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Abstract

Let G be an additive finite abelian group of exponent exp(G). For every positive integer k,
let sk exp(G)(G) denote the smallest integer t such that every sequence over G of length t contains
a zero-sum subsequence of length k exp(G). We prove that if exp(G) is sufficiently large than
|G|

exp(G) then sk exp(G)(G) = k exp(G) + D(G) − 1 for all k ≥ 2, where D(G) is the Davenport
constant of G.

1. Introduction

Let G be an additive finite abelian group with exponent exp(G) = m. Let D(G) denote the Dav-
enport constant of G, which is defined as the smallest integer t such that every sequence S over
G of length |S | ≥ t contains a nonempty zero-sum subsequence. For every positive integer k, let
skm(G) denote the smallest integer t such that every sequence S over G of length |S | ≥ t contains
a zero-sum subsequence of length km. For k = 1, we abbreviate sm(G) to s(G) which is called the
Erdős-Ginzburg-Ziv constant of G. The invariant s(G) has been studied by many authors (for ex-
ample, see [1, 3, 5, 6, 8, 9, 14, 18, 23, 25, 27, 29, 30]). The famous Erdős-Ginzburg-Ziv Theorem
[7] asserts that s|G|(G) ≤ 2|G| −1 and equality holds for cyclic groups. In 1996, the first author [12]
proved that

skm(G) = km + D(G) − 1

provided that km ≥ |G|.
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Let T be a zero-sum free sequence over G of length |T | = D(G) − 1 and let

S = 0km−1T.

Clearly, S contains no zero-sum subsequence of length km. Therefore,

skm(G) ≥ km + D(G) − 1 (1)

holds for every k ≥ 1.

The first author and Thangadurai [17] noticed that if km < D(G) then skm(G) > km +D(G) − 1,
and introduced the invariant `(G) which is defined as the smallest integer t such that skm(G) =
km + D(G) − 1 holds for every k ≥ `. From the above we know that

D(G)
m
≤ `(G) ≤

|G|
m
. (2)

For cyclic groups G, we clearly have `(G) = 1 by the Erdős-Ginzburg-Ziv Theorem. For finite
abelian groups G of rank two we can deduce that `(G) = 2 from some known results (see Propo-
sition 4.1). For finite abelian p-groups, skm(G) has been studied in [11, 17] and [26]. For related
papers we refer to [4, 22] and [32]. Our main result in this paper is

Theorem 1.1. Let H be an arbitrary finite abelian group with exp(H) = m ≥ 2, and let G =
Cmn ⊕ H. If n ≥ 2m|H| + 2|H|, then skmn(G) = kmn + D(G) − 1 for all positive integer k ≥ 2, and
therefore `(G) = 2.

2. Preliminaries

Our notation and terminology are consistent with [13] and [21]. We briefly gather some key notions
and fix the notations concerning sequences over finite abelian groups. Let N denote the set of
positive integers, and N0 = N ∪ {0}. For any two integers a, b ∈ N, we set [a, b] = {x ∈ N : a ≤
x ≤ b}. Throughout this paper, all abelian groups will be written additively, and for n, r ∈ N, we
denote by Cn the cyclic group of order n, and denote by Cr

n the direct sum of r copies of Cn.

Let G be a finite abelian group and exp(G) its exponent. A sequence S over G will be written
in the form

S = g1 · . . . · g` =
∏
g∈G

gvg(S ) , with vg(S ) ∈ N0 for all g ∈ G ,

and we call

|S | = ` ∈ N0 the length and σ(S ) =
∑̀
i=1

gi =
∑
g∈G

vg(S )g ∈ G the sum of S .

Let supp(S ) = {g ∈ G : vg(S ) > 0}. For every r ∈ [1, `] define

Σr(S ) = {σ(T ) : T | S , |T | = r}

where T | S means T is a subsequence of S .

The sequence S is called
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• a zero-sum sequence if σ(S ) = 0.

• a short zero-sum sequence over G if it is a zero-sum sequence of length |S | ∈ [1, exp(G)].

For every element g ∈ G, we set g + S = (g + g1) · . . . · (g + gl). If ϕ : G → H is a group
homomorphism, then ϕ(S ) = ϕ(g1) · . . . · ϕ(gl) is a zero-sum sequence if and only if σ(S ) ∈ ker(ϕ).

Let η(G) be the smallest integer t such that every sequence S over G of length |S | ≥ t contains
a short zero-sum subsequence.

Lemma 2.1. [19, Theorem 4.2.7] η(G) ≤ |G| and s(G) ≤ |G| + exp(G) − 1.

Lemma 2.2. Let n, k, t be three positive integers with 2 ≤ t < n
2 + 1, and let S be a sequence over

Cn of length |S | = (k + 1)n − t. Suppose that S contains no zero-sum subsequence of length kn.
Then, there exist two distinct elements a, b ∈ Cn such that

va(S ) + vb(S ) ≥ (k + 1)n − 2t + 2. (3)

Furthermore, if 2 ≤ t < n+5
3 , then the pair of {a, b} satisfying inequality (3) is uniquely determined

by S .

Proof. We can prove the existence of {a, b} satisfying (3) in a similar way to the proof of Theorem 5
in [29] and we omit it here.

Now assume that 1 < t < n+5
3 . Suppose that vc(S ) + vd(S ) ≥ (k + 1)n − 2t + 2 for another

pair {c, d} , {a, b}. Since 0 <
∑

kn(S ), vg(S ) ≤ kn − 1 for every g ∈ Cn. It follows that vg(S ) ≥
n− 2t + 3 for every g ∈ {a, b, c, d}. Without loss of generality we assume that c < {a, b}. Therefore,
va(S )+ vb(S )+ vc(S ) ≥ (k+ 1)n− 2t+ 2+ (n− 2t+ 3) > (k+ 1)n− t = |S |, yielding a contradiction.
Hence {a, b} is the unique pair satisfying (3). �

We also need the following easy result which is a straightforward consequence of [19, Lemma 4.2.5]
and we omit the proof here.

Lemma 2.3. Let m ∈ N, and let H be a finite abelian group with exp(H) | m. Let G = Cmn ⊕ H.
Then, D(G) ≤ mn + η(Cm ⊕ H) − m ≤ mn + m|H| − m.

3. Proof of Theorem 1.1

As mentioned in the introduction, skmn(G) ≥ kmn + D(G) − 1. It suffices to prove that skmn(G) ≤
kmn + D(G) − 1. Let S be any sequence over G of length |S | = kmn + D(G) − 1. We need to show
S contains a zero-sum subsequence of length kmn.

Assume to the contrary that S contains no zero-sum subsequence of length kmn. Let ϕ : G =
Cmn ⊕ H → Cm ⊕ H be the natural homomorphism with ker(ϕ) = Cn (up to isomorphism).
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By applying s(ϕ(Cmn ⊕ H)) = s(Cm ⊕ H) on ϕ(S ) repeatedly, we can get a decomposition
S = S 1 · . . . · S r · S ′ with

|S i| = m, σ(S i) ∈ ker(ϕ) for every i ∈ [1, r] (4)

and s(Cm ⊕ H) − m ≤ |S ′| ≤ s(Cm ⊕ H) − 1. Therefore,

r =
⌈
|S | − s(Cm ⊕ H) + 1

m

⌉
. (5)

Let
U = σ(S 1)σ(S 2) · . . . · σ(S r).

It follows from 0 < Σkmn(S ) that 0 < Σkn(U). Since D(G) ≥ mn and s(Cm ⊕ H) ≤ m · |H| +m − 1 by
Lemma 2.1, we infer that

|U | = r ≥
|S | − s(Cm ⊕ H) + 1

m

≥
(kmn + D(G) − 1) − s(Cm ⊕ H) + 1

m

≥
kmn + mn − (m · |H| + m − 1)

m

= (k + 1)n − |H| −
m − 1

m
.

Therefore
|U | = r ≥ (k + 1)n − |H| −

m − 1
m
. (6)

Let
t = (k + 1)n − r.

Since 0 < Σkn(U), r = |U | ≤ (k + 1)n − 2 by the Erdős-Ginzburg-Ziv theorem. It follows that t ≥ 2.
By (6) and the hypothesis that n ≥ 2m|H| + 2|H| > 5|H|, we get

t ≤
n
5
<

n + 5
3
.

It follows from Lemma 2.2 that there exists a unique pair of {a, b} such that

va(U) + vb(U) ≥ (k + 1)n − 2t + 2.

Denote by Ω the set consisting of all decompositions of S satisfying (4) and (5). Choose a
decomposition

S = S 1 · S 2 · . . . · S r · S ′ ∈ Ω

such that va(U) + vb(U) attains the minimal value. Let

` = va(U) + vb(U).
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By renumbering if necessary we assume that σ(S i) ∈ {a, b} for all i ∈ [1, `]. Let

W =
∏̀
i=1

S i.

From t < n+5
3 and n ≥ 2m|H| + 2|H| we derive that

` ≥ (k + 1)n − 2t + 2 > m.

Claim 3.1. Let W0 be a subsequence of W of length |W0| = m. If σ(W0) ∈ ker(ϕ) then σ(W0) ∈
{a, b}.

Proof. Assume to the contrary that σ(W0) < {a, b}. Since |W0| = m, by renumbering we may
assume that W0 | S 1 · S 2 · . . . · S v for some v ∈ [1,m]. Then S has a decomposition

S = S v+1 · S v+2 · . . . · S r ·W0 · S ′2 · S
′
3 · . . . · S

′
v · S

′′ ∈ Ω

where |S ′i | = m and σ(S ′i) ∈ ker(ϕ) for every i ∈ [2, v].

Let
U1 = σ(S v+1) · σ(S v+2) · . . . · σ(S r) · σ(W0) · σ(S ′2) · . . . · σ(S ′v).

It follows from 0 < Σkmn(S ) that 0 < Σkn(U1). By Lemma 2.2, there is a unique pair of {a1, b1} such
that

va1(U1) + vb1(U1) ≥ (k + 1)n − 2t + 2.

Since 0 < Σkn(U1), we have va1(U1) ≤ kn − 1 and vb1(U1) ≤ kn − 1. It follows that

va1(U1) ≥ n − 2t + 3 and vb1(U1) ≥ n − 2t + 3.

If a1 < {a, b}, then r = |U1| ≥ va(U1) + vb(U1) + va1(U1) ≥ va(U) + vb(U) − v + va1(U1) ≥
(k+1)n−2t+2−v+n−2t+3 ≥ (k+1)n−t+(n−3t−m+5) > (k+1)n−t = r, a contradiction. Therefore,
a1 ∈ {a, b}. Similarly, b1 ∈ {a, b}. Hence, {a1, b1} = {a, b}. But va(U1) + vb(U1) < va(U) + vb(U) , a
contradiction to the minimality of U. This proves Claim 3.1. �

For every h ∈ ϕ(G) = Cm ⊕ H, let Wh be the subsequence of W such that ϕ(Wh) = hvh(ϕ(W)).

Claim 3.2. If |Wh| ≥ m + 1 then |supp(Wh)| ≤ 2.

Proof. Assume to the contrary that |Wh| ≥ m + 1 and |supp(Wh)| ≥ 3 for some h ∈ ϕ(G) = Cm ⊕ H.
Take three distinct elements g0, g1, g2 ∈ supp(Wh). Let W ′ be a subsequence of Wh(g0g1g2)−1 of
length |W ′| = m − 2. Then, W ′g0g1,W ′g0g2 and W ′g1g2 are three subsequences of Wh with each
having sum in ker(ϕ) = Cn. But the sums σ(W ′g0g1), σ(W ′g0g2), σ(W ′g1g2) are pairwise distinct,
a contradiction to Claim 3.1. This proves Claim 3.2. �
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So, for every |Wh| ≥ m + 1 we have

Wh = xuh
h yvh

h ,

where xh, yh ∈ G, uh ≥ vh ≥ 0 and uh + vh = |Wh| = vh(ϕ(W)).

Write
uh = phm + rh and vh = qhm + sh

where ph, rh, qh, sh ∈ N0 and rh, sh ∈ [0,m − 1].

For every h ∈ ϕ(G) = Cm ⊕ H with |Wh| ≥ m + 1, Wh has the following decomposition

Wh = xm
h · . . . · x

m
h︸       ︷︷       ︸

ph

ym
h · . . . · y

m
h︸       ︷︷       ︸

qh

(xrh
h ysh

h ).

Let
W ′ =

∏
h∈Cm⊕H, |Wh |≥m+1

xm
h · . . . · x

m
h︸       ︷︷       ︸

ph

ym
h · . . . · y

m
h︸       ︷︷       ︸

qh

= T1T2 · . . . · T f

where f =
∑

h∈Cm⊕H, |Wh |≥m+1(ph + qh) and for each i ∈ [1, f ] we have Ti = xm
h or Ti = ym

h for some
h ∈ Cm ⊕ H.

Let

R =
f∏

i=1

σ(Ti).

It follows from Claim 3.1 that supp(R) ⊆ {a, b}.Without loss of generality we assume that

va(R) ≥ vb(R).

Let λ = va(R). Then,

λ = va(R) ≥
|R|
2

=
f
2
=

∑
h∈Cm⊕H, |Wh |≥m+1(ph + qh)

2

=

∑
h∈Cm⊕H, |Wh |≥m+1(|Wh| − rh − sh)

2m

=
|W | −

∑
h∈Cm⊕H, |Wh |≥m+1(rh + sh) −

∑
h∈Cm⊕H, |Wh |≤m |Wh|

2m

≥
|W | − (2m − 2)|Cm ⊕ H|

2m
≥

kn + (n − 2m|H|)
2

.

So we have
λ ≥

kn + (n − 2m|H|)
2

. (7)

By renumbering we may assume that

σ(T1) = · · · = σ(Tλ) = a.
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Let T1 = xm and S ′ = −x + S . Then

S ′ = T ′1 · . . . · T
′
λS
′′,

where T ′i = −x + Ti for every i ∈ [1, λ], and T ′1 = 0m, σ(T ′i ) = 0 for each i ∈ [1, λ].

By (7) and the hypothesis of the theorem we have

|T ′1 · . . . · T
′
λ| = mλ ≥ D(G) − 1.

Therefore,
|S ′′| = |S | − |T ′1 · . . . · T

′
λ| = kmn + D(G) − 1 − |T ′1 · . . . · T

′
λ| ≤ kmn.

Let S 0 be the maximal (in length) zero-sum subsequence of S ′′. Then, |S ′′| − |S 0| = |S ′′S −1
0 | ≤

D(G) − 1. Hence,
|S ′′| − D(G) + 1 ≤ |S 0| ≤ |S ′′| ≤ kmn.

Note that |0mT ′2 · . . . · T
′
λS 0| = |S | − |S ′′| + |S 0| = kmn + D(G) − 1 − (|S ′′| − |S 0|) ≥ kmn and

|S 0| ≤ kmn, there exist m′ ∈ [0,m] and λ′ ∈ [0, λ] such that

|0m′T ′2 · . . . · T
′
λ′S 0| = kmn.

So, 0m′T ′2 · . . . ·T
′
λ′S 0 is a zero-sum subsequence of length kmn and therefore xm′T2 · . . . ·Tλ′(x+S 0)

is a zero-sum subsequence of S , a contradiction. This proves that skmn(G) = kmn + D(G) − 1 for
every k ≥ 2. Now `(G) = 2 follows from (2).

4. Concluding Remarks and Open Problems

In this section we shall give some concluding remarks and some open problems. For finite abelian
groups of rank two we have

Proposition 4.1. Let G = Cm ⊕Cn with 1 < m | n. Then, `(G) = 2.

Let G be a finite abelian group and let d be a positive integer. Let sdN(G) be the smallest integer
t such that every sequence over G of length at least t contains a zero-sum subsequence of length
divided by d.

Lemma 4.2. Let G = Cm ⊕Cn with 1 < m | n. Then,

1. s(G) = 2n + 2m − 3. ([21, Theorem 5.8.3])

2. snN(G) = 2n + m − 2. ([20, Theorem 5.2])
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Proof of Proposition 4.1. For any positive integer k ≥ 2, it suffices to prove that skn(G) ≤
kn + D(G) − 1. Let S be a sequence over G of length kn + D(G) − 1 = kn + n + m − 2.We need to
prove S contains a zero-sum subsequence of length kn.

We proceed by induction on k. For k = 2, by Lemma 4.2.1, S contains a zero-sum subsequence
S 1 of length n. Since 3n > |S S −1

1 | = 2n + m − 2, by Lemma 4.2.2, S S −1
1 contains a zero-sum

subsequence S 2 of length |S 2| ∈ {n, 2n}. Therefore, either S 1S 2 or S 2 is a zero-sum subsequence
of S of length 2n.

Now suppose that the proposition holds for k = r, we want to prove it for k = r + 1. By
Lemma 4.2.1, S contains a zero-sum subsequence T1 of length n. Since |S T−1

1 | = (r+1)n+D(G)−
1−n = rn+D(G)−1, by induction hypothesis, S T−1

1 contains a zero-sum subsequence T2 of length
|T2| = rn. So, T1T2 is a zero-sum subsequence of S of length |T1T2| = (r + 1)n. �

Let r ∈ [1,D(G)−1], and let S be a sequence over G of length |S | = |G|+ r−1 with 0 < Σ|G|(S ).
In 1999, Bollobás and Leader [2] considered the problem of bounding |Σ|G|(S )| from below.

For every r ∈ [1,D(G) − 1], define

f (G; r) = max{|Σ(T )| : |T | = r,T is a zero-sumfree sequence over G}.

f (G; r) has been studied recently by several authors (for example, see [15, 16, 24]).

Proposition 4.3. Let H be an arbitrary finite abelian group with exp(H) = m ≥ 2, and let G =
Cmn⊕H. Let r ∈ [1,D(G)−1] and k ≥ 3, and let S be a sequence over G of length |S | = kmn+r−1.
Suppose that n ≥ 2m|H| + 2|H|. If 0 < Σkmn(S ) then |Σkmn(S )| ≥ f (G; r).

Proof. Similarly to the proof of Theorem 1.1 we can find an element x ∈ G such that x + S has a
factorization

x + S = T ′1 · . . . · T
′
λS
′′

with T ′1 = 0m, σ(T ′i ) = 0 and |T ′i | = m for each i ∈ [1, λ], and

λ ≥
(k − 1)n + (n − 2m|H|)

2
.

By Lemma 2.3, r ≤ D(G) ≤ mn + m|H| − m. It follows from k ≥ 3 and n ≥ 2m|H| + 2|H| that

|S ′′| ≤ kmn.

Let S 0 be the maximal (in length) zero-sum subsequence of S ′′. Then,

|S ′′| − |S 0| = |S ′′S −1
0 | ≤ D(G) − 1.

If λm + |S 0| = |T ′1 · . . . · T
′
λS 0| ≥ kmn, then similarly to the proof of Theorem 1.1 we can prove

that 0 ∈ Σkmn(x + S ) = Σkmn(S ), a contradiction. Therefore,

λm + |S 0| = |T ′1 · . . . · T
′
λS 0| ≤ kmn.
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Hence,
|S ′′S −1

0 | ≥ r.

Let W be an arbitrary subsequence of S ′′S −1
0 of length |W | = r, and let W ′ = S ′′S −1

0 W−1. Then,

x + S = 0mT ′2 · . . . · T
′
λS 0W ′W.

From the maximality of S 0 we know that W ′W is zero-sum free. So, W is a zero-sum free sequence
of length r. Hence,

|Σ(W)| ≥ f (G; r).

For every y ∈ Σ(W), there is a nonempty subsequence W0 | W such that y = σ(W0). Therefore,
σ(W ′)+y = σ(W ′W0) = σ(0mT ′2 ·. . .·T

′
λS 0W ′W0). Note that |0mT ′2 ·. . .·T

′
λS 0W ′W0| = |S |−|WW−1

0 | ≥

kmn, in a similar way to the proof of Theorem 1.1, we can prove that σ(W ′) + y ∈ Σkmn(x + S ) =
Σkmn(S ). This proves that |Σkmn(S )| ≥ |σ(W ′) + Σ(W)| = |Σ(W)| ≥ f (G; r). �

We end the paper by discussing some conjectures related to the problems we investigated.

Conjecture 4.4. [17] For every non-cyclic finite abelian group G the sequence

{skm(G) − km}`(G)−1
k=1

is strictly decreasing.

Conjecture 4.5. [26] If G = Cr
n then skn(G) = kn + r(n − 1) holds for every positive integer k ≥ r.

Let G be a finite abelian group with exp(G) = m. For every k ∈ N, let ηkm(G) denote the smallest
integer t such that every sequence S over G of length |S | ≥ t contains a zero-sum subsequence T
of length |T | ∈ [1, km].

Conjecture 4.6. Let G be a finite abelian group with exp(G) = m. Then, skm(G) = ηkm(G)+ km−1
for every k ∈ N.

For k = 1, Conjecture 4.6 was formulated by the first author in [10]. If km ≥ D(G), we clearly
have that ηkm(G) = D(G). So, Conjecture 4.6, if true, together with (2) would imply the following

Conjecture 4.7. Let G be a finite abelian group with exp(G) = m. Then, `(G) = dD(G)
m e.
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APPENDIX

Proof of Lemma 2.2

For every sequence S over a finite abelian group G, let

h(S ) = max{vg(S ), g ∈ G}.

Lemma 4.8. [19, Proposition 4.2.6] If S is a sequence over G of length |S | ≥ |G| then S contains
a zero-sum subsequence T of length |T | ∈ [1, h(S )].

Let G = Cn. For a sequence S = (x1g) · (x2g) · . . . · (x`g), where g ∈ G \ {0} and xi ∈ [1, ord(g)],
let

Lg(S ) =
∑̀
i=1

xi ∈ N.

Lemma 4.9. [28, 31] Let G = Cn. Let S be a zero-sum free sequence of length greater that n
2 .

Then there exists g ∈ G such that Lg(S ) < n.

Lemma 4.10. [29, Proposition 3] Let G = Cn, and let S be a zero-sum free sequence over G.
Suppose that there exists g ∈ G such that Lg(S ) < min{2|S |, n}. Then:

(a). vg(S ) ≥ 2|S | − Lg(S ).

(b). For each integer x ∈ [2|S | − Lg(S ), Lg(S )], there exists a subsequence T of S with length at
least 2|S | − Lg(S ) such that σ(T ) = xg.

Proof Lemma 2.2. Without of loss generality assume that v0(S ) = h(S ). Let

S = 0h(S )T1T2,

where T1 is a zero-sum subsequence of S with nonzero terms and of maximum length, T2 is zero-
sum free.

Claim 1. v0(S ) + |T1| = h(S ) + |T1| ≤ kn − 1.

Proof of Claim 1. Assume to the contrary that v0(S ) + |T1| ≥ kn. If |T1| < kn, then 0kn−|T1 |T1 is a
zero-sum sequence of length kn, yielding a contradiction. Next assume that |T1| ≥ kn , by Lemma
4.8 we can find a zero-sum subsequence T ′1 of T1, such that kn ≥ |T ′1| ≥ kn − v0(S ), and therefore
0kn−|T ′1 |T ′1 is a zero-sum sequence of length kn, yielding a contradiction. This proves Claim 1.

By Claim 1 we have
|T2| ≥ n − t + 1 >

n
2
.
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It follows from Lemma 4.9 that there exists g ∈ G, such that n
2 < Lg(T2) < n. Let T1 = gw(b1g) ·

. . . · (bqg), where 2 ≤ b1 ≤ b2 ≤ · · · ≤ bq ≤ n − 1 and q ∈ N0.

Claim 2. Suppose that b j1 , . . . , b jm are m terms such that the integer X satisfies X ≡ b j1 + · · · + b jm
(mod n) and 1 < X ≤ Lg(T2). Then m ≥ 2|T2| − Lg(T2) if 2|T2| − Lg(T2) ≤ X ≤ Lg(T2) and m ≥ X
if 1 < X < 2|T2| − Lg(T2).

Proof of Claim 2. Let T ′1 = (b j1g) · . . . · (b jmg). Then σ(T ′1) = Lg(T ′1)g = Xg. Let 2|T2| − Lg(T2) ≤
X ≤ Lg(T2). By Lemma 4.10, there is a subsequence T ′2 of T2 with length at least 2|T2| − Lg(T2)
such that X = Lg(T ′2) ≡

∑m
i=1 b ji (mod n), hence σ(T ′2) =

∑m
i=1 b jig = σ(T ′1). By the maximum of

the length of T1, we have m ≥ |T ′2| ≥ 2|T2| − Lg(T2). Similarly, if 1 < X < 2|T2| − Lg(T2) then
Xg can be expressed as the sum of X terms equal to g of T2. The same argument as above gives
m ≥ X. This proves Claim 2.

By Claim 2 we infer that

b j > Lg(T2), j = 1, . . . , q.

Indeed, if 1 < b j ≤ Lg(T2) for some j then 1 ≥ 2|T2| − Lg(T2) or 1 ≥ b j, both of which are not true.
Therefore n − b j < n − Lg(T2) < n

2 , j = 1, . . . , q.

Claim 3. Lg(T2) +
∑q

j=1(n − b j) < n.

Proof of Claim 3. We may assume that q ≥ 1. Suppose that Claim 3 is false, then Lg(T2)+
∑q

j=1(n−
b j) ≥ n. Let m ∈ [1, q] be the least integer such that there exist 1 ≤ j1 < j2 < · · · < jm ≤ q with∑m

i=1(n − b ji) + Lg(T2) ≥ n. Let

X = n −
m∑

i=1

(n − b ji)

under the assumption that
∑m

i=1(n − b ji) + Lg(T2) ≥ n. Then X ≤ Lg(T2). By the minimality of m
we infer that

X + (n − b jt) > Lg(T2) for every t ∈ [1,m].

Then X > Lg(T2) − (n − b jt) > Lg(T2) − (n − Lg(T2)) = 2Lg(T2) − n ≥ 1 and hence 1 < X ≤ Lg(T2).

First assume that 1 < X < 2|T2| − Lg(T2). Claim 2 gives m ≥ X. Recalling that X + (n − b jt) >
Lg(T2), we have n − b jt ≥ Lg(T2) + 1 − X > 0 for t = 1, . . . ,m, which implies that

n = X +
m∑

i=1

(n − b ji) ≥ X + m(Lg(T2) + 1 − X)

≥ X + X(Lg(T2) + 1 − X) = X(Lg(T2) + 2 − X).

Consider the quadratic function f (t) = t2 − (Lg(T2) + 2)t + n. We obtained f (X) ≥ 0 for some
X ∈ {2, . . . , 2|T2| − Lg(T2) − 1}. But the maximum of f (t) on {2, . . . , 2|T2| − Lg(T2) − 1} is f (2) =
n − 2Lg(T2), and n − 2Lg(T2) < 0. This is a contradiction
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Next assume that 2|T2| − Lg(T2) ≤ X ≤ Lg(T2). By Claim 2 we have m ≥ 2|T2| − Lg(T2) > 1.
Then

Lg(T2) + 1 ≤ X + (n − b jm) = n −
( m−1∑

i=1

(n − b ji)
)
≤ n − (m − 1)

≤ n − (2|T2| − Lg(T2) − 1) = (n − 2|T2|) + Lg(T2) + 1.

This implies n ≥ 2|T2|, which yields a contradiction. This proves Claim 3.

Recall that T1 = gw(b1g) · . . . · (bqg), where 2 ≤ b1 ≤ b2 ≤ · · · ≤ bq ≤ n − 1 and q ∈ N0. Since
T1 is zero-sum we have w ≡

∑q
j=1(n − b j) (mod n). By Claim 3,

0 ≤
∑q

j=1(n − b j) < n and thus q < n.

Let w = rn + w′, where 0 ≤ w′ ≤ n − 1. Then

w′ =
q∑

j=1

(n − b j) ≥ q.

Hence Lg(T2) + w′ = Lg(T2) +
∑q

j=1(n − b j) < n. Since Lg(T2) ≥ vg(T2) + 2(|T2| − vg(T2)) and
w = vg(T1) = vg(S ) − vg(T2), we have

n − 1 ≥ Lg(T2) + w′ ≥ vg(T2) + 2(|T2| − vg(T2)) + w − rn = 2(|T2| + w) − vg(S ) − rn. (8)

Also we have

kn − 1 ≥ v0(S ) + |T1| = v0(S ) + w + q ≥ 2(v0(S ) + q) − v0(S ) + rn. (9)

Adding (8) and (9) and noting that v0(S ) + q + w + |T2| = |S | = (k + 1)n − t, we obtain that
vg(S ) + v0(S ) ≥ (k + 1)n − 2t + 2. Take a = 0 and b = g and we are done.

Next assume that 1 < t < n+5
3 . Assume that va(S )+vb(S ) ≥ (k+1)n−2t+2 and vc(S )+vd(S ) ≥

(k + 1)n − 2t + 2. By Claim 1 we infer that vg(S ) ≤ kn − 1 for every g ∈ {a, b, c, d}, and hence
vg(S ) ≥ n − 2t + 3 for every g ∈ {a, b, c, d}. If {a, b} , {c, d}, without loss of generality assume that
c < {a, b}, then va(S )+ vb(S )+ vc(S ) ≥ (k + 1)n− 2t + 2+ (n− 2t + 3) > (k + 1)n− t = |S |, yielding
a contradiction. Therefore {a, b} is the unique pair with holding (3). �
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