On zero-sum subsequences of length $k \exp (G)$

March 15, 2014

Weidong Gao ${ }^{1}$, Dongchun Han ${ }^{1}$, Jiangtao Peng ${ }^{2}$ and Fang Sun ${ }^{3}$
${ }^{1}$ Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin 300071, P.R. China
${ }^{2}$ College of Science, Civil Aviation University of China, Tianjin 300300, P.R. China
${ }^{3}$ The School of Economics, Nankai University, Tianjin 300071, P.R. China

Abstract

Let G be an additive finite abelian group of $\operatorname{exponent} \exp (G)$. For every positive integer k, let $\mathrm{s}_{k \exp (G)}(G)$ denote the smallest integer t such that every sequence over G of length t contains a zero-sum subsequence of length $k \exp (G)$. We prove that if $\exp (G)$ is sufficiently large than $\frac{|G|}{\exp (G)}$ then $\mathrm{s}_{k \exp (G)}(G)=k \exp (G)+\mathrm{D}(G)-1$ for all $k \geq 2$, where $\mathrm{D}(G)$ is the Davenport constant of G.

1. Introduction

Let G be an additive finite abelian group with exponent $\exp (G)=m$. Let $\mathrm{D}(G)$ denote the Davenport constant of G, which is defined as the smallest integer t such that every sequence S over G of length $|S| \geq t$ contains a nonempty zero-sum subsequence. For every positive integer k, let $\mathrm{s}_{k m}(G)$ denote the smallest integer t such that every sequence S over G of length $|S| \geq t$ contains a zero-sum subsequence of length $k m$. For $k=1$, we abbreviate $\mathrm{s}_{m}(G)$ to $\mathrm{s}(G)$ which is called the Erdős-Ginzburg-Ziv constant of G. The invariant $\mathrm{s}(G)$ has been studied by many authors (for example, see $[1,3,5,6,8,9,14,18,23,25,27,29,30])$. The famous Erdős-Ginzburg-Ziv Theorem [7] asserts that $\mathbf{S}_{|G|}(G) \leq 2|G|-1$ and equality holds for cyclic groups. In 1996, the first author [12] proved that

$$
\mathrm{s}_{k m}(G)=k m+\mathrm{D}(G)-1
$$

provided that $k m \geq|G|$.

[^0]Let T be a zero-sum free sequence over G of length $|T|=\mathrm{D}(G)-1$ and let

$$
S=0^{k m-1} T
$$

Clearly, S contains no zero-sum subsequence of length km . Therefore,

$$
\begin{equation*}
\mathrm{s}_{k m}(G) \geq k m+\mathrm{D}(G)-1 \tag{1}
\end{equation*}
$$

holds for every $k \geq 1$.
The first author and Thangadurai [17] noticed that if $k m<\mathrm{D}(G)$ then $\mathrm{s}_{k m}(G)>k m+\mathrm{D}(G)-1$, and introduced the invariant $\ell(G)$ which is defined as the smallest integer t such that $\mathrm{s}_{k m}(G)=$ $k m+\mathrm{D}(G)-1$ holds for every $k \geq \ell$. From the above we know that

$$
\begin{equation*}
\frac{\mathrm{D}(G)}{m} \leq \ell(G) \leq \frac{|G|}{m} . \tag{2}
\end{equation*}
$$

For cyclic groups G, we clearly have $\ell(G)=1$ by the Erdős-Ginzburg-Ziv Theorem. For finite abelian groups G of rank two we can deduce that $\ell(G)=2$ from some known results (see Proposition 4.1). For finite abelian p-groups, $\mathrm{s}_{k m}(G)$ has been studied in [11, 17] and [26]. For related papers we refer to [4,22] and [32]. Our main result in this paper is
Theorem 1.1. Let H be an arbitrary finite abelian group with $\exp (H)=m \geq 2$, and let $G=$ $C_{m n} \oplus H$. If $n \geq 2 m|H|+2|H|$, then $\mathrm{s}_{k m n}(G)=k m n+\mathrm{D}(G)-1$ for all positive integer $k \geq 2$, and therefore $\ell(G)=2$.

2. Preliminaries

Our notation and terminology are consistent with [13] and [21]. We briefly gather some key notions and fix the notations concerning sequences over finite abelian groups. Let \mathbb{N} denote the set of positive integers, and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For any two integers $a, b \in \mathbb{N}$, we set $[a, b]=\{x \in \mathbb{N}: a \leq$ $x \leq b\}$. Throughout this paper, all abelian groups will be written additively, and for $n, r \in \mathbb{N}$, we denote by C_{n} the cyclic group of order n, and denote by C_{n}^{r} the direct sum of r copies of C_{n}.

Let G be a finite abelian group and $\exp (G)$ its exponent. A sequence S over G will be written in the form

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}, \quad \text { with } \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { for all } g \in G
$$

and we call

$$
|S|=\ell \in \mathbb{N}_{0} \quad \text { the length and } \quad \sigma(S)=\sum_{i=1}^{\ell} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G \quad \text { the sum of } S .
$$

Let $\operatorname{supp}(S)=\left\{g \in G: \mathrm{v}_{g}(S)>0\right\}$. For every $r \in[1, \ell]$ define

$$
\Sigma_{r}(S)=\{\sigma(T): T|S,|T|=r\}
$$

where $T \mid S$ means T is a subsequence of S.
The sequence S is called

- a zero-sum sequence if $\sigma(S)=0$.
- a short zero-sum sequence over G if it is a zero-sum sequence of length $|S| \in[1, \exp (G)]$.

For every element $g \in G$, we set $g+S=\left(g+g_{1}\right) \cdot \ldots \cdot\left(g+g_{l}\right)$. If $\varphi: G \rightarrow H$ is a group homomorphism, then $\varphi(S)=\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$ is a zero-sum sequence if and only if $\sigma(S) \in \operatorname{ker}(\varphi)$.

Let $\eta(G)$ be the smallest integer t such that every sequence S over G of length $|S| \geq t$ contains a short zero-sum subsequence.

Lemma 2.1. [19, Theorem 4.2.7] $\eta(G) \leq|G|$ and $\mathrm{s}(G) \leq|G|+\exp (G)-1$.
Lemma 2.2. Let n, k, t be three positive integers with $2 \leq t<\frac{n}{2}+1$, and let S be a sequence over C_{n} of length $|S|=(k+1) n-t$. Suppose that S contains no zero-sum subsequence of length $k n$. Then, there exist two distinct elements $a, b \in C_{n}$ such that

$$
\begin{equation*}
\mathrm{v}_{a}(S)+\mathrm{v}_{b}(S) \geq(k+1) n-2 t+2 \tag{3}
\end{equation*}
$$

Furthermore, if $2 \leq t<\frac{n+5}{3}$, then the pair of $\{a, b\}$ satisfying inequality (3) is uniquely determined by S.

Proof. We can prove the existence of $\{a, b\}$ satisfying (3) in a similar way to the proof of Theorem 5 in [29] and we omit it here.

Now assume that $1<t<\frac{n+5}{3}$. Suppose that $\mathrm{v}_{c}(S)+\mathrm{v}_{d}(S) \geq(k+1) n-2 t+2$ for another pair $\{c, d\} \neq\{a, b\}$. Since $0 \notin \sum_{k n}(S), \mathrm{v}_{g}(S) \leq k n-1$ for every $g \in C_{n}$. It follows that $\mathrm{v}_{g}(S) \geq$ $n-2 t+3$ for every $g \in\{a, b, c, d\}$. Without loss of generality we assume that $c \notin\{a, b\}$. Therefore, $\mathrm{v}_{a}(S)+\mathrm{v}_{b}(S)+\mathrm{v}_{c}(S) \geq(k+1) n-2 t+2+(n-2 t+3)>(k+1) n-t=|S|$, yielding a contradiction. Hence $\{a, b\}$ is the unique pair satisfying (3).

We also need the following easy result which is a straightforward consequence of [19, Lemma 4.2.5] and we omit the proof here.

Lemma 2.3. Let $m \in \mathbb{N}$, and let H be a finite abelian group with $\exp (H) \mid m$. Let $G=C_{m n} \oplus H$. Then, $\mathrm{D}(G) \leq m n+\eta\left(C_{m} \oplus H\right)-m \leq m n+m|H|-m$.

3. Proof of Theorem 1.1

As mentioned in the introduction, $\mathrm{s}_{k m n}(G) \geq k m n+\mathrm{D}(G)-1$. It suffices to prove that $\mathrm{s}_{k m n}(G) \leq$ $k m n+\mathrm{D}(G)-1$. Let S be any sequence over G of length $|S|=k m n+\mathrm{D}(G)-1$. We need to show S contains a zero-sum subsequence of length $k m n$.

Assume to the contrary that S contains no zero-sum subsequence of length kmn. Let $\varphi: G=$ $C_{m n} \oplus H \rightarrow C_{m} \oplus H$ be the natural homomorphism with $\operatorname{ker}(\varphi)=C_{n}$ (up to isomorphism).

By applying $\mathrm{s}\left(\varphi\left(C_{m n} \oplus H\right)\right)=\mathrm{s}\left(C_{m} \oplus H\right)$ on $\varphi(S)$ repeatedly, we can get a decomposition $S=S_{1} \cdot \ldots \cdot S_{r} \cdot S^{\prime}$ with

$$
\begin{equation*}
\left|S_{i}\right|=m, \sigma\left(S_{i}\right) \in \operatorname{ker}(\varphi) \text { for every } i \in[1, r] \tag{4}
\end{equation*}
$$

and $\mathrm{s}\left(C_{m} \oplus H\right)-m \leq\left|S^{\prime}\right| \leq \mathrm{s}\left(C_{m} \oplus H\right)-1$. Therefore,

$$
\begin{equation*}
r=\left\lceil\frac{|S|-\mathrm{s}\left(C_{m} \oplus H\right)+1}{m}\right\rceil . \tag{5}
\end{equation*}
$$

Let

$$
U=\sigma\left(S_{1}\right) \sigma\left(S_{2}\right) \cdot \ldots \cdot \sigma\left(S_{r}\right)
$$

It follows from $0 \notin \Sigma_{k m n}(S)$ that $0 \notin \Sigma_{k n}(U)$. Since $\mathrm{D}(G) \geq m n$ and $\mathrm{s}\left(C_{m} \oplus H\right) \leq m \cdot|H|+m-1$ by Lemma 2.1, we infer that

$$
\begin{aligned}
|U|=r & \geq \frac{|S|-\mathrm{s}\left(C_{m} \oplus H\right)+1}{m} \\
& \geq \frac{(k m n+\mathrm{D}(G)-1)-\mathrm{s}\left(C_{m} \oplus H\right)+1}{m} \\
& \geq \frac{k m n+m n-(m \cdot|H|+m-1)}{m} \\
& =(k+1) n-|H|-\frac{m-1}{m} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
|U|=r \geq(k+1) n-|H|-\frac{m-1}{m} . \tag{6}
\end{equation*}
$$

Let

$$
t=(k+1) n-r .
$$

Since $0 \notin \Sigma_{k n}(U), r=|U| \leq(k+1) n-2$ by the Erdős-Ginzburg-Ziv theorem. It follows that $t \geq 2$. By (6) and the hypothesis that $n \geq 2 m|H|+2|H|>5|H|$, we get

$$
t \leq \frac{n}{5}<\frac{n+5}{3}
$$

It follows from Lemma 2.2 that there exists a unique pair of $\{a, b\}$ such that

$$
\mathrm{v}_{a}(U)+\mathrm{v}_{b}(U) \geq(k+1) n-2 t+2
$$

Denote by Ω the set consisting of all decompositions of S satisfying (4) and (5). Choose a decomposition

$$
S=S_{1} \cdot S_{2} \cdot \ldots \cdot S_{r} \cdot S^{\prime} \in \Omega
$$

such that $\mathrm{v}_{a}(U)+\mathrm{v}_{b}(U)$ attains the minimal value. Let

$$
\ell=\mathrm{v}_{a}(U)+\mathrm{v}_{b}(U) .
$$

By renumbering if necessary we assume that $\sigma\left(S_{i}\right) \in\{a, b\}$ for all $i \in[1, \ell]$. Let

$$
W=\prod_{i=1}^{\ell} S_{i} .
$$

From $t<\frac{n+5}{3}$ and $n \geq 2 m|H|+2|H|$ we derive that

$$
\ell \geq(k+1) n-2 t+2>m .
$$

Claim 3.1. Let W_{0} be a subsequence of W of length $\left|W_{0}\right|=m$. If $\sigma\left(W_{0}\right) \in \operatorname{ker}(\varphi)$ then $\sigma\left(W_{0}\right) \in$ $\{a, b\}$.

Proof. Assume to the contrary that $\sigma\left(W_{0}\right) \notin\{a, b\}$. Since $\left|W_{0}\right|=m$, by renumbering we may assume that $W_{0} \mid S_{1} \cdot S_{2} \cdot \ldots \cdot S_{v}$ for some $v \in[1, m]$. Then S has a decomposition

$$
S=S_{v+1} \cdot S_{v+2} \cdot \ldots \cdot S_{r} \cdot W_{0} \cdot S_{2}^{\prime} \cdot S_{3}^{\prime} \cdot \ldots \cdot S_{v}^{\prime} \cdot S^{\prime \prime} \in \Omega
$$

where $\left|S_{i}^{\prime}\right|=m$ and $\sigma\left(S_{i}^{\prime}\right) \in \operatorname{ker}(\varphi)$ for every $i \in[2, v]$.
Let

$$
U_{1}=\sigma\left(S_{v+1}\right) \cdot \sigma\left(S_{v+2}\right) \cdot \ldots \cdot \sigma\left(S_{r}\right) \cdot \sigma\left(W_{0}\right) \cdot \sigma\left(S_{2}^{\prime}\right) \cdot \ldots \cdot \sigma\left(S_{v}^{\prime}\right)
$$

It follows from $0 \notin \Sigma_{k m n}(S)$ that $0 \notin \Sigma_{k n}\left(U_{1}\right)$. By Lemma 2.2, there is a unique pair of $\left\{a_{1}, b_{1}\right\}$ such that

$$
\mathrm{v}_{a_{1}}\left(U_{1}\right)+\mathrm{v}_{b_{1}}\left(U_{1}\right) \geq(k+1) n-2 t+2 .
$$

Since $0 \notin \Sigma_{k n}\left(U_{1}\right)$, we have $\mathrm{v}_{a_{1}}\left(U_{1}\right) \leq k n-1$ and $\mathrm{v}_{b_{1}}\left(U_{1}\right) \leq k n-1$. It follows that

$$
\mathrm{v}_{a_{1}}\left(U_{1}\right) \geq n-2 t+3 \text { and } \mathrm{v}_{b_{1}}\left(U_{1}\right) \geq n-2 t+3 .
$$

If $a_{1} \notin\{a, b\}$, then $r=\left|U_{1}\right| \geq \mathrm{v}_{a}\left(U_{1}\right)+\mathrm{v}_{b}\left(U_{1}\right)+\mathrm{v}_{a_{1}}\left(U_{1}\right) \geq \mathrm{v}_{a}(U)+\mathrm{v}_{b}(U)-v+\mathrm{v}_{a_{1}}\left(U_{1}\right) \geq$ $(k+1) n-2 t+2-v+n-2 t+3 \geq(k+1) n-t+(n-3 t-m+5)>(k+1) n-t=r$, a contradiction. Therefore, $a_{1} \in\{a, b\}$. Similarly, $b_{1} \in\{a, b\}$. Hence, $\left\{a_{1}, b_{1}\right\}=\{a, b\}$. But $\mathrm{v}_{a}\left(U_{1}\right)+\mathrm{v}_{b}\left(U_{1}\right)<\mathrm{v}_{a}(U)+\mathrm{v}_{b}(U)$, a contradiction to the minimality of U. This proves Claim 3.1.

For every $h \in \varphi(G)=C_{m} \oplus H$, let W_{h} be the subsequence of W such that $\varphi\left(W_{h}\right)=h^{v_{h}(\varphi(W))}$.
Claim 3.2. If $\left|W_{h}\right| \geq m+1$ then $\left|\operatorname{supp}\left(W_{h}\right)\right| \leq 2$.

Proof. Assume to the contrary that $\left|W_{h}\right| \geq m+1$ and $\left|\operatorname{supp}\left(W_{h}\right)\right| \geq 3$ for some $h \in \varphi(G)=C_{m} \oplus H$. Take three distinct elements $g_{0}, g_{1}, g_{2} \in \operatorname{supp}\left(W_{h}\right)$. Let W^{\prime} be a subsequence of $W_{h}\left(g_{0} g_{1} g_{2}\right)^{-1}$ of length $\left|W^{\prime}\right|=m-2$. Then, $W^{\prime} g_{0} g_{1}, W^{\prime} g_{0} g_{2}$ and $W^{\prime} g_{1} g_{2}$ are three subsequences of W_{h} with each having sum in $\operatorname{ker}(\varphi)=C_{n}$. But the sums $\sigma\left(W^{\prime} g_{0} g_{1}\right), \sigma\left(W^{\prime} g_{0} g_{2}\right), \sigma\left(W^{\prime} g_{1} g_{2}\right)$ are pairwise distinct, a contradiction to Claim 3.1. This proves Claim 3.2.

So, for every $\left|W_{h}\right| \geq m+1$ we have

$$
W_{h}=x_{h}^{u_{h}} y_{h}^{v_{h}},
$$

where $x_{h}, y_{h} \in G, u_{h} \geq v_{h} \geq 0$ and $u_{h}+v_{h}=\left|W_{h}\right|=\mathrm{v}_{h}(\varphi(W))$.
Write

$$
u_{h}=p_{h} m+r_{h} \text { and } v_{h}=q_{h} m+s_{h}
$$

where $p_{h}, r_{h}, q_{h}, s_{h} \in \mathbb{N}_{0}$ and $r_{h}, s_{h} \in[0, m-1]$.
For every $h \in \varphi(G)=C_{m} \oplus H$ with $\left|W_{h}\right| \geq m+1, W_{h}$ has the following decomposition

$$
W_{h}=\underbrace{x_{h}^{m} \cdot \ldots \cdot x_{h}^{m}}_{p_{h}} \underbrace{y_{h}^{m} \cdot \ldots \cdot y_{h}^{m}}_{q_{h}}\left(x_{h}^{r_{h}} y_{h}^{s_{h}}\right) .
$$

Let

$$
W^{\prime}=\prod_{h \in C_{m} \oplus H,\left|W_{h}\right| \geq m+1} \underbrace{x_{h}^{m} \cdot \ldots \cdot x_{h}^{m}}_{p_{h}} \underbrace{y_{h}^{m} \cdot \ldots \cdot y_{h}^{m}}_{q_{h}}=T_{1} T_{2} \cdot \ldots \cdot T_{f}
$$

where $f=\sum_{h \in C_{m} \oplus H,\left|W_{h}\right| \geq m+1}\left(p_{h}+q_{h}\right)$ and for each $i \in[1, f]$ we have $T_{i}=x_{h}^{m}$ or $T_{i}=y_{h}^{m}$ for some $h \in C_{m} \oplus H$.

Let

$$
R=\prod_{i=1}^{f} \sigma\left(T_{i}\right)
$$

It follows from Claim 3.1 that $\operatorname{supp}(R) \subseteq\{a, b\}$. Without loss of generality we assume that

$$
\mathrm{v}_{a}(R) \geq \mathrm{v}_{b}(R)
$$

Let $\lambda=\mathrm{v}_{a}(R)$. Then,

$$
\begin{aligned}
\lambda & =\mathrm{v}_{a}(R) \geq \frac{|R|}{2} \\
& =\frac{f}{2}=\frac{\sum_{h \in C_{m} \oplus H,\left|W_{h}\right| \geq m+1}\left(p_{h}+q_{h}\right)}{2} \\
& =\frac{\sum_{h \in C_{m} \oplus H,\left|W_{h}\right| \geq m+1}\left(\left|W_{h}\right|-r_{h}-s_{h}\right)}{2 m} \\
& =\frac{|W|-\sum_{h \in C_{m} \oplus H,\left|W_{h}\right| \geq m+1}\left(r_{h}+s_{h}\right)-\sum_{h \in C_{m} \oplus H,\left|W_{h}\right| \leq m}\left|W_{h}\right|}{2 m} \\
& \geq \frac{|W|-(2 m-2)\left|C_{m} \oplus H\right|}{2 m} \geq \frac{k n+(n-2 m|H|)}{2} .
\end{aligned}
$$

So we have

$$
\begin{equation*}
\lambda \geq \frac{k n+(n-2 m|H|)}{2} \tag{7}
\end{equation*}
$$

By renumbering we may assume that

$$
\sigma\left(T_{1}\right)=\cdots=\sigma\left(T_{\lambda}\right)=a
$$

Let $T_{1}=x^{m}$ and $S^{\prime}=-x+S$. Then

$$
S^{\prime}=T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S^{\prime \prime}
$$

where $T_{i}^{\prime}=-x+T_{i}$ for every $i \in[1, \lambda]$, and $T_{1}^{\prime}=0^{m}, \sigma\left(T_{i}^{\prime}\right)=0$ for each $i \in[1, \lambda]$.
By (7) and the hypothesis of the theorem we have

$$
\left|T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime}\right|=m \lambda \geq \mathrm{D}(G)-1 .
$$

Therefore,

$$
\left|S^{\prime \prime}\right|=|S|-\left|T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime}\right|=k m n+\mathrm{D}(G)-1-\left|T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime}\right| \leq k m n .
$$

Let S_{0} be the maximal (in length) zero-sum subsequence of $S^{\prime \prime}$. Then, $\left|S^{\prime \prime}\right|-\left|S_{0}\right|=\left|S^{\prime \prime} S_{0}^{-1}\right| \leq$ $D(G)-1$. Hence,

$$
\left|S^{\prime \prime}\right|-\mathrm{D}(G)+1 \leq\left|S_{0}\right| \leq\left|S^{\prime \prime}\right| \leq k m n
$$

Note that $\left|0^{m} T_{2}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S_{0}\right|=|S|-\left|S^{\prime \prime}\right|+\left|S_{0}\right|=k m n+\mathrm{D}(G)-1-\left(\left|S^{\prime \prime}\right|-\left|S_{0}\right|\right) \geq k m n$ and $\left|S_{0}\right| \leq k m n$, there exist $m^{\prime} \in[0, m]$ and $\lambda^{\prime} \in[0, \lambda]$ such that

$$
\left|0^{m^{\prime}} T_{2}^{\prime} \cdot \ldots \cdot T_{\lambda^{\prime}}^{\prime} S_{0}\right|=k m n .
$$

So, $0^{m^{\prime}} T_{2}^{\prime} \cdot \ldots \cdot T_{\lambda^{\prime}}^{\prime} S_{0}$ is a zero-sum subsequence of length $k m n$ and therefore $x^{m^{\prime}} T_{2} \cdot \ldots \cdot T_{\lambda^{\prime}}\left(x+S_{0}\right)$ is a zero-sum subsequence of S, a contradiction. This proves that $\mathbf{s}_{k m n}(G)=k m n+\mathrm{D}(G)-1$ for every $k \geq 2$. Now $\ell(G)=2$ follows from (2).

4. Concluding Remarks and Open Problems

In this section we shall give some concluding remarks and some open problems. For finite abelian groups of rank two we have

Proposition 4.1. Let $G=C_{m} \oplus C_{n}$ with $1<m \mid n$. Then, $\ell(G)=2$.

Let G be a finite abelian group and let d be a positive integer. Let $\mathrm{s}_{d \mathbb{N}}(G)$ be the smallest integer t such that every sequence over G of length at least t contains a zero-sum subsequence of length divided by d.

Lemma 4.2. Let $G=C_{m} \oplus C_{n}$ with $1<m \mid n$. Then,

1. $\mathrm{s}(G)=2 n+2 m-3$. ([21, Theorem 5.8.3])
2. $\mathrm{S}_{n \mathbb{N}}(G)=2 n+m-2$. ([20, Theorem 5.2])

Proof of Proposition 4.1. For any positive integer $k \geq 2$, it suffices to prove that $\mathbf{s}_{k n}(G) \leq$ $k n+\mathrm{D}(G)-1$. Let S be a sequence over G of length $k n+\mathrm{D}(G)-1=k n+n+m-2$. We need to prove S contains a zero-sum subsequence of length $k n$.

We proceed by induction on k. For $k=2$, by Lemma 4.2.1, S contains a zero-sum subsequence S_{1} of length n. Since $3 n>\left|S S_{1}^{-1}\right|=2 n+m-2$, by Lemma 4.2.2, $S S_{1}^{-1}$ contains a zero-sum subsequence S_{2} of length $\left|S_{2}\right| \in\{n, 2 n\}$. Therefore, either $S_{1} S_{2}$ or S_{2} is a zero-sum subsequence of S of length $2 n$.

Now suppose that the proposition holds for $k=r$, we want to prove it for $k=r+1$. By Lemma 4.2.1, S contains a zero-sum subsequence T_{1} of length n. Since $\left|S T_{1}^{-1}\right|=(r+1) n+\mathrm{D}(G)-$ $1-n=r n+\mathrm{D}(G)-1$, by induction hypothesis, $S T_{1}^{-1}$ contains a zero-sum subsequence T_{2} of length $\left|T_{2}\right|=r n$. So, $T_{1} T_{2}$ is a zero-sum subsequence of S of length $\left|T_{1} T_{2}\right|=(r+1) n$.

Let $r \in[1, \mathrm{D}(G)-1]$, and let S be a sequence over G of length $|S|=|G|+r-1$ with $0 \notin \Sigma_{|G|}(S)$. In 1999, Bollobás and Leader [2] considered the problem of bounding $\left|\Sigma_{|G|}(S)\right|$ from below.

For every $r \in[1, \mathrm{D}(G)-1]$, define

$$
f(G ; r)=\max \{|\Sigma(T)|:|T|=r, T \text { is a zero-sumfree sequence over } G\} .
$$

$f(G ; r)$ has been studied recently by several authors (for example, see [15, 16, 24]).
Proposition 4.3. Let H be an arbitrary finite abelian group with $\exp (H)=m \geq 2$, and let $G=$ $C_{m n} \oplus H$. Let $r \in[1, \mathrm{D}(G)-1]$ and $k \geq 3$, and let S be a sequence over G of length $|S|=k m n+r-1$. Suppose that $n \geq 2 m|H|+2|H|$. If $0 \notin \Sigma_{k m n}(S)$ then $\left|\Sigma_{k m n}(S)\right| \geq f(G ; r)$.

Proof. Similarly to the proof of Theorem 1.1 we can find an element $x \in G$ such that $x+S$ has a factorization

$$
x+S=T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S^{\prime \prime}
$$

with $T_{1}^{\prime}=0^{m}, \sigma\left(T_{i}^{\prime}\right)=0$ and $\left|T_{i}^{\prime}\right|=m$ for each $i \in[1, \lambda]$, and

$$
\lambda \geq \frac{(k-1) n+(n-2 m|H|)}{2}
$$

By Lemma 2.3, $r \leq \mathrm{D}(G) \leq m n+m|H|-m$. It follows from $k \geq 3$ and $n \geq 2 m|H|+2|H|$ that

$$
\left|S^{\prime \prime}\right| \leq k m n .
$$

Let S_{0} be the maximal (in length) zero-sum subsequence of $S^{\prime \prime}$. Then,

$$
\left|S^{\prime \prime}\right|-\left|S_{0}\right|=\left|S^{\prime \prime} S_{0}^{-1}\right| \leq \mathrm{D}(G)-1 .
$$

If $\lambda m+\left|S_{0}\right|=\left|T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S_{0}\right| \geq k m n$, then similarly to the proof of Theorem 1.1 we can prove that $0 \in \Sigma_{k m n}(x+S)=\Sigma_{k m n}(S)$, a contradiction. Therefore,

$$
\lambda m+\left|S_{0}\right|=\left|T_{1}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S_{0}\right| \leq k m n
$$

Hence,

$$
\left|S^{\prime \prime} S_{0}^{-1}\right| \geq r
$$

Let W be an arbitrary subsequence of $S^{\prime \prime} S_{0}^{-1}$ of length $|W|=r$, and let $W^{\prime}=S^{\prime \prime} S_{0}^{-1} W^{-1}$. Then,

$$
x+S=0^{m} T_{2}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S_{0} W^{\prime} W
$$

From the maximality of S_{0} we know that $W^{\prime} W$ is zero-sum free. So, W is a zero-sum free sequence of length r. Hence,

$$
|\Sigma(W)| \geq f(G ; r)
$$

For every $y \in \Sigma(W)$, there is a nonempty subsequence $W_{0} \mid W$ such that $y=\sigma\left(W_{0}\right)$. Therefore, $\sigma\left(W^{\prime}\right)+y=\sigma\left(W^{\prime} W_{0}\right)=\sigma\left(0^{m} T_{2}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S_{0} W^{\prime} W_{0}\right)$. Note that $\left|0^{m} T_{2}^{\prime} \cdot \ldots \cdot T_{\lambda}^{\prime} S_{0} W^{\prime} W_{0}\right|=|S|-\left|W W_{0}^{-1}\right| \geq$ $k m n$, in a similar way to the proof of Theorem 1.1, we can prove that $\sigma\left(W^{\prime}\right)+y \in \Sigma_{k m n}(x+S)=$ $\Sigma_{k m n}(S)$. This proves that $\left|\Sigma_{k m n}(S)\right| \geq\left|\sigma\left(W^{\prime}\right)+\Sigma(W)\right|=|\Sigma(W)| \geq f(G ; r)$.

We end the paper by discussing some conjectures related to the problems we investigated.
Conjecture 4.4. [17] For every non-cyclic finite abelian group G the sequence

$$
\left\{\mathbf{s}_{k m}(G)-k m\right\}_{k=1}^{\ell(G)-1}
$$

is strictly decreasing.
Conjecture 4.5. [26] If $G=C_{n}^{r}$ then $s_{k n}(G)=k n+r(n-1)$ holds for every positive integer $k \geq r$.

Let G be a finite abelian group with $\exp (G)=m$. For every $k \in \mathbb{N}$, let $\eta_{k m}(G)$ denote the smallest integer t such that every sequence S over G of length $|S| \geq t$ contains a zero-sum subsequence T of length $|T| \in[1, k m]$.

Conjecture 4.6. Let G be a finite abelian group with $\exp (G)=m$. Then, $\mathrm{s}_{k m}(G)=\eta_{k m}(G)+k m-1$ for every $k \in \mathbb{N}$.

For $k=1$, Conjecture 4.6 was formulated by the first author in [10]. If $k m \geq \mathrm{D}(G)$, we clearly have that $\eta_{k m}(G)=\mathrm{D}(G)$. So, Conjecture 4.6, if true, together with (2) would imply the following

Conjecture 4.7. Let G be a finite abelian group with $\exp (G)=m$. Then, $\ell(G)=\left\lceil\frac{\mathrm{D}(G)}{m}\right\rceil$.

Acknowledgements. This work has been supported by the 973 Program of China (Grant No. 2013CB834204), and by the PCSIRT Project of the Ministry of Science and Technology, and the National Science Foundation of China.

References

[1] N. Alon, M. Dubiner, A lattice point problem and additive number theory, Combinatorica 15 (1995) 301-309.
[2] B. Bollobás, I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999) 27-35.
[3] A. Bialostocki, P. Dierker, D. Grynkiewicz and M. Lotspeich, On some developments of the Erdös-Ginzburg-Ziv theorem II, Acta Arith. 110 (2003) 173-184.
[4] M. DeVos, L.Goddyn and B. Mohar, A generalization of Kneser's addition theorem, Adv. Math. 220 (2009) 1531-1548.
[5] Y. Edel, Sequences in abelian groups G of odd order without zero-sum subsequences of length $\exp (G)$, Des. Codes and Cryptogr. 47 (2008) 125-134.
[6] C. Elsholtz, Lower bounds for multidimensional zero sums, Combinatorica 24 (2004) 351358.
[7] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10 (1961) 41-43.
[8] Y.S. Fan, W.D. Gao and Q.H. Zhong, On the Erdös-Ginzburg-Ziv constant of finite abelian groups of high rank, J. Number Theory 131 (2011) 1864-1874.
[9] Y.S. Fan, W.D. Gao, L.L. Wang and Q.H. Zhong, Two zero-sum invariants on finite abelian groups, European J. Combinatorics, accepted 2013.
[10] W.D. Gao, On zero-sum subsequences of restricted size II. Discrete Math. 271 (2003) 51-59.
[11] W.D. Gao, Some problems in additive group theory and additive number theory, Ph.D. thesis, Sichuan University, 1994.
[12] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory, 58 (1996) 100-103.
[13] W.D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups:A survey, Expo. Math. 24 (2006) 337-369.
[14] W.D. Gao, Q.H. Hou, W.A. Schmid, and R. Thangadurai, On short zero-sum subsequences II, Integers: Electronic Journal of Combinatorial Number Theory, 7 (2007), paper A21, 22pp.
[15] W.D. Gao, I. Leader, Sums and k-sums in abelian groups of order k, J. Number Theory 120 (2006) 1-7.
[16] W.D. Gao, Y.L. Li, J.T. Peng and F. Sun, On subsequence sums of a zero-sum free sequence II, Electron. J. Combin. 15 (2008) R117, 21pp.
[17] W.D. Gao and R. Thangadurai, On zero-sum sequences of prescribed length, Aequationes Math. 72 (2006) 201-212.
[18] W.D. Gao and Y.X. Yang, Note on a combinatorial constant, J. Math. Res. Exposition 17 (1997) 139-140.
[19] A. Geroldinger, Additive group theory and non-unique factorizations, Combinatorial Number Theory and Additive Group Theory (A. Geroldinger and I. Ruzsa, eds.), Advanced Courses in Mathematics CRM Barcelona, Birkhäuser, 2009, pp. 1-86.
[20] A. Geroldinger, D.J. Grynkiewicz and W.A. Schmid, Zero-sum problems with congruence conditions, Acta Math. Hungarica. 131 (2011) 323-345.
[21] A. Geroldinger and F. Halter-Koch, Non-unique factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math., vol. 278, Chapman \& Hall/CRC, 2006.
[22] Y.O. Hamidoune, A weighted generalization of Gao's $n+D-1$ theorem, Combin. Probab. Comput. 17 (2008) 793-798.
[23] H. Harborth, Ein Extremalproblem für Gitterpunkte, J. Reine Angew. Math. 262 (1973) 356360 .
[24] A. Pixton, Sequences with small subsum sets, J. Number Theory 129 (2009) 806-817.
[25] A. Kemnitz, On a lattice point problem, Ars Combin. 16 (1983) 151-160.
[26] S. Kubertin, Zero-sums of length kq in \mathbb{Z}_{q}^{d}, Acta Arith. 116 (2005) 145-152.
[27] C. Reiher, On Kemnitz' conjecture concerning lattice points in the plane, Ramanujan J. 13 (2007) 333-337.
[28] S. Savchev and F. Chen, Long zero-free sequences in finite cyclic groups, Discrete Mathematics, 307 (2007) 2671-2679
[29] S. Savchev and F. Chen, Long n-zero-free sequences in finite cyclic groups, Discrete Mathematics, 308 (2008) 1-8.
[30] W.A. Schmid and J.J. Zhuang, On short zero-sum subsequences over p-groups, Ars Comb. 95 (2010), 343-352.
[31] P. Yuan, On the indexes of minimal zero-sum sequences over finite cyclic groups, J. Combin. Theory Ser. A, 114 (2007) 1545-1551.
[32] X.N. Zeng and P.Z. Yuan, Weighted Davenports constant and the weighted EGZ Theorem, Discrete Math., 311 (2011) 1940-1947.

APPENDIX

Proof of Lemma 2.2

For every sequence S over a finite abelian group G, let

$$
\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S), g \in G\right\} .
$$

Lemma 4.8. [19, Proposition 4.2.6] If S is a sequence over G of length $|S| \geq|G|$ then S contains a zero-sum subsequence T of length $|T| \in[1, \mathrm{~h}(S)]$.

Let $G=C_{n}$. For a sequence $S=\left(x_{1} g\right) \cdot\left(x_{2} g\right) \cdot \ldots \cdot\left(x_{\ell} g\right)$, where $g \in G \backslash\{0\}$ and $x_{i} \in[1, \operatorname{ord}(g)]$, let

$$
L_{g}(S)=\sum_{i=1}^{\ell} x_{i} \in \mathbb{N}
$$

Lemma 4.9. [28, 31] Let $G=C_{n}$. Let S be a zero-sum free sequence of length greater that $\frac{n}{2}$. Then there exists $g \in G$ such that $L_{g}(S)<n$.

Lemma 4.10. [29, Proposition 3] Let $G=C_{n}$, and let S be a zero-sum free sequence over G. Suppose that there exists $g \in G$ such that $L_{g}(S)<\min \{2|S|, n\}$. Then:
(a). $\mathrm{v}_{g}(S) \geq 2|S|-L_{g}(S)$.
(b). For each integer $x \in\left[2|S|-L_{g}(S), L_{g}(S)\right]$, there exists a subsequence T of S with length at least $2|S|-L_{g}(S)$ such that $\sigma(T)=x g$.

Proof Lemma 2.2. Without of loss generality assume that $\mathrm{v}_{0}(S)=\mathrm{h}(S)$. Let

$$
S=0^{h(S)} T_{1} T_{2}
$$

where T_{1} is a zero-sum subsequence of S with nonzero terms and of maximum length, T_{2} is zerosum free.

Claim 1. $\mathrm{v}_{0}(S)+\left|T_{1}\right|=\mathrm{h}(S)+\left|T_{1}\right| \leq k n-1$.
Proof of Claim 1. Assume to the contrary that $v_{0}(S)+\left|T_{1}\right| \geq k n$. If $\left|T_{1}\right|<k n$, then $0^{k n-\left|T_{1}\right|} T_{1}$ is a zero-sum sequence of length $k n$, yielding a contradiction. Next assume that $\left|T_{1}\right| \geq k n$, by Lemma 4.8 we can find a zero-sum subsequence T_{1}^{\prime} of T_{1}, such that $k n \geq\left|T_{1}^{\prime}\right| \geq k n-\mathrm{v}_{0}(S)$, and therefore $0^{k n-\left|T_{1}^{\prime}\right|} T_{1}^{\prime}$ is a zero-sum sequence of length $k n$, yielding a contradiction. This proves Claim 1.

By Claim 1 we have

$$
\left|T_{2}\right| \geq n-t+1>\frac{n}{2}
$$

It follows from Lemma 4.9 that there exists $g \in G$, such that $\frac{n}{2}<L_{g}\left(T_{2}\right)<n$. Let $T_{1}=g^{w}\left(b_{1} g\right)$. $\cdots \cdot\left(b_{q} g\right)$, where $2 \leq b_{1} \leq b_{2} \leq \cdots \leq b_{q} \leq n-1$ and $q \in \mathbb{N}_{0}$.

Claim 2. Suppose that $b_{j_{1}}, \ldots, b_{j_{m}}$ are m terms such that the integer X satisfies $X \equiv b_{j_{1}}+\cdots+b_{j_{m}}$ $(\bmod n)$ and $1<X \leq L_{g}\left(T_{2}\right)$. Then $m \geq 2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$ if $2\left|T_{2}\right|-L_{g}\left(T_{2}\right) \leq X \leq L_{g}\left(T_{2}\right)$ and $m \geq X$ if $1<X<2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$.

Proof of Claim 2. Let $T_{1}^{\prime}=\left(b_{j_{1}} g\right) \cdot \ldots \cdot\left(b_{j_{m}} g\right)$. Then $\sigma\left(T_{1}^{\prime}\right)=L_{g}\left(T_{1}^{\prime}\right) g=X g$. Let $2\left|T_{2}\right|-L_{g}\left(T_{2}\right) \leq$ $X \leq L_{g}\left(T_{2}\right)$. By Lemma 4.10, there is a subsequence T_{2}^{\prime} of T_{2} with length at least $2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$ such that $X=L_{g}\left(T_{2}^{\prime}\right) \equiv \sum_{i=1}^{m} b_{j_{i}}(\bmod n)$, hence $\sigma\left(T_{2}^{\prime}\right)=\sum_{i=1}^{m} b_{j_{i}} g=\sigma\left(T_{1}^{\prime}\right)$. By the maximum of the length of T_{1}, we have $m \geq\left|T_{2}^{\prime}\right| \geq 2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$. Similarly, if $1<X<2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$ then $X g$ can be expressed as the sum of X terms equal to g of T_{2}. The same argument as above gives $m \geq X$. This proves Claim 2.

By Claim 2 we infer that

$$
b_{j}>L_{g}\left(T_{2}\right), j=1, \ldots, q
$$

Indeed, if $1<b_{j} \leq L_{g}\left(T_{2}\right)$ for some j then $1 \geq 2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$ or $1 \geq b_{j}$, both of which are not true. Therefore $n-b_{j}<n-L_{g}\left(T_{2}\right)<\frac{n}{2}, j=1, \ldots, q$.

Claim 3. $L_{g}\left(T_{2}\right)+\sum_{j=1}^{q}\left(n-b_{j}\right)<n$.
Proof of Claim 3. We may assume that $q \geq 1$. Suppose that Claim 3 is false, then $L_{g}\left(T_{2}\right)+\sum_{j=1}^{q}(n-$ $\left.b_{j}\right) \geq n$. Let $m \in[1, q]$ be the least integer such that there exist $1 \leq j_{1}<j_{2}<\cdots<j_{m} \leq q$ with $\sum_{i=1}^{m}\left(n-b_{j_{i}}\right)+L_{g}\left(T_{2}\right) \geq n$. Let

$$
X=n-\sum_{i=1}^{m}\left(n-b_{j_{i}}\right)
$$

under the assumption that $\sum_{i=1}^{m}\left(n-b_{j_{i}}\right)+L_{g}\left(T_{2}\right) \geq n$. Then $X \leq L_{g}\left(T_{2}\right)$. By the minimality of m we infer that

$$
X+\left(n-b_{j_{t}}\right)>L_{g}\left(T_{2}\right) \text { for every } t \in[1, m] .
$$

Then $X>L_{g}\left(T_{2}\right)-\left(n-b_{j_{t}}\right)>L_{g}\left(T_{2}\right)-\left(n-L_{g}\left(T_{2}\right)\right)=2 L_{g}\left(T_{2}\right)-n \geq 1$ and hence $1<X \leq L_{g}\left(T_{2}\right)$.
First assume that $1<X<2\left|T_{2}\right|-L_{g}\left(T_{2}\right)$. Claim 2 gives $m \geq X$. Recalling that $X+\left(n-b_{j_{t}}\right)>$ $L_{g}\left(T_{2}\right)$, we have $n-b_{j_{t}} \geq L_{g}\left(T_{2}\right)+1-X>0$ for $t=1, \ldots, m$, which implies that

$$
\begin{aligned}
n & =X+\sum_{i=1}^{m}\left(n-b_{j_{i}}\right) \geq X+m\left(L_{g}\left(T_{2}\right)+1-X\right) \\
& \geq X+X\left(L_{g}\left(T_{2}\right)+1-X\right)=X\left(L_{g}\left(T_{2}\right)+2-X\right)
\end{aligned}
$$

Consider the quadratic function $f(t)=t^{2}-\left(L_{g}\left(T_{2}\right)+2\right) t+n$. We obtained $f(X) \geq 0$ for some $X \in\left\{2, \ldots, 2\left|T_{2}\right|-L_{g}\left(T_{2}\right)-1\right\}$. But the maximum of $f(t)$ on $\left\{2, \ldots, 2\left|T_{2}\right|-L_{g}\left(T_{2}\right)-1\right\}$ is $f(2)=$ $n-2 L_{g}\left(T_{2}\right)$, and $n-2 L_{g}\left(T_{2}\right)<0$. This is a contradiction

Next assume that $2\left|T_{2}\right|-L_{g}\left(T_{2}\right) \leq X \leq L_{g}\left(T_{2}\right)$. By Claim 2 we have $m \geq 2\left|T_{2}\right|-L_{g}\left(T_{2}\right)>1$. Then

$$
\begin{aligned}
L_{g}\left(T_{2}\right)+1 & \leq X+\left(n-b_{j_{m}}\right)=n-\left(\sum_{i=1}^{m-1}\left(n-b_{j_{i}}\right)\right) \leq n-(m-1) \\
& \leq n-\left(2\left|T_{2}\right|-L_{g}\left(T_{2}\right)-1\right)=\left(n-2\left|T_{2}\right|\right)+L_{g}\left(T_{2}\right)+1 .
\end{aligned}
$$

This implies $n \geq 2\left|T_{2}\right|$, which yields a contradiction. This proves Claim 3 .
Recall that $T_{1}=g^{w}\left(b_{1} g\right) \cdot \ldots \cdot\left(b_{q} g\right)$, where $2 \leq b_{1} \leq b_{2} \leq \cdots \leq b_{q} \leq n-1$ and $q \in \mathbb{N}_{0}$. Since T_{1} is zero-sum we have $w \equiv \sum_{j=1}^{q}\left(n-b_{j}\right)(\bmod n)$. By Claim 3,

$$
0 \leq \sum_{j=1}^{q}\left(n-b_{j}\right)<n \text { and thus } q<n .
$$

Let $w=r n+w^{\prime}$, where $0 \leq w^{\prime} \leq n-1$. Then

$$
w^{\prime}=\sum_{j=1}^{q}\left(n-b_{j}\right) \geq q
$$

Hence $L_{g}\left(T_{2}\right)+w^{\prime}=L_{g}\left(T_{2}\right)+\sum_{j=1}^{q}\left(n-b_{j}\right)<n$. Since $L_{g}\left(T_{2}\right) \geq \mathrm{v}_{g}\left(T_{2}\right)+2\left(\left|T_{2}\right|-\mathrm{v}_{g}\left(T_{2}\right)\right)$ and $w=\mathrm{v}_{g}\left(T_{1}\right)=\mathrm{v}_{g}(S)-\mathrm{v}_{g}\left(T_{2}\right)$, we have

$$
\begin{equation*}
n-1 \geq L_{g}\left(T_{2}\right)+w^{\prime} \geq \mathrm{v}_{g}\left(T_{2}\right)+2\left(\left|T_{2}\right|-\mathrm{v}_{g}\left(T_{2}\right)\right)+w-r n=2\left(\left|T_{2}\right|+w\right)-\mathrm{v}_{g}(S)-r n \tag{8}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
k n-1 \geq \mathrm{v}_{0}(S)+\left|T_{1}\right|=\mathrm{v}_{0}(S)+w+q \geq 2\left(\mathrm{v}_{0}(S)+q\right)-\mathrm{v}_{0}(S)+r n . \tag{9}
\end{equation*}
$$

Adding (8) and (9) and noting that $\mathrm{v}_{0}(S)+q+w+\left|T_{2}\right|=|S|=(k+1) n-t$, we obtain that $\mathrm{v}_{g}(S)+\mathrm{v}_{0}(S) \geq(k+1) n-2 t+2$. Take $a=0$ and $b=g$ and we are done.

Next assume that $1<t<\frac{n+5}{3}$. Assume that $\mathrm{v}_{a}(S)+\mathrm{v}_{b}(S) \geq(k+1) n-2 t+2$ and $\mathrm{v}_{c}(S)+\mathrm{v}_{d}(S) \geq$ $(k+1) n-2 t+2$. By Claim 1 we infer that $\mathrm{v}_{g}(S) \leq k n-1$ for every $g \in\{a, b, c, d\}$, and hence $\mathrm{v}_{g}(S) \geq n-2 t+3$ for every $g \in\{a, b, c, d\}$. If $\{a, b\} \neq\{c, d\}$, without loss of generality assume that $c \notin\{a, b\}$, then $\mathrm{v}_{a}(S)+\mathrm{v}_{b}(S)+\mathrm{v}_{c}(S) \geq(k+1) n-2 t+2+(n-2 t+3)>(k+1) n-t=|S|$, yielding a contradiction. Therefore $\{a, b\}$ is the unique pair with holding (3).

[^0]: E-mail address: wdgao@nankai.edu.cn (W.D. Gao), han-qingfeng @163.com (D.C. Han), jtpeng @aliyun.com (J.T. Peng), sunfang2005@163.com (F. Sun)

