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Abstract

A remarkable connection between the order of a maximum clique and the
Lagrangian of a graph was established by Motzkin and Straus in 1965. This
connection and its extensions were applied in Turán problems of graphs and
uniform hypergraphs. Very recently, the study of Turán densities of non-
uniform hypergraphs has been motivated by extremal poset problems. Peng
et al. showed a generalization of Motzkin-Straus result for {1, 2}-graphs. In
this paper, we attempt to explore the relationship between the Lagrangian of
a non-uniform hypergraph and the order of its maximum cliques. We give a
Motzkin-Straus type result for {1, r}-graphs. Moreover, we also give an exten-
sion of Motzkin-Straus theorem for {1, r2, · · · , rl}-graphs.
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1 Introduction

In 1965, Motzkin and Straus [20] established a connection between the order of

a maximum clique and the Lagrangian of a graph, which was used to give another
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proof of Turán’s theorem. This type of connection aroused interests in the study

of Lagrangians of uniform hypergraphs. Actually, the Lagrangian of a hypergraph

has been a useful tool in hypergraph extremal problems. Very recently, the study of

Turán densities of non-uniform hypergraphs has been motivated by extremal poset

problems; see [13, 14]. In this paper, we intend to study the connection between the

order of a maximum clique and the Lagrangian of a non-uniform hypergraph.

A hypergraph is a pair H = (V (H), E(H)) consisting of a vertex set V (H) and

an edge set E(H), where each edge is a subset of V (H). The set R(H) = {|f | :

f ∈ E(H)} is called the set of edge types of H. We also say that H is an R(H)-

graph. For example, if R(H) = {1, 3}, then we say that H is a {1, 3}-graph. If

all edges have the same cardinality r, then H is an r-uniform hypergraph, which is

simply written as r-graph. A 2-uniform hypergraph is exactly a simple graph. A

hypergraph is non-uniform if it has at least two edge types. For any r ∈ R(H), the

r-level hypergraph Hr is the hypergraph consisting of all edges with r vertices of H.

We also use notation Er to denote the set of all edges with r vertices of H. We write

HR
n for a hypergraph H on n vertices with R(H) = R. For convenience, an edge

{i1, i2, . . . , ir} in a hypergraph is simply written as i1i2 . . . ir throughout the paper.

For an integer n, let [n] denote the set {1, 2, · · · , n}. The complete hypergraph

KR
n is a hypergraph on vertex set [n] with edge set

⋃
i∈R

(
[n]

i

)
. For example, K

{r}
n is

the complete r-uniform hypergraph on n vertices. K
[r]
n is the non-uniform hypergraph

with all possible edges of cardinality at most r. Let [n]R represent the complete R-type

hypergraph on vertex set [n]. For example, [n]{1,3} represents the complete {1, 3}-
hypergraph on vertex set [n]. We also let [n](r) represent the complete r-uniform

hypergraph on vertex set [n].

Definition 1 For an r-uniform hypergraph G with vertex set {1, 2, · · · , n}, edge set

E(G) and a vector ~x = (x1, . . . , xn) ∈ Rn, define

λ(G,~x) =
∑

i1i2...ir∈E(G)

xi1xi2 . . . xir .

Definition 2 Let S = {~x = (x1, · · · , xn) :
n∑

i=1

xi = 1, xi ≥ 0 for i = 1, 2, · · · , n}.
The Lagrangian of G, denoted by λ(G), is defined as

λ(G) = max{λ(G,~x) : ~x ∈ S}.

The value xi is called the weight of the vertex i and any vector ~x ∈ S is called a legal

weighting. A weighting ~y ∈ S is called an optimal weighting for G if λ(G, ~y) = λ(G).
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Motzkin and Straus in [20] proved the following result for the Lagrangian of a

2-graph. It shows that the Lagrangian of a graph is determined by the order of its

maximum clique.

Theorem 1 [20] If G is a 2-graph in which a largest clique has order t, then,

λ(G) = λ
(
Kt

{2}
)

= λ
(
[t](2)

)
=

1

2

(
1− 1

t

)
.

In 1941, Turán [37] provided an answer to the following question: What is the

maximum number of edges in a graph on n vertices without containing a complete

graph of order k, for a given k? This is the well-known Turán’s theorem. Theorem 1

provided another proof of Turán’s theorem, which was given by Motzkin and Straus

in [20]. The Motzkin-Straus result and its extension were successfully employed in

optimization to provide heuristics for the maximum clique problem [1, 2, 6, 12]. It

has been also generalized to vertex-weighted graphs [12] and edge-weighted graphs

with applications to pattern recognition in image analysis [1, 2, 6, 12, 24, 23, 5]. On

the other hand, the Lagrangian of a hypergraph has been a useful tool in hypergraph

extremal problems. More generally, researchers are interested in the following Turán

type problem, which was also proposed in [37]. For an r-uniform hypergraph F and

an integer n, what is the maximum number of edges an r-uniform hypergraph with

n vertices can have without containing F as a subgraph? This number is denoted

by exr(n, F ). For example, the well-known Turán theorem implies ex2(n,K
{2}
3 ) =⌊

n
2

⌋ ⌈
n
2

⌉
. With the concept of exr(n, F ), we state another important definition in

extremal hypergraph theory, which is called the Turán density. For an r-uniform

hypergraph F , by a standard averaging argument of Katona, Nemetz, and Simonovits

[17], the limit lim
n→∞

exr(n,F )

(n
r)

exists. This limit is called the Turán density of F . The

connection between Lagrangians and Turán densities can be used to give another

proof of the fundamental result of Erdös-Stone-Simonovits on Turán densities, see

Keevash’s survey paper [18]. Several results about determining hypergraph Turán

densities were obtained through applications of Lagrangians, e.g., see [7, 8, 21, 32,

11, 15].

Lagrangians are also applied in spectral graph theory [38]. After decades of works,

spectral methods for 2-graphs reside on a solid ground, with traditions settled both in

tools and problems. Naturally we want similar comfort and convenience for spectra

of hypergraphs. Recently, several researchers have contributed to this goal, and their

studies naturally bring together other fundamental parameters, like the Lagrangians

and the number of edges, see [19] and [22]. Another fascinating application of La-

grangians was first established by Frankl and Rödl [10] in disproving Erdös’ long
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standing jumping constant conjecture. Applications of Lagrangians in determining

non-jumping densities for hypergraphs can also be found in [9, 26, 25, 30, 27].

However, the obvious generalization of Motzkin and Straus’ result to hypergraphs

is false, i.e., the Lagrangian of a hypergraph is not always the same as the Lagrangian

of its maximum cliques. In fact, there are many examples of hypergraphs that do

not achieve their Lagrangian on any proper subhypergraph. Indeed, estimating La-

grangians of hypergraphs are much more harder. Talbot and Tang et al. made some

progress on estimating Lagrangians of uniform hypergraphs in [34, 35, 36]. An at-

tempt to generalize the Motzkin-Straus theorem to hypergraphs is due to Sós and

Straus [33]. Recently, in [3, 4], Buló and Pelillo generalized the Motzkin and Straus’

result to r-graphs in some way by using a continuous characterization of maximal

cliques other than Lagrangians of hypergraphs.

In [31], the authors proved the following Motzkin-Straus type result for 3-graphs.

Theorem 2 [31] Let m and t be positive integers satisfying
(

t
3

) ≤ m ≤ (
t
3

)
+

(
t−1
2

)
.

Let G be a 3-graph with m edges and contain a clique of order t. Then,

λ(G) = λ
(
[t](3)

)
.

They pointed out that the upper bound
(

t
3

)
+

(
t−1
2

)
in this theorem is the best possible.

When m =
(

t
3

)
+

(
t−1
2

)
+ 1, let H be a 3-graph with the vertex set [t + 1] and the

edge set [t](3) ∪
{

i1i2(t + 1) : i1i2 ∈ [t− 1](2)
}
∪ {1t(t + 1)}. Take a legal weighting

~x = (x1, · · · , xn), where x1 = x2 = · · · = xt−1 = 1
t

and xt = xt+1 = 1
2t

. Then

λ (H) ≥ λ (H,~x) > λ
(
[t](3)

)
.

Recently, a generalization of the concept of Turán density of a non-uniform hy-

pergraph was given in [16]. The study of Turán densities of non-uniform hypergraphs

has been motivated by the study of extremal poset problems [13, 14]. In [28], Peng et

al. introduced the Lagrangian of a non-uniform hypergraph. Applying Lagrangians,

the authors gave an extension of Erdös-Stone-Simonovits theorem to non-uniform

hypergraphs whose edges contain 1 or 2 vertices in [28].

Definition 3 [28] For a hypergraph HR
n and a vector ~x = (x1, . . . , xn) ∈ Rn, define

λ′(HR
n , ~x)=

∑
j∈R


j!

∑

i1i2...ij∈Hj

xi1xi2 . . . xij


.

4



Definition 4 [28] Let S = {~x = (x1, · · · , xn) :
n∑

i=1

xi = 1, xi ≥ 0 for i = 1, 2, · · · , n}.
The Lagrangian of HR

n , denoted by λ′(HR
n ), is defined as

λ′(HR
n ) = max{λ′(HR

n , ~x) : ~x ∈ S}.

The value xi is called the weight of the vertex i and any vector ~x ∈ S is called a legal

weighting. A weighting ~y ∈ S is called an optimal weighting for H if λ′(H, ~y) = λ′(H).

Remark 1 Consider the connection between Definition 2 and Definition 4. If G is

an r-uniform graph, then

λ′(G) = r!λ(G).

In this paper, we give some Motzkin-Straus type results for non-uniform hyper-

graphs. Our results provide a solution to the maximum value of a class of nonhomo-

geneous multilinear functions over the standard simplex of the Euclidean space. The

main results in this paper will be stated in the next section.

2 Main results and implications

In [28], the authors proved the following generalization of Motzkin-Straus result

to {1, 2}-graphs.

Theorem 3 [28] If H is a {1, 2}-graph and the order of its maximum complete {1, 2}-
subgraph is t (where t ≥ 2), then,

λ′(H) = λ′
(
Kt

{1,2}
)

= 2− 1

t
.

In this paper, we attempt to explore the relationship between the Lagrangian

of a non-uniform hypergraph and the order of its maximum cliques, and we give a

Motzkin-Straus type result for {1, r}-graphs. For any hypergragh (graph) G, denote

the number of its edges by e(G).

Theorem 4 Let H be a {1, r}-graph. If both the order of its maximum complete

{1, r}-subgraph and the order of its maximum complete {1}-subgraph are t, where

t ≥ d [r(r − 1)− 1]r−2

[r(r − 1)]r−3
e, then,

λ′(H) = λ′
(
Kt

{1,r}
)

= 1 +

∏r−1
i=1 (t− i)

tr−1
.
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Furthermore, for {1, 3}-graph, we give a result as follows.

Theorem 5 Let H be a {1, 3}-graph. If the order of its maximum complete {1, 3}-
subgraph is t, where t ≥ 5, H3 contains a maximum complete 3-graph of order s,

where s ≥ t, and the number of edges in H3 satisfies
(

s
3

) ≤ e(H3) ≤ (
s
3

)
+

(
t−1
2

)
, then,

λ′(H) = λ′
(
Kt

{1,3}
)

= 1 +
(t− 1)(t− 2)

t2
.

Notice that, if r = 3, we require t ≥ 5 in Theorems 4 and 5. In fact, for the

case t = 3 or 4, it follows from the proof of Theorem 5, Theorem 5 holds when

s = t. However, Theorem 5 fails to hold when t = 3 or 4 and s ≥ t + 1. For

t = 3, s ≥ t + 1, let G be the {1, 3}-graph with the vertex set V (G) = [n] for

some integer n ≥ s, and the edge set E(G) = E1 ∪ E3, where E1 = {{1}, {2}, {3}},
[s](3) ⊆ E3 and

(
s
3

) ≤ |E3| ≤ (
s
3

)
+

(
t−1
2

)
. Take a legal weighting ~x = (x1, · · · , xn),

where x1 = x2 = x3 = 0.333, x4 = · · · = xs = 0.001
s−3

, xs+1 = · · · = xn = 0,

then λ′ (G) ≥ λ′ (G,~x) > 1 + (3−1)(3−2)
32 = λ′

(
K3

{1,3}
)
. This example also shows

that Theorem 4 fails to hold when t = 3 and r = 3. For t = 4, s ≥ t + 1, let

G be a {1, 3}-graph with the vertex set V (G) = [n] for some integer n ≥ s, and

the edge set E(G) = E1 ∪ E3, where E1 = {{1}, {2}, {3}, {4}}, [s](3) ⊆ E3 and(
s
3

) ≤ |E3| ≤ (
s
3

)
+

(
t−1
2

)
. Take a legal weighting ~x = (x1, · · · , xn), where x1 =

x2 = x3 = x4 = 0.2498, x5 = · · · = xs = 0.0008
s−4

, xs+1 = · · · = xn = 0, then

λ′ (G) ≥ λ′ (G,~x) > 1 + (4−1)(4−2)
42 = λ′

(
K4

{1,3}
)
. This example also shows that

Theorem 4 fails to hold when t = 4 and r = 3.

The bound of e(H3) in Theorem 5 is necessary, and it is also the best possible.

When e(H3) =
(

s
3

)
+

(
t−1
2

)
+1, let H be a {1, 3}-graph with the vertex set [n] for some

integer n ≥ s + 1, and the edge set E(H) = E1 ∪E3, where E1 = {{1}, · · · , {t}, {s +

1}}, E3 = {[s](3)∪{1t (s + 1)}∪{i1i2(s + 1) : i1i2 ∈ [t− 1](2)}}. Then [s+1](3) * E3,

|E3| =
(

s
3

)
+

(
t−1
2

)
+ 1. Take a legal weighting ~x = (x1, · · · , xn), where x1 = x2 =

· · · = xt−1 = 1
t
, xt = xs+1 = 1

2t
and the remaining coordinates of ~x are equal to zero.

Then λ′ (H) ≥ λ′ (H,~x) > λ′
(
[t](3)

)
.

Applying similar method used in the proof of Theorem 4, we will obtain the

following result similar to Theorem 4 for {1, r2, · · · , rl}-graphs, where l ≥ 2.

Theorem 6 Let H be a {1, r2, · · · , rl}-graph. If both the order of its maximum com-

plete {1, r2, · · · , rl}-subgraph and the order of its maximum complete {1}-subgraph
are t, where t ≥ f(r2, · · · , rl) for some function f(r2, · · · , rl), then,

λ′(H) = λ′
(
Kt

{1,r2,··· ,rl}
)

.
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A formula for function f(r2, · · · , rl) in Theorem 6 is given directly in the proof of this

theorem. For example, applying Theorem 6 to {1, 2, 3}-graphs by using the formula

for f(r2, · · · , rl) as given in the proof, we obtain

Corollary 1 Let H be a {1, 2, 3}-graph. If both the order of its maximum complete

{1, 2, 3}-subgraph and the order of its maximum complete {1}-subgraph are t, where

t ≥ 8, then,

λ′(H) = λ′
(
Kt

{1,2,3}
)

= 1 +
t− 1

t
+

(t− 1)(t− 2)

t2
.

Clearly, each of Theorems 4-6 provides a solution to the maximum value of a class

of nonhomogeneous multilinear functions over the standard simplex of the Euclidean

space.

3 Some preliminaries

We will impose two additional conditions on any optimal legal weighting ~x =

(x1, · · · , xn) for an R(H)-graph H:

(i) x1 ≥ x2 ≥ · · · ≥ xn ≥ 0,

(ii) |{j : xj > 0}| is minimal, i.e., if ~y is a legal weighting for H satisfying

|{j : yj > 0}| < |{j : xj > 0}|, then λ′ (H, ~y) < λ′ (H).

Let H = (V, E) be an R(H)-graph. For r ∈ R(H), we will denote the (r − 1)-

neighborhood of a vertex i ∈ V by Er
i = {A ∈ V (r−1) : A ∪ {i} ∈ Er}. Similarly, we

denote the (r − 2)-neighborhood of a pair of vertices i, j ∈ V by Er
ij = {B ∈ V (r−2) :

B ∪ {i, j} ∈ Er}. We also denote the complement of Er
i by E

r

i = {A ∈ V (r−1) :

A ∪ {i} ∈ V (r) \ Er}, and define E
r

ij = {B ∈ V (r−2) : B ∪ {i, j} ∈ V (r) \ Er}. For

ease of notation, define Er
i\j = Er

i ∩ E
r

j . The following lemma gives some necessary

conditions of an optimal weighting for an r-graph G.

Lemma 1 [10] Let G = (V, E) be an r-graph and ~x = (x1, · · · , xn) be an optimal legal

weighting for G with k(≤ n) positive weights x1, · · · , xk. Then for every {i, j} ∈ [k](2),

(a) λ(Er
i , ~x) = λ(Er

j , ~x) = rλ(G), (b) there is an edge in E containing both i and j.

A similar result for a non-uniform hypergraph is given in [28]. For completeness,

we give the proof as follows.
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Lemma 2 If ~x = (x1, · · · , xn) is an optimal legal weighting of a hypergraph H and

x1 ≥ x2 ≥ . . . ≥ xk > xk+1 = xk+2 = . . . = xn = 0, then, ∂λ′(H,~x)
∂x1

= ∂λ′(H,~x)
∂x2

= · · · =
∂λ′(H,~x)

∂xk
, and for every {i, j} ∈ [k](2), there is an edge in E containing both i and j.

Proof. First, we prove ∂λ′(H,~x)
∂x1

= ∂λ′(H,~x)
∂x2

= · · · = ∂λ′(H,~x)
∂xk

. By contradiction. Suppose

there exist i and j (1 ≤ i < j ≤ k) such that ∂λ′(H,~x)
∂xi

> ∂λ′(H,~x)
∂xj

. We define a new legal

weighting ~y for H as follows. Let y` = x` for ` 6= i, j, yi = xi + δ and yj = xj − δ ≥ 0,

then for some small enough δ, we have

λ′(H, ~y)− λ′(H,~x) = δ(
∂λ′ (H,~x)

∂xi

− xj
∂2λ′ (H,~x)

∂xi∂xj

)− δ(
∂λ′ (H,~x)

∂xj

− xi
∂2λ′ (H,~x)

∂xi∂xj

)

+ (δxj − δxi − δ2)
∂2λ′ (H,~x)

∂xi∂xj

= δ(
∂λ′ (H,~x)

∂xi

− ∂λ′ (H,~x)

∂xj

)− δ2∂2λ′ (H,~x)

∂xi∂xj

> 0,

contradicting to that ~x is an optimal vector. Now we prove the second part. By

contradiction. Suppose there exist i and j (1 ≤ i < j ≤ k) such that {i, j} " e for

any edge e ∈ E. We define a new weighting ~y for H as follows. Let y` = x` for

` 6= i, j, yi = xi + xj and yj = xj − xj = 0, then ~y is clearly a legal weighting for H,

and

λ′(H, ~y)− λ′(H,~x) = xj(
∂λ′ (H,~x)

∂xi

− ∂λ′ (H,~x)

∂xj

)− x2
j

∂2λ′ (H,~x)

∂xi∂xj

= 0.

So ~y is an optimal vector and |{i : yi > 0}| = k − 1, contradicting to the minimality

of k. ¤

In [34], Talbot introduced the definition of a left-compressed r-uniform hyper-

graph. Let us generalize this concept to non-uniform hypergraphs.

Let H = ([n], E) be an R(H)-graph, where n is a positive integer. For e ∈ E, and

i, j ∈ [n] with i < j, then, define

Lij (e) =





(e\{j}) ∪ {i} if i /∈ e and j ∈ e,

e otherwise.

and

Lij(E) = {Lij(e) : e ∈ E} ∪ {e : e, Lij (e) ∈ E}. (1)

Note that |Lij(E)| = |E| from the definition of Lij(E).

We say that E (or H) is left-compressed if Lij(E) = E for every 1 ≤ i < j.
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When we consider the uniform hypergraph, i.e., the hypergraph has only one edge

type, the above definition of left-compressed is just the same as Talbot’s. And if an

R(H)-graph H is left-compressed, then for every r ∈ R(H), the r-level hypergraph Hr

is left-compressed. An equivalent perhaps more intuitive definition of left-compressed

hypergraph is that an R(H)-graph H = ([n], E) is left-compressed if and only if for

any r ∈ R(H), j1j2 · · · jr ∈ E implies r-subset i1i2 · · · ir ∈ E provided ip ≤ jp for

every p, 1 ≤ p ≤ r. Moreover, if H is a left-compressed R(H)-graph and i < j,

then for every r ∈ R(H), Er
j\i = ∅. And for a left-compressed R(H)-graph H, if

r ∈ R(H), and if there exists an r-edge [k − (r − 1)] · · · (k − 1)k, then from the

definition of left-compressed, [k](r) is a subgraph of Hr.

Lemma 3 Let H = ([n], E) be an R(H)-graph, i, j ∈ [n] with i < j and ~x =

(x1, · · · , xn) be an optimal legal weighting of H. Write Hij = ([n],Lij(E)). Then,

λ′(H,~x) ≤ λ′(Hij, ~x).

Proof. If 1 /∈ R(H), then,

λ′(Hij, ~x)− λ′(H,~x) =
∑

r∈R(H)

∑

e∈Er,Lij(e)/∈Er

i/∈e,j∈e

λ′(e\{j}, ~x) (xi − xj),

and if 1 ∈ R(H), then,

λ′(Hij, ~x)− λ′(H,~x) =
∑

r∈R(H)
r≥2

∑

e∈Er,Lij(e)/∈Er

i/∈e,j∈e

λ′(e\{j}, ~x) (xi − xj) + (xi − xj) I,

where I satisfies that I = 1, if i /∈ E1 j ∈ E1, and otherwise I = 0. Hence λ′(Hij, ~x)−
λ′(H,~x) is nonnegative in any case, since i < j implies that xi ≥ xj. So this lemma

holds. ¤

If there is exactly one element in R(H), then H is a uniform hypergaph, which

implies that Lemma 3 also holds for uniform hypergaphs. In [34], Talbot gave sev-

eral interesting results on the issue about how large the Lagrangian of an r-uniform

hypergraph with m edges can be, for given integer r ≥ 3 and positive integer m.

From Lemma 3 for uniform hypergraphs, Talbot assumed G, which has the largest

Lagrangian among all m edges r-uniform hypergraphs, is left-compressed.

In the next section, we will use Lemma 3 to prove Theorem 4 by assuming the

“extremal hypergraph” is left-compressed. Unfortunately, we can not use the same

method to prove Theorem 5. That because for H satisfying the requirement of

Theorem 5, the hypergraph Hij described in Lemma 3 may not satisfy the requirement
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of Theorem 5. For example, let s ≥ t + 1, and let H be the {1, 3}-graph with the

vertex set V (H) = [n] for some integer n ≥ s + 1, and the edge set E(H) = E1 ∪E3,

where E1 = {{1}, · · · , {t+1}}, E3 consisting all 3-subsets of {2, · · · , s+1}. It is easy

to see that H satisfies the requirement of Theorem 5, but the hypergraph H1(t+2) does

not satisfy the requirement of Theorem 5, since there is a K
{1,3}
t+1 in H1(t+2). Thus,

in Section 4, we use a different approach to prove Theorem 5 instead of using the

concept of left-compressed. The proofs of Theorem 6 and Corollary 1 will be given

in Section 6.

4 Proof of Theorem 4

Applying the theory of Lagrangian multipliers, it is easy to get that an optimal

weighting ~x for Kt
{1,r} is given by xi = 1/t for each i, 1 ≤ i ≤ t. So λ′(Kt

{1,r}) =

1 +
∏r−1

i=1 (t−i)

tr−1 . So we only need to prove λ′(H) = λ′
(
Kt

{1,r}
)
. Since Kt

{1,r} ⊆ H,

clearly, λ′(H) ≥ λ′
(
Kt

{1,r}
)
. Thus, to prove Theorem 4, it suffices to prove that

λ′(H) ≤ λ′
(
Kt

{1,r}
)
. Suppose H has n vertices, denote λ′{n,t,{1,r}} = max{λ′(G) : G

is a {1, r}-graph with n vertices, G contains a maximum complete subgraph K
{1,r}
t

and a maximum complete subgraph K
{1}
t }. If λ′{n,t,{1,r}} ≤ λ′

(
Kt

{1,r}
)
, then λ′(H) ≤

λ′
(
Kt

{1,r}
)
. Hence we can assume H is an extremal hypergraph, i.e., λ′(H) =

λ′{n,t,{1,r}}. If H is not left-compressed, performing a sequence of left-compressing

operations (i.e. replace E by Lij(E) if Lij(E) 6= E), we will get a left-compressed

{1, r}-graph H ′ with the same number of edges. The condition that the order of

a maximum complete {1}-subgraph of H is t guarantees that both the order of a

maximum {1, r} complete subgraph of H ′ and the order of a maximum {1} complete

subgraph of H ′ are still t. By Lemma 3, H ′ is an extremal graph as well. So we

can assume that the edge set of H is left-compressed, H1 = [t] and [t](r) ⊆ Hr. Let

~x = (x1, · · · , xn) be an optimal legal weighting for H, where x1 ≥ x2 ≥ . . . ≥ xk >

xk+1 = xk+2 = . . . = xn = 0. If k ≤ t, then λ′(H) ≤ λ′([k]{1,r}) ≤ λ′([t]{1,r}). So it

suffices to show that xt+1 = 0.

Let 1 ≤ i ≤ t. If xt+1 > 0, then by Lemma 2, there exists e ∈ Hr such that

{i, t + 1} ⊂ e and ∂λ′(H,~x)
∂xi

= ∂λ′(H,~x)
∂xt+1

.

Recall that i ∈ E1 and t + 1 /∈ E1, then,

0 =
∂λ′ (H,~x)

∂xi

− ∂λ′ (H,~x)

∂xt+1

=1 + r!λ
(
Er

i\(t+1), ~x
)

+ r!xt+1λ
(
Er

i(t+1), ~x
)− r!xiλ

(
Er

i(t+1), ~x
)
.
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Let C = r!λ
(
Er

i(t+1), ~x
)
. Then 0 < C ≤ r! (1−xi−xt+1)r−2

(r−2)!
since Er

i(t+1) is an (r− 2)-

uniform hypergraph on [n] \ {i, t + 1}. Thus, xi ≥ 1
C

+ xt+1. So

xi ≥ 1

r(r − 1)(1− xi − xt+1)r−2
+ xt+1. (2)

The above inequality clearly implies that xi > 1
r(r−1)

. Combining this with (2),

we have

xi >
[r(r − 1)]r−3

[r(r − 1)− 1]r−2
. (3)

Recall that t ≥ d [r(r − 1)− 1]r−2

[r(r − 1)]r−3
e, with the aid of (3),

t∑
i=1

xi > 1, a contradiction to

the definition of legal weighting vectors. So xt+1 = 0. The proof is thus complete.

5 Proof of Theorem 5

As shown in Theorem 4, λ′(Kt
{1,3}) = 1 + (t−1)(t−2)

t2
. So we only need to prove

λ′(H) = λ′
(
Kt

{1,3}
)
. Since Kt

{1,3} ⊆ H, clearly, λ′(H) ≥ λ′
(
Kt

{1,3}
)
. Thus, to

prove Theorem 5, it suffices to prove that λ′(H) ≤ λ′
(
Kt

{1,3}
)

= 1 + (t−1)(t−2)
t2

.

Suppose H has n vertices, this time we denote µ{n,t,s,m,{1,3}} = max{λ′(G) : G is a

{1, 3}-graph with n vertices, G contains a maximum complete subgraph K
{1,3}
t , G3

contains a maximum clique of order s and e(G3) = m, where
(

s
3

) ≤ m ≤ (
s
3

)
+

(
t−1
2

)}.
If µ{n,t,s,m,{1,3}} ≤ 1 + (t−1)(t−2)

t2
, then λ′(H) ≤ 1 + (t−1)(t−2)

t2
. Hence we can assume

H is an extremal hypergraph, i.e., λ′(H) = µ{n,t,s,m,{1,3}}. Let ~x = (x1, · · · , xn) be

an optimal legal weighting for H, where x1 ≥ x2 ≥ . . . ≥ xk > xk+1 = xk+2 = . . . =

xn = 0. Note that if k ≤ t, then λ′(H,~x) ≤
k∑

i=1

xi + λ′([k](3), ~x) ≤ 1 + λ′([k](3)) =

1 + (k−1)(k−2)
k2 ≤ 1 + (t−1)(t−2)

t2
. Also, if s = t, then from Theorem 2 and Remark 1,

λ′(H,~x) ≤
k∑

i=1

xi + λ′(H3, ~x) ≤ 1 + λ′(H3) = 1 + (s−1)(s−2)
s2 = 1 + (t−1)(t−2)

t2
. So in the

sequel, we assume k ≥ t + 1 and s ≥ t + 1.

Since e(H3) ≤ (
s
3

)
+

(
t−1
2

)
, there is a unique K

{3}
s in H3, otherwise, if H3 contains

two different K
{3}
s , then e(H3) ≥ (

s
3

)
+

(
s−1
2

)
, a contradiction to the range of e(H3).

Let {i1, . . . , is} be the vertex set of that unique K
{3}
s in H3. We can assume there

exists a unique vertex set {j1, . . . , jt} ⊆ {i1, . . . , is} such that {j1, . . . , jt} induces a

K
{1,3}
t in H. Otherwise, since e(H3) ≤ (

s
3

)
+

(
t−1
2

)
, there is a K

{1,3}
t whose vertex

set consists of a vertex a /∈ {i1, . . . , is} and t − 1 vertices from {i1, . . . , is}, denote

these t − 1 vertices by b1, . . . , bt−1. Notice that this K
{1,3}
t is the unique K

{1,3}
t

in H. Then we take one vertex b from {i1, . . . , is} \ {b1, . . . , bt−1}, add a new 1-

edge {b} to H, we can see that the new {1, 3}-graph H ′ satisfies the conditions of
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Theorem 5, and λ′(H ′) ≥ λ′(H) since H ⊂ H ′, which implies that H ′ is also an

extremal hypergraph. Hence we can assume that there exists a unique vertex set

{j1, . . . , jt} ⊆ {i1, . . . , is} such that {j1, . . . , jt} induces a K
{1,3}
t in H. Note that any

vertex in {i1, . . . , is} \ {j1, . . . , jt} is not a 1-edge in H.

Consider the relationship between the set [k] and {i1, . . . , is}, we have three cases.

Case 1. [k] ⊆ {i1, . . . , is}.
Denote H0 the {1, 3}-subgraph induced by [k] in H, then λ′(H0) = λ′(H0, ~x) =

λ′(H). We can see that H0 satisfies the conditions of Theorem 4 (r = 3), thus

λ′(H0) ≤ λ′
(
Kt

{1,3}
)

= 1 + (t−1)(t−2)
t2

, so λ′(H) ≤ λ′
(
Kt

{1,3}
)

= 1 + (t−1)(t−2)
t2

.

Case 2. [k] ∩ {i1, . . . , is} = ∅.
In this case, there are at most

(
t−1
2

)
3-edges contributing nonzero value to λ′(H,~x).

Let H3
0 be the subgraph induced by [k] in H3, then e(H3

0 ) ≤ (
t−1
2

)
. By adding

some 3-edges to H3
0 , we can find a 3-graph G such that H3

0 ⊂ G, K
{3}
t ⊂ G, and

e(G) ≤ (
t
3

)
+

(
t−1
2

)
, by Theorem 2 and Remark 1, λ′(H3

0 ) ≤ λ′(G) = (t−1)(t−2)
t2

. Hence

λ′(H,~x) ≤ 1 + λ′(H3, ~x) = 1 + λ′(H3
0 , ~x) ≤ 1 + λ′(H3

0 ) ≤ 1 + λ′(G) = 1 + (t−1)(t−2)
t2

.

Case 3. [k] ∩ {i1, . . . , is} 6= ∅, and [k] * {i1, . . . , is}.
Let |[k] ∩ {i1, . . . , is}| = p, and we will prove the claim below.

Claim 1 |{j1, . . . , jt} ∩ [k]| = min{p, t}.

Proof. Clearly, |{j1, . . . , jt} ∩ [k]| ≤ min{p, t}. If |{j1, . . . , jt} ∩ [k]| < min{p, t},
then there exist two vertices i, j such that i ∈ {i1, . . . , is} \ {j1, . . . , jt}, xi > 0 and

j ∈ {j1, . . . , jt}, xj = 0. Denote E3
S the edge set of K

{3}
s induced by {i1, . . . , is} in H3.

We construct a new {1, 3}-graph H ′ = ([n], E ′), with E ′ = (E\A)∪A′, where A is the

edge set of all 3-edges containing i but not j in E\E3
S, A′ is the edge set obtained from

A by replacing i with j for all 3-edges in A. It is obvious that |E ′3| = |E3|, H ′ contains

a K
{1,3}
t and the order of maximum complete 3-subgraph in H ′ is still s, moreover, we

say that there is no K
{1,3}
t+1 in H ′. Otherwise, there is a K

{1,3}
t+1 in H ′, then the vertex

set of K
{1,3}
t+1 can not include vertices in {i1, . . . , is}\{j1, . . . , jt}, which indicates that

there are at least
(

s
3

)
+

(
t
2

)
3-edges in H ′. Since |E ′3| = |E3| ≤ (

s
3

)
+

(
t−1
2

)
, it is a

contradiction. So the order of maximum complete {1, 3}-subgraph in H ′ is still t. We

define a legal weighting ~x′ for H ′, such that x′l = xl, for l 6= i, j, and x′i = xj = 0,

x′j = xi. Then we can derive that λ′(H ′, ~x′) − λ′(H,~x) ≥ xi > 0. This implies that

λ′(H ′) > λ′(H), a contradiction to the assumption of H. ¤

We still denote H3
0 the subgraph induced by [k] in H3, and there are two subcases to

consider.
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Subcase 3.1. p ≤ t.

In this subcase, H3
0 consists of a K

{3}
p and at most

(
t−1
2

)
other 3-edges. Sim-

ilarly to Case 2, by adding some 3-edges, we can deduce that λ(H3
0 ) ≤ λ(K

{3}
t ),

then, λ′(H3, ~x) = λ′(H3
0 , ~x) ≤ 3!λ(H3

0 ) ≤ 3!λ(K
{3}
t ) = (t−1)(t−2)

t2
, so λ′(H,~x) ≤

1 + λ′(H3, ~x) ≤ 1 + (t−1)(t−2)
t2

.

Subcase 3.2. p ≥ t + 1.

We prove that we may assume for any j ∈ {j1, . . . , jt}, i ∈ {i1, . . . , is}\{j1, . . . , jt},

xj ≥ xi, (4)

and

λ
(
E3

j\i, ~x
) ≥ λ

(
E3

i\j, ~x
)

(5)

hold.

In fact, if H dose not satisfy (4) and (5), through the following two steps, we will

find a new {1, 3}-graph H∗ and a new legal weighting vector ~z satisfying (4) and (5),

and H∗ is an extremal hypergraph as well.

Step 1. For every i ∈ {i1, . . . , is} \ {j1, . . . , jt}, search for every vertex j ∈
{j1, . . . , jt} satisfying E3

i\j \ E3
j\i 6= ∅ (i.e., E3

i\j 6= ∅). If such a vertex exists, then for

each U ∈ (E3
i\j \E3

j\i) = E3
i\j, replace the 3-edge {U ∪ {i}} by {U ∪ {j}}. Check the

value of xi and xj, if xi > xj, then exchange the weight of these two vertices i, j.

Denote the new {1, 3}-graph H∗ = ([n], E∗) and the new legal weighting vector

~y obtained from Step 1. We see that |E∗3| = |E3|, the order of maximum complete

3-subgraph in H ′ is still s. Similar to the argument we used in Claim 1, there is no

K
{1,3}
t+1 in H∗. Otherwise, there is a K

{1,3}
t+1 in H∗, then the vertex set of K

{1,3}
t+1 can not

include vertices in {i1, . . . , is} \ {j1, . . . , jt}, which indicates that there are at least(
s
3

)
+

(
t
2

)
3-edges in H∗. Since |E∗3| = |E3| ≤ (

s
3

)
+

(
t−1
2

)
, it is a contradiction. So

the order of maximum complete {1, 3}-subgraph in H∗ is still t. Moreover, H∗ with

the weighting vector ~y satisfies (5).

Step 2. For every i ∈ {i1, . . . , is} \ {j1, . . . , jt} in H∗, search for every vertex

j ∈ {j1, . . . , jt} satisfying yi > yj. Then exchange the weight of vertices i, j.

Denote the new legal weighting vector ~z for H∗ obtained after Step 2, then, clearly,

H∗ with the weighting vector ~z satisfies (4) and (5), besides, one can easily get that

λ′(H∗) ≥ λ′(H∗, ~z) ≥ λ′(H∗, ~y) ≥ λ′(H,~x) = λ′(H). That implies H∗ is also an

extremal hypergraph. Hence we can assume H and its optimal weighting vector ~x

satisfy that for any j ∈ {j1, . . . , jt}, i ∈ {i1, . . . , is} \ {j1, . . . , jt}, (4) and (5) hold.

For any pair i, j ∈ [k], if i ∈ {i1, . . . , is} \ {j1, . . . , jt}, j ∈ {j1, . . . , jt}, then, by
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Lemma 2, there exists some edge e containing both i and j, and,

0 =
∂λ′ (H,~x)

∂xj

− ∂λ′ (H,~x)

∂xi

=1 + 3!λ
(
E3

j\i, ~x
)

+ 3!xiλ
(
E3

ij, ~x
)− 3!λ

(
E3

i\j, ~x
)− 3!xjλ

(
E3

ij, ~x
)
.

Let A = 3!λ
(
E3

j\i, ~x
)
, B = 3!λ

(
E3

i\j, ~x
)
, C = 3!λ

(
E3

ij, ~x
)
. With (5), we have

A ≥ B, thus, xj ≥ 1
C

+ xi, with 0 < C ≤ 6(1− xi − xj). So

xj ≥ 1

6(1− xi − xj)
+ xi. (6)

The above inequality clearly implies that xj > 1
6
. Combining this with (6), we have

xj >
1

5
+ xi. (7)

Since p ≥ t + 1, there exists a vertex b ∈ [k] ∩ {i1, . . . , is} \ {j1, . . . , jt}. If t ≥ 5,

then
∑

a∈E1

xa =
∑

a∈{j1,... jt}
xa > 1 + 5xb > 1, a contradiction to the definition of legal

weighting vectors. Hence t < 5, which contradicts to the the condition t ≥ 5 in

Theorem 5.

Combining all these cases, the proof is thus complete.

6 Proof of Theorem 6

For any given r2, · · · , rl, λ′(H) ≥ λ′
(
Kt

{1,r2,··· ,rl}
)
, since Kt

{1,r2,··· ,rl} ⊆ H. Thus,

to prove Theorem 6, it suffices to prove that

λ′(H) ≤ λ′
(
Kt

{1,r2,··· ,rl}
)

.

Suppose H has n vertices, denote λ′{n,t,{1,r2,··· ,rl}} = max{λ′(G) : G is a {1, r2, · · · , rl}-
graph with n vertices, G contains a maximum complete subgraph K

{1,r2,··· ,rl}
t and a

maximum complete subgraph K
{1}
t }. If we have λ′{n,t,{1,r2,··· ,rl}} ≤ λ′

(
Kt

{1,r2,··· ,rl}
)
,

then λ′(H) ≤ λ′
(
Kt

{1,r2,··· ,rl}
)
. Hence, we can assume H is an extremal hypergraph,

i.e., λ′(H) = λ′{n,t,{1,r2,··· ,rl}}. If H is not left-compressed, performing a sequence

of left-compressing operations (i.e. replace E by Lij(E) if Lij(E) 6= E), we will

get a left-compressed {1, r2, · · · , rl}-graph H ′ with the same number of edges. The

condition that the order of a maximum complete {1}-subgraph of H is t guarantees

that both the order of a maximum {1, r2, · · · , rl} complete subgraph of H ′ and the

order of a maximum {1} complete subgraph of H ′ are still t. By Lemma 3, H ′ is an
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extremal graph as well. So we can assume that the edge set of H is left-compressed,

H1 = [t], [t](rj) ⊆ Hrj for all 2 ≤ j ≤ l. Let ~x = (x1, · · · , xn) be an optimal legal

weighting for H, where x1 ≥ x2 ≥ . . . ≥ xk > xk+1 = xk+2 = . . . = xn = 0. If k ≤ t,

then λ′(H) ≤ λ′(K{1,r2,··· ,rl}
k ) ≤ λ′(K{1,r2,··· ,rl}

t ). So it suffices to show that xt+1 = 0.

Let 1 ≤ i ≤ t. If xt+1 > 0, then by Lemma 2, there exists e ∈ E such that

{i, t + 1} ⊂ e and ∂λ′(H,~x)
∂xi

= ∂λ′(H,~x)
∂xt+1

. If 2 ∈ {r2, · · · , rl}, let λ(E2
i(t+1), ~x) = 1 when

i(t + 1) ∈ E2, and let λ(E2
i(t+1), ~x) = 0 when i(t + 1) /∈ E2. Recall that i ∈ E1 and

t + 1 /∈ E1, then by Lemma 2, we have

0 =
∂λ′ (H,~x)

∂xi

− ∂λ′ (H,~x)

∂xt+1

= 1 + r1!λ
(
Er1

i\(t+1), ~x
)

+ r1!xt+1λ
(
Er1

i(t+1), ~x
)
− r1!xiλ

(
Er1

i(t+1), ~x
)

+r2!λ
(
Er2

i\(t+1), ~x
)

+ r2!xt+1λ
(
Er2

i(t+1), ~x
)
− r2!xiλ

(
Er2

i(t+1), ~x
)

+ · · ·+ rl!λ
(
Erl

i\(t+1), ~x
)

+ rl!xt+1λ
(
Erl

i(t+1), ~x
)
− rl!xiλ

(
Erl

i(t+1), ~x
)

.

Let C =
l∑

j=2

rj!λ
(
E

rj

i(t+1), ~x
)
, since there exists e ∈ E such that {i, t + 1} ⊂ e,

then we have C > 0. Thus, xi ≥ 1
C

+ xt+1. Moreover, there must exist some

function g(r2, · · · , rl), such that C ≤ g(r2, · · · , rl). For example, we let g(r2, · · · , rl) =
l∑

j=2

rj!
(1−xi−xt+1)rj−2

(rj−2)!
=

l∑
j=2

rj(rj − 1)(1− xi − xt+1)
rj−2 (if rj = 2, set (1−xi−xt+1)rj−2

(rj−2)!
=

1), then

xi ≥ 1
l∑

j=2

rj(rj − 1)(1− xi − xt+1)
rj−2

+ xt+1. (8)

The above inequality clearly implies that xi > 1
l∑

j=2
rj(rj−1)

. Combining this with (8),

let h = 1
l∑

j=2
rj(rj−1)

, we have

xi >
1

l∑
j=2

rj(rj − 1)(1− h)rj−2

. (9)

Let f(r2, · · · , rl) = d
l∑

j=2

rj(rj − 1)(1− h)rj−2e, recall that we require t ≥ f(r2, · · · , rl),

with the aid of (9),
t∑

i=1

xi > 1, a contradiction to the definition of legal weighting

vectors. So xt+1 = 0.

The proof is thus complete.
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Applying Theorem 6 and the formula for f(r2, · · · , rl) as given in the above proof,

we get Corollary 1.
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[3] S.R. Buló, M. Pelillo, A continuous characterization of maximal cliques in k-

uniform hypergraphs, In: V. Maniezzo , R. Battiti , J.P. Watson (Eds.), Lecture

Notes in Computer Science, vol. 5313, Spring, New York (2008), pp220–233.
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