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Abstract. Let G be an additive finite abelian group, and let S be a
sequence over G. We say that S is regular if for every proper subgroup
H ⊆ G, S contains at most |H| − 1 terms from H. Let c0(G) be the
smallest integer t such that every regular sequence S over G of length
|S| ≥ t forms an additive basis of G, i.e., every element of G can be
expressed as the sum over a nonempty subsequence of S. The constant
c0(G) has been determined previously only for the elementary abelian
groups. In this paper, we determine c0(G) for some groups including the
cyclic groups, the groups of order even, the groups of rank at least five,
and all the p-groups except G = Cp ⊕ Cpn with n ≥ 2.

1. Introduction

Let G be a finite abelian group, p be the smallest prime dividing |G|, and

let r(G) denote the rank of G. Let S be a sequence over G. We say that S

is an additive basis of G if every element of G can be expressed as the sum

over a nonempty subsequence of S. Let c(G) denote the smallest integer t

such that every subset of G of cardinality at least t is an additive basis of G.

In 1964, Erdős and Heilbronn [1] proposed the problem to determine c(G),

and it had been completely determined till 2009 through many authors’

effort (see [5], [2] and their references). For every subgroup H of G, let SH

denote the subsequence of S consisting of all terms of S contained in H.

We say that S is a regular sequence over G if |SH | ≤ |H|−1 holds for every

subgroup H ( G. Let c0(G) denote the smallest integer t such that every

regular sequence over G of length at least t is an additive basis of G. The

problem to determine c0(G) was first proposed by Olson and then studied

by Peng ([10], [11]) in 1987, he determined c0(G) for all the elementary

abelian groups. Let

m(G) =


|G|, if G is cyclic,
|G|
p

+ p− 1, if G = Cp ⊕ C |G|
p

and p | |G|
p

,
|G|
p

+ p− 2, otherwise.
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In this paper we determine c0(G) for more groups and our main result

is the following.

Theorem 1.1. Let G be a finite abelian group, and let p be the smallest

prime dividing |G|. Then, c0(G) = m(G) if one of the following conditions

holds.

(1) G is cyclic;

(2) |G| is even;

(3) r(G) ≥ 5;

(4) r(G) ∈ {3, 4} and p ≥ 17;

(5) r(G) ≥ 2 and G is a p-group except G = Cp ⊕ Cpn with n ≥ 2.

2. Preliminaries

Let G be an additive finite abelian group. A sequence S over G will be

written in the form

S = g1 · . . . · g` =
∏
g∈G

gvg(S) , with vg(S) ∈ N0 for all g ∈ G ,

and we call

|S| = ` ∈ N0 the length and σ(S) =
∑̀
i=1

gi =
∑
g∈G

vg(S)g ∈ G the sum of S .

Let supp(S) = {g ∈ G : vg(S) > 0}. Define∑
(S) = {σ(T ) : 1 6= T | S},

where T | S means T is a subsequence of S, and 1 denotes the empty

sequence.

We say that S is a zero-sum sequence if σ(S) = 0.

We say that a subset A ⊂ G \ {0} is a 2-zero-sum free |A|-subset if A

contains no two distinct elements with sum zero.

Let A ⊂ supp(S) be a subset of the maximal cardinality such that A is

2-zero-sum free. Define

|supp+(S)| = |A|.

Let D(G) denote the Davenport constant of G, which is defined as the

smallest integer t such that, every sequence S over G of length |S| ≥ t

contains a nonempty zero-sum subsequence.

For every subset A of G, denote by 〈A〉 the subgroup generated by A.

Let st(A) = {g ∈ G : g + A = A}. Then st(A) is the maximal subgroup H

of G with H +A = A. We need the following well known Kneser’s theorem.

For the detailed proofs, the readers can refer to [6, 8, 9].



ON ADDITIVE BASES II 3

Lemma 2.1. (Kneser) Let A1, . . . , Ar be finite nonempty subsets of an

abelian group, and let H = st(A1 + · · ·+ Ar). Then,

|A1 + · · ·+ Ar| ≥ |A1 + H|+ · · ·+ |Ar + H| − (r − 1)|H|.

Lemma 2.2. c0(G) ≥ m(G) for every finite abelian group G.

Proof. If G is cyclic then m(G) = |G| by the definition. Let g be a generating

element of G and S = g|G|−1. Then S is regular and 0 6∈
∑

(S). Therefore,

c0(G) ≥ |S|+ 1 = m(G).

If G = Cp ⊕ C |G|
p

with p | |G|
p

, where p is the smallest prime dividing

|G|, then m(G) = |G|
p

+ p − 1. Let G = 〈e1〉 ⊕ 〈e2〉 with ord(e1) = p and

ord(e2) = |G|
p

. Let S = ep−1
1 e

|G|
p

−1

2 . Then, S is regular and 0 6∈
∑

(S).

Therefore, c0(G) ≥ |S|+ 1 = m(G).

For all the other cases we have m(G) = |G|
p

+p− 2. Let H be a subgroup

of G with |H| = |G|
p

, and let g ∈ G \ H. Take any p − 2 distinct elements

h1, · · · , hp−2 from H. Let S = (H \ {0}) ∪ {g + h1, · · · , g + hp−2}. Then, S

is a subset of G and therefore is a regular sequence over G. But (−g +H)∩∑
(S) = ∅. Therefore, c0(G) ≥ |S|+ 1 = m(G). �

The following result is crucial in the proof of Theorem 1.1.

Lemma 2.3. Let G be a finite abelian group, and let p be the smallest

prime dividing |G|. Let S be a regular sequence over G of length |S| ≥
max{ |G|

p
+ p− 2, D(G)}. If

∑
(S) 6= G then,

(1) st(
∑

(S)) = {0},
(2) st({0} ∪

∑
(T )) = {0} and |{0} ∪

∑
(T )| ≥ |T | + 1 hold for every

nonempty subsequence T of S.

Proof. Write S = g1 · . . . · g`. Since S is regular, gi 6= 0 for all 1 ≤ i ≤ `. Let

Ai = {0, gi} for every i ∈ [1, `]. From |S| ≥ max{ |G|
p

+ p− 2, D(G)} ≥ D(G),

we know that 0 ∈
∑

(S). It follows that∑
(S) = A1 + · · ·+ A`.

Let H = st(
∑

(S)). From
∑

(S) 6= G, we know that H 6= G. Suppose that

H 6= {0}. Then by Lemma 2.1 and the fact that |SH | ≤ |H| − 1, we have

|
∑

(S)| ≥ |A1 + H|+ · · ·+ |A` + H| − (`− 1)|H|

≥ (` + 2− |H|)|H| ≥ (|G|/p + p− |H|)|H|

≥ min
(
(|G|/p + p− p)p, (|G|/p + p− |G|/p)

|G|
p

)
= |G|,
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a contradiction. This proves that st(
∑

(S)) = {0}.
By renumbering if necessary we assume that T = g1 · . . . · gt, where

t = |T | ∈ [1, `]. Let

B = A1 + · · ·+ At

and

C = (At+1 + · · ·+ A`) ∪ {0}.

Then, B = {0} ∪
∑

(T ) and
∑

(S) = B + C. It follows that st(B) ⊂
st(

∑
(S)). Therefore, st(B) = {0}.

Again by Lemma 2.1, we have |{0} ∪
∑

(T )| = |A1 + · · ·+ At| ≥ |A1|+
· · ·+ |At| − (t− 1) = |T |+ 1. �

Lemma 2.4. c0(G) ≤ |G| holds for every finite abelian group.

Proof. Let S be an arbitrary regular sequence over G of length |S| = |G|.
It follows from Lemma 2.3 that

∑
(S) = G. Hence, c0(G) ≤ |G|. �

Lemma 2.5. ([13]) Let H and K be two finite abelian groups with 1 <

|H|
∣∣|K|, and let G = H ⊕K. Then, D(G) ≤ |H|+ |K| − 1.

We need the following well known results on Davenport constant.

Lemma 2.6. ([13]) Let p be a prime. Then,

(1) D(Cp ⊕ Cp ⊕ Cp) = 3p− 2;

(2) D(Cn) = n.

(3) If G = Cn1 ⊕ Cn2 with 1 < n1 | n2 then D(G) = n1 + n2 − 1.

Lemma 2.7. If G is a finite abelian group then D(G) ≤ m(G).

Proof. Let G = Cn1 ⊕ · · · ⊕Cnr with 1 < n1 | · · · | nr. Let p be the smallest

prime dividing |G|.

If r = 1 then D(G) = |G| = m(G) by Lemma 2.6.

If r = 2 then D(G) = n1+n2−1 = |G|
n1

+n1−1 by Lemma 2.6. Since p is the

smallest prime dividing |G|, we have m(G) ≤ |G|
p

+p−1 ≤ |G|
n1

+n1−1 = D(G).

If r ≥ 4 then by Lemma 2.5 we derive that D(G) ≤ |G|
n1n2

+n1n2−1 taking

H = Cn1 ⊕Cn2 and K = Cn3 ⊕ · · · ⊕Cnr . Therefore, m(G) = |G|
p

+ p− 2 <
|G|

n1n2
+ n1n2 − 1 ≤ D(G). Now it remains to check the case that

r = 3.
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If p 6= n2 then n2 > p. Taking H = Cn2 and K = Cn1 ⊕ Cn3 in Lemma 2.5,

we obtain that D(G) ≤ |G|
n2

+ n2 − 1 ≤ |G|
p

+ p − 2 = m(G). So, we may

assume that

n1 = n2 = p.

Write n3 = pu. In this case we want to prove that

D(G) ≤ (3p− 2)u.

Let S be a sequence over G of length |S| = (3p− 2)u. We need to show

that S contains a nonempty zero-sum subsequence.

Let ϕ : G = Cp ⊕ Cp ⊕ Cpu → Cu be the natural homomorphism with

ker(ϕ) = Cp⊕Cp⊕Cp (up to isomorphism). To apply D(ϕ(G)) = D(Cu) = u

on ϕ(S) repeatedly, we can get a decomposition S = S1 · . . . ·S3p−2 ·S ′ with

|Si| =∈ [1, u], σ(Si) ∈ ker(ϕ) for every i ∈ [1, 3p− 2].

Applying D(ker(ϕ)) = D(Cp ⊕ Cp ⊕ Cp) = 3p − 2 to the sequence σ(S1) ·
. . . · σ(S3p−2) we obtain that, there is a nonempty subset I ⊂ [1, 3p − 2]

such that
∑

i∈I σ(Si) = 0. Now the sequence
∏

i∈I Si is a nonempty zero-

sum subsequence of S. This proves that D(G) ≤ (3p − 2)u. Therefore,

D(G) ≤ (3p− 2)u ≤ p2u < p2u + p− 2 = m(G). �

3. Proof of Theorem 1.1 (1) and (2)

Proof of Theorem 1.1 (1). The result follows from Lemma 2.2 and Lemma

2.4. �

To prove Conclusion (2) of Theorem 1.1 we need the following technical

result.

Lemma 3.1. If A is a 2-zero-sum free subset of 3 elements from an abelian

group, then either |
∑

(A)\{0}| ≥ 6 or A contains some element with order

two.

Proof. Let A = {a, b, c}. If a + b + c 6= 0 then the result has been proved in

[6, Proposition 5.3.2]. So we may assume that

a + b + c = 0.

Clearly, a + b, a + c and b + c are pairwise distinct nonzero elements. So, it

suffices to prove that

{a, b, c} ∩ {a + b, a + c, b + c} = ∅.

Assume to the contrary that, {a, b, c} ∩ {a + b, a + c, b + c} 6= ∅. By

renumbering we may assume that a ∈ {a+ b, a+ c, b+ c}, which forces that

a = b + c. This together with a + b + c = 0 gives that 2a = 0. �
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Proof of Theorem 1.1 (2). Let n = |G|. From Conclusion (1) of this

theorem we may assume that

r(G) ≥ 2.

By Lemma 2.2, it suffices to prove c0(G) ≤ m(G). Let S be a regular

sequence over G of length |S| = m(G). We need to show that

∑
(S) = G.

Assume to the contrary that

∑
(S) 6= G.

By Lemma 2.3 we have

st(
∑

(S)) = {0}.

If there is some g ∈ supp(S) such that 2g = 0, then 0 6= g ∈ st(
∑

(S)) =

{0} since
∑

(S) = {0, g} +
( ∑

(Sg−1) ∪ {0}
)

and g + {0, g} = {0, g}, a

contradiction. So, every element g ∈ supp(S) satisfies that

2g 6= 0.

Now we distinguish several cases.

Case 1. max{vg(S) + v−g(S) : g ∈ G} ≤ n
6
. Let t ≥ 0 be the maximal

integer such that S has a factorization

S = A1 · · ·AtT

with Ai is a 2-zero-sum free 3-subset of G for every i ∈ [1, t].

We fix a factorization of S above so that |supp+(T )| attains the maximal

possible value. Clearly,

|supp+(T )| ≤ 2.

We claim that

vg(T ) + v−g(T ) ≤ 1

holds for every g ∈ G.

Assume to the contrary that vh(T )+v−h(T ) ≥ 2 for some h ∈ G. We may

assume that vh(T ) ≥ 1. Since A1 is a 2-zero-sum free 3-set and |supp+(T )| ≤
2, we can choose some x ∈ A1 such that neither x nor −x occurs in T . We

assert that

A1 ∩ {h,−h} 6= ∅.
Assume to the contrary that A1 contains neither h nor −h. Let A′

1 =

(A1 \ {x}) ∪ {h} and T ′ = Txh−1. Then we obtains a factorization

S = A′
1A2 · · ·AtT

′
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with A′
1, A2, · · · , At are all 2-zero-sum free 3-subsets of G but |supp+(T ′)| >

|supp+(T )|, a contradiction. Therefore, A1 ∩ {h,−h} 6= ∅. Similarly, Ai ∩
{h,−h} 6= ∅ for every i ∈ [2, t]. It follows that

max{vg(S) + v−g(S) : g ∈ G} ≥ t +
|T |

|supp+(T )|
≥ t +

|T |
2

.

Note that 3t+ |T | = |S| ≥ n
2
. Therefore, t+ |T |

3
≥ n

6
. Hence, max{vg(S)+

v−g(S) : g ∈ G} ≥ t + |T |
2

> t + |T |
3
≥ n

6
, a contradiction. This proves the

claim. It follows that T is a subset of G and

|T | = |supp(T )| = |supp+(T )| ≤ 2.

Let Bi = {0} ∪
∑

(Ai) for every i ∈ [1, t], and let B = {0} ∪
∑

(T ). Then,

B1 + · · ·+ Bt + B =
∑

(S).

From Lemma 3.1 we get that |Bi| ≥ 7 for every i ∈ [1, t]. Since st(
∑

(S)) =

{0}, by Lemma 2.1 we obtain that

|B1 + · · ·+ Bt + B| ≥ |B1|+ · · ·+ |Bt|+ |B| − t ≥ 6t + |B|.

Since |T | = |supp(T )| ≤ 2, T is a subset of G. It is easy to see that |B| ≥
2|T |. Note that

∑
(S) 6= G. So we have

n− 1 ≥ |
∑

(S)| = |B1 + · · ·+ Bt + B| ≥ |B1|+ · · ·+ |Bt|+ |B| − t
≥ 6t + |B| ≥ 6t + 2|T | = 2|S| ≥ n,

a contradiction.

Case 2. max{vg(S) + v−g(S) : g ∈ G} > n
6
.

We first assume that

n ∈ [2, 11].

Since r(G) ≥ 2 we have that

n ∈ {4, 8}.

If n = 8 then G ∈ {C3
2 , C2 ⊕ C4}. Since S contains no element of order

two, it follows that G = C2⊕C4. Now |S| = m(G) = 5. Let x1,−x1, x2,−x2

be the only four elements of order four in G. Then, vg(S) + v−g(S) ≥ 3 for

some element g ∈ {x1, x2}. Let K = 〈g〉. By Lemma 2.3 |{0} ∪
∑

(SK)| ≥
|SK |+ 1 ≥ 4 = |K|. Therefore, {0} ∪

∑
(SK) = K and hence K = st({0} ∪∑

(SK)) ⊆ st(
∑

(S)) = {0}, a contradiction.

If n = 4 then G = C2 ⊕ C2. Hence every term of S is of order two, a

contradiction.

From now on we suppose that
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(3.1) |G| = n ≥ 12.

Choose h ∈ G such that |S〈h〉| attains the maximal possible value. Then

|S〈h〉| ≥ max{vg(S) + v−g(S) : g ∈ G} ≥ n + 1

6
.

Let

H = 〈h〉.

It follows that

|SH | ≥ 3.

Let

g = g + H

for every g ∈ G. We distinguish two subcases:

Subcase 2.1. For any two terms g1, g2 of S with g1g2|S we have |{0} ∪∑
(g1 g2)| ≤ 2. Then, for any two terms g1, g2 of SS−1

H we have g1 = g2 and

2g1 = 0. Therefore, for any term g0 of SS−1
H we have

〈supp(S)〉 = 〈h, g0〉.

Since S is regular, |〈supp(S)〉| ≥ |S|+ 1 > n
2
. Therefore,

G = 〈supp(S)〉 = 〈h, g0〉.

Since 2g0 ∈ H = 〈h〉, we infer that |G| = 2|H| and G = C2 ⊕ Cn/2. Hence

we have

|S| = m(G) =
n

2
+ 1.

Let

T = g0SH .

Let t ≥ 0 be the maximal integer such that ST−1 has a factorization

ST−1 = A1 · · ·AtW

with Ai is a 2-zero-sum free 3-subset of G for every i ∈ [1, t].

We fix a factorization of ST−1 above so that |supp+(W )| attains the

maximal possible value.

Clearly,

|supp+(W )| ≤ 2.

Then S has a factorization

S = A1 · · ·AtWT
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where t ≥ 0, Ai is a 2-zero-sum free 3-subset of G, and W is a subsequence

of S which contains no any 2-zero-sum free 3-subset of G. It follows that

3t + |W |+ |T | = |S| ≥ n

2

and

W |xvx1 (S)
1 (−x1)

v−x1 (S)x
vx2 (S)
2 (−x2)

v−x2 (S)

for some distinct elements x1, x2 ∈ G.

Let Bi = {0} ∪
∑

(Ai) for every i ∈ [1, t], C = {0} ∪
∑

(W ), and let

D = {0} ∪
∑

(T ). From Lemma 3.1 we get that |Bi| ≥ 7. It then follows

from Lemmas 2.1 and 2.3 that

n− 1 ≥ |
∑

(S)| ≥ |B1|+ · · ·+ |Bt|+ |C|+ |D| − t− 1

≥ 7t + (|W |+ 1) + 2|T | − t− 1 = 6t + 2|W |+ 2|T | − |W |

= 2|S| − |W | = n + 2− |W |.

This gives that

|W | ≥ 3.

Write W = W1W2 with W1|x
vx1 (S)
1 (−x1)

v−x1 (S) and W2|x
vx2 (S)
2 (−x2)

v−x2 (S).

Without loss of generality we may assume that

|W1| ≥ |W2| ≥ 0.

Since |W1| ≥ |W |
2

≥ 3
2
, by the maximality of SH , there is some element

y|SH such that y 6∈ 〈x1〉. Let U = W1y and let T ′ = Ty−1 and we obtain a

factorization of S

S = A1 · · ·AtUW2T
′.

Let C1 = {0}∪
∑

(U), C2 = {0}∪
∑

(W2), and D′ = {0}∪
∑

(T ′). Similarly

to above we obtain that

n− 1 ≥ |
∑

(S)| ≥ |A1|+ · · ·+ |At|+ |C1|+ |C2|+ |D′| − t− 2

≥ 7t + 2|U |+ |W2|+ 1 + 2|T ′| − t− 2 = 2(3t + |U |+ |W2|+ |T ′|)− 1− |W2|

= 2|S| − 1− |W2| = n + 1− |W2|.

This gives that

|W2| ≥ 2.

By the maximality of SH and |SH | ≥ 3, there is an element z|SHy−1 such

that z 6∈ 〈x2〉. Let V = zW2 and T ′′ = T ′z−1 = T (yz)−1. Then S has a

factorization

S = A1 · · ·AtUV T ′′.
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Let C ′
2 = {0} ∪

∑
(V ) and D′′ = {0} ∪

∑
(T ′′). Similarly to above we

have

n− 1 ≥ |
∑

(S)| ≥ |A1|+ · · ·+ |At|+ |C1|+ |C ′
2|+ |D′′| − t− 2

≥ 7t + 2|U |+ 2|V |+ 2|T ′′| − t− 2 = 2|S| − 2 = n,

a contradiction.

Subcase 2.2. There are two terms g1, g2 of S such that g1g2|S and

|{0} ∪
∑

(g1 g2)| ≥ 3. Let T = g1g2SH . Now S has a factorization

S = A1 · · ·AtWT

where t ≥ 0, Ai is a 2-zero-sum free 3-subset of G, and W is a subsequence

of S which contains no any 2-zero-sum free 3-subset of G. It follows that

3t + |W |+ |T | = |S| ≥ n

2

and

W |xvx1 (S)
1 (−x1)

v−x1 (S)x
vx2 (S)
2 (−x2)

v−x2 (S)

for some distinct elements x1, x2 ∈ G. Let Bi = {0} ∪
∑

(Ai) for every

i ∈ [1, t], C = {0}∪
∑

(W ), and let D = {0}∪
∑

(T ). Then, B1 + · · ·+Bt +

C +D =
∑

(S). Since st(
∑

(S)) = {0}, by Kneser’s theorem we obtain that

n− 1 ≥ |
∑

(S)| ≥ |B1|+ · · ·+ |Bt|+ |C|+ |D| − t− 1

≥ 7t + (|W |+ 1) + (3|T | − 3)− t− 1 = 6t + 2|W |+ 2|T |+ (|T | − 3− |W |)

= 2|S|+ (|T | − 3− |W |) ≥ n + (|T | − 3− |W |).

This gives that

|W | ≥ |T | − 2 ≥ 3.

Write W = W1W2 with W1|x
vx1 (S)
1 (−x1)

v−x1 (S) and W2|x
vx2 (S)
2 (−x2)

v−x2 (S).

Without loss of generality we may assume that

|W1| ≥ |W2| ≥ 0.

Since |W1| ≥ |W |
2

≥ 3
2
, by the maximality of SH , there is some element

y|SH such that y 6∈ 〈x1〉. Let U = W1y and let T ′ = Ty−1 and we obtain a

factorization of S

S = A1 · · ·AtUW2T
′.

Let C1 = {0}∪
∑

(U), C2 = {0}∪
∑

(W2), and D′ = {0}∪
∑

(T ′). Similarly

to above we obtain that

n− 1 ≥ |
∑

(S)| ≥ |B1|+ · · ·+ |Bt|+ |C1|+ |C2|+ |D′| − t− 2

≥ 7t + 2|U |+ |W2|+ 1 + 3|T ′| − 3− t− 2 = 6t + 2|W1|+ |W2|+ 3|T | − 5

= 6t + 2|W |+ 2|T |+ (|T | − 5− |W2|) ≥ n + (|T | − 5− |W2|).
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This gives that

|W2| ≥ |T | − 4 ≥ 1.

Therefore

|W1| ≥ 2, |W2| ≥ 1.

By the maximality of SH , there is some element y|SH such that y 6∈ 〈x2〉.
Let U = W2y and let T ′ = Ty−1. Again by the maximality of SH and

|SH | ≥ 3, there is an element z|SHy−1 such that z 6∈ 〈x1〉. Let V = zW1

and T ′′ = T ′z−1 = T (yz)−1. Then S has a factorization

S = A1 · · ·AtUV T ′′.

Let C ′
1 = {0} ∪

∑
(U), C ′

2 = {0} ∪
∑

(V ) and D′′ = {0} ∪
∑

(T ′′). Similarly

to above we have

n− 1 ≥ |
∑

(S)| ≥ |B1|+ · · ·+ |Bt|+ |C1|+ |C ′
2|+ |D′′| − t− 2

≥ 7t + 2|U |+ 2|V |+ 3|T ′′| − 3− t− 2

= 6t + 2|W |+ 2|T |+ (|T | − 7) = 2|S|+ (|T | − 7) ≥ 2m(G) + (|T | − 7).

This gives that |T | ≤ n + 6− 2m(G). Therefore,

(3.2)
n + 1

6
≤ |SH | ≤ n + 4− 2m(G).

If m(G) ≥ n
2
+1 then n ≤ 11 follows from (3.2), a contradiction on (3.1).

Therefore,

(3.3) m(G) =
n

2
.

It follows from (3.2) that n ≤ 23. Since n is even, we have

(3.4) n ≤ 22.

By (3.1), (3.3) and (3.4), to complete the proof of this subcase it remains

to consider the cases

(3.5) n ∈ [12, 22] and m(G) =
n

2
.

Since r(G) ≥ 2 we have that n 6∈ {14, 22}. So, it remains to check that

n ∈ {12, 16, 18, 20}.

If n ∈ {12, 20} then G = C2 ⊕ Ct with t = 6 or 10. Hence we get

m(G) = n
2

+ 1. This is not any case listed in (3.5).

If n = 18 then G = C3⊕C6. Now we have |S| ≥ m(G) = 9, |SH | ≥ 4, and

there are two terms g1, g2 of S such that g1g2|SS−1
H and |{0}∪

∑
(g1 g2)| ≥ 3.
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Let T = g1g2SH . Then |T | ≥ 6 and |ST−1| ≤ 3. Let A = ST−1. Then S has

a factorization

S = AT.

Let B = {0} ∪
∑

(A), and D = {0} ∪
∑

(T ). Then, B + D =
∑

(S). So

by Lemmas 2.1 and 2.3, we have that

|
∑

(S)| ≥ |B|+ |D| − 1 ≥ |A|+ 1 + (3|T | − 3)− 1 = |S|+ 2|T | − 3 ≥ 18.

Therefore
∑

(S) = G, a contradiction.

If n = 16 then G ∈ {C4
2 , C

2
2 ⊕C4, C

2
4 , C2⊕C8}. Since m(G) = n

2
, we may

assume that G 6= C2 ⊕ C8. Therefore, G ∈ {C4
2 , C

2
2 ⊕ C4, C

2
4}. If G = C4

2

then every term of S is of order two, a contradiction. So, G = C2
2 ⊕ C4 or

G = C2
4 . Since max{vg(S) + v−g(S) : g ∈ G} ≥ n+1

6
= 16+1

6
, we have that

vg(S) + v−g(S) ≥ 3 for some element g of order 4. Let K = 〈g〉. By Lemma

2.3 |{0} ∪
∑

(SK)| ≥ |SK | + 1 ≥ 4 = |K|. Therefore, {0} ∪
∑

(SK) = K

and hence K = st({0} ∪
∑

(SK)) ⊆ st(
∑

(S)) = {0}, a contradiction. This

completes the proof. �

4. Proof of Theorem 1.1 (3) and (4)

In this section we shall prove Conclusions (3) and (4) of Theorem 1.1 by

employing group algebras as a tool.

Let G =
r⊕

i=1

Cni
with 1 < n1|n2| . . . |nr, and let K be a field. The group

algebra K[G] is a vector space over K with K-basis {Xg | g ∈ G} (built

with a symbol X), where multiplication is defined by( ∑
g∈G

agX
g
)( ∑

g∈G

bgX
g
)

=
∑
g∈G

( ∑
h∈G

ahbg−h

)
Xg.

More precisely, K[G] consists of all formal expression of the form f =∑
g∈G cgX

g with cg ∈ K. For more detailed background information, we

refer the readers to [6, 7, 8].

Choose a prime q so that q ≡ 1 (mod nr). Consider the group algebra

Fq[G]. For any α ∈ Fq[G], denote by Lα the set of elements g ∈ G such that

α(a−Xg) = 0 holds for some a ∈ Fq.

Lemma 4.1. 1. For any α ∈ Fq[G], Lα is a subgroup of G.

2. If α 6= 0 and Lα = G, then α =
∑
g∈G

agX
g with 0 6= ag ∈ Fq holds for all

g ∈ G.

3. Let S = g1 · . . . · gl be a sequence over G. If there exist a1, . . . , at ∈ F∗
q

such that α =
l∏

i=1

(ai −Xgi) 6= 0 and Lα = G, then G \ {0} ⊂
∑

(S).
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Proof. Conclusion 1 and 2 has been proved in [4, Lemma 3.1]. Here we only

give a proof of Conclusion 3. Let 0 6= α =
l∏

i=1

(ai − Xgi) =
∑
g∈G

agX
g. By

Conclusion 2, ag 6= 0 for all g ∈ G. This implies that g ∈
∑

(S) for all

g ∈ G \ {0}. Therefore, G \ {0} ⊂
∑

(S). �

Lemma 4.2. ([4]) Let S be a sequence of elements in G of length l ≥
nr(1 + log n1 · · ·nr−1). Suppose that S contains at least one non-zero term.

Then, one can find a subsequence T = g1 · . . . · gt of S of length t ≤ nr(1 +

log n1 · · ·nr−1)− 1 and a1, . . . , at ∈ F∗
q such that

α = (a1 −Xg1) · · · (at −Xgt) 6= 0

and all terms of ST−1 are in Lα.

Proof. The lemma has been proved in [4, Lemma 3.2]. But there is some

typo in [4], in which log n/log m has to be replaced by log(n/m). �

Let a 6= 0 be a real number, and let r ≥ 3 be an integer. Define the

following function on r variables y1, . . . , yr by

fa(y1, . . . , yr) :=
y1 · · · yr

a
+ a− 2− 2yr(1 + log y1 · · · yr−1)−

y1 · · · yr

a2
.

Lemma 4.3. If yi ≥ a ≥ 3 for all i ∈ [1, r] then, fa(y1, . . . , yr) ≥ 0 provided

that one of the following conditions holds.

(1) r ≥ 5;

(2) r ∈ {3, 4} and a ≥ 17.

Proof. First, we compute the partial derivatives of fa(y1, ..., yr). By straight-

forward calculations, we have

∂fa

∂yi

=
y1 · · · yr

a2yi

(a− 1)− 2
yr

yi

≥ yr

yi

(
y1 · · · yr−1

a2
(a− 1)− 2) ≥ yr

yi

(a− 3) ≥ 0

for 1 ≤ i ≤ r − 1, and

∂fa

∂yr

=
y1 · · · yr−1

a2
(a− 1)− 2− 2 log(y1 · · · yr−1).

It is easy to see that g(x) = x
a2 (a−1)−2−2 log x is increasing when x ≥ a2.

(1). If r ≥ 5, then

∂fa

∂yr

=
y1 · · · yr−1

a2
(a− 1)− 2− 2 log(y1 · · · yr−1)

≥ ar−3(a− 1)− 2− 2(r − 1) log a

≥ a2(a− 1)− 2− 8 log a > 0.
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So we have

fa(y1, ..., yr) ≥ fa(a, ..., a) = ar−2(a− 1) + a− 2− 2a(1 + log ar−1)

≥ a3(a− 1) + a− 2− 2a− 8a log a

= a(a2(a− 1)− 2− 8 log a) + a− 2 ≥ a− 2 ≥ 1.

(2). If a ≥ 17 and r ∈ {3, 4}, then

∂fa

∂yr

=
y1 · · · yr−1

a2
(a− 1)− 2− 2 log(y1 · · · yr−1)(4.1)

≥ a− 3− 4 log a > 0

since f(x) = x − 3 − 4 log x is an increasing function of x ≥ 17. We get

fa(y1, ..., yr) ≥ fa(a, ..., a) = ar−2(a− 1) + a− 2− 2a(1 + log ar−1) ≥ a(a−
1)+a−2−2a−4a log a, since fa(a, ..., a) = ar−2(a−1)+a−2−2a(1+log ar−1)

is an increasing function of r ≥ 3. By (4.1), we obtain that

fa(y1, ..., yr) ≥ fa(a, a, a) = a(a− 3− 4 log a) + a− 2 ≥ a− 2 ≥ 15

as desired. This completes the proof. �

Proof of Theorem 1.1 (3) and (4). Suppose that G = Cni
⊕ · · · ⊕ Cnr

where 1 < n1|n2| . . . |nr. By Lemma 2.2 and Conclusion (2) of Theorem 1.1,

it suffices to prove that c0(G) ≤ m(G) = |G|
p

+ p − 2 for p ≥ 3. To do this,

let S be a regular sequence over G of length |S| = |G|
p

+ p− 2. We need to

prove that
∑

(S) = G.

Assume to the contrary that∑
(S) 6= G.

By Lemma 4.3, we can deduce that |S| ≥ nr(1 + log n1 · · ·nr−1). Then by

Lemma 4.2, one can find a subsequence T = g1 · . . . · gt of S with t ≤
nr(1 + log n1 . . . nr−1)− 1 and a1, . . . , at ∈ F∗

q such that

α = (a1 −Xg1) · · · (at −Xgt) 6= 0

and all terms of ST−1 are in Lα.

Since S is regular, again by Lemma 4.3 we have

|Lα|−1 ≥ |SLα | ≥ |ST−1| ≥ n1 · · ·nr

p
+p−2−2nr(1+log n1 · · ·nr−1) ≥

n1 · · ·nr

p2
.

Together with Lemma 4.1, we get that |Lα| = |G|
p1

for some prime divisor

p1 of |G| with p ≤ p1 < p2. It follows that Lα as a subgroup of G must be

isomorphic to the group of the following form
r⊕

i=1,i6=i0

Cni

⊕
Cni0

/p1 ,

where 1 ≤ i0 ≤ r.
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Let Lα =
s⊕

j=1

Cmj
with 1 < m1| · · · |ms.

We claim that

ms(1 + log m1 · · ·ms−1) ≤ nr(1 + log n1 · · ·nr−1).

If 1 ≤ i0 ≤ r − 1, then

ms(1 + log m1 · · ·ms−1) = nr(1 + log
n1 · · ·nr−1

p1

) ≤ nr(1 + log n1 · · ·nr−1).

If i0 = r, then

ms(1 + log m1 · · ·ms−1) ≤ ms(1 + log n1 · · ·nr−1) ≤ nr(1 + log n1 · · ·nr−1).

This proves the claim.

By lemma 4.3, we get |ST−1| ≥ nr(1+log n1 · · ·nr−1) ≥ ms(1+log m1 · · ·ms−1).

Since ST−1 is a sequence over Lα, by lemma 4.2, we can find a subse-

quence S1 = h1 · . . . · hu of ST−1 with u ≤ ms(1 + log m1 · · ·ms−1)− 1 and

b1, . . . , bu ∈ F∗
q such that

β = (b1 −Xh1) · · · (bu −Xhu) 6= 0

and all terms of ST−1S−1
1 are in Lβ, where Lβ denotes the set of elements

g ∈ Lα such that β(a−Xg) = 0 holds for some a ∈ F∗
q.

Since S is regular, by Lemma 4.3 we have

|Lβ| − 1 ≥ |(ST−1)Lβ
| ≥ |ST−1S−1

1 |

≥ n1 · · ·nr

p
+ p− 2− nr(1 + log n1 · · ·nr−1)−ms(1 + log m1 · · ·ms−1)

≥ n1 · · ·nr

p2
.

This implies |Lβ| = |G|
p1

= |Lα|. Hence Lβ = Lα. Since β =
∏u

i=1(bi −Xhi),

we deduce from Lemma 4.1 that {0} ∪
∑

(S1) = Lβ = Lα. Therefore,

Lα = Lβ = st({0} ∪
∑

(S1)), a contradiction to Lemma 2.3. This completes

the proof. �

5. Proof of Theorem 1.1 (5)

Let p be a prime. In this section we shall prove Conclusion (5) of Theorem

1.1 by using group algebras as in Section 4.

Let G =
r⊕

i=1

Cpni =
r⊕

i=1

〈ei〉, where Cpni = 〈ei〉 for 1 ≤ i ≤ r and 1 ≤ n1 ≤
· · · ≤ nr.

Consider the group algebra Fp[G] over Fp. As a vector space over Fp,

Fp[G] has a basis{ r∏
i=1

(1−Xei)ki
∣∣ ki ∈ [0, pni − 1] for all i ∈ [1, r]

}
,
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see for example [6]. So any α ∈ Fp[G] can be written uniquely in the form

α =
∑

σk1,...,kr(1−Xe1)k1 · · · (1−Xer)kr , σk1,...,kr ∈ Fp.

For any sequence S = g1 · . . . · gl over G, let∏
(S) =

l∏
i=1

(1−Xgi).

Let g ∈ G and a ∈ Fp. Since 1 is the only exp(G)-th root in Fp, the

element a − Xg is invertible in Fp[G] if and only if a 6= 1. Thus it follows

that

Lα = {g ∈ G : there is an a ∈ Fp such that α(a−Xg) = 0}

= {g ∈ G : α(1−Xg) = 0}.

Lemma 5.1. ([11]) Let S be a sequence over G. Then L∏
(S) = G if and

only if
∏

(S) = σ
∏r

i=1(1 − Xei)pni−1 for some σ ∈ Fp. In particular, if

|S| =
∑r

i=1(p
ni − 1), then

∏
(S) = σ

∏r
i=1(1 − Xei)pni−1. Furthermore, if

σ 6= 0 then G \ {0} ⊆
∑

(S).

Lemma 5.2. ([6, Proposition 5.5.8], [12]) Let S be a sequence over G of

length |S| ≥
r∑

i=1

(pni − 1) + 1. Then∏
(S) = 0.

Let a be a real number and let r ≥ 2 be an integer. Define

fa(y1, ..., yr) := a
∑r

i=1 yi−1+a−2−
r∑

i=1

(ayi−1)−
r∑

i=2

(ayi−1)−(ay1−1−1)−a
∑r

i=1 yi−2+3,

where y1, ..., yr are real variables.

Lemma 5.3. Let p ≥ 3 be a prime, and let r ≥ 2 be an integer. Let

n1, . . . , nr be positive integers.

(1) If r ≥ 3, then fp(n1, . . . , nr) ≥ 0.

(2) If r = 2 and n2 ≥ n1 ≥ 2, then fp(n1, n2) > 0 except for the case p = 3

and n1 = 2, in which case fp(n1, n2) = −4 < 0.

Proof. First, we compute the partial derivatives of fp(y1, . . . , yr) at the point

(n1, . . . , nr). By calculations, we have

∂fp

∂n1

= pn1−1 log p
(
p

∑r
i=2 ni−1(p− 1)− p− 1

)
≥ p(p− 2)− 1 > 0,

and for 2 ≤ i ≤ r we have that

∂fp

∂ni

= pni−1 log p
(
p

∑r
j=1,j 6=i nj−1(p− 1)− 2p

)
≥ p(p− 3) ≥ 0

if either r ≥ 3, or r = 2 and n2 ≥ n1 ≥ 2.
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(1). If r ≥ 3, then fp(n1, ..., nr−1, nr) ≥ fp(1, ..., 1). Thus it remains

to prove that fp(1, ..., 1) ≥ 0. It is easy to see that g(r) := fp(1, ..., 1) =

pr−2(p − 1) − (2r − 2)p + 2r is an increasing function of r, since g′(r) =

(p − 1)(pr−2 log p − 2) > 0 when p ≥ 3 and r ≥ 3. So we get fp(1, ..., 1) ≥
g(3) = (p− 2)(p− 3) ≥ 0 as desired.

(2). If p ≥ 5, then we have

fp(n1, n2) = pn1+n2−2(p− 1)− 2pn2 − pn1 − pn1−1 + p + 5 ≥ p + 5 > 0.

By calculations, we obtain that

(i) f3(2, n2) = −4 for all n2 ≥ 2, and

(ii) f3(n1, n2) ≥ f3(3, 3) = 80 > 0 for any two integers n1, n2 with

n2 ≥ n1 ≥ 3. This completes the proof. �

Lemma 5.4. Let p be a prime, and n1, . . . , nr be positive integers. Let

G =
r⊕

i=1

Cpni . If either r ≥ 3, or r = 2, n2 ≥ n1 ≥ 2 and (p, n1) 6= (3, 2),

then we have

c0(G) =
|G|
p

+ p− 2.

Proof. By Lemma 2.2, it suffices to prove that c0(G) ≤ m(G) = |G|
p

+ p− 2.

To do this, let S be a regular sequence over G of length |S| = |G|
p

+p−2. We

need to prove that
∑

(S) = G. Since |S| ≥ D(G), by Lemma 2.7 we have

0 ∈
∑

(S).

Assume to the contrary that∑
(S) 6= G.

Then by Lemma 2.3, we have st(
∑

(S)) = {0}. Let S0 be the maximal

subsequence of S such that
∏

(S0) 6= 0. By Lemma 5.2, we have that

|S0| ≤
r∑

i=1

(pni − 1). If |S0| =
r∑

i=1

(pni − 1), then by Lemma 5.1 we have

G \ {0} ⊂
∑

(S0). It follows from 0 ∈
∑

(S) that
∑

(S) = G, a contradic-

tion. Therefore,

|S0| ≤
r∑

i=1

(pni − 1)− 1.

Let H = L∏
(S0) and T = SS0

−1. By the maximality of S0, we know that

every term of T belongs to H and T is a regular sequence over the subgroup

H of G. By Lemma 5.3 we obtain that

|H| − 1 ≥ |SH | ≥ |S − S0| ≥
|G|
p

+ p− 2−
r∑

i=1

(pni − 1) ≥ |G|
p2

.
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Together with Lemma 5.1, we deduce |H| = |G|
p

. Since H is a subgroup of

G with |H| = |G|
p

, H must be isomorphic to the group of the following form

r⊕
i=1,i6=i0

Cpni

⊕
C

p
ni0

−1 ,

where 1 ≤ i0 ≤ r.

Since n1 ≤ n2 ≤ · · · ≤ nr, we can easily deduce that

D(H)− 1 =
r∑

i=1,i6=i0

(pni − 1) + (pni0
−1 − 1)(5.1)

≤
r∑

i=2

(pni − 1) + pn1−1 − 1.

Let S1 be the maximal subsequence of T such that
∏

(S1) 6= 0. By Lemma

5.2, we have |S1| ≤ D(H)−1. If |S1| = D(H)−1 then by Lemma 5.1 we get

{0}∪
∑

(S1) = H. Therefore, H = st
(
{0}∪

∑
(S1)

)
. But |H| = |G|/p ≥ p2,

a contradiction to Lemma 2.3. Therefore,

|S1| ≤ D(H)− 2.

Let T1 = TS−1
1 = S(S0S1)

−1 and let N = L∏
(S1). By the maximality of

S1 we have that T1 is a sequence over N . By (5.1) and Lemma 5.3 we obtain

that |T1| ≥ |G|
p2 − 1. If N = H then by Lemma 5.1 we have, {0} ∪

∑
(S1) =

H = st({0} ∪
∑

(S1)), again a contradiction to Lemma 2.3. Therefore,

N 6= H.

But |N | − 1 ≥ |T | − |S1| = |T1| ≥ |G|/p2 − 1. This forces that |N | =

|G|/p2. On the other hand, using Lemma 2.3, we have |{0} ∪
∑

(T1)| ≥
|T1| + 1 ≥ |G|/p2 = |N |. Hence {0} ∪

∑
(T1) = N , which implies that

N = st({0} ∪
∑

(T1)). But |N | = |G|/p2 > 1, a contradiction to Lemma

2.3. �

In what follows, by using group algebras and the method used in Section

3 we determine c0(G) for G = C32

⊕
C3n with n ≥ 2.

Lemma 5.5. Let G = C32

⊕
C3n with n ≥ 2. Then

c0(G) = 3n+1 + 1.

Proof. Let S be a regular sequence over G of length |S| = m(G) = 3n+1 +1.

We need to show
∑

(S) = G. Assume to the contrary that,∑
(S) 6= G.

Note that |S| ≥ D(G). So we have
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(5.2) 0 ∈
∑

(S).

Let S1 be the maximal subsequence of S such that
∏

(S1) 6= 0. Clearly,

|S1| ≤ D(G)−1 = 9−1+3n−1 = 3n+7. If |S1| = 3n+7 then G\{0} ⊂
∑

(S1)

by Lemma 5.1. It follows from (5.2) that
∑

(S) = G, a contradiction. So we

have

|S1| ≤ 3n + 6.

Let H = L∏
(S1). Since S1 is maximal, every term of SS−1

1 is in H. Note

that S is regular. We have

|H| − 1 ≥ |SH | ≥ |SS−1
1 | ≥ 3n+1 + 1− (3n + 6) = 2× 3n − 5.

Hence

3n+1 ≥ |H| > 2× 3n − 5.

It follows from n ≥ 2 that

|H| = 3n+1.

This implies

H = C3

⊕
C3n or C32

⊕
C3n−1 .

Therefore,

D(H) ≤ 3n + 2.

We show next that

(5.3) c0(H) ≤ 2× 3n − 5,

which implies that
∑

(SH) = H, a contradiction to lemma 2.3. Thus it

follows from Lemma 2.2 that c0(G) = 3n+1 + 1 completing the proof.

To prove (5.3), let S ′ be a regular sequence over H of length |S ′| =

2× 3n− 5. We need to show that
∑

(S ′) = H. Assume to the contrary that,∑
(S ′) 6= H.

Since |S ′| = 2× 3n − 5 ≥ m(H), by Lemmas 2.3 and 2.7 we obtain that

st(
∑

(S ′)) = {0} and 0 ∈
∑

(S ′).

Let S2 be the maximal subsequence of S ′ such that
∏

(S2) 6= 0. Similarly

to above we derive that |S2| ≤ D(H)− 2 ≤ 3n.

Let H1 = L∏
(S2). Similarly to above, we have

|H1| − 1 ≥ |S ′
H1
| ≥ |S ′S−1

2 | ≥ 2× 3n − 5− 3n = 3n − 5.

This implies that

|H1| = 3n.



20 W. GAO, D. HAN, G. QIAN, Y. QU, AND H. ZHANG

Choose a subgroup K of H with |K| = 3n such that |S ′
K | is maximal.

Since S ′ is regular, we have that |S ′
K | ≤ |K|−1 ≤ 3n−1. By the maximality

of S ′
K , 3n − 5 ≤ |S ′

H1
| ≤ |S ′

K |. Therefore,

3n − 5 ≤ |S ′
K | ≤ 3n − 1.

Let g = g + K for every g ∈ H.

Since |H| = 3n+1, we can always choose two terms g1, g2 of S ′ not in K

such that g1g2|S ′ and |{0} ∪
∑

(g1 g2)| ≥ 3. We distinguish two cases.

Case 1. 3n − 1 ≥ |S ′
K | ≥ 3n − 3.

Take a subsequence W1|S ′
K with |W1| = 3n − 3. Let T = g1g2W1 and

T1 = S ′T−1. Then we have

|T | = 3n − 1

and

|T1| = |S ′T−1| = 2× 3n − 5− 3n + 1 = 3n − 4 ≥ 5.

Subcase 1.1. vg(T1) + v−g(T1) ≤ 2 for all g ∈ H.

Since |T1| ≥ 5, T1 contains a 2-zero-sum free 3-subset A of H. Let

W = S ′T−1A−1.

Then

|W | ≥ 2.

Now S ′ has a factorization

S ′ = AWT.

Let B = {0} ∪
∑

(A), C = {0} ∪
∑

(W ), and let D = {0} ∪
∑

(T ). Then,

B + C + D =
∑

(S ′). Since st(
∑

(S ′)) = {0} and S ′ is regular, by Kneser’s

theorem we obtain that

|H| − 1 ≥ |
∑

(S ′)| ≥ |B|+ |C|+ |D| − 2

≥ 7 + (|W |+ 1) + (3|T | − 3)− 2

≥ 7 + 3 + 3n+1 − 6− 2 ≥ 3n+1 = |H|,

a contradiction.

Subcase 1.2. vg(T1) + v−g(T1) ≥ 3 for some g ∈ H.

Since S ′ is regular over H, there is some term y of W1 such that y 6∈ 〈g〉.
Otherwise |S ′

〈g〉| ≥ 3n ≥ |〈g〉|, which is a contradiction. Let T2 = Ty−1.

Then

|T2| = 3n − 2

and

|S ′T−1
2 | = 2× 3n − 5− 3n + 2 = 3n − 3.
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Since vg(T1) + v−g(T1) ≥ 3, there is a subsequence A1 = ga(−g)b of T1 with

a + b = 3. Let

A′ = A1y

and

W ′ = S ′T−1
2 A′−1.

Then

|W ′| ≥ 2.

Now S ′ has a factorization

S ′ = A′W ′T2.

Let B = {0} ∪
∑

(A′), C = {0} ∪
∑

(W ′), and let D = {0} ∪
∑

(T2). Then,

B + C + D =
∑

(S ′). Since st(
∑

(S ′)) = {0} and S ′ is regular, by Kneser’s

theorem we obtain that

|H| − 1 ≥ |
∑

(S ′)| ≥ |B|+ |C|+ |D| − 2

≥ 2(|A1|+ 1) + (|W ′|+ 1) + (3|T2| − 3)− 2

≥ 8 + 3 + 3n+1 − 9− 2 = 3n+1 = |H|,

a contradiction.

Case 2. 3n − 5 ≤ |S ′
K | ≤ 3n − 4.

Take a subsequence W1|S ′
K with |W1| = 3n − 5. Let T = g1g2W1 and

T1 = S ′T−1. Then we have

|T | = 3n − 3

and

|T1| = |S ′T−1| = 2× 3n − 5− 3n + 3 = 3n − 2 ≥ 7.

Subcase 2.1. vg(T1) + v−g(T1) ≤ 2 for all g ∈ H.

Since |T1| ≥ 7, there are two 2-zero-sum free 3-sets A1 and A2 of H such

that A1A2|T1. Let W = S ′T−1A−1
1 A−1

2 . Then |W | ≥ 1.

Now S ′ has a factorization

S ′ = A1A2WT.

Let Bi = {0} ∪
∑

(Ai) for i ∈ {1, 2}, C = {0} ∪
∑

(W ), and let D =

{0} ∪
∑

(T ). Then, B1 + B2 + C + D =
∑

(S ′). Since st(
∑

(S ′)) = {0} and

S ′ is regular, by Kneser’s theorem we obtain that

|H| − 1 ≥ |
∑

(S ′)| ≥ |B1|+ |B2|+ |C|+ |D| − 3

≥ 7 + 7 + (|W |+ 1) + (3|T | − 3)− 3

≥ 7 + 7 + 2 + 3n+1 − 12− 3 ≥ 3n+1 = |H|,

a contradiction.

Subcase 2.2. vg(T1) + v−g(T1) ≥ 3 for some g ∈ H.



22 W. GAO, D. HAN, G. QIAN, Y. QU, AND H. ZHANG

Since |T1| = 3n−2, there are two elements y1, y2 6∈ 〈g〉 such that y1y2|T1.

Otherwise, |S ′
〈g〉| ≥ |T1| − 1 = 3n − 3 > |S ′

K |. This contradicts to the

maximality of S ′
K .

Since vg(T1) + v−g(T1) ≥ 3, there is a subsequence A1 = ga(−g)b of T1

with a + b = 3 and a, b ≥ 0. Let

A′ = A1y1y2

and

W ′ = S ′T−1A′−1.

Then

|W ′| ≥ 2.

Now S ′ has a factorization

S ′ = A′W ′T.

Let B = {0} ∪
∑

(A′), C = {0} ∪
∑

(W ′), and let D = {0} ∪
∑

(T ). Then,

B + C + D =
∑

(S ′). Since st(
∑

(S ′)) = {0} and S ′ is regular, by Kneser’s

theorem we obtain that

|H| − 1 ≥ |
∑

(S ′)| ≥ |B|+ |C|+ |D| − 2

≥ 3(|A1|+ 1) + (|W ′|+ 1) + (3|T | − 3)− 2

≥ 12 + 3 + 3n+1 − 12− 2 > 3n+1 = |H|,

a contradiction. �

Proof of Theorem 1.1 (5). If G = Cp ⊕ Cp, then c0(G) = m(G) = 2p− 1

by a result of Peng [10]. For the other cases, the result follows from Lemma

5.4 and Lemma 5.5. �

We end this section with the following

Conjecture 5.6. c0(G) = m(G) for all finite abelian groups.
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