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Abstract

The energy E(G) of a simple graph G is defined as the sum of the absolute values of all eigenvalues
of its adjacency matrix. This concept was introduced by I. Gutman in 1977. Recently, Aouchiche et
al. proposed a conjecture about tricyclic graphs: If G is a tricyclic graphs on n vertices with n = 20
or n ≥ 22, then E(G) ≤ E(P 6,6,6

n ) with equality if and only if G ∼= P 6,6,6
n , where P 6,6,6

n denotes the
graph with n ≥ 20 vertices obtained from three copies of C6 and a path Pn−18 by adding a single
edge between each of two copies of C6 to one endpoint of the path and a single edge from the third
C6 to the other endpoint of the Pn−18. Li et al. [X. Li, Y. Shi, M. Wei, J. Li, On a conjecture
about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem. 72(1)(2014),
183-214] proved that the conjecture is true for graphs in the graph class G(n; a, b, k), where G(n; a, b, k)
denotes the set of all connected bipartite tricyclic graphs on n ≥ 20 vertices with three vertex-disjoint
cycles Ca, Cb and Ck, apart from 9 subclasses of such graphs. In this paper, we improve the above
result and prove that apart from 7 smaller subclasses of such graphs the conjecture is true for graphs
in the graph class G(n; a, b, k).

1 Introduction

The energy E(G) of a simple graph G is defined as the sum of the absolute values of all

eigenvalues of its adjacency matrix. This concept was introduced [8] by Gutman in 1977. For

details about the graph energy, we refer the reader to two surveys [9,10] and the book [28]. A

lot of results have been obtained on the minimal and maximal energies in some given classes

of graphs, such as trees, unicyclic graphs, bycyclic graphs, etc.; see [1, 2, 5, 7, 13–27,30–33].
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The problem of finding the tricyclic graphs maximizing the energy remains open. Gutman

and Vidović [12] listed some tricyclic molecular graphs that might have maximal energy for

n ≤ 20. Very recently, experiments using AutoGraphiX led the authors of [3] to conjecture

the structure of tricyclic graphs that presumably maximize energy for n = 6, . . . , 21. For

n ≥ 22, Aouchiche et al. [3] proposed a general conjecture obtained with AutoGraphiX.

First, let P 6,6,6
n (see Figure 3) denote the graph on n ≥ 20 obtained from three copies of C6

and a path Pn−18 by adding a single edge between each of two copies of C6 to one endpoint

of the path and a single edge from the third C6 to the other endpoint of the Pn−18.

Conjecture 1.1 [3] Let G be a tricyclic graphs on n vertices with n = 20 or n ≥ 22. Then

E(G) ≤ E(P 6,6,6
n ) with equality if and only if G ∼= P 6,6,6

n .

n− 17
︷ ︸︸ ︷

P
6,6,6

n

Figure 1: Tricyclic graph P 6,6,6
n .

Let G(n; a, b, k) denote the set of all connected bipartite tricyclic graphs on n vertices with

three disjoint cycles Ca, Cb and Ck, where n ≥ 20. In this paper, we try to prove that the

conjecture is true for graphs in the class G(n; a, b, k), but as a consequence we can only show

that this is true for most of the graphs in the class except for 9 families of such graphs. From

the definition of G(n; a, b, k), we know that a, b and k are all even. We will divide G(n; a, b, k)

into two categories GI(n; a, b, k; `1, `2; `c) and GII(n; a, b, k; `1, `2, `3) in the following. We say

that H is the central structure of G if G can be viewed as the graph obtained from H by

planting some trees on it. Denote by HI(n; a, b, k; `1, `2; `c) and HII(n; a, b, k; `1, `2, `3) the

central structures of GI(n; a, b, k; `1, `2; `c) and GII(n; a, b, k; `1, `2, `3), respectively.
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Figure 2: HI(n; a, b, k; `1, `2; `c).

The graph class HI(n; a, b, k; `1, `2; `c) (see Figure 2) is the set of all the elements of

G(n; a, b, k) in which Ca and Cb are joined by a path P1 = u1 · · ·u2 (u2 ∈ V (Cb)) with `1

vertices, Ck and Cb are joined by a path P2 = v1 · · · v2 (v2 ∈ V (Cb)) with `2 vertices. In

addition, the smaller part u2 · · · v2 of Cb has `c vertices. When u2 = v2, we have `c = 1.



The graph class HII(n; a, b, k; `1, `2, `3) (see Figure 3) is also a subset of G(n; a, b, k). For

any H ∈ HII(n; a, b, k; `1, `2, `3), h has a center vertex v, Ca, Cb and Ck are joined to v by

paths P1 = u1 · · · v (u1 ∈ V (Ca)), P2 = u2 · · · v (u2 ∈ V (Cb)), P3 = u3 · · · v (u3 ∈ V (Ck)),

respectively. The number of vertices of P1, P2 and P3 are `1, `2 and `3, respectively.
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Figure 3: HII(n; a, b, k; `1, `2, `3).

It is clear that

G(n; a, b, k) = GI(n; a, b, k; `1, `2; `c) ∪ GII(n; a, b, k; `′1, `
′
2, `

′
3).

Now we introduce two special graph classes H∗1 and H∗2 as follows.

The graph class H∗1 consists of graphs H with the following four different possible forms:

(i) H ∈ HI(n; a, 4, k; `1, `2; 2), where a ≥ 8, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3.

(ii) H ∈ HI(n; a, b, k; `1, `2; 2), where a ≥ 8, b ≥ 6, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3 and

`1 = `2 = 3 is not allowed.

(iii) H ∈ HI(n; 4, b, k; `1, `2; 2), where b ≥ 6, k ≥ 6, 2 ≤ `1 ≤ 3 and 2 ≤ `2 ≤ 3.

(iv) H ∈ HI(n; a, b, 4; `1, `2; 2), where 2 ≤ `2 ≤ 3.

Whereas H∗2 consists of graphs H with the following five different possible forms:

(i) H ∈ HII(n; a, b, k; 2, `2, `3), where a ≥ 8.

(ii) H ∈ HII(n; a, b, k; 3, 3, 3), where a ≥ k ≥ b ≥ 8.

(iii) H ∈ HII(n; a, 4, k; `1, 3, `3).

(iv) H ∈ HII(n; a, 4, k; `1, 2, `3).

(v) H ∈ HII(n; a, 4, k; 3, 4, 3), where a ≥ k ≥ 6.

In [29], the authors tried to find the graphs with maximal energy among the two categories

of G(n; a, b, k): GI(n; a, b, k; `1, `2; `c) and GII(n; a, b, k; `1, `2, `3), respectively. Apart from two

classes H∗1 and H∗2, they obtained that P 6,6,6
n = HII(n; 6, 6, 6;n − 17, 2, 2) has the maximal

energy among all graphs in G(n; a, b, k) . Their main result is stated as follows, which gives

support to Conjecture 1.1.

Theorem 1.2 [29] For any tricyclic bipartite graph G ∈ G(n; a, b, k) \ (H∗1 ∪ H∗2), E(G) ≤
E(P 6,6,6

n ) and the equality holds if and only if G ∼= P 6,6,6
n .



In this paper, we try to improve the above result. Let us now introduce two graph classes

H∗∗1 and H∗∗2 . The graph class H∗∗1 consists of graphs H with the following three different

possible forms:

(i) H ∈ HI(n; a, 4, k; `1, `2; 2), where a ≥ 8, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3.

(ii) H ∈ HI(n; a, b, k; `1, `2; 2), where a ≥ 8, b ≥ 6, k ≥ 8, 2 ≤ `1 ≤ 3, 2 ≤ `2 ≤ 3 and

`1 = `2 = 3 is not allowed.

(iii) H ∈ HI(n; a, b, 4; `1, `2; 2), where 2 ≤ `2 ≤ 3.

Whereas H∗∗2 consists of graphs H with the following four different possible forms:

(i) H ∈ HII(n; a, b, k; 2, `2, `3) ∪ HII(n; a, 6, 6; 2, `′2, `
′
3), where a ≥ 8, `′3 ≥ 8, and `1 = 2 or

`3 = 2 or 6 ≤ a + `1 ≤ 7 or 6 ≤ k + `3 ≤ 13.

(ii) H ∈ HII(n; a, b, k; 3, 3, 3), where a ≥ k ≥ b ≥ 8, and a ≡ 0 (mod 4) or k ≡ 0 (mod 4).

(iii) H ∈ HII(n; a, 4, k; `1, 3, `3), where `1 = 2 or `3 = 2 or 6 ≤ a + `1 ≤ 7 or 6 ≤ k + `3 ≤ 13.

(iv) H ∈ HII(n; a, 4, k; `1, 2, `3) ∪ HII(n; 6, 4, 6; 2, 2, `), where ` ≥ 8, and `1 = 2 or `3 = 2 or

6 ≤ a + `1 ≤ 7 or 6 ≤ k + `3 ≤ 13.

We obtain the following theorem, whose proof will be given in Section 3.

Theorem 1.3 For any tricyclic bipartite graph G ∈ G(n; a, b, k) \ (H∗∗1 ∪ H∗∗2 ), E(G) ≤
E(P 6,6,6

n ) and the equality holds if and only if G ∼= P 6,6,6
n .

2 Preliminaries

In the sequel, let Pn, Cn, P a
n and P a,b

n be a path, cycle, the graph obtained by connecting

a vertex of the cycle Ca with a terminal vertex of the path Pn−a, the graph obtained from

cycles Ca and Cb by joining a path of order n − a − b + 2, respectively. We refer to [4] for

graph theoretical notation and terminology not described here.

The following are some elementary results on the characteristic polynomial of graphs and

graph energy, which will be used later.

Lemma 2.1 [6] Let uv be an edge of a graph G. Then

φ(G,λ) = φ(G− uv, λ)− φ(G− u− v, λ)− 2
∑

C∈ϕ(uv)

φ(G− C, λ),

where φ(G,λ) denotes the characteristic polynomial of G, and ϕ(uv) is the set of cycles of G

containing uv. In particular, if uv is a pendant edge of G with the pendant vertex v, then

φ(G,λ) = λφ(G− v, λ)− φ(G− u− v, λ).



Lemma 2.2 [29] Let uv be an edge of a bipartite tricyclic graph G which contains three

vertex-disjoint cycles. Then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v) + 2
∑

Cl∈ϕ(uv)

(−1)1+
l
2 b2i−l(G− Cl),

where ϕ(uv) is the set of cycles of G containing uv. In particular, if uv is a pendant edge of

G with the pendant vertex v, then

b2i(G) = b2i(G− uv) + b2i−2(G− u− v).

It is well-known [6] that if G is a bipartite graph, then the characteristic polynomial of G

has the following form

φ(G,λ) =
bn

2
c∑

i=0

(−1)ib2iλ
n−2i,

where b2i ≥ 0 for all i = 1, · · · , bn
2 c. For two bipartite graphs G1 and G2, Gutman and

Polansky in [11] defined a quasi-order G1 ¹ G2 or G2 º G1 if b2i(G1) ≤ b2i(G2) hold for all

i = 1, 2, · · · , bn
2 c; moreover, G1 ≺ G2 or G2 Â G1 if b2i(G1) < b2i(G2) holds for some i. The

above quasi-order implies the following quasi-order relation on graph energy

G1 ¹ G2 ⇒ E(G1) ≤ E(G2), G1 ≺ G2 ⇒ E(G1) < E(G2).

From Sachs Theorem [6], we can obtain the following properties for bipartite graphs.

Lemma 2.3 [6] (1) If G1 and G2 are both bipartite graphs, then b2k(G1∪G2) =
k∑

i=0
b2i(G1) ·

b2k−2i(G2).

(2) If G0, G1, G2 are all bipartite and G1 ¹ G2, since b2i(G0) ≥ 0 and b2i(G1) ≥ b2i(G2)

for all positive integer i, we have G0 ∪G1 ¹ G0 ∪G2. Moreover, for bipartite graphs Gi, G′
i,

i = 1, 2, if Gi has the same order as G′
i and Gi ¹ G′

i, then G1 ∪G2 ¹ G′
1 ∪G′

2.

Lemma 2.4 [11] Let n = 4k, 4k + 1, 4k + 2 or 4k + 3. Then

Pn Â P2 ∪ Pn−2 Â P4 ∪ Pn−4 Â · · · Â P2k ∪ Pn−2k Â P2k+1 ∪ Pn−2k−1

Â P2k−1 ∪ Pn−2k+1 Â · · · Â P3 ∪ Pn−3 Â P1 ∪ Pn−1.

3 Proof of Theorem 1.3

We are now in a position to prove our main result.



3.1 For (v) of the graph class H∗
2

In [29], the authors obtained the following lemma.

Lemma 3.1 [29] For any graph H ∈ HII(n; 6, 6, 6; `1, 2, `3) \ P 6,6,6
n , H ≺ P 6,6,6

n .

Proposition 3.2 For any graph H1 ∈ HII(n; a, 4, k; 3, 4, 3) where a ≥ k ≥ 6, there exists a

graph H2 ∈ HII(n; 6, 6, 6; `1, 2, `3) such that H1 ¹ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; a, 4, k; 3, 4, 3), we choose a graph H2 ∈
HII(n; 6, 6, 6; `1, 2, `3) such that `1 = a− 3 and `3 = k − 3 (see Figure 4). It suffices to show

that H1 ¹ H2. From Lemma 2.2, we have

u1

v1

H1

u2

`1
︷ ︸︸ ︷

v2

H2

︷ ︸︸ ︷

`3

Ca Ck

Figure 4: Graphs for Proposition 3.2

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
a,k
a+k+3 ∪ P 4

6 ) + b2i−2(P a
a+1 ∪ P k

k+1 ∪ P 4
5 )

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
`1+`3+9 ∪ C6) + b2i−2(P 6

`1+4 ∪ P 6
`3+4 ∪ P5)

Since φ(P 4
6 ;λ) = λ6−6λ4 +6λ2 and φ(C6;λ) = λ6−6λ4 +9λ2−4, it follows that P 4

6 ≺ C6.

Similarly, φ(P 4
5 ;λ) = λ5 − 3λ3 + 2λ and φ(P5;λ) = λ5 − 4λ3 + 3λ yields P 4

5 ≺ P5. Because

`1 = a− 3 and `3 = k− 3, we have a + k + 3 = `1 + `3 + 9, a + 1 = `1 + 4 and k + 1 = `3 + 4.

Since P a
a+1 ¹ P 6

`1+4, P k
k+1 ¹ P 6

`3+4 and P a,k
a+k+3 ¹ P 6,6

`1+`3+9, we have H1 ¹ H2 by Lemma 2.3.

Remark 1. Proposition 3.2 indicates that the energy of any graph in HII(n; a, 4, k; 3, 4, 3) is

not larger than the energy of a graph in HII(n; 6, 6, 6; `1, 2, `3) with `1 = a−3 and `3 = k−3.

From Lemma 3.1, H ≺ P 6,6,6
n for any graph H ∈ HII(n; 6, 6, 6; `1, 2, `3) satisfying H 6= P 6,6,6

n .

So we exclude the possibility of any graph in (v) of the graph class H∗2 posses maximal energy

among all the tricyclic graphs and hence (v) of the graph class H∗2 can be deleted in Theorem

1.3.



3.2 For (iii) of the graph class H∗
2

Now we focus our attention on (iii) of the graph class H∗2. For H ∈ HII(n; a, 4, k; `1, 3, `3),

one can see that there is no restrictive conditions on the parameters a, k, `1, `3. In this section,

we shall show that if `1 ≥ 3, `3 ≥ 3, a + `1 ≥ 8 and k + `3 ≥ 14 then H ≺ P 6,6,6
n for any

H ∈ HII(n; a, 4, k; `1, 3, `3). Therefore, we narrow the scope of this graph class by putting

extra conditions `1 = 2 or `3 = 2 or 5 ≤ a + `1 ≤ 7 or 5 ≤ k + `3 ≤ 13, which is stated as

(iii) of the graph class H∗∗2 in Theorem 1.3.

Lemma 3.3 For any graph H1 ∈ HII(n; a, 4, k; `1, 3, `3) where `1 ≥ 3, `3 ≥ 3, a + `1 ≥ 8

and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; 6, 4, 6; `′1, 3, `′3) such that H1 ¹ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; a, 4, k; `1, 3, `3), we choose a graph H2 ∈
HII(n; 6, 4, 6; `′1, 3, `′3) where `′1 = a + `1 − 6 and `′3 = k + `3 − 6 (see Figure 5). Since

k + `3 ≥ 14, it follows that `′3 ≥ 8. So we only need to show that H1 ¹ H2. From Lemma

2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
a,k
n−5 ∪ P 4

5 ) + b2i−2(P a
a+`1−2 ∪ P k

k+`3−2 ∪ C4)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−5 ∪ P 4

5 ) + b2i−2(P 6
a+`1−2 ∪ P 6

k+`3−2 ∪ C4)

u1

v1

H1

u2

`
′

1
︷ ︸︸ ︷

v2

H2

︷ ︸︸ ︷

`
′

3

Ca Ck

︷ ︸︸ ︷ ︷ ︸︸ ︷

`1
`3

Figure 5: Graphs for Lemma 3.3.

Since P a,k
n−5 ¹ P 6,6

n−5, P a
a+`1−2 ¹ P 6

a+`1−2 and P k
k+`3−2 ¹ P 6

k+`3−2, it follows from Lemma

2.3 that H1 ¹ H2, as desired.

Lemma 3.4 For any graph H1 ∈ HII(n; 6, 4, 6; `1, 3, `3) where `3 ≥ 8, there exists a graph

H2 ∈ HII(n; 6, 4, 6; 2, 3, `) such that H1 ≺ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; 6, 4, 6; `1, 3, `3), we select a graph H2 ∈
HII(n; 6, 4, 6; 2, 3, `) where ` = `1 + `3 − 2 (see Figure 6). Since `1 ≥ 2 and `3 ≥ 8, it follows

that ` ≥ 8. We only need to show that H1 ≺ H2. Using Lemma 2.2, we have



H1

u1

`1
︷ ︸︸ ︷

v1

H2

︷ ︸︸ ︷

`3

v2

u2

︷ ︸︸ ︷
`

Figure 6: Graphs for Lemma 3.4.

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
6,6
n−5 ∪ P 4

5 ) + b2i−2(P 6
`1+4 ∪ P 6

`3+4 ∪ C4)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−5 ∪ P 4

5 ) + b2i−2(C6 ∪ P 6
`+4 ∪ C4)

From Lemma 2.3, we need to prove P 6
`1+4 ∪ P 6

`3+4 ≺ C6 ∪ P 6
`+4. Clearly, we have

b2j(P 6
`1+4 ∪ P 6

`3+4) = b2j(C6 ∪ P`1−2 ∪ P 6
`3+4) + b2j−2(P5 ∪ P`1−3 ∪ P 6

`3+4)

b2j(C6 ∪ P 6
`+4) = b2j(C6 ∪ P`1−2 ∪ P 6

`3+4) + b2j−2(C6 ∪ P`1−3 ∪ P 6
`3+3)

By Lemma 2.3, it suffices to show P5 ∪ P 6
`3+4 ≺ C6 ∪ P 6

`3+3. We can easily obtain the

following equalities.

b2r(P5 ∪ P 6
`3+4) = b2r(P5 ∪ P 6

`3+3 ∪ P1) + b2r−2(P5 ∪ P 6
`3+2)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+2)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+1 ∪ P1)

+b2r−6(P3 ∪ P 6
`3)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+1 ∪ P1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3) + b2r−8(P1 ∪ P 6

`3)

= b2r(P5 ∪ P 6
`3+3 ∪ P1) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P 6
`3+1 ∪ P1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3) + b2r−8(P1 ∪ P 6

`3−1 ∪ P1) + b2r−10(P1 ∪ P 6
`3−2)

b2r(C6 ∪ P 6
`3+3) = b2r(P6 ∪ P 6

`3+3) + b2r−2(P4 ∪ P 6
`3+3) + 2b2r−6(P 6

`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P4 ∪ P 6
`3+1)

+2b2r−6(P 6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P 6
`3+1) + 2b2r−6(P 6

`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)



+b2r−6(P2 ∪ P1 ∪ P 6
`3) + b2r−8(P2 ∪ P 6

`3−1) + 2b2r−6(P 6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3) + b2r−8(P1 ∪ P1 ∪ P 6

`3−1) + b2r−10(P 6
`3−1)

+2b2r−6(P 6
`3+3)

= b2r(P6 ∪ P 6
`3+3) + b2r−2(P4 ∪ P1 ∪ P 6

`3+2) + b2r−4(P3 ∪ P1 ∪ P 6
`3+1)

+b2r−6(P2 ∪ P1 ∪ P 6
`3) + b2r−8(P1 ∪ P1 ∪ P 6

`3−1) + b2r−10(P 6
`3−2 ∪ P1)

+b2r−12(P 6
`3−3) + 2b2r−6(P 6

`3+3)

One can easily see that P5 ∪ P 6
`3+4 ≺ C6 ∪ P 6

`3+3, which implies H1 ≺ H2. The result

follows.

Lemma 3.5 For any graph H1 ∈ HII(n; 6, 4, 6; 2, 3, `) where ` ≥ 8, there exists a graph

H2 ∈ HII(n; 6, 6, 6; 2, 2, `′) such that H1 ≺ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; 6, 4, 6; 2, 3, `), we choose a graph H2 ∈
HII(n; 6, 6, 6; 2, 2, `′) where `′ = `− 1 (see Figure 7). It suffices to show that H1 ≺ H2. From

H1
H2

u2 v2

︷ ︸︸ ︷

`
′

v1
u1

︷ ︸︸ ︷
`

Figure 7: Graphs for Lemma 3.5.

Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
6,4
n−6 ∪ C6) + b2i−2(P5 ∪ P 6

`+4 ∪ P 4
5 )

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−6 ∪ C6) + b2i−2(P5 ∪ P 6

`+3 ∪ C6)

From Lemma 2.3, we need to prove P 6
`+4 ∪ P 4

5 ≺ P 6
`+3 ∪ C6. Clearly, we have

b2j(P 6
`+4 ∪ P 4

5 ) = b2j(P 6
`+4 ∪ P5) + b2j−2(P 6

`+4 ∪ P2 ∪ P1)
where

b2j(P 6
`+4 ∪ P5) = b2j(P 6

`+3 ∪ P5 ∪ P1) + b2j−2(P 6
`+2 ∪ P5)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+2 ∪ P3)



= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
` ∪ P3)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
` ∪ P2 ∪ P1) + b2j−8(P 6

` ∪ P1)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
` ∪ P2 ∪ P1) + b2j−8(P 6

`−1 ∪ P1 ∪ P1) + b2j−10(P 6
`−2 ∪ P1)

and

b2j−2(P 6
`+4 ∪ P2 ∪ P1) = b2j−2(P 6

`+3 ∪ P1 ∪ P2 ∪ P1) + b2j−4(P 6
`+2 ∪ P2 ∪ P1)

Similarly, we have

b2j(P 6
`+3 ∪ C6) = b2j(P 6

`+3 ∪ P6) + b2j−2(P 6
`+3 ∪ P4) + 2b2j−6(P 6

`+3)

where

b2j(P 6
`+3 ∪ P6) = b2j(P 6

`+3 ∪ P5 ∪ P1) + b2j−2(P 6
`+3 ∪ P4)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P4)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
`+1 ∪ P2)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
` ∪ P2 ∪ P1) + b2j−8(P 6

`−1 ∪ P2)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
` ∪ P2 ∪ P1) + b2j−8(P 6

`−1 ∪ P1 ∪ P1) + b2j−10(P 6
`−1)

= b2j(P 6
`+3 ∪ P5 ∪ P1) + b2j−2(P 6

`+2 ∪ P4 ∪ P1) + b2j−4(P 6
`+1 ∪ P3 ∪ P1)

+b2j−6(P 6
` ∪ P2 ∪ P1) + b2j−8(P 6

`−1 ∪ P1 ∪ P1) + b2j−10(P 6
`−2 ∪ P1)

+b2j−12(P 6
`−3)and

b2j−2(P 6
`+3 ∪ P4) = b2j−2(P 6

`+3 ∪ P3 ∪ P1) + b2j−4(P 6
`+3 ∪ P2)

Since b2r(P 6
`+3) = b2r(P 6

`+2 ∪ P1) + b2r−2(P 6
`+1), it follows that P 6

`+2 ∪ P1 ¹ P 6
`+3 and hence

P 6
`+4 ∪ P 4

5 ≺ P 6
`+3 ∪ C6 by Lemma 2.3. So H1 ≺ H2. The proof is now complete.

The following proposition is immediate by Lemmas 3.3, 3.4 and 3.5.

Proposition 3.6 For any graph H1 ∈ HII(n; a, 4, k; `1, 3, `3) where `1 ≥ 3, `3 ≥ 3, a+`1 ≥ 8

and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; 6, 6, 6; 2, 2, `) = P 6,6,6
n such that H1 ≺ H2.



3.3 For (ii) of the graph class H∗
2

Proposition 3.7 For any graph H1 ∈ HII(n; a, b, k; 3, 3, 3) where a ≥ k ≥ b ≥ 8, a ≡
2 (mod 4) and k ≡ 2 (mod 4), there exists a graph H2 ∈ HII(n; a, b, k; 2, `2, `3) such that

H1 ≺ H2.

Proof. Fix parameter n. For any H1 ∈ HII(n; a, b, k; 3, 3, 3), we choose a graph H2 ∈
HII(n; a, b, k; 2, 3, 4) (see Figure 8). It suffices to show that H1 ≺ H2. From Lemma 2.2, we

u1

v1

H1

Ca
Ck

Cb

u2

v2

H2

Ca
Ck

Cb

Figure 8: Graphs for Proposition 3.7.

have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
a,k
a+k+3 ∪ P b

b+1) + b2i−2(P a
a+1 ∪ P k

k+1 ∪ Cb)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
a,k
a+k+3 ∪ P b

b+1) + b2i−2(Ca ∪ P k
k+2 ∪ Cb)

Applying Lemma 2.3, we only need to show that P a
a+1 ∪ P k

k+1 ≺ Ca ∪ P k
k+2.

From Lemma 2.2, we have

b2j(P a
a+1 ∪ P k

k+1) = b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa−1 ∪ P k

k+1)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa−1 ∪ Ck ∪ P1) + b2j−4(Pa−1 ∪ Pk−1)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa−1 ∪ Ck ∪ P1)

+b2j−4(Pa−2 ∪ Pk−1 ∪ P1) + b2j−6(Pa−3 ∪ Pk−1)

b2j(Ca ∪ P k
k+2) = b2j(Ca ∪ P k

k+1 ∪ P1) + b2j−2(Ca ∪ Ck)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa ∪ Ck) + b2j−4(Pa−2 ∪ Ck)

+2(−1)1+a
2 b2j−2−a(Ck)

= b2j(Ca ∪ P k
k+1 ∪ P1) + b2j−2(Pa ∪ Ck) + b2j−4(Pa−2 ∪ Pk)

+b2j−6(Pa−2 ∪ Pk−2) + 2(−1)1+ k
2 b2j−4−k(Pa−2 + 2(−1)1+

a
2 b2j−2−a(Ck)



Since a ≡ 2 (mod 4) and k ≡ 2 (mod 4), it follows that 2(−1)1+
k
2 b2j−4−k(Pa−2) ≥ 0 and

2(−1)1+a
2 b2j−2−a(Ck) ≥ 0. Furthermore, Pa−3 ∪ Pk−1 ≺ Pa−2 ∪ Pk−2 since both a and k are

even. One can easily see that P a
a+1 ∪ P k

k+1 ≺ Ca ∪ P k
k+2. Furthermore, we have H1 ≺ H2.

The proof is now complete.

Remark 2. From the above proposition, for any graph H ∈ HII(n; a, b, k; 3, 3, 3) where

a ≥ k ≥ b ≥ 8 and a ≡ 2 (mod 4) and k ≡ 2 (mod 4), H can not posses the maximal energy

in G(n; a, b, k). So the remaining case is a ≥ k ≥ b ≥ 8, and a ≡ 0 (mod 4) or k ≡ 0 (mod 4),

which is stated as (ii) of the graph class H∗∗2 in Theorem 1.3.

3.4 For (i), (iv) of the graph class H∗
2 and (iii) of the graph class H∗

1

In this section, we mainly discuss (i), (iv) of the graph class H∗2, and the graph class (iii) of

H∗1 is discussed in Remark 4.

Lemma 3.8 For any graph H1 ∈ HII(n; a, b, k; 2, `2, `3) where a ≥ 8, `2, `3 ≥ 3, b + `2 ≥ 8

and k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; a, 6, 6; 2, `′2, `
′
3) such that H1 ¹ H2.

Proof. Fix parameter n. For any graph H1 ∈ HII(n; a, b, k; 2, `2, `3) where `2, `3 ≥ 3,

b + `2 ≥ 8 and k + `3 ≥ 14, we choose a graph H2 ∈ HII(n; a, 6, 6; 2, `′2, `
′
3) such that

`′2 = `2 + b − 6 and `′3 = `3 + k − 6 (see Figure 9). Clearly, `′3 ≥ 8. It suffices to show that

H1 ¹ H2.

u1

Ca

Cb

Ck

`3
︷ ︸︸ ︷v1

︷
︸
︸

︷

`2

u2

v2

H2

︷ ︸︸ ︷
`′

3

︷
︸
︸

︷

`′

2

H1

Ca

Figure 9: Graphs for Lemma 3.8

From Lemma 2.2, we have

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
b,k
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P b

b+`2−2 ∪ P k
k+`3−2)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P 6

`′2+4 ∪ P 6
`′3+4)



Because `′2 = `2+b−6 and `′3 = `3+k−6, we have `′2+4 = `2+b−2 and `′3+4 = `3+k−2.

Therefore, P b
`2+b−2 ¹ P 6

`′2+4, P k
`2+k−2 ¹ P 6

`′3+4 and P b,k
n−a ¹ P 6,6

n−a. Lemma 2.3 yields H1 ¹ H2,

as desired.

Lemma 3.9 For any graph H1 ∈ HII(n; a, 6, 6; 2, `2, `3) where `3 ≥ 8, there exists a graph

H2 ∈ HII(n; a, 6, 6; 2, 2, `) such that H1 ≺ H2.

Proof. Fix parameter n. For any graph H1 ∈ HII(n; a, 6, 6; 2, `2, `3) where `3 ≥ 8, we choose

a graph H2 ∈ HII(n; a, 6, 6; 2, 2, `) such that ` = `2 + `3− 2 (see Figure 10). Since `2 ≥ 2 and

`3 ≥ 8, it follows that ` ≥ 8. It suffices to show that H1 ≺ H2. From Lemma 2.2, we have

u2 v2

H2

︷ ︸︸ ︷
`

H1

Ca

u1 v1

︷ ︸︸ ︷
`3

︷
︸
︸

︷

`2

Ca

Figure 10: Graphs for Lemma 3.9

b2i(H1) = b2i(H1 − u1v1) + b2i−2(H1 − u1 − v1)

= b2i(P
6,6
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P 6

`2+4 ∪ P 6
`3+4)

b2i(H2) = b2i(H2 − u2v2) + b2i−2(H2 − u2 − v2)

= b2i(P
6,6
n−a ∪ Ca) + b2i−2(Pa−1 ∪ P 6

`+4 ∪ C6)

Similarly to the proof of Lemma 3.4, we can obtain P 6
`2+4 ∪ P 6

`3+4 ≺ P 6
`+4 ∪ C6. From

Lemma 2.3, we have H1 ≺ H2, as desired.

Proposition 3.10 For any graph H1 ∈ HII(n; a, b, k; 2, `2, `3) where a ≥ 8, `2 ≥ 3, `3 ≥ 3,

b+ `2 ≥ 8 and k+ `3 ≥ 14, there exists a graph H2 ∈ HII(n; a, 6, 6; 2, 2, `) such that H1 ≺ H2.

Similarly to the proof of Proposition 3.10, we can derive the following result.

Proposition 3.11 For any graph H1 ∈ HII(n; a, 4, k; `1, 2, `3) where `1 ≥ 3, `3 ≥ 3, a+`1 ≥
8, k + `3 ≥ 14, there exists a graph H2 ∈ HII(n; 6, 4, 6; 2, 2, `) such that H1 ≺ H2.

Remark 3. From the above propositions, for (i) of the graph class H∗2, the remaining graph

classes under consideration are HII(n; a, b, k; 2, `2, `3)∪HII(n; a, 6, 6; 2, 2, `), where a ≥ 8, ` ≥



8, and `2 = 2 or `3 = 2 or 6 ≤ b+`2 ≤ 7 or 6 ≤ k+`3 ≤ 13; for (iv) of the graph class H∗2, the

remaining graph classes under consideration are HII(n; a, 4, k; `1, 2, `3)∪HII(n; 6, 4, 6; 2, 2, `),

where ` ≥ 8, and `1 = 2 or `3 = 2 or 6 ≤ a + `1 ≤ 7 or 6 ≤ k + `3 ≤ 13.

Remark 4. For any H ∈ HI(n; 4, b, k; `1, `2; 2) where b ≥ 6, k ≥ 6, 2 ≤ `1 ≤ 3 and 2 ≤ `2 ≤ 3,

one can see that H ∈ HI(n; a, b, 4; `1, `2; 2) where 2 ≤ `2 ≤ 3. This observation suggests that

the graph class (iii) of H∗1 is a subset of the graph class (iv) of H∗1, thus omitted and deleted

in Theorem 1.3.
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[5] G. Caporossi, D. Cvetković, I. Gutman, P. Hansen, Variable neighborhood search for

extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci.

39(1999), 984–996.
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