right| \geq\left|A_{1}+H\right|+\cdots+\left|A_{r}+H\right|-(r-1)|H| .
$$

Lemma 2.2. $\mathrm{c}_{0}(G) \geq m(G)$ for every finite abelian group G.
Proof. If G is cyclic then $m(G)=|G|$ by the definition. Let g be a generating element of G and $S=g^{|G|-1}$. Then S is regular and $0 \notin \sum(S)$. Therefore, $\mathrm{c}_{0}(G) \geq|S|+1=m(G)$.

If $G=C_{p} \oplus C_{\frac{|G|}{p}}$ with $p \left\lvert\, \frac{|G|}{p}\right.$, where p is the smallest prime dividing $|G|$, then $m(G)=\frac{\stackrel{p}{p} \mid}{p}+p-1$. Let $G=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle$ with ord $\left(e_{1}\right)=p$ and $\operatorname{ord}\left(e_{2}\right)=\frac{|G|}{p}$. Let $S=e_{1}^{p-1} e_{2}^{\frac{|G|}{p}-1}$. Then, S is regular and $0 \notin \sum(S)$. Therefore, $\mathrm{c}_{0}(G) \geq|S|+1=m(G)$.

For all the other cases we have $m(G)=\frac{|G|}{p}+p-2$. Let H be a subgroup of G with $|H|=\frac{|G|}{p}$, and let $g \in G \backslash H$. Take any $p-2$ distinct elements h_{1}, \cdots, h_{p-2} from H. Let $S=(H \backslash\{0\}) \cup\left\{g+h_{1}, \cdots, g+h_{p-2}\right\}$. Then, S is a subset of G and therefore is a regular sequence over G. But $(-g+H) \cap$ $\sum(S)=\emptyset$. Therefore, $\mathrm{c}_{0}(G) \geq|S|+1=m(G)$.

The following result is crucial in the proof of Theorem 1.1.
Lemma 2.3. Let G be a finite abelian group, and let p be the smallest prime dividing $|G|$. Let S be a regular sequence over G of length $|S| \geq$ $\max \left\{\frac{|G|}{p}+p-2, \mathrm{D}(G)\right\}$. If $\sum(S) \neq G$ then,
(1) $\operatorname{st}\left(\sum(S)\right)=\{0\}$,
(2) $\operatorname{st}\left(\{0\} \cup \sum(T)\right)=\{0\}$ and $\left|\{0\} \cup \sum(T)\right| \geq|T|+1$ hold for every nonempty subsequence T of S.

Proof. Write $S=g_{1} \cdot \ldots \cdot g_{\ell}$. Since S is regular, $g_{i} \neq 0$ for all $1 \leq i \leq \ell$. Let $A_{i}=\left\{0, g_{i}\right\}$ for every $i \in[1, \ell]$. From $|S| \geq \max \left\{\frac{|G|}{p}+p-2, \mathrm{D}(G)\right\} \geq \mathrm{D}(G)$, we know that $0 \in \sum(S)$. It follows that

$$
\sum(S)=A_{1}+\cdots+A_{\ell}
$$

Let $H=\operatorname{st}\left(\sum(S)\right)$. From $\sum(S) \neq G$, we know that $H \neq G$. Suppose that $H \neq\{0\}$. Then by Lemma 2.1 and the fact that $\left|S_{H}\right| \leq|H|-1$, we have

$$
\begin{aligned}
\left|\sum(S)\right| & \geq\left|A_{1}+H\right|+\cdots+\left|A_{\ell}+H\right|-(\ell-1)|H| \\
& \geq(\ell+2-|H|)|H| \geq(|G| / p+p-|H|)|H| \\
& \geq \min \left((|G| / p+p-p) p,(|G| / p+p-|G| / p) \frac{|G|}{p}\right)=|G|
\end{aligned}
$$

a contradiction. This proves that $\operatorname{st}\left(\sum(S)\right)=\{0\}$.
By renumbering if necessary we assume that $T=g_{1} \cdot \ldots \cdot g_{t}$, where $t=|T| \in[1, \ell]$. Let

$$
B=A_{1}+\cdots+A_{t}
$$

and

$$
C=\left(A_{t+1}+\cdots+A_{\ell}\right) \cup\{0\} .
$$

Then, $B=\{0\} \cup \sum(T)$ and $\sum(S)=B+C$. It follows that $\operatorname{st}(B) \subset$ $s t\left(\sum(S)\right)$. Therefore, $\operatorname{st}(B)=\{0\}$.

Again by Lemma 2.1, we have $\left|\{0\} \cup \sum(T)\right|=\left|A_{1}+\cdots+A_{t}\right| \geq\left|A_{1}\right|+$ $\cdots+\left|A_{t}\right|-(t-1)=|T|+1$.

Lemma 2.4. $\mathrm{c}_{0}(G) \leq|G|$ holds for every finite abelian group.
Proof. Let S be an arbitrary regular sequence over G of length $|S|=|G|$. It follows from Lemma 2.3 that $\sum(S)=G$. Hence, $\mathrm{c}_{0}(G) \leq|G|$.

Lemma 2.5. ([13]) Let H and K be two finite abelian groups with $1<$ $|H|||K|$, and let $G=H \oplus K$. Then, $\mathrm{D}(G) \leq|H|+|K|-1$.

We need the following well known results on Davenport constant.
Lemma 2.6. ([13]) Let p be a prime. Then,
(1) $\mathrm{D}\left(C_{p} \oplus C_{p} \oplus C_{p}\right)=3 p-2$;
(2) $\mathrm{D}\left(C_{n}\right)=n$.
(3) If $G=C_{n_{1}} \oplus C_{n_{2}}$ with $1<n_{1} \mid n_{2}$ then $D(G)=n_{1}+n_{2}-1$.

Lemma 2.7. If G is a finite abelian group then $\mathrm{D}(G) \leq m(G)$.
Proof. Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$. Let p be the smallest prime dividing $|G|$.

If $r=1$ then $\mathrm{D}(G)=|G|=m(G)$ by Lemma 2.6.
If $r=2$ then $\mathrm{D}(G)=n_{1}+n_{2}-1=\frac{|G|}{n_{1}}+n_{1}-1$ by Lemma 2.6. Since p is the smallest prime dividing $|G|$, we have $m(G) \leq \frac{|G|}{p}+p-1 \leq \frac{|G|}{n_{1}}+n_{1}-1=\mathrm{D}(G)$.

If $r \geq 4$ then by Lemma 2.5 we derive that $\mathrm{D}(G) \leq \frac{|G|}{n_{1} n_{2}}+n_{1} n_{2}-1$ taking $H=C_{n_{1}} \oplus C_{n_{2}}$ and $K=C_{n_{3}} \oplus \cdots \oplus C_{n_{r}}$. Therefore, $m(G)=\frac{|G|}{p}+p-2<$ $\frac{|G|}{n_{1} n_{2}}+n_{1} n_{2}-1 \leq \mathrm{D}(G)$. Now it remains to check the case that

$$
r=3
$$

If $p \neq n_{2}$ then $n_{2}>p$. Taking $H=C_{n_{2}}$ and $K=C_{n_{1}} \oplus C_{n_{3}}$ in Lemma 2.5, we obtain that $D(G) \leq \frac{|G|}{n_{2}}+n_{2}-1 \leq \frac{|G|}{p}+p-2=m(G)$. So, we may assume that

$$
n_{1}=n_{2}=p
$$

Write $n_{3}=p u$. In this case we want to prove that

$$
\mathrm{D}(G) \leq(3 p-2) u
$$

Let S be a sequence over G of length $|S|=(3 p-2) u$. We need to show that S contains a nonempty zero-sum subsequence.

Let $\varphi: G=C_{p} \oplus C_{p} \oplus C_{p u} \rightarrow C_{u}$ be the natural homomorphism with $\operatorname{ker}(\varphi)=C_{p} \oplus C_{p} \oplus C_{p}$ (up to isomorphism). To apply $\mathrm{D}(\varphi(G))=\mathrm{D}\left(C_{u}\right)=u$ on $\varphi(S)$ repeatedly, we can get a decomposition $S=S_{1} \cdot \ldots \cdot S_{3 p-2} \cdot S^{\prime}$ with

$$
\left|S_{i}\right|=\in[1, u], \sigma\left(S_{i}\right) \in \operatorname{ker}(\varphi) \text { for every } i \in[1,3 p-2]
$$

Applying $\mathrm{D}(\operatorname{ker}(\varphi))=\mathrm{D}\left(C_{p} \oplus C_{p} \oplus C_{p}\right)=3 p-2$ to the sequence $\sigma\left(S_{1}\right)$. $\ldots \cdot \sigma\left(S_{3 p-2}\right)$ we obtain that, there is a nonempty subset $I \subset[1,3 p-2]$ such that $\sum_{i \in I} \sigma\left(S_{i}\right)=0$. Now the sequence $\prod_{i \in I} S_{i}$ is a nonempty zerosum subsequence of S. This proves that $\mathrm{D}(G) \leq(3 p-2) u$. Therefore, $\mathrm{D}(G) \leq(3 p-2) u \leq p^{2} u<p^{2} u+p-2=m(G)$.

3. Proof of Theorem 1.1 (1) and (2)

Proof of Theorem 1.1 (1). The result follows from Lemma 2.2 and Lemma 2.4.

To prove Conclusion (2) of Theorem 1.1 we need the following technical result.

Lemma 3.1. If A is a 2-zero-sum free subset of 3 elements from an abelian group, then either $\left|\sum(A) \backslash\{0\}\right| \geq 6$ or A contains some element with order two.

Proof. Let $A=\{a, b, c\}$. If $a+b+c \neq 0$ then the result has been proved in [6, Proposition 5.3.2]. So we may assume that

$$
a+b+c=0 .
$$

Clearly, $a+b, a+c$ and $b+c$ are pairwise distinct nonzero elements. So, it suffices to prove that

$$
\{a, b, c\} \cap\{a+b, a+c, b+c\}=\emptyset .
$$

Assume to the contrary that, $\{a, b, c\} \cap\{a+b, a+c, b+c\} \neq \emptyset$. By renumbering we may assume that $a \in\{a+b, a+c, b+c\}$, which forces that $a=b+c$. This together with $a+b+c=0$ gives that $2 a=0$.

Proof of Theorem 1.1 (2). Let $n=|G|$. From Conclusion (1) of this theorem we may assume that

$$
\mathrm{r}(G) \geq 2
$$

By Lemma 2.2, it suffices to prove $\mathrm{c}_{0}(G) \leq m(G)$. Let S be a regular sequence over G of length $|S|=m(G)$. We need to show that

$$
\sum(S)=G
$$

Assume to the contrary that

$$
\sum(S) \neq G
$$

By Lemma 2.3 we have

$$
\operatorname{st}\left(\sum(S)\right)=\{0\}
$$

If there is some $g \in \operatorname{supp}(S)$ such that $2 g=0$, then $0 \neq g \in \operatorname{st}\left(\sum(S)\right)=$ $\{0\}$ since $\sum(S)=\{0, g\}+\left(\sum\left(S g^{-1}\right) \cup\{0\}\right)$ and $g+\{0, g\}=\{0, g\}$, a contradiction. So, every element $g \in \operatorname{supp}(S)$ satisfies that

$$
2 g \neq 0
$$

Now we distinguish several cases.
Case 1. $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \leq \frac{n}{6}$. Let $t \geq 0$ be the maximal integer such that S has a factorization

$$
S=A_{1} \cdots A_{t} T
$$

with A_{i} is a 2 -zero-sum free 3 -subset of G for every $i \in[1, t]$.
We fix a factorization of S above so that $\left|\operatorname{supp}^{+}(T)\right|$ attains the maximal possible value. Clearly,

$$
\left|\operatorname{supp}^{+}(T)\right| \leq 2
$$

We claim that

$$
\mathrm{v}_{g}(T)+\mathrm{v}_{-g}(T) \leq 1
$$

holds for every $g \in G$.
Assume to the contrary that $\mathrm{v}_{h}(T)+\mathrm{v}_{-h}(T) \geq 2$ for some $h \in G$. We may assume that $\mathrm{v}_{h}(T) \geq 1$. Since A_{1} is a 2 -zero-sum free 3 -set and $\left|\operatorname{supp}^{+}(T)\right| \leq$ 2 , we can choose some $x \in A_{1}$ such that neither x nor $-x$ occurs in T. We assert that

$$
A_{1} \cap\{h,-h\} \neq \emptyset .
$$

Assume to the contrary that A_{1} contains neither h nor $-h$. Let $A_{1}^{\prime}=$ $\left(A_{1} \backslash\{x\}\right) \cup\{h\}$ and $T^{\prime}=T x h^{-1}$. Then we obtains a factorization

$$
S=A_{1}^{\prime} A_{2} \cdots A_{t} T^{\prime}
$$

with $A_{1}^{\prime}, A_{2}, \cdots, A_{t}$ are all 2-zero-sum free 3 -subsets of G but $\left|\operatorname{supp}^{+}\left(T^{\prime}\right)\right|>$ $\left|\operatorname{supp}^{+}(T)\right|$, a contradiction. Therefore, $A_{1} \cap\{h,-h\} \neq \emptyset$. Similarly, $A_{i} \cap$ $\{h,-h\} \neq \emptyset$ for every $i \in[2, t]$. It follows that

$$
\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq t+\frac{|T|}{\left|\operatorname{supp}^{+}(T)\right|} \geq t+\frac{|T|}{2}
$$

Note that $3 t+|T|=|S| \geq \frac{n}{2}$. Therefore, $t+\frac{|T|}{3} \geq \frac{n}{6}$. Hence, $\max \left\{\mathrm{v}_{g}(S)+\right.$ $\left.\mathrm{v}_{-g}(S): g \in G\right\} \geq t+\frac{|T|}{2}>t+\frac{|T|}{3} \geq \frac{n}{6}$, a contradiction. This proves the claim. It follows that T is a subset of G and

$$
|T|=|\operatorname{supp}(T)|=\left|\operatorname{supp}^{+}(T)\right| \leq 2 .
$$

Let $B_{i}=\{0\} \cup \sum\left(A_{i}\right)$ for every $i \in[1, t]$, and let $B=\{0\} \cup \sum(T)$. Then,

$$
B_{1}+\cdots+B_{t}+B=\sum(S)
$$

From Lemma 3.1 we get that $\left|B_{i}\right| \geq 7$ for every $i \in[1, t]$. Since st $\left(\sum(S)\right)=$ $\{0\}$, by Lemma 2.1 we obtain that

$$
\left|B_{1}+\cdots+B_{t}+B\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|B|-t \geq 6 t+|B| .
$$

Since $|T|=|\operatorname{supp}(T)| \leq 2, T$ is a subset of G. It is easy to see that $|B| \geq$ $2|T|$. Note that $\sum(S) \neq G$. So we have

$$
\begin{aligned}
n-1 & \geq\left|\sum_{1}(S)\right|=\left|B_{1}+\cdots+B_{t}+B\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|B|-t \\
& \geq 6 t+|B| \geq 6 t+2|T|=2|S| \geq n
\end{aligned}
$$

a contradiction.
Case 2. $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\}>\frac{n}{6}$.
We first assume that

$$
n \in[2,11] .
$$

Since $r(G) \geq 2$ we have that

$$
n \in\{4,8\}
$$

If $n=8$ then $G \in\left\{C_{2}^{3}, C_{2} \oplus C_{4}\right\}$. Since S contains no element of order two, it follows that $G=C_{2} \oplus C_{4}$. Now $|S|=m(G)=5$. Let $x_{1},-x_{1}, x_{2},-x_{2}$ be the only four elements of order four in G. Then, $\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S) \geq 3$ for some element $g \in\left\{x_{1}, x_{2}\right\}$. Let $K=\langle g\rangle$. By Lemma $2.3\left|\{0\} \cup \sum\left(S_{K}\right)\right| \geq$ $\left|S_{K}\right|+1 \geq 4=|K|$. Therefore, $\{0\} \cup \sum\left(S_{K}\right)=K$ and hence $K=\operatorname{st}(\{0\} \cup$ $\left.\sum\left(S_{K}\right)\right) \subseteq \operatorname{st}\left(\sum(S)\right)=\{0\}$, a contradiction.

If $n=4$ then $G=C_{2} \oplus C_{2}$. Hence every term of S is of order two, a contradiction.

From now on we suppose that

$$
\begin{equation*}
|G|=n \geq 12 \tag{3.1}
\end{equation*}
$$

Choose $h \in G$ such that $\left|S_{\langle h\rangle}\right|$ attains the maximal possible value. Then

$$
\left|S_{\langle h\rangle}\right| \geq \max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq \frac{n+1}{6}
$$

Let

$$
H=\langle h\rangle .
$$

It follows that

$$
\left|S_{H}\right| \geq 3
$$

Let

$$
\bar{g}=g+H
$$

for every $g \in G$. We distinguish two subcases:
Subcase 2.1. For any two terms g_{1}, g_{2} of S with $g_{1} g_{2} \mid S$ we have $\mid\{\overline{0}\} \cup$ $\sum\left(\overline{g_{1}} \overline{g_{2}}\right) \mid \leq 2$. Then, for any two terms g_{1}, g_{2} of $S S_{H}^{-1}$ we have $\overline{g_{1}}=\overline{g_{2}}$ and $2 \overline{g_{1}}=\overline{0}$. Therefore, for any term g_{0} of $S S_{H}^{-1}$ we have

$$
\langle\operatorname{supp}(S)\rangle=\left\langle h, g_{0}\right\rangle
$$

Since S is regular, $|\langle\operatorname{supp}(S)\rangle| \geq|S|+1>\frac{n}{2}$. Therefore,

$$
G=\langle\operatorname{supp}(S)\rangle=\left\langle h, g_{0}\right\rangle .
$$

Since $2 g_{0} \in H=\langle h\rangle$, we infer that $|G|=2|H|$ and $G=C_{2} \oplus C_{n / 2}$. Hence we have

$$
|S|=m(G)=\frac{n}{2}+1
$$

Let

$$
T=g_{0} S_{H}
$$

Let $t \geq 0$ be the maximal integer such that $S T^{-1}$ has a factorization

$$
S T^{-1}=A_{1} \cdots A_{t} W
$$

with A_{i} is a 2 -zero-sum free 3 -subset of G for every $i \in[1, t]$.
We fix a factorization of $S T^{-1}$ above so that $\left|\operatorname{supp}^{+}(W)\right|$ attains the maximal possible value.

Clearly,

$$
\left|\operatorname{supp}^{+}(W)\right| \leq 2
$$

Then S has a factorization

$$
S=A_{1} \cdots A_{t} W T
$$

where $t \geq 0, A_{i}$ is a 2-zero-sum free 3 -subset of G, and W is a subsequence of S which contains no any 2-zero-sum free 3 -subset of G. It follows that

$$
3 t+|W|+|T|=|S| \geq \frac{n}{2}
$$

and

$$
W \mid x_{1}^{\mathrm{v}_{1}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)} x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}_{-x_{2}}(S)}
$$

for some distinct elements $x_{1}, x_{2} \in G$.
Let $B_{i}=\{0\} \cup \sum\left(A_{i}\right)$ for every $i \in[1, t], C=\{0\} \cup \sum(W)$, and let $D=\{0\} \cup \sum(T)$. From Lemma 3.1 we get that $\left|B_{i}\right| \geq 7$. It then follows from Lemmas 2.1 and 2.3 that

$$
\begin{aligned}
n-1 & \geq\left|\sum(S)\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|C|+|D|-t-1 \\
& \geq 7 t+(|W|+1)+2|T|-t-1=6 t+2|W|+2|T|-|W| \\
& =2|S|-|W|=n+2-|W| .
\end{aligned}
$$

This gives that

$$
|W| \geq 3
$$

Write $W=W_{1} W_{2}$ with $W_{1} \mid x_{1}^{\mathrm{v}_{x_{1}}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)}$ and $W_{2} \mid x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}_{-x_{2}}(S)}$. Without loss of generality we may assume that

$$
\left|W_{1}\right| \geq\left|W_{2}\right| \geq 0
$$

Since $\left|W_{1}\right| \geq \frac{|W|}{2} \geq \frac{3}{2}$, by the maximality of S_{H}, there is some element $y \mid S_{H}$ such that $y \notin\left\langle x_{1}\right\rangle$. Let $U=W_{1} y$ and let $T^{\prime}=T y^{-1}$ and we obtain a factorization of S

$$
S=A_{1} \cdots A_{t} U W_{2} T^{\prime}
$$

Let $C_{1}=\{0\} \cup \sum(U), C_{2}=\{0\} \cup \sum\left(W_{2}\right)$, and $D^{\prime}=\{0\} \cup \sum\left(T^{\prime}\right)$. Similarly to above we obtain that

$$
\begin{aligned}
n-1 & \geq\left|\sum(S)\right| \geq\left|A_{1}\right|+\cdots+\left|A_{t}\right|+\left|C_{1}\right|+\left|C_{2}\right|+\left|D^{\prime}\right|-t-2 \\
& \geq 7 t+2|U|+\left|W_{2}\right|+1+2\left|T^{\prime}\right|-t-2=2\left(3 t+|U|+\left|W_{2}\right|+\left|T^{\prime}\right|\right)-1-\left|W_{2}\right| \\
& =2|S|-1-\left|W_{2}\right|=n+1-\left|W_{2}\right| .
\end{aligned}
$$

This gives that

$$
\left|W_{2}\right| \geq 2
$$

By the maximality of S_{H} and $\left|S_{H}\right| \geq 3$, there is an element $z \mid S_{H} y^{-1}$ such that $z \notin\left\langle x_{2}\right\rangle$. Let $V=z W_{2}$ and $T^{\prime \prime}=T^{\prime} z^{-1}=T(y z)^{-1}$. Then S has a factorization

$$
S=A_{1} \cdots A_{t} U V T^{\prime \prime}
$$

Let $C_{2}^{\prime}=\{0\} \cup \sum(V)$ and $D^{\prime \prime}=\{0\} \cup \sum\left(T^{\prime \prime}\right)$. Similarly to above we have

$$
\begin{aligned}
n-1 & \geq\left|\sum(S)\right| \geq\left|A_{1}\right|+\cdots+\left|A_{t}\right|+\left|C_{1}\right|+\left|C_{2}^{\prime}\right|+\left|D^{\prime \prime}\right|-t-2 \\
& \geq 7 t+2|U|+2|V|+2\left|T^{\prime \prime}\right|-t-2=2|S|-2=n
\end{aligned}
$$

a contradiction.
Subcase 2.2. There are two terms g_{1}, g_{2} of S such that $g_{1} g_{2} \mid S$ and $\left|\{\overline{0}\} \cup \sum\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \geq 3$. Let $T=g_{1} g_{2} S_{H}$. Now S has a factorization

$$
S=A_{1} \cdots A_{t} W T
$$

where $t \geq 0, A_{i}$ is a 2-zero-sum free 3 -subset of G, and W is a subsequence of S which contains no any 2 -zero-sum free 3 -subset of G. It follows that

$$
3 t+|W|+|T|=|S| \geq \frac{n}{2}
$$

and

$$
W \mid x_{1}^{\mathrm{v}_{1}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)} x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}-x_{2}(S)}
$$

for some distinct elements $x_{1}, x_{2} \in G$. Let $B_{i}=\{0\} \cup \sum\left(A_{i}\right)$ for every $i \in[1, t], C=\{0\} \cup \sum(W)$, and let $D=\{0\} \cup \sum(T)$. Then, $B_{1}+\cdots+B_{t}+$ $C+D=\sum(S)$. Since st $\left(\sum(S)\right)=\{0\}$, by Kneser's theorem we obtain that

$$
\begin{aligned}
& n-1 \geq\left|\sum(S)\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|C|+|D|-t-1 \\
& \geq 7 t+(|W|+1)+(3|T|-3)-t-1=6 t+2|W|+2|T|+(|T|-3-|W|)
\end{aligned}
$$

$$
=2|S|+(|T|-3-|W|) \geq n+(|T|-3-|W|) .
$$

This gives that

$$
|W| \geq|T|-2 \geq 3
$$

Write $W=W_{1} W_{2}$ with $W_{1} \mid x_{1}^{\mathrm{v}_{x_{1}}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)}$ and $W_{2} \mid x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}^{-x_{2}}(S)}$. Without loss of generality we may assume that

$$
\left|W_{1}\right| \geq\left|W_{2}\right| \geq 0
$$

Since $\left|W_{1}\right| \geq \frac{|W|}{2} \geq \frac{3}{2}$, by the maximality of S_{H}, there is some element $y \mid S_{H}$ such that $y \notin\left\langle x_{1}\right\rangle$. Let $U=W_{1} y$ and let $T^{\prime}=T y^{-1}$ and we obtain a factorization of S

$$
S=A_{1} \cdots A_{t} U W_{2} T^{\prime}
$$

Let $C_{1}=\{0\} \cup \sum(U), C_{2}=\{0\} \cup \sum\left(W_{2}\right)$, and $D^{\prime}=\{0\} \cup \sum\left(T^{\prime}\right)$. Similarly to above we obtain that

$$
\begin{aligned}
n-1 & \geq\left|\sum(S)\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+\left|C_{1}\right|+\left|C_{2}\right|+\left|D^{\prime}\right|-t-2 \\
& \geq 7 t+2|U|+\left|W_{2}\right|+1+3\left|T^{\prime}\right|-3-t-2=6 t+2\left|W_{1}\right|+\left|W_{2}\right|+3|T|-5 \\
& =6 t+2|W|+2|T|+\left(|T|-5-\left|W_{2}\right|\right) \geq n+\left(|T|-5-\left|W_{2}\right|\right) .
\end{aligned}
$$

This gives that

$$
\left|W_{2}\right| \geq|T|-4 \geq 1
$$

Therefore

$$
\left|W_{1}\right| \geq 2,\left|W_{2}\right| \geq 1
$$

By the maximality of S_{H}, there is some element $y \mid S_{H}$ such that $y \notin\left\langle x_{2}\right\rangle$. Let $U=W_{2} y$ and let $T^{\prime}=T y^{-1}$. Again by the maximality of S_{H} and $\left|S_{H}\right| \geq 3$, there is an element $z \mid S_{H} y^{-1}$ such that $z \notin\left\langle x_{1}\right\rangle$. Let $V=z W_{1}$ and $T^{\prime \prime}=T^{\prime} z^{-1}=T(y z)^{-1}$. Then S has a factorization

$$
S=A_{1} \cdots A_{t} U V T^{\prime \prime}
$$

Let $C_{1}^{\prime}=\{0\} \cup \sum(U), C_{2}^{\prime}=\{0\} \cup \sum(V)$ and $D^{\prime \prime}=\{0\} \cup \sum\left(T^{\prime \prime}\right)$. Similarly to above we have

$$
\begin{aligned}
n-1 & \geq\left|\sum(S)\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+\left|C_{1}\right|+\left|C_{2}^{\prime}\right|+\left|D^{\prime \prime}\right|-t-2 \\
& \geq 7 t+2|U|+2|V|+3\left|T^{\prime \prime}\right|-3-t-2 \\
& =6 t+2|W|+2|T|+(|T|-7)=2|S|+(|T|-7) \geq 2 m(G)+(|T|-7)
\end{aligned}
$$

This gives that $|T| \leq n+6-2 m(G)$. Therefore,

$$
\begin{equation*}
\frac{n+1}{6} \leq\left|S_{H}\right| \leq n+4-2 m(G) \tag{3.2}
\end{equation*}
$$

If $m(G) \geq \frac{n}{2}+1$ then $n \leq 11$ follows from (3.2), a contradiction on (3.1). Therefore,

$$
\begin{equation*}
m(G)=\frac{n}{2} \tag{3.3}
\end{equation*}
$$

It follows from (3.2) that $n \leq 23$. Since n is even, we have

$$
\begin{equation*}
n \leq 22 \tag{3.4}
\end{equation*}
$$

By (3.1), (3.3) and (3.4), to complete the proof of this subcase it remains to consider the cases

$$
\begin{equation*}
n \in[12,22] \text { and } m(G)=\frac{n}{2} \tag{3.5}
\end{equation*}
$$

Since $\mathrm{r}(G) \geq 2$ we have that $n \notin\{14,22\}$. So, it remains to check that

$$
n \in\{12,16,18,20\}
$$

If $n \in\{12,20\}$ then $G=C_{2} \oplus C_{t}$ with $t=6$ or 10 . Hence we get $m(G)=\frac{n}{2}+1$. This is not any case listed in (3.5).

If $n=18$ then $G=C_{3} \oplus C_{6}$. Now we have $|S| \geq m(G)=9,\left|S_{H}\right| \geq 4$, and there are two terms g_{1}, g_{2} of S such that $g_{1} g_{2} \mid S S_{H}^{-1}$ and $\left|\{\overline{0}\} \cup \sum\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \geq 3$.

Let $T=g_{1} g_{2} S_{H}$. Then $|T| \geq 6$ and $\left|S T^{-1}\right| \leq 3$. Let $A=S T^{-1}$. Then S has a factorization

$$
S=A T
$$

Let $B=\{0\} \cup \sum(A)$, and $D=\{0\} \cup \sum(T)$. Then, $B+D=\sum(S)$. So by Lemmas 2.1 and 2.3, we have that

$$
\left|\sum(S)\right| \geq|B|+|D|-1 \geq|A|+1+(3|T|-3)-1=|S|+2|T|-3 \geq 18
$$

Therefore $\sum(S)=G$, a contradiction.
If $n=16$ then $G \in\left\{C_{2}^{4}, C_{2}^{2} \oplus C_{4}, C_{4}^{2}, C_{2} \oplus C_{8}\right\}$. Since $m(G)=\frac{n}{2}$, we may assume that $G \neq C_{2} \oplus C_{8}$. Therefore, $G \in\left\{C_{2}^{4}, C_{2}^{2} \oplus C_{4}, C_{4}^{2}\right\}$. If $G=C_{2}^{4}$ then every term of S is of order two, a contradiction. So, $G=C_{2}^{2} \oplus C_{4}$ or $G=C_{4}^{2}$. Since $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq \frac{n+1}{6}=\frac{16+1}{6}$, we have that $\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S) \geq 3$ for some element g of order 4. Let $K=\langle g\rangle$. By Lemma $2.3\left|\{0\} \cup \sum\left(S_{K}\right)\right| \geq\left|S_{K}\right|+1 \geq 4=|K|$. Therefore, $\{0\} \cup \sum\left(S_{K}\right)=K$ and hence $K=\operatorname{st}\left(\{0\} \cup \sum\left(S_{K}\right)\right) \subseteq \operatorname{st}\left(\sum(S)\right)=\{0\}$, a contradiction. This completes the proof.

4. Proof of Theorem 1.1 (3) and (4)

In this section we shall prove Conclusions (3) and (4) of Theorem 1.1 by employing group algebras as a tool.

Let $G=\bigoplus_{i=1}^{r} C_{n_{i}}$ with $1<n_{1}\left|n_{2}\right| \ldots \mid n_{r}$, and let K be a field. The group algebra $K[G]$ is a vector space over K with K-basis $\left\{X^{g} \mid g \in G\right\}$ (built with a symbol X), where multiplication is defined by

$$
\left(\sum_{g \in G} a_{g} X^{g}\right)\left(\sum_{g \in G} b_{g} X^{g}\right)=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{g-h}\right) X^{g} .
$$

More precisely, $K[G]$ consists of all formal expression of the form $f=$ $\sum_{g \in G} c_{g} X^{g}$ with $c_{g} \in K$. For more detailed background information, we refer the readers to $[6,7,8]$.

Choose a prime q so that $q \equiv 1\left(\bmod n_{r}\right)$. Consider the group algebra $\mathbb{F}_{q}[G]$. For any $\alpha \in \mathbb{F}_{q}[G]$, denote by L_{α} the set of elements $g \in G$ such that $\alpha\left(a-X^{g}\right)=0$ holds for some $a \in \mathbb{F}_{q}$.

Lemma 4.1. 1. For any $\alpha \in \mathbb{F}_{q}[G], L_{\alpha}$ is a subgroup of G.
2. If $\alpha \neq 0$ and $L_{\alpha}=G$, then $\alpha=\sum_{g \in G} a_{g} X^{g}$ with $0 \neq a_{g} \in \mathbb{F}_{q}$ holds for all $g \in G$.
3. Let $S=g_{1} \cdot \ldots \cdot g_{l}$ be a sequence over G. If there exist $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q}^{*}$ such that $\alpha=\prod_{i=1}^{l}\left(a_{i}-X^{g_{i}}\right) \neq 0$ and $L_{\alpha}=G$, then $G \backslash\{0\} \subset \sum(S)$.

Proof. Conclusion 1 and 2 has been proved in [4, Lemma 3.1]. Here we only give a proof of Conclusion 3. Let $0 \neq \alpha=\prod_{i=1}^{l}\left(a_{i}-X^{g_{i}}\right)=\sum_{g \in G} a_{g} X^{g}$. By Conclusion 2, $a_{g} \neq 0$ for all $g \in G$. This implies that $g \in \sum(S)$ for all $g \in G \backslash\{0\}$. Therefore, $G \backslash\{0\} \subset \sum(S)$.

Lemma 4.2. ([4]) Let S be a sequence of elements in G of length $l \geq$ $n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$. Suppose that S contains at least one non-zero term. Then, one can find a subsequence $T=g_{1} \cdot \ldots \cdot g_{t}$ of S of length $t \leq n_{r}(1+$ $\left.\log n_{1} \cdots n_{r-1}\right)-1$ and $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q}^{*}$ such that

$$
\alpha=\left(a_{1}-X^{g_{1}}\right) \cdots\left(a_{t}-X^{g_{t}}\right) \neq 0
$$

and all terms of $S T^{-1}$ are in L_{α}.
Proof. The lemma has been proved in [4, Lemma 3.2]. But there is some typo in [4], in which $\log n / \log m$ has to be replaced by $\log (n / m)$.

Let $a \neq 0$ be a real number, and let $r \geq 3$ be an integer. Define the following function on r variables y_{1}, \ldots, y_{r} by

$$
f_{a}\left(y_{1}, \ldots, y_{r}\right):=\frac{y_{1} \cdots y_{r}}{a}+a-2-2 y_{r}\left(1+\log y_{1} \cdots y_{r-1}\right)-\frac{y_{1} \cdots y_{r}}{a^{2}} .
$$

Lemma 4.3. If $y_{i} \geq a \geq 3$ for all $i \in[1, r]$ then, $f_{a}\left(y_{1}, \ldots, y_{r}\right) \geq 0$ provided that one of the following conditions holds.
(1) $r \geq 5$;
(2) $r \in\{3,4\}$ and $a \geq 17$.

Proof. First, we compute the partial derivatives of $f_{a}\left(y_{1}, \ldots, y_{r}\right)$. By straightforward calculations, we have

$$
\frac{\partial f_{a}}{\partial y_{i}}=\frac{y_{1} \cdots y_{r}}{a^{2} y_{i}}(a-1)-2 \frac{y_{r}}{y_{i}} \geq \frac{y_{r}}{y_{i}}\left(\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2\right) \geq \frac{y_{r}}{y_{i}}(a-3) \geq 0
$$

for $1 \leq i \leq r-1$, and

$$
\frac{\partial f_{a}}{\partial y_{r}}=\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2-2 \log \left(y_{1} \cdots y_{r-1}\right)
$$

It is easy to see that $g(x)=\frac{x}{a^{2}}(a-1)-2-2 \log x$ is increasing when $x \geq a^{2}$.
(1). If $r \geq 5$, then

$$
\begin{aligned}
\frac{\partial f_{a}}{\partial y_{r}} & =\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2-2 \log \left(y_{1} \cdots y_{r-1}\right) \\
& \geq a^{r-3}(a-1)-2-2(r-1) \log a \\
& \geq a^{2}(a-1)-2-8 \log a>0
\end{aligned}
$$

So we have

$$
\begin{aligned}
f_{a}\left(y_{1}, \ldots, y_{r}\right) & \geq f_{a}(a, \ldots, a)=a^{r-2}(a-1)+a-2-2 a\left(1+\log a^{r-1}\right) \\
& \geq a^{3}(a-1)+a-2-2 a-8 a \log a \\
& =a\left(a^{2}(a-1)-2-8 \log a\right)+a-2 \geq a-2 \geq 1 .
\end{aligned}
$$

(2). If $a \geq 17$ and $r \in\{3,4\}$, then

$$
\begin{align*}
\frac{\partial f_{a}}{\partial y_{r}} & =\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2-2 \log \left(y_{1} \cdots y_{r-1}\right) \tag{4.1}\\
& \geq a-3-4 \log a>0
\end{align*}
$$

since $f(x)=x-3-4 \log x$ is an increasing function of $x \geq 17$. We get $f_{a}\left(y_{1}, \ldots, y_{r}\right) \geq f_{a}(a, \ldots, a)=a^{r-2}(a-1)+a-2-2 a\left(1+\log a^{r-1}\right) \geq a(a-$ 1) $+a-2-2 a-4 a \log a$, since $f_{a}(a, \ldots, a)=a^{r-2}(a-1)+a-2-2 a\left(1+\log a^{r-1}\right)$ is an increasing function of $r \geq 3$. By (4.1), we obtain that

$$
f_{a}\left(y_{1}, \ldots, y_{r}\right) \geq f_{a}(a, a, a)=a(a-3-4 \log a)+a-2 \geq a-2 \geq 15
$$

as desired. This completes the proof.
Proof of Theorem 1.1 (3) and (4). Suppose that $G=C_{n_{i}} \oplus \cdots \oplus C_{n_{r}}$ where $1<n_{1}\left|n_{2}\right| \ldots \mid n_{r}$. By Lemma 2.2 and Conclusion (2) of Theorem 1.1, it suffices to prove that $\mathrm{c}_{0}(G) \leq m(G)=\frac{|G|}{p}+p-2$ for $p \geq 3$. To do this, let S be a regular sequence over G of length $|S|=\frac{|G|}{p}+p-2$. We need to prove that $\sum(S)=G$.

Assume to the contrary that

$$
\sum(S) \neq G
$$

By Lemma 4.3, we can deduce that $|S| \geq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$. Then by Lemma 4.2, one can find a subsequence $T=g_{1} \cdot \ldots \cdot g_{t}$ of S with $t \leq$ $n_{r}\left(1+\log n_{1} \ldots n_{r-1}\right)-1$ and $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q}^{*}$ such that

$$
\alpha=\left(a_{1}-X^{g_{1}}\right) \cdots\left(a_{t}-X^{g_{t}}\right) \neq 0
$$

and all terms of $S T^{-1}$ are in L_{α}.
Since S is regular, again by Lemma 4.3 we have
$\left|L_{\alpha}\right|-1 \geq\left|S_{L_{\alpha}}\right| \geq\left|S T^{-1}\right| \geq \frac{n_{1} \cdots n_{r}}{p}+p-2-2 n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right) \geq \frac{n_{1} \cdots n_{r}}{p^{2}}$.
Together with Lemma 4.1, we get that $\left|L_{\alpha}\right|=\frac{|G|}{p_{1}}$ for some prime divisor p_{1} of $|G|$ with $p \leq p_{1}<p^{2}$. It follows that L_{α} as a subgroup of G must be isomorphic to the group of the following form

$$
\bigoplus_{i=1, i \neq i_{0}}^{r} C_{n_{i}} \bigoplus C_{n_{i_{0}} / p_{1}}
$$

where $1 \leq i_{0} \leq r$.

Let $L_{\alpha}=\bigoplus_{j=1}^{s} C_{m_{j}}$ with $1<m_{1}|\cdots| m_{s}$.
We claim that

$$
m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right) \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right) .
$$

If $1 \leq i_{0} \leq r-1$, then
$m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right)=n_{r}\left(1+\log \frac{n_{1} \cdots n_{r-1}}{p_{1}}\right) \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$.
If $i_{0}=r$, then
$m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right) \leq m_{s}\left(1+\log n_{1} \cdots n_{r-1}\right) \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$.
This proves the claim.
By lemma 4.3, we get $\left|S T^{-1}\right| \geq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right) \geq m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right)$.
Since $S T^{-1}$ is a sequence over L_{α}, by lemma 4.2, we can find a subsequence $S_{1}=h_{1} \cdot \ldots \cdot h_{u}$ of $S T^{-1}$ with $u \leq m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right)-1$ and $b_{1}, \ldots, b_{u} \in \mathbb{F}_{q}^{*}$ such that

$$
\beta=\left(b_{1}-X^{h_{1}}\right) \cdots\left(b_{u}-X^{h_{u}}\right) \neq 0
$$

and all terms of $S T^{-1} S_{1}^{-1}$ are in L_{β}, where L_{β} denotes the set of elements $g \in L_{\alpha}$ such that $\beta\left(a-X^{g}\right)=0$ holds for some $a \in \mathbb{F}_{q}^{*}$.

Since S is regular, by Lemma 4.3 we have

$$
\begin{aligned}
\left|L_{\beta}\right|-1 & \geq\left|\left(S T^{-1}\right)_{L_{\beta}}\right| \geq\left|S T^{-1} S_{1}^{-1}\right| \\
& \geq \frac{n_{1} \cdots n_{r}}{p}+p-2-n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)-m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right) \\
& \geq \frac{n_{1} \cdots n_{r}}{p^{2}} .
\end{aligned}
$$

This implies $\left|L_{\beta}\right|=\frac{|G|}{p_{1}}=\left|L_{\alpha}\right|$. Hence $L_{\beta}=L_{\alpha}$. Since $\beta=\prod_{i=1}^{u}\left(b_{i}-X^{h_{i}}\right)$, we deduce from Lemma 4.1 that $\{0\} \cup \sum\left(S_{1}\right)=L_{\beta}=L_{\alpha}$. Therefore, $L_{\alpha}=L_{\beta}=\operatorname{st}\left(\{0\} \cup \sum\left(S_{1}\right)\right)$, a contradiction to Lemma 2.3. This completes the proof.

5. Proof of Theorem 1.1 (5)

Let p be a prime. In this section we shall prove Conclusion (5) of Theorem 1.1 by using group algebras as in Section 4.

Let $G=\bigoplus_{i=1}^{r} C_{p^{n_{i}}}=\bigoplus_{i=1}^{r}\left\langle e_{i}\right\rangle$, where $C_{p^{n_{i}}}=\left\langle e_{i}\right\rangle$ for $1 \leq i \leq r$ and $1 \leq n_{1} \leq$ $\cdots \leq n_{r}$.

Consider the group algebra $\mathbb{F}_{p}[G]$ over \mathbb{F}_{p}. As a vector space over \mathbb{F}_{p}, $\mathbb{F}_{p}[G]$ has a basis

$$
\left\{\prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{k_{i}} \mid k_{i} \in\left[0, p^{n_{i}}-1\right] \text { for all } i \in[1, r]\right\}
$$

see for example [6]. So any $\alpha \in \mathbb{F}_{p}[G]$ can be written uniquely in the form $\alpha=\sum \sigma_{k_{1}, \ldots, k_{r}}\left(1-X^{e_{1}}\right)^{k_{1}} \cdots\left(1-X^{e_{r}}\right)^{k_{r}}, \sigma_{k_{1}, \ldots, k_{r}} \in \mathbb{F}_{p}$.

For any sequence $S=g_{1} \cdot \ldots \cdot g_{l}$ over G, let

$$
\prod(S)=\prod_{i=1}^{l}\left(1-X^{g_{i}}\right)
$$

Let $g \in G$ and $a \in \mathbb{F}_{p}$. Since 1 is the only $\exp (G)$-th root in \mathbb{F}_{p}, the element $a-X^{g}$ is invertible in $\mathbb{F}_{p}[G]$ if and only if $a \neq 1$. Thus it follows that

$$
\begin{aligned}
L_{\alpha} & =\left\{g \in G: \text { there is an } a \in \mathbb{F}_{p} \text { such that } \alpha\left(a-X^{g}\right)=0\right\} \\
& =\left\{g \in G: \alpha\left(1-X^{g}\right)=0\right\} .
\end{aligned}
$$

Lemma 5.1. ([11]) Let S be a sequence over G. Then $L_{\Pi(S)}=G$ if and only if $\prod(S)=\sigma \prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{p^{n_{i}}-1}$ for some $\sigma \in \mathbb{F}_{p}$. In particular, if $|S|=\sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$, then $\prod(S)=\sigma \prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{p^{n_{i}-1}}$. Furthermore, if $\sigma \neq 0$ then $G \backslash\{0\} \subseteq \sum(S)$.

Lemma 5.2. ([6, Proposition 5.5.8], [12]) Let S be a sequence over G of length $|S| \geq \sum_{i=1}^{r}\left(p^{n_{i}}-1\right)+1$. Then

$$
\prod(S)=0
$$

Let a be a real number and let $r \geq 2$ be an integer. Define
$f_{a}\left(y_{1}, \ldots, y_{r}\right):=a^{\sum_{i=1}^{r} y_{i}-1}+a-2-\sum_{i=1}^{r}\left(a^{y_{i}}-1\right)-\sum_{i=2}^{r}\left(a^{y_{i}}-1\right)-\left(a^{y_{1}-1}-1\right)-a^{\sum_{i=1}^{r} y_{i}-2}+3$, where y_{1}, \ldots, y_{r} are real variables.

Lemma 5.3. Let $p \geq 3$ be a prime, and let $r \geq 2$ be an integer. Let n_{1}, \ldots, n_{r} be positive integers.
(1) If $r \geq 3$, then $f_{p}\left(n_{1}, \ldots, n_{r}\right) \geq 0$.
(2) If $r=2$ and $n_{2} \geq n_{1} \geq 2$, then $f_{p}\left(n_{1}, n_{2}\right)>0$ except for the case $p=3$ and $n_{1}=2$, in which case $f_{p}\left(n_{1}, n_{2}\right)=-4<0$.

Proof. First, we compute the partial derivatives of $f_{p}\left(y_{1}, \ldots, y_{r}\right)$ at the point $\left(n_{1}, \ldots, n_{r}\right)$. By calculations, we have

$$
\frac{\partial f_{p}}{\partial n_{1}}=p^{n_{1}-1} \log p\left(p^{\sum_{i=2}^{r} n_{i}-1}(p-1)-p-1\right) \geq p(p-2)-1>0
$$

and for $2 \leq i \leq r$ we have that

$$
\frac{\partial f_{p}}{\partial n_{i}}=p^{n_{i}-1} \log p\left(p^{\sum_{j=1, j \neq i}^{r} n_{j}-1}(p-1)-2 p\right) \geq p(p-3) \geq 0
$$

if either $r \geq 3$, or $r=2$ and $n_{2} \geq n_{1} \geq 2$.
(1). If $r \geq 3$, then $f_{p}\left(n_{1}, \ldots, n_{r-1}, n_{r}\right) \geq f_{p}(1, \ldots, 1)$. Thus it remains to prove that $f_{p}(1, \ldots, 1) \geq 0$. It is easy to see that $g(r):=f_{p}(1, \ldots, 1)=$ $p^{r-2}(p-1)-(2 r-2) p+2 r$ is an increasing function of r, since $g^{\prime}(r)=$ $(p-1)\left(p^{r-2} \log p-2\right)>0$ when $p \geq 3$ and $r \geq 3$. So we get $f_{p}(1, \ldots, 1) \geq$ $g(3)=(p-2)(p-3) \geq 0$ as desired.
(2). If $p \geq 5$, then we have

$$
f_{p}\left(n_{1}, n_{2}\right)=p^{n_{1}+n_{2}-2}(p-1)-2 p^{n_{2}}-p^{n_{1}}-p^{n_{1}-1}+p+5 \geq p+5>0 .
$$

By calculations, we obtain that
(i) $f_{3}\left(2, n_{2}\right)=-4$ for all $n_{2} \geq 2$, and
(ii) $f_{3}\left(n_{1}, n_{2}\right) \geq f_{3}(3,3)=80>0$ for any two integers n_{1}, n_{2} with $n_{2} \geq n_{1} \geq 3$. This completes the proof.

Lemma 5.4. Let p be a prime, and n_{1}, \ldots, n_{r} be positive integers. Let $G=\bigoplus_{i=1}^{r} C_{p^{n_{i}}}$. If either $r \geq 3$, or $r=2, n_{2} \geq n_{1} \geq 2$ and $\left(p, n_{1}\right) \neq(3,2)$, then we have

$$
\mathrm{c}_{0}(G)=\frac{|G|}{p}+p-2
$$

Proof. By Lemma 2.2, it suffices to prove that $\mathrm{c}_{0}(G) \leq m(G)=\frac{|G|}{p}+p-2$. To do this, let S be a regular sequence over G of length $|S|=\frac{|G|}{p}+p-2$. We need to prove that $\sum(S)=G$. Since $|S| \geq \mathrm{D}(G)$, by Lemma 2.7 we have

$$
0 \in \sum(S)
$$

Assume to the contrary that

$$
\sum(S) \neq G
$$

Then by Lemma 2.3, we have $\operatorname{st}\left(\sum(S)\right)=\{0\}$. Let S_{0} be the maximal subsequence of S such that $\Pi\left(S_{0}\right) \neq 0$. By Lemma 5.2 , we have that $\left|S_{0}\right| \leq \sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$. If $\left|S_{0}\right|=\sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$, then by Lemma 5.1 we have $G \backslash\{0\} \subset \sum\left(S_{0}\right)$. It follows from $0 \in \sum(S)$ that $\sum(S)=G$, a contradiction. Therefore,

$$
\left|S_{0}\right| \leq \sum_{i=1}^{r}\left(p^{n_{i}}-1\right)-1
$$

Let $H=L_{\Pi\left(S_{0}\right)}$ and $T=S S_{0}{ }^{-1}$. By the maximality of S_{0}, we know that every term of T belongs to H and T is a regular sequence over the subgroup H of G. By Lemma 5.3 we obtain that

$$
|H|-1 \geq\left|S_{H}\right| \geq\left|S-S_{0}\right| \geq \frac{|G|}{p}+p-2-\sum_{i=1}^{r}\left(p^{n_{i}}-1\right) \geq \frac{|G|}{p^{2}}
$$

Together with Lemma 5.1, we deduce $|H|=\frac{|G|}{p}$. Since H is a subgroup of G with $|H|=\frac{|G|}{p}, H$ must be isomorphic to the group of the following form

$$
\bigoplus_{i=1, i \neq i_{0}}^{r} C_{p^{n_{i}}} \bigoplus C_{p^{n_{i}}}-1
$$

where $1 \leq i_{0} \leq r$.
Since $n_{1} \leq n_{2} \leq \cdots \leq n_{r}$, we can easily deduce that

$$
\begin{align*}
\mathrm{D}(H)-1 & =\sum_{i=1, i \neq i_{0}}^{r}\left(p^{n_{i}}-1\right)+\left(p^{n_{i_{0}}-1}-1\right) \tag{5.1}\\
& \leq \sum_{i=2}^{r}\left(p^{n_{i}}-1\right)+p^{n_{1}-1}-1
\end{align*}
$$

Let S_{1} be the maximal subsequence of T such that $\prod\left(S_{1}\right) \neq 0$. By Lemma 5.2, we have $\left|S_{1}\right| \leq \mathrm{D}(H)-1$. If $\left|S_{1}\right|=\mathrm{D}(H)-1$ then by Lemma 5.1 we get $\{0\} \cup \sum\left(S_{1}\right)=H$. Therefore, $H=\operatorname{st}\left(\{0\} \cup \sum\left(S_{1}\right)\right)$. But $|H|=|G| / p \geq p^{2}$, a contradiction to Lemma 2.3. Therefore,

$$
\left|S_{1}\right| \leq \mathrm{D}(H)-2
$$

Let $T_{1}=T S_{1}^{-1}=S\left(S_{0} S_{1}\right)^{-1}$ and let $N=L_{\Pi\left(S_{1}\right)}$. By the maximality of S_{1} we have that T_{1} is a sequence over N. By (5.1) and Lemma 5.3 we obtain that $\left|T_{1}\right| \geq \frac{|G|}{p^{2}}-1$. If $N=H$ then by Lemma 5.1 we have, $\{0\} \cup \sum\left(S_{1}\right)=$ $H=\operatorname{st}\left(\{0\} \cup \sum\left(S_{1}\right)\right)$, again a contradiction to Lemma 2.3. Therefore,

$$
N \neq H
$$

But $|N|-1 \geq|T|-\left|S_{1}\right|=\left|T_{1}\right| \geq|G| / p^{2}-1$. This forces that $|N|=$ $|G| / p^{2}$. On the other hand, using Lemma 2.3, we have $\left|\{0\} \cup \sum\left(T_{1}\right)\right| \geq$ $\left|T_{1}\right|+1 \geq|G| / p^{2}=|N|$. Hence $\{0\} \cup \sum\left(T_{1}\right)=N$, which implies that $N=\operatorname{st}\left(\{0\} \cup \sum\left(T_{1}\right)\right)$. But $|N|=|G| / p^{2}>1$, a contradiction to Lemma 2.3.

In what follows, by using group algebras and the method used in Section 3 we determine $\mathrm{c}_{0}(G)$ for $G=C_{3^{2}} \bigoplus C_{3^{n}}$ with $n \geq 2$.

Lemma 5.5. Let $G=C_{3^{2}} \bigoplus C_{3^{n}}$ with $n \geq 2$. Then

$$
\mathrm{c}_{0}(G)=3^{n+1}+1
$$

Proof. Let S be a regular sequence over G of length $|S|=m(G)=3^{n+1}+1$. We need to show $\sum(S)=G$. Assume to the contrary that,

$$
\sum(S) \neq G
$$

Note that $|S| \geq \mathrm{D}(G)$. So we have

$$
\begin{equation*}
0 \in \sum(S) . \tag{5.2}
\end{equation*}
$$

Let S_{1} be the maximal subsequence of S such that $\prod\left(S_{1}\right) \neq 0$. Clearly, $\left|S_{1}\right| \leq \mathrm{D}(G)-1=9-1+3^{n}-1=3^{n}+7$. If $\left|S_{1}\right|=3^{n}+7$ then $G \backslash\{0\} \subset \sum\left(S_{1}\right)$ by Lemma 5.1. It follows from (5.2) that $\sum(S)=G$, a contradiction. So we have

$$
\left|S_{1}\right| \leq 3^{n}+6
$$

Let $H=L_{\Pi\left(S_{1}\right)}$. Since S_{1} is maximal, every term of $S S_{1}^{-1}$ is in H. Note that S is regular. We have

$$
|H|-1 \geq\left|S_{H}\right| \geq\left|S S_{1}^{-1}\right| \geq 3^{n+1}+1-\left(3^{n}+6\right)=2 \times 3^{n}-5
$$

Hence

$$
3^{n+1} \geq|H|>2 \times 3^{n}-5
$$

It follows from $n \geq 2$ that

$$
|H|=3^{n+1}
$$

This implies

$$
H=C_{3} \bigoplus C_{3^{n}} \text { or } C_{3^{2}} \bigoplus C_{3^{n-1}}
$$

Therefore,

$$
\mathrm{D}(H) \leq 3^{n}+2
$$

We show next that

$$
\begin{equation*}
c_{0}(H) \leq 2 \times 3^{n}-5 \tag{5.3}
\end{equation*}
$$

which implies that $\sum\left(S_{H}\right)=H$, a contradiction to lemma 2.3. Thus it follows from Lemma 2.2 that $c_{0}(G)=3^{n+1}+1$ completing the proof.

To prove (5.3), let S^{\prime} be a regular sequence over H of length $\left|S^{\prime}\right|=$ $2 \times 3^{n}-5$. We need to show that $\sum\left(S^{\prime}\right)=H$. Assume to the contrary that,

$$
\sum\left(S^{\prime}\right) \neq H
$$

Since $\left|S^{\prime}\right|=2 \times 3^{n}-5 \geq m(H)$, by Lemmas 2.3 and 2.7 we obtain that

$$
\operatorname{st}\left(\sum\left(S^{\prime}\right)\right)=\{0\} \text { and } 0 \in \sum\left(S^{\prime}\right)
$$

Let S_{2} be the maximal subsequence of S^{\prime} such that $\prod\left(S_{2}\right) \neq 0$. Similarly to above we derive that $\left|S_{2}\right| \leq \mathrm{D}(H)-2 \leq 3^{n}$.

Let $H_{1}=L_{\Pi\left(S_{2}\right)}$. Similarly to above, we have

$$
\left|H_{1}\right|-1 \geq\left|S_{H_{1}}^{\prime}\right| \geq\left|S^{\prime} S_{2}^{-1}\right| \geq 2 \times 3^{n}-5-3^{n}=3^{n}-5 .
$$

This implies that

$$
\left|H_{1}\right|=3^{n} .
$$

Choose a subgroup K of H with $|K|=3^{n}$ such that $\left|S_{K}^{\prime}\right|$ is maximal. Since S^{\prime} is regular, we have that $\left|S_{K}^{\prime}\right| \leq|K|-1 \leq 3^{n}-1$. By the maximality of $S_{K}^{\prime}, 3^{n}-5 \leq\left|S_{H_{1}}^{\prime}\right| \leq\left|S_{K}^{\prime}\right|$. Therefore,

$$
3^{n}-5 \leq\left|S_{K}^{\prime}\right| \leq 3^{n}-1
$$

Let $\bar{g}=g+K$ for every $g \in H$.
Since $|H|=3^{n+1}$, we can always choose two terms g_{1}, g_{2} of S^{\prime} not in K such that $g_{1} g_{2} \mid S^{\prime}$ and $\left|\{\overline{0}\} \cup \sum\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \geq 3$. We distinguish two cases.

Case 1. $3^{n}-1 \geq\left|S_{K}^{\prime}\right| \geq 3^{n}-3$.
Take a subsequence $W_{1} \mid S_{K}^{\prime}$ with $\left|W_{1}\right|=3^{n}-3$. Let $T=g_{1} g_{2} W_{1}$ and $T_{1}=S^{\prime} T^{-1}$. Then we have

$$
|T|=3^{n}-1
$$

and

$$
\left|T_{1}\right|=\left|S^{\prime} T^{-1}\right|=2 \times 3^{n}-5-3^{n}+1=3^{n}-4 \geq 5
$$

Subcase 1.1. $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \leq 2$ for all $g \in H$.
Since $\left|T_{1}\right| \geq 5, T_{1}$ contains a 2-zero-sum free 3 -subset A of H. Let

$$
W=S^{\prime} T^{-1} A^{-1}
$$

Then

$$
|W| \geq 2
$$

Now S^{\prime} has a factorization

$$
S^{\prime}=A W T
$$

Let $B=\{0\} \cup \sum(A), C=\{0\} \cup \sum(W)$, and let $D=\{0\} \cup \sum(T)$. Then, $B+C+D=\sum\left(S^{\prime}\right)$. Since st $\left(\sum\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain that

$$
\begin{aligned}
|H|-1 & \geq\left|\sum\left(S^{\prime}\right)\right| \geq|B|+|C|+|D|-2 \\
& \geq 7+(|W|+1)+(3|T|-3)-2 \\
& \geq 7+3+3^{n+1}-6-2 \geq 3^{n+1}=|H|
\end{aligned}
$$

a contradiction.
Subcase 1.2. $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$ for some $g \in H$.
Since S^{\prime} is regular over H, there is some term y of W_{1} such that $y \notin\langle g\rangle$. Otherwise $\left|S_{\langle g\rangle}^{\prime}\right| \geq 3^{n} \geq|\langle g\rangle|$, which is a contradiction. Let $T_{2}=T y^{-1}$. Then

$$
\left|T_{2}\right|=3^{n}-2
$$

and

$$
\left|S^{\prime} T_{2}^{-1}\right|=2 \times 3^{n}-5-3^{n}+2=3^{n}-3
$$

Since $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$, there is a subsequence $A_{1}=g^{a}(-g)^{b}$ of T_{1} with $a+b=3$. Let

$$
A^{\prime}=A_{1} y
$$

and

$$
W^{\prime}=S^{\prime} T_{2}^{-1} A^{\prime-1}
$$

Then

$$
\left|W^{\prime}\right| \geq 2
$$

Now S^{\prime} has a factorization

$$
S^{\prime}=A^{\prime} W^{\prime} T_{2}
$$

Let $B=\{0\} \cup \sum\left(A^{\prime}\right), C=\{0\} \cup \sum\left(W^{\prime}\right)$, and let $D=\{0\} \cup \sum\left(T_{2}\right)$. Then, $B+C+D=\sum\left(S^{\prime}\right)$. Since st $\left(\sum\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain that

$$
\begin{aligned}
|H|-1 & \geq\left|\sum\left(S^{\prime}\right)\right| \geq|B|+|C|+|D|-2 \\
& \geq 2\left(\left|A_{1}\right|+1\right)+\left(\left|W^{\prime}\right|+1\right)+\left(3\left|T_{2}\right|-3\right)-2 \\
& \geq 8+3+3^{n+1}-9-2=3^{n+1}=|H|
\end{aligned}
$$

a contradiction.
Case 2. $3^{n}-5 \leq\left|S_{K}^{\prime}\right| \leq 3^{n}-4$.
Take a subsequence $W_{1} \mid S_{K}^{\prime}$ with $\left|W_{1}\right|=3^{n}-5$. Let $T=g_{1} g_{2} W_{1}$ and $T_{1}=S^{\prime} T^{-1}$. Then we have

$$
|T|=3^{n}-3
$$

and

$$
\left|T_{1}\right|=\left|S^{\prime} T^{-1}\right|=2 \times 3^{n}-5-3^{n}+3=3^{n}-2 \geq 7
$$

Subcase 2.1. $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \leq 2$ for all $g \in H$.
Since $\left|T_{1}\right| \geq 7$, there are two 2-zero-sum free 3 -sets A_{1} and A_{2} of H such that $A_{1} A_{2} \mid T_{1}$. Let $W=S^{\prime} T^{-1} A_{1}^{-1} A_{2}^{-1}$. Then $|W| \geq 1$.

Now S^{\prime} has a factorization

$$
S^{\prime}=A_{1} A_{2} W T
$$

Let $B_{i}=\{0\} \cup \sum\left(A_{i}\right)$ for $i \in\{1,2\}, C=\{0\} \cup \sum(W)$, and let $D=$ $\{0\} \cup \sum(T)$. Then, $B_{1}+B_{2}+C+D=\sum\left(S^{\prime}\right)$. Since st $\left(\sum\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain that

$$
\begin{aligned}
|H|-1 & \geq\left|\sum\left(S^{\prime}\right)\right| \geq\left|B_{1}\right|+\left|B_{2}\right|+|C|+|D|-3 \\
& \geq 7+7+(|W|+1)+(3|T|-3)-3 \\
& \geq 7+7+2+3^{n+1}-12-3 \geq 3^{n+1}=|H|
\end{aligned}
$$

a contradiction.
Subcase 2.2. $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$ for some $g \in H$.

Since $\left|T_{1}\right|=3^{n}-2$, there are two elements $y_{1}, y_{2} \notin\langle g\rangle$ such that $y_{1} y_{2} \mid T_{1}$. Otherwise, $\left|S_{\langle g\rangle}^{\prime}\right| \geq\left|T_{1}\right|-1=3^{n}-3>\left|S_{K}^{\prime}\right|$. This contradicts to the maximality of S_{K}^{\prime}.

Since $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$, there is a subsequence $A_{1}=g^{a}(-g)^{b}$ of T_{1} with $a+b=3$ and $a, b \geq 0$. Let

$$
A^{\prime}=A_{1} y_{1} y_{2}
$$

and

$$
W^{\prime}=S^{\prime} T^{-1} A^{\prime-1}
$$

Then

$$
\left|W^{\prime}\right| \geq 2
$$

Now S^{\prime} has a factorization

$$
S^{\prime}=A^{\prime} W^{\prime} T
$$

Let $B=\{0\} \cup \sum\left(A^{\prime}\right), C=\{0\} \cup \sum\left(W^{\prime}\right)$, and let $D=\{0\} \cup \sum(T)$. Then, $B+C+D=\sum\left(S^{\prime}\right)$. Since st $\left(\sum\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain that

$$
\begin{aligned}
|H|-1 & \geq\left|\sum\left(S^{\prime}\right)\right| \geq|B|+|C|+|D|-2 \\
& \geq 3\left(\left|A_{1}\right|+1\right)+\left(\left|W^{\prime}\right|+1\right)+(3|T|-3)-2 \\
& \geq 12+3+3^{n+1}-12-2>3^{n+1}=|H|
\end{aligned}
$$

a contradiction.

Proof of Theorem 1.1 (5). If $G=C_{p} \oplus C_{p}$, then $\mathrm{c}_{0}(G)=m(G)=2 p-1$ by a result of Peng [10]. For the other cases, the result follows from Lemma 5.4 and Lemma 5.5.

We end this section with the following
Conjecture 5.6. $\mathrm{c}_{0}(G)=m(G)$ for all finite abelian groups.
Acknowledgements. We would like to thank the referee for careful reading and for suggesting several improvements of the manuscripts. This work was supported in part by the 973 Program of China (Grant No. 2013CB834204), the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] P. Erdős, H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964) 149-159.
[2] M. Freeze, W. Gao, A. Geroldinger, The critical number of finite abelian groups, J. Number Theory 129 (2009) 2766-2777.
[3] W. Gao, Addition theorems for finite Abelian groups, J. Number Theory 53 (1995) 241-246.
[4] W. Gao, Addition theorems and group rings, J. Combin. Theory Ser. A 77 (1997) 98-109.
[5] W. Gao, Y.O. Hamidoune, On additive bases, Acta Arith. 88 (1999) 233-237.
[6] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[7] A. Geroldinger and I. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, 2009.
[8] D.J. Grynkiewicz, Structural Additive Theory, Developments in Mathematics, Springer, 2013.
[9] M.B. Nathanson, Additive Number Theory : Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[10] C. Peng, Addition theorems in elementary abelian groups I, J. Number Theory 27 (1987) 46-57.
[11] C. Peng, Addition theorems in elementary abelian groups II, J. Number Theory 27 (1987) 58-62.
[12] J. E. Olson, A combinatorial problem on finite Abelian groups I, J. Number Theory 1 (1969) 8-10.
[13] J. E. Olson, A combinatorial problem on finite Abelian groups II, J. Number Theory 1 (1969) 195-199.
[14] J. E. Olson, An addition theorem for finite Abelian groups, J. Number Theory 9 (1977) 63-70.

Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: wdgao1963@aliyun.com
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: han-qingfeng@163.com
Mathematical College, Sichuan University, Chengdu 610064, P.R. China E-mail address: qiangy1230@163.com

Department of Mathematics, Luoyang Normal University, Luoyang 471022, P.R. China

E-mail address: $214145351 @ q q . c o m$
Center for Combinatorics, Nankai University, Tianjin 300071, P.R. China
E-mail address: nkuzhanghanbin@163.com

[^0]: 2010 Mathematics Subject Classification. 11P70, 11B50, 11B75.
 Key words and phrases. Additive basis, Regular sequence, 2-zero-sum free set.

