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Abstract

An oriented graph Gσ is a digraph without loops and multiple arcs, where G is

called the underlying graph of Gσ. Let S(Gσ) denote the skew-adjacency matrix

of Gσ. The rank of the skew-adjacency matrix of Gσ is called the skew-rank of

Gσ, denoted by sr(Gσ). The skew-adjacency matrix of an oriented graph is skew

symmetric and the skew-rank is even. In this paper we consider the skew-rank of

simple oriented graphs. Firstly we give some preliminary results about the skew-

rank. Secondly we characterize the oriented graphs with skew-rank 2 and charac-

terize the oriented graphs with pendant vertices which attain the skew-rank 4. As

a consequence, we list the oriented unicyclic graphs, the oriented bicyclic graphs

with pendant vertices which attain the skew-rank 4. Moreover, we determine the

skew-rank of oriented unicyclic graphs of order n with girth k in terms of match-

ing number. We investigate the minimum value of the skew-rank among oriented

unicyclic graphs of order n with girth k and characterize oriented unicyclic graphs

attaining the minimum value. In addition, we consider oriented unicyclic graphs

whose skew-adjacency matrices are nonsingular.
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1 Introduction

Let G be a simple graph of order n with vertex set V (G) = {v1, v2, · · · , vn} and edge

set E(G). The adjacency matrix A(G) of a graph G of order n is the n×n symmetric 0-1

matrix (aij)n×n such that aij = 1 if vi and vj are adjacent and 0, otherwise. We denote by

Sp(G) the spectrum of A(G). The rank of A(G) is called to be the rank of G, denoted by

r(G). Let Gσ ba a graph with an orientation which assigns to each edge of G a direction

so that Gσ becomes an oriented graph. The graph G is called the underlying graph of Gσ.

The skew-adjacency matrix associated to the oriented graph Gσ is defined as the n × n

matrix S(Gσ) = (sij) such that sij = 1 if there has an arc from vi to vj, sij = −1 if there

has an arc from vj to vi and sij = 0 otherwise. Obviously, the skew-adjacency matrix is

skew symmetric. The skew-rank of an oriented graph Gσ, denoted by sr(Gσ), is defined

as the rank of the skew-adjacency matrix S(Gσ). The skew-spectrum Sp(Gσ) of Gσ is

defined as the spectrum of S(Gσ). Note that Sp(Gσ) consists of only purely imaginary

eigenvalues and the skew-rank of an oriented graph is even.

Let Cσ
k = u1u2 · · ·uku1 be an even oriented cycle. The sign of the even cycle Cσ

k ,

denoted by sgn(Cσ
k ), is defined as the sign of

∏k
i=1 suiui+1

with uk+1 = u1. An even

oriented cycle Cσ
k is called evenly-oriented (oddly-oriented) if its sign is positive (negative).

If every even cycle in Gσ is evenly-oriented, then Gσ is called evenly-oriented. An oriented

graph is called an elementary oriented graph if such an oriented graph is K2 or a cycle

with even length. An oriented graph H is called a basic oriented graph if each component

of H is an elementary oriented graph.

The oriented graph Gσ is called multipartite if its underlying graph G is multipartite.

An induced subgraph of Gσ is an induced subgraph of G and each edge preserves the

original orientation in Gσ. For an induced subgraph Hσ of Gσ, let Gσ − Hσ be the

subgraph obtained from Gw by deleting all vertices of Hw and all incident edges. For

V ′ ⊆ V (Gσ), Gσ − V ′ is the subgraph obtained from Gσ by deleting all vertices in V ′

and all incident edges. A vertex of a graph Gσ is called pendant if it is only adjacent

to one vertex, and is called quasi-pendant if it is adjacent to a pendant vertex. A set

M of edges in Gσ is a matching if every vertex of Gσ is incident with at most one edge

in M . It is perfect matching if every vertex of Gσ is incident with exactly one edge in

M . We denote by m
Gσ (i) the number of matchings of Gσ with i edges and by β(Gσ) the

matching number of Gσ (i.e. the number of edges of a maximum matching in Gσ). For

an oriented graph Gσ on at least two vertices, a vertex v ∈ V (Gσ) is called unsaturated

in Gw if there exists a maximum matching M of Gσ in which no edge is incident with v;

otherwise, v is called saturated in Gw. Denote by Pn, Sn, Cn, Kn a path, a star, a cycle

and a complete graph all of which are simple unoriented graphs of order n, respectively.

Kn1,n2,··· ,nr represents a complete r-partite unoriented graphs. A graph is called trivial if
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it has one vertex and no edges.

Recently the study of the skew-adjacency matrix of oriented graphs attracted some

attentions. Cavers et al. [4] provided a paper about the skew-adjacency matrices in which

authors considered the following topics: graphs whose skew-adjacency matrices are all

cospectral; relations between the matching polynomial of a graph and the characteristic

polynomial of its adjacency and skew-adjacency matrices; skew-spectral radii and an

analogue of the Perron-Frobenius theorem; and the number of skew-adjacency matrices of

a graph with distinct spectra. Anuradha and Balakrihnan [2] investigated skew spectrum

of the Cartesian product of an oriented graph with a oriented Hypercube. Anuradha et.

al [3] considered the skew spectrum of special bipartite graphs and solved a conjecture of

Cui and Hou [7]. Hou et al [9] gave an expression of the coefficients of the characteristic

polynomial of the skew-adjacency matrix S(Gσ). As its applications, they present new

combinatorial proofs of some known results. Moreover, some families of oriented bipartite

graphs with Sp(S(Gσ)) = iSp(G) were given. Gong et al [11] investigated the coefficients

of weighted oriented graphs. In addition they established recurrences for the characteristic

polynomial and deduced a formula for the matching polynomial of an arbitrary weighted

oriented graph. Xu [18] established a relation between the spectral radius and the skew

spectral radius. Also some results on the skew-spectral radius of an oriented graph and

its oriented subgraphs were derived. As applications, a sharp upper bound of the skew-

spectral radius of oriented unicyclic graphs was present. Some authors investigated the

skew-energy of oriented graphs, one can refer to [1, 5, 10, 12, 13, 17, 19].

This paper is organized as follows. In Section 2, we list some preliminary results. In

Section 3, we characterize the connected oriented graphs which attaining the skew-rank

2 and determine the oriented graphs with pendant vertex which attaining the skew-rank

4. As a consequence, we investigate oriented unicyclic graphs, oriented bicyclic graphs of

order n with pendant vertices which attain the skew-rank 4, respectively. In Section 4,

we determine the skew-rank of unicyclic graphs of order n with fixed girth in terms of

matching number. Moreover we study the minimum value of skew-rank of the oriented

unicyclic graphs of order n with fixed girth and characterize oriented graphs with the

minimum skew-rank. In Section 5, we consider the non-singularity of the skew-adjacency

matrices of oriented unicyclic graphs.

2 Preliminary Results

The following results can be derived from fundamental matrix theory.

Lemma 2.1 (i). Let Hσ be an induced subgraph of Gσ. Then sr(Hσ) ≤ sr(Gσ).
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(ii). Let Gσ = Gσ
1 ∪Gσ

2 ∪ · · · ∪Gσ
t , where Gσ

1 , G
σ
2 , · · · , Gσ

t are connected components of

Gσ. Then sr(Gσ) =
∑t

i=1 sr(G
σ
i ).

(iii). Let Gσ be an oriented graph on n vertices. Then sr(Gσ) = 0 if and only if Gσ is a

graph without edges (empty graph).

As we know, the oriented tree and its underlying graph have the same spectrum [9, 14].

So the following is immediate from [6].

Lemma 2.2 Let T σ be an oriented tree with matching number β(T ). Then

sr(T σ) = r(T ) = 2β(T ).

The next result is an immediate result of Lemma 2.2.

Lemma 2.3 Let P σ
n be an oriented path of order n. Then sr(P σ

n ) =

{
n− 1, n is odd,

n, n is even.

Lemma 2.4 [9][14] Let Cσ
n be an oriented cycle of order n. Then

sr(Cσ
n) =


n, Cσ

n is oddly-oriented,

n− 2, Cσ
n is evenly-oriented,

n− 1, otherwise.

Lemma 2.5 Let Gσ be an oriented graph containing a pendant vertex v with the unique

neighbor u. Then sr(Gσ) = sr(Gσ − u− v) + 2.

Proof. Assume that all vertices in V (Gσ) are indexed by {v1, v2, · · · , vn} with v1 = v,

v2 = u. Then the skew-adjacency matrix can be expressed as

S(Gσ) =


0 s12 0 · · · 0

s21 0 s23 · · · s2n

0 s32 0 · · · s3n
...

...
...

. . .
...

0 sn2 sn3 · · · 0

 ,
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where the first two rows and columns are labeled by v1, v2. So it follows that

sr(Gσ) = r


0 s12 0 · · · 0

s21 0 0 · · · 0

0 0 0 · · · s3n
...

...
...

. . .
...

0 0 sn3 · · · 0



= r

(
0 s12

s21 0

)
+ r

 0 · · · s3n
...

. . .
...

sn3 · · · 0


= r

(
0 s12

s21 0

)
+ sr(Gσ − v1 − v2)

= 2 + sr(Gσ − u− v).

Remark. In fact the result also holds for the unoriented graph, one can refer to

Corollary 1 (pp.234) [6].

For convenience, the transformation in Lemma 2.5 is called δ−transformation. The

skew-rank of some graph can be derived by finite steps of δ−transformation.

Let w be a common neighbor of two nonadjacent vertices u, v. The edges among u, v

and w have the uniform orientations if the arcs is from u, v to w or from w to u, v. The

edges among u, v and w have the opposite orientations if one arc is from u (v) to w and

the another is from w to v (u).

Two nonadjacent vertices u, v of an oriented graph Gσ are called uniform (opposite)

twins if N(u) = N(v) and the corresponding edges among u, v and each neighbor have

the uniform (opposite) orientations.

u
 v


w
1
 w
2
 w
3


u
 v


w
1
 w
2
 w
3


Figure 1: Uniform twins u, v in the left figure, but opposite twins in the right figure.

Example 2.6 Two graphs shown in Fig. 1 contain uniform, opposite twins. u, v are

uniform twins in the left graph and opposite twins in the right graph.
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For an oriented graph Gσ, the uniform (opposite) twins in S(Gσ) correspond the

identical (opposite) rows and columns. Hence deleting or adding a uniform (opposite)

twin vertex does not change the skew-rank of an oriented graph. Hence we have

Lemma 2.7 Let u, v be uniform (opposite) twins of an oriented graph Gσ. Then sr(Gσ) =

sr(Gσ − u) = sr(Gσ − v).

Two pendant vertices are called pendant twins in Gσ if they have the same neighbor

in Gσ. By Lemma 2.7, we have

Lemma 2.8 Let u, v be pendant twins of an oriented graph Gσ. Then sr(Gσ) = sr(Gσ −
u) = sr(Gσ − v).

By the definitions of uniform (opposite) twins and evenly-oriented graph, we can derive

the following results.

Lemma 2.9 Let Gσ be an oriented complete multipartite graph. If all its 4-vertex cycles

are evenly-oriented, then all vertices in the same vertex partite set are uniform or opposite

twins.

3 Oriented graphs with small skew-rank

According to Lemmas 2.1 and 2.3, it is obvious that sr(Gσ) ≥ 2 if G is a simple non-empty

graph. A natural problem is to characterize the extremal connected oriented graphs whose

skew-ranks attain the lower bound 2 and the second lower bound 4.

v
1


v
2
 v
3


v
4
 v
1
 v
4


v
2
 v
3


Figure 2: Three graphs G1, K1,1,2 and K4

Let G1 be the graph obtained from K3 by adding a pendant edge to some vertex in

K3 (as depicted in Fig. 2). Let Gσ be an oriented graph. Let v be a vertex of Gσ and

V ′ ⊂ V (Gσ). The notation N(v) represents the neighborhood of v in Gσ. Gσ[V ′] denotes

the induced subgraph of Gσ on the vertices in V ′ including the orientations of edges.

Theorem 3.1 Let Gσ be a connected oriented graph of order n (n = 2, 3, 4). sr(Gσ) = 2

if and only if Gσ satisfies one of the following statements:

1. If n = 2, Gσ is an oriented path P σ
2 with arbitrary orientation.
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2. If n = 3, then Gσ is Kσ
3 or P σ

3 . Each edge has any orientation in Gσ.

3. If n = 4, then Gσ is one of the following oriented graphs with some properties:

(a) Evenly-oriented cycle Cσ
4 .

(b) Kσ
1,3 and each edge has any orientation.

(c) Evenly-oriented graph Kσ
1,1,2.

Proof. If n = 2, 3, the results can be easily verified from Lemmas 2.4 and 2.3.

If n = 4, then all 4-vertex connected unoriented graphs are K1,3, C4, P4, K1,1,2, K4,

G1 (as depicted in Fig. 2). By Lemmas 2.3 and 2.5 the oriented graphs with P4 or G1

as the underlying graph have skew-rank 4. And sr(Cσ
4 ) = 4 if Cσ

4 is an oddly-oriented

cycle from Lemma 2.4, but the value is 2 if it is evenly-oriented cycle. If the underlying

graph G is isomorphic to K1,3, then sr(Gσ) = 2 and each edge has any orientation. Next

we shall consider the skew-rank of oriented graphs with K1,1,2 or K4 as their underlying

graphs.

For convenience, all vertices of K1,1,2 are labeled by {v1, v2, v3, v4} (as depicted in Fig.

2). Then the skew-adjacency matrix of the oriented graph Kσ
1,1,2 can be expressed as

S(Kσ
1,1,2) =


0 s12 0 s14

−s12 0 s23 s24

0 −s23 0 s34

−s14 −s24 −s34 0

 .

Then

sr(Kσ
1,1,2) = r


0 s12 0 0

−s12 0 0 0

0 0 0 s34 + s23 · s14
s12

0 0 −s34 − s23 · s14
s12

0

 .

So sr(Kσ
1,1,2) = 2 if and only if s34 + s23 · s14

s12
= 0, i.e., s12s34 + s14s23 = 0 which implies

that the subgraph Cσ
4 with vertex set {v1, v2, v3, v4} of Kσ

1,1,2 is evenly-oriented.

The skew-adjacency matrix of the oriented graph Kσ
4 can be expressed as

S(Kσ
4 ) =


0 s12 s13 s14

−s12 0 s23 s24

−s13 −s23 0 s34

−s14 −s24 −s34 0

 .
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Then

sr(Kσ
4 ) = r


0 s12 0 0

−s12 0 0 0

0 0 0 s34 + s23 · s14
s12

− s24 · s13
s12

0 0 −s34 − s23 · s14
s12

+ s24 · s13
s12

0

 .

Assume that s34 + s23 · s14
s12

− s24 · s13
s12

= 0. It is equivalent to s12s34 + s14s23 = s13s24.

Obviously the value of the left side is 0, 2 or -2. But the value of the right side is 1 or -1.

So s34 + s23 · s14
s12

− s24 · s13
s12

̸= 0. Therefore sr(Kσ
4 ) = 4.

Next we give a lemma which plays a key role in our proof of Theorem 3.3.

Lemma 3.2 [16] A connected graph is not a complete multipartite graph if and only if it

contains P4, G1 (as depicted in Fig. 2) or two copies of P2 as an induced subgraph.

Theorem 3.3 Let Gσ be a connected oriented graph of order n ≥ 5. Then sr(Gσ) = 2 if

and only if the underlying graph of Gσ is a complete bipartite or tripartite graph and all

4-vertex cycles are evenly-oriented in Gσ.

Proof. Sufficiency:

Assume that Gσ is a complete bipartite graph Kn1,n2 and all its 4-vertex cycles are

evenly-oriented. Then all vertices in the same partite vertex set are uniform or opposite

twins by Lemma 2.9. Let X1, X2 be two partite vertex sets of Kn1,n2 . Suppose that

n1 ≥ 2. Let x1, x2 be two arbitrary vertices in X1. By Lemma 2.7, we have sr(Kσ
n1,n2

) =

sr(Kσ
n1,n2

− x1) = sr(Kσ
n1,n2

− x2) = sr(P σ
2 ) = 2.

Similarly, sr(Kσ
n1,n2,n3

) = sr(Kσ
3 ) = 2 if all 4-vertex cycles are evenly-oriented in

Kσ
n1,n2,n3

.

Necessity:

Assume that the underlying graph G is not a complete multipartite graph. Then G

must contain P4, G1 (as depicted in Fig. 2) or two copies of P2 as an induced subgraph

by Lemma 3.2. This implies that sr(Gσ) ≥ 4 which is a contradiction.

Combining the above discussion, we infer that G is a complete multipartite graph.

Assume that the underlying graph G is a complete t-partite graph Kn1,n2,··· ,nt . Suppose

that t ≥ 4. Then Gσ must contain an induced subgraph Kσ
4 . From the proof of Theorem

3.1, sr(Gσ) ≥ sr(Kσ
4 ) = 4. So t = 2 or 3.

Case 1. t = 2.

Let X1, X2 be the two partite vertex sets of Kn1,n2 . If the cardinality of one of them

is one, the Gσ is an oriented star Kσ
1,n−1 and each edge has arbitrary orientation. Assume

that the cardinality of every partite vertex set is more than one. If Kσ
n1,n2

contains an

8



oddly-oriented cycle Cσ
4 as an induced subgraph, then sr(Kσ

n1,n2
) ≥ sr(Cσ

4 ) = 4. So all

4-vertex cycles in Kσ
n1,n2

are evenly-oriented.

Case 2. t = 3.

Similarly to the above discussion, we conclude that all 4-vertex cycles in Kσ
n1,n2,n3

are

evenly-oriented.

Theorem 3.4 Let Gσ be an oriented graph with pendant vertex of order n. Then sr(Gσ) =

4 if and only if Gσ is one of the following oriented graphs with some properties:

1. Graphs obtained by inserting some edges with arbitrary orientation between the cen-

ter of Sσ
n−n1−n2

(n1+n2 ≥ 2) and some vertices (maybe partial or all ) of a complete

bipartite oriented graph Kσ
n1,n2

such that all 4-vertex cycles in Kσ
n1,n2

are evenly-

oriented.

2. Graphs obtained by inserting some edges with arbitrary orientation between the cen-

ter of Sσ
n−n1−n2−n3

(n1 + n2 + n3 ≥ 3) and some vertices (maybe partial or all) of a

complete tripartite oriented graph Kσ
n1,n2,n3

such that all 4-vertex cycles in Kσ
n1,n2,n3

are evenly-oriented.

Proof. Sufficiency: It is easy to verify that the results hold by Lemma 2.5 and Theorem

3.3.

Necessity: Assume that sr(Gσ) = 4. Let x be a pendant vertex in Gσ and N(x) = y.

Suppose that Gσ − x − y = Gσ
11 ∪ Gσ

12 ∪ · · · ∪ Gσ
1t where Gσ

11, G
σ
12, · · · , Gσ

1t are connected

components of Gσ − x − y. If each Gσ
1i (i = 1, 2, · · · , t) is trivial, then Gσ − x − y is an

oriented star. So sr(Gσ) = 2 which is a contradiction. Next we shall verify that there

exists exactly one nontrivial connected components in Gσ − x− y.

Assume that there exist two nontrivial connected components in Gσ −x− y. Without

loss of generality, we denote them by G11, G12.

By Lemma 2.5, we have

sr(Gσ) = 2 + sr(Gσ − x− y)

= 2 +
2∑

j=1

sr(Gσ
1j)

≥ 2 +
2∑

j=1

2 since sr(Gσ
1j) ≥ 2

= 6.

This is a contradiction.
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So there exits exactly one nontrivial connected component in Gσ−x−y. Without loss

of generality, assume that Gσ
11 is nontrivial. So G

σ−x−y = Gσ
11∪(n−|Gσ

11|−2)K1. Hence

sr(Gσ) = sr(Gσ
11) + 2 ≥ 4 with the equality holding if and only if sr(Gσ

11) = 2. So Gσ
11 is

one of the graphs as described in Theorem 3.3. It is evident that the subgraph induced by

x, y and all isolated vertices in Gσ − x− y is an oriented star Sσ
n−|Gσ

11|
. Therefore Gσ can

be obtained by inserting some edges with any orientation between the center of Sσ
n−|Gσ

11|

and some vertices (maybe partial or all) of Gσ
11.

.
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Figure 3: Four unoriented unicyclic graphs U r,s
1 , Up,q

2 , Un−4
3 , Un−5

4

By Lemma 2.4 and Theorem 3.4, we have

Theorem 3.5 Let Uσ be an oriented unicyclic graph of order n and Cσ be the oriented

cycle in Uσ. Then sr(Uσ) = 4 if and only if Uσ is one of the following graphs with some

properties:

1. The oddly-oriented cycle Cσ
4 ,or the evenly-oriented cycle Cσ

6 , or the oriented cycle

C5 with any orientation.

2. The oriented graphs with U r,s
1 (r + s = n − 3), Up,q

2 (p + q = n − 4) or Un−4
3 (as

depicted in Fig. 3) as the underlying graph and each edge has any orientation in

Uσ.

3. The oriented graphs with Un−5
4 (as depicted in Fig. 3) as the underlying graph in

which Cσ
4 is an evenly-oriented cycle.

Theorem 3.6 Let Bσ be an oriented bicyclic graph of order n with pendant vertices.

Then sr(Bσ) = 4 if and only if Bσ is one of the following graphs with some properties:

1. The oriented graphs with B1, B2 or B3 (as depicted in Fig. 4) as the underlying

graph in which each edge has any orientation.

2. The oriented graphs with B4 or B5 (as depicted in Fig. 4) as the underlying graph

in which the subgraph induced by vertices ui (i = 1, 2, 3, 4) is an even-oriented cycle.

3. The oriented graphs with B6 or B7 (as depicted in Fig. 4) as the underlying graph

such that all 4-vertex cycles induced by four vertices among wi (i = 1, 2) and vj

(j = 1, 2, 3) are evenly-oriented.
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4. The oriented graphs with B8 or B9 (as depicted in Fig. 4) as the underlying graph

such that the induced subgraph Kσ
1,1,2 is evenly-oriented.

.
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Figure 4: Nine unoriented bicyclic graphs Bi’s (i = 1, 2, · · · , 9)

4 Skew-rank of oriented unicyclic graphs

In this section we determine the skew-rank of the oriented unicyclic graphs of order n

with girth k in terms of matching number. Moreover, we investigate the minimum value

of the skew-rank among oriented unicyclic graphs of order n with girth k and characterize

the extremal oriented unicyclic graphs.

Lemma 4.1 [9, 11] Let Gσ be an oriented graph of order n with skew adjacency matrix

S(Gσ) and its characteristic polynomial

ϕ(Gσ, λ) =
n∑

i=0

(−1)iaiλ
n−i = λn − a1λ

n−1 + a2λ
n−2 + · · ·+ (−1)n−1an−1λ+ (−1)nan.

Then

ai =
∑
H

(−1)c
+

2c

if i is even, where the summation is over all basic oriented subgraphs H of Gσ having i

vertices and c+, c are the numbers of evenly-oriented even cycles and even cycles contained

in H , respectively. In particular, ai = 0 if i is odd.

Theorem 4.2 Let Gσ be an oriented unicyclic graph of order n with girth k and matching

number β(Gσ). Then

sr(Gσ) =

{
2β(Gσ)− 2, if Cσ

k is evenly-oriented and β(Gσ) = 2β(Gσ − Cσ
k ),

2β(Gσ), ortherwise.
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Proof. If i > β(Gσ), Gσ contains no basic oriented subgraphs with 2i vertices and a2i = 0.

Suppose that i ≤ β(Gσ). Note that λn−2β(Gσ) is a factor of the characteristic polynomial

ϕ(Gσ, λ) of S(Gσ), which implies sr(Gσ) ≤ 2β(Gσ). So we consider the coefficient a2β(Gσ).

Next we divide into three cases to verify this result.

Case 1. k is odd.

Note that there does not exist even cycle in every basic oriented subgraph H . So

a2β(Gσ) =
∑

H (−1)020 =
∑

H 1 ̸= 0. It yields sr(Gσ) = 2β(Gσ).

Case 2. k is even and Cσ
k is oddly-oriented.

There exists an even cycle in some basic oriented subgraph, but no evenly-oriented

cycle in any basic oriented subgraph. So a2β(Gσ) ̸= 0 which implies sr(Gσ) = 2β(Gσ).

Case 3. k is even and Cσ
k is evenly-oriented.

Let H be the set of basic oriented subgraphs on 2β(Gσ) vertices. Let H1 be the set

of basic oriented subgraphs on 2β(Gσ) vertices which contain only β(Gσ) copies of K2.

Let H2 be the set of basic oriented subgraphs on 2β(Gσ) vertices which contain Cσ
k and

β(Gσ)− k
2
copies of K2. Obviously, H = H1 +H2. Thus

a2β(Gσ) =
∑

H ∈H1

(−1)0 · 20 +
∑

H ∈H2

(−1)1 · 21

= β(Gσ)− 2β(Gσ − Cσ
k ).

It is evident that sr(Gσ) = 2β(Gσ) if β(Gσ) − 2β(Gσ − Cσ
k ) ̸= 0 and sr(Gσ) < 2β(Gσ)

if β(Gσ) − 2β(Gσ − Cσ
k ) = 0. In what follows we shall verify sr(Gσ) = 2β(Gσ) − 2, i.e.

a2β(Gσ)−2 ̸= 0, if β(Gσ)− 2β(Gσ −Cσ
k ) = 0. Let H′

1 be the set of basic oriented subgraphs

on 2β(Gσ) − 2 vertices which contain only β(Gσ) − 1 copies of K2. Let H′
2 be the set

of basic oriented subgraphs on 2β(Gσ)− 2 vertices which contain Cσ
k and β(Gσ)− k

2
− 1

copies of K2. By Lemma 4.1, we have

a2β(Gσ)−2 =
∑

H ∈H′
1

(−1)0 · 20 +
∑

H ∈H′
2

(−1)1 · 21

= m
Gσ

(
β(Gσ)− 1

)
− 2m

Gσ−Cσ
k

(
β(Gσ − Cσ

k )− 1
)
.

For convenience, we introduce three notations.

S1 : the set of (β(Gσ)− 1)-matchings of Gσ;

S2 : the set of (β(Gσ − Cσ
k )− 1)-matchings of Gσ − Cσ

k ;

S3 = {M ′ | M ′ = Cσ
k ∪M, M ∈ S2}.

It is evident that |S1| ≥ 2|S2| and |S2| = |S3|. Next we shall verify that m
Gσ

(
β(Gσ)−

1
)
−2m

Gσ−Cσ
k

(
β(Gσ−Cσ

k )−1
)
̸= 0. Since |S1| = m

Gσ (β(Gσ)−1) and |S2| = m
Gσ−Cσ

k

(
β(Gσ−

Cσ
k )−1

)
, so we only verify that |S1| > 2|S2|. Note that Cσ

k has exactly two perfect match-

ings M1, M2 with k
2
edges. Suppose that S∗ = {M1 ∪M |M ∈ S2} ∪ {M2 ∪M |M ∈ S2}.
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So |S∗| = 2|S2| = 2|S3| and |S∗| ≤ |S1|. It is evident that there exists a (β(Gσ) − 1)-

matching M∗, which is the union of a matching of Gσ − Cσ
k with β(Gσ) − k

2
edges and

a matching of Cσ
k with k

2
− 1 edges, such that M∗ ∈ S1 and M∗ /∈ S∗. It follows that

|S1| ≥ |S∗|+ 1 = 2|S2|+ 1 > 2|S2|. Thus the result follows.

Let Hn,k be an underlying graph obtained from Ck by attaching n− k pendant edges

to some vertex on Ck.

Theorem 4.3 Let Gσ be an oriented unicyclic graph of order n with girth k (n > k).

Then

sr(Gσ) ≥

{
k, k is even,

k + 1, k is odd.

This bound is sharp.

Proof. Since Gσ must contain Hσ
k+1,k as an induced subgraph, so sr(Hσ

k+1,k) ≤ sr(Gσ)

by Lemma 2.1. By Lemmas 2.3 and 2.5, we have

sr(Hσ
k+1,k) =

{
k, k is even,

k + 1, k is odd.

Note that all oriented graphs with Hn,k as the underlying graph have the same skew rank

as Hσ
k+1,k. So the result holds.

The following results can be derived by similar method in Theorems 3.1 and 3.3 in [8].

Lemma 4.4 Let T σ be an oriented tree with u ∈ V (T σ) and Gσ
0 be an oriented graph

different from T σ. Let Gσ be a graph obtained from Gσ
0 and T σ by joining u with certain

vertices of Gσ
0 . Then the following statements hold:

1. If u is saturated in T σ, then

sr(Gσ) = sr(Gσ
0 ) + sr(T σ).

2. If u is unsaturated in T σ, then

sr(Gσ) = sr(T σ − u) + sr(Gσ
0 + u),

where Gσ
0 + u is the subgraph of Gσ induced by the vertices of Gσ

0 and u.

Let Gσ be an oriented unicyclic graph and Cσ be the unique oriented cycle of Gσ.

Let Gσ
0 be the graph obtained from Gσ by deleting the two neighbors of v on Cσ and

let Gσ{v} be the component of Gσ
0 containing v. Then Gσ{v} is an oriented tree and an

induced subgraph of Gσ.

By the above result, we have

13



Theorem 4.5 Let Gσ be an oriented unicyclic graph and Cσ be the unique oriented cycle

in Gσ. Then the following statements hold:

1. If there exists a vertex v ∈ V (Cσ) which is saturated in Gσ{v}, then

sr(Gσ) = sr(Gσ{v}) + sr(Gσ −Gσ{v}),

where Gσ{v} is an oriented tree rooted at v and containing v.

2. If there does not exit a vertex v ∈ V (Cσ) which is saturated in Gσ{v}, then

sr(Gσ) = sr(Cσ) + sr(Gσ − Cσ).

Let U∗ be an underlying graph which is obtained from a cycle Ck and a star Sn−k by

inserting an edge between a vertex on Ck and the center of Sn−k.

Theorem 4.6 Let Gσ be an oriented unicyclic graph of order n and Cσ
k be the unique

oriented cycle in Gσ. Assume that sr(Gσ) =

{
k, k is even,

k + 1, k is odd.
Then the following

statements hold:

1. If there exists a vertex v ∈ V (Cσ
k ) which is saturated in Gσ{v}, then Gσ{v} is an

oriented star, β(Gσ −G{v}) =

{
k−2
2
, k is even,

k−1
2
, k is odd.

and Gσ has any orientation;

2. If there does not exist a vertex v ∈ V (Cσ
k ) which is saturated in Gσ{v}, then

(a) If k is odd, then G ∼= U∗ and Gσ has any orientation;

(b) If k is even, then G ∼= U∗ and Cσ
k is evenly-oriented.

Proof. Assume that there exists a vertex v ∈ V (Cσ
k ) which is saturated in Gσ{v}. Note

that Gσ{v} and Gσ −Gσ{v} are two trees. If k is even, by Lemmas 2.2 and 4.5 we have

sr(Gσ) = sr(Gσ{v}) + sr(Gσ −Gσ{v})
= 2β(Gσ{v}) + 2β(Gσ −Gσ{v}) = k

Since β(Gσ{v}) ≥ 1, β(Gσ − Gσ{v}) ≥ k−2
2
, so β(Gσ{v}) = 1 and β(Gσ − Gσ{v}) =

k−2
2
, which implies Gσ{v} is an oriented star. From the above process, we can find that

this result is independent of the orientations of edges. So Gσ has any orientation.

Similarly the result holds for the case that k is odd.

Suppose that there does not exist a vertex v ∈ V (Cσ
k ) which is saturated in Gσ{v}.

By Theorem 4.5, we have

sr(Gσ) = sr(Cσ
k ) + 2β(Gσ − Cσ

k ).
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Next we deal with the following three cases.

Case 1. k is odd.

By Lemma 2.4 and the above equality, we have k+1 = k−1+2β(Gσ−Cσ
k ). It follows

that β(Gσ − Cσ
k ) = 1, i.e. Gσ − Cσ

k is a star, and Gσ has any orientation.

Case 2. k is even and Cσ
k is oddly-oriented.

By the discussion in Case 1, we have β(Gσ − Cσ
k ) = 0. This contradicts to the fact

that there does not exist a vertex v ∈ V (Cσ
k ) which is saturated in Gσ{v}. So this case

can not happen.

Case 3. k is even and Cσ
k is evenly-oriented.

By the above discussion, we have β(Gσ −Cσ
k ) = 1, i.e. Gσ −Cσ

k is an oriented star.

5 Non-singularity of skew-adjacency matrices of ori-

ented unicyclic graphs

Let Un,k be the set of oriented unicyclic graphs of order n with girth k. Let U1 be the

set of oriented unicyclic graphs of order n with girth k which can be changed to be an

empty (null) graph by finite steps of δ-transformation. Let U2 be the set of oriented

unicyclic graphs of order n with girth k which can be changed to be an oriented cycle Cσ
k

or the union of isolated vertices and Cσ
k by finite steps of δ-transformation. Obviously,

Un,k = U1 ∪ U2.

Theorem 5.1 Let Gσ be an oriented unicyclic graph of order n with girth k (k < n).

Then

1. If Gσ ∈ U1, then sr(Gσ) ≤

{
n, n is even,

n− 1, n is odd.

2. If Gσ ∈ U2, then sr(Gσ) ≤



n− 1, n is odd, k is odd,

n− 2, n is even, k is odd,

n, n is even and Cσ
k is oddly-oriented,

n− 1, n is odd and Cσ
k is oddly-oriented,

n− 2, n is even and Cσ
k is evenly-oriented,

n− 3, n is odd and Cσ
k is evenly-oriented.

Proof. If Gσ ∈ U1, then by at most ⌊n
2
⌋ steps of δ−transformation Gσ can be changed

to an empty (null) graph. By Lemma 2.5, sr(Gσ) ≤ 2 · ⌊n
2
⌋.

If Gσ ∈ U2, then by at most ⌊n−k
2
⌋ steps of δ−transformation Gσ can be changed to

be oriented cycle Cσ
k or the union of isolated vertices and Cσ

k . By Lemma 2.5, sr(Gσ) ≤
2 · ⌊n−k

2
⌋+ sr(Cσ

k ). The result holds by Lemma 2.4.
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In what follows we consider the non-singularity of skew-adjacency matrices of oriented

unicyclic graphs. As we know, if the order n is odd, then the oriented unicyclic graph

must be singular. So we only need consider the oriented unicyclic graph with even order.

By Theorem 5.1, we have

Theorem 5.2 Let Gσ be an oriented unicyclic graph with even order n. Then S(Gσ) is

nonsingular if and only if Gσ ∈ U1 and Gσ has a perfect matching, or Gσ ∈ U2, C
σ
k is

oddly-oriented and Gσ − Cσ
k has a perfect matching.
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[6] D. Cvetković, M. Dood, H. Sachs, Spectra of Graphs, Academic Press, New York,

1980.

[7] D. Cui, Y. Hou, On the skew spectra of Cartesian products of graphs, Electron. J.

Combin. 20 (2013) ♯P19.

[8] S. Gong, Y. Fan, Z. Yin, On the nullity of graphs with pendant trees, Linear Algebra

Appl. 433 (2010) 1374–1380.

[9] Y. Hou, T. Lei, Charactristic polynomials of skew-adjacency matrices of oriented

graphs, Electro. J. Combin. 18 (2011) ♯P156.

16



[10] Y. Hou, X. Shen, C. Zhang, Oriented unicyclic graphs with extremal skew energy,

Available at http://arxiv.org/abs/1108.6229.

[11] S. Gong, G. Xu, The characteristic polynomial and the matching polynomial of a

weighted oriented graph, Linear Algebra Appl. 436 (2012) 3597–3607.

[12] S. Gong, G. Xu, 3-Regular digraphs with optimum skew energy, Linear Algebra Appl.

436 (2012) 465–471.

[13] X. Li, H. Lian, A survey on the skew energy of oriented graphs, avaiable at

http://arXiv.org/abs/1304.5707.

[14] B. Shader, W.S. So, Skew spectra of oriented graphs, Electron. J. Combin. 16 (2009)

♯N32.

[15] X. Shen, Y. Hou, C. Zhang, Bicyclic digraphs with exremal skew energy, Electron.

J. Linear Algebra 23 (2012) 340–355.

[16] J.H. Smith, Some properties of the spectrum of a graph, In: Combinatorial Structures

and Their Application (ed. R. Gay, H. Hanani, N. Sauer, J. Schonheim), Gordon and

Breach, New York-London-Paris, 1970, 403–406.

[17] G. Tian, On the skew energy of orientations of hypercubes, Linear Algebra Appl. 435

(2011) 2140–2149.

[18] G. Xu, Some inequlities on the skew-spectral radii of oriented graphs, J. Inequal.

Appl. (2012) 2012: 211.

[19] J. Zhu, Oriented unicyclic graphs with the first ⌊n−9
2
⌋ largest skew energies, Linear

Algebra Appl. 437 (2012) 2630–2649.

17


