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EXTREMAL SKEW ENERGY OF DIGRAPHS WITH NO EVEN CYCLES

J. LI, X. LI AND H. LIAN∗

Communicated by Ivan Gutman

Abstract. Let D be a digraph with skew-adjacency matrix S(D). Then the skew energy of D is defined

as the sum of the norms of all eigenvalues of S(D). Denote by On the class of digraphs of order n with

no even cycles, and by On,m the class of digraphs in On with m arcs. In this paper, we first give the

minimal skew energy digraphs in On and On,m with n − 1 ≤ m ≤ 3

2
(n − 1). Then we determine the

maximal skew energy digraphs in On,n and On,n+1, and in the latter case we assume that n is even.

1. Introduction

Let D be a digraph with vertex set V (D) = {v1, v2, . . . , vn} and arc set Γ(D). Denote by v(D)

and γ(D) the numbers of vertices and arcs of the digraph D, respectively. Throughout this paper, we

always assume that D has no loops or multiple arcs or directed cycles of length 2, thus the underlying

graph D of D is simple. In other words, D is an orientation of a simple undirected graph. The skew-

adjacency matrix [1] of D is the n× n matrix S(D) = [sij], where sij = 1 if (vi, vj) ∈ Γ(D), sij = −1 if

(vj , vi) ∈ Γ(D), and sij = 0 otherwise. The characteristic polynomial of S(D), which is called the skew

characteristic polynomial of D, has the form

φs(D,λ) =
n
∑

k=0

ak(D)λn−k.

Let {λ1, λ2, . . . , λn} be the eigenvalues of S(D), which are just the roots of the equation φs(D,λ) = 0.

Obviously, they are all pure imaginary numbers. The skew energy [1] of D, denoted by Es(D), is defined

as the sum of the norms of them, i.e.,

Es(D) =

n
∑

i=1

|λi|.
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For convenience, when we say walks, paths, cycles, degrees, matchings, etc. of a digraph, we mean the

same as those they are in its underlying graph, unless otherwise stated.

The concept of energy of a simple undirected graph was introduced by Gutman in [6], which has a

close link to chemistry and has been extensively studied. We refer the book [14] and a survey [7] to

the reader for details. There are situations when chemists use digraphs rather than graphs. One such

situation is when vertices represent distinct chemical species and arcs represent the direction in which

a particular reaction takes place between the two corresponding species. So it is hoped that the skew

energy will have similar applications as energy in chemistry.

Since Adiga, Balakrishnan and So in [1] proposed the concept of skew energy, many results have

been obtained, most of which are collected in a recent survey [13]. One of the fundamental questions

that is encountered in the study of skew energy is which digraphs in a given class attain extremal skew

energy. Such results have been obtained for directed trees, unicyclic and bicyclic digraphs [1, 10, 15].

All 1-, 2-, 3- and 4-regular graphs were characterized which have orientations such that the resultant

oriented graphs attain maximum skew energy [1, 2, 4, 5]. Moreover, from Pfaffian theory (See Remark

2.3), it can be found that the coefficients of skew characteristic polynomials of digraphs with no even

cycles have special forms, which motivates us to consider extremal skew energy of the digraphs with no

even cycles.

Let On be the class of digraphs of order n with no even cycles, and On,m be the class of digraphs in

On with m arcs. For any digraph D ∈ On,m, since there are no even cycles in it, any two cycles in D

have at most one common vertex. So we have n − 1 ≤ m ≤ 3
2(n − 1). In this paper, we first give some

definitions and deduce some basic results in Section 2. Then in Section 3, we give the minimal skew

energy digraphs in On and On,m with n − 1 ≤ m ≤ 3
2(n − 1). In Sections 4 and 5, we, respectively,

determine the maximal skew energy digraphs in On,n and On,n+1, and in the latter case we assume

that n is even.

2. Preliminaries

We first give some basic definitions. An r-matching in a graph D is a subset of r edges such that

every vertex of V (D) is incident with at most one edge in it. Denote by m(D, r) the number of all

r-matchings in D and set m(D, 0) = 1. The matching polynomial of D is defined as

m(D,x) =

⌊n/2⌋
∑

k=0

(−1)km(D, k)xn−2k.

For convenience, we use the so-called signless matching polynomial [11] here as for undirected graphs,

(2.1) m+(D,x) =

⌊n/2⌋
∑

k=0

m(D, k)x2k.

A digraph H is called a “basic digraph” if each component of H is a K2 or a cycle with even length

(or even cycle). An even cycle C in a digraph D is called evenly directed if for either choice of direction
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of traversal around C, the number of edges of C directed in the direction of the traversal is even.

Otherwise, such an even cycle is called oddly directed. Just like the Sachs Theorem for undirected

graph, Gong et al. [3] gave an important property about the coefficients of the skew characteristic

polynomial of a digraph.

Lemma 2.1. Let D be an unweighted digraph on n vertices with the skew characteristic polynomial

φs(D,λ) =
n
∑

i=0

(−1)iaiλ
n−i = λn − a1λ

n−1 + a2λ
n−2 + · · · + (−1)n−1an−1λ + (−1)nan.

Then ai = 0 if i is odd, and

ai =
∑

H
(−1)c

+

2c if i is even,

where the summation is over all basic directed subgraphs H of D having i vertices and c+, c are respec-

tively the number of evenly directed even cycles and even cycles contained in H.

From this lemma, we find that the direction of an odd cycle has no effect on the coefficients of the

skew characteristic polynomial. Then for the skew characteristic polynomial of a digraph D ∈ On, if i

is odd, ai = 0; if i is even, ai only has a relevance to K2, which bears on the matching number of D.

We can get the following corollary immediately.

Corollary 2.2. Let D be a digraph in On. Then its skew characteristic polynomial is of the form

φs(D,λ) =

⌊n/2⌋
∑

i=0

m(D, i)λn−2i,

Remark 2.3. The above result can be also deduced from the Pfaffian theory [16]. Recall that a Pfaffian

orientation of G is such an orientation for the edges of G under which every even cycle C of G such

that G \ V (C) has a perfect matching has the property that there are odd number of edges directed in

either direction of the cycle C. Suppose that G has a Pfaffian orientation D with skew-adjacency matrix

S(D). Then the determinant of S(D) equals the square of the number of perfect matchings of G, i.e.,

det(S(D)) = m2(G,n/2). Moreover, if G contains no even cycles, then any orientation D of G is a

Pfaffian orientation of G. Now det(S(D)) = m2(G,n/2) = 0 or 1, since two distinct perfect matchings

contain an even cycle. Next we consider the coefficients of the skew characteristic polynomial of D. Let

Dk be a subgraph of D on k vertices with skew-adjacency matrix Sk. Then

(−1)kak(D) =
∑

Dk

det(Sk) =
∑

Dk

m2(Dk, k/2).

Obviously, if k is odd, then ak(D) = 0; otherwise, ak(D) = m(D, k/2).

Therefore, in the class On the skew characteristic polynomial of a digraph is independent of its

directions, so is the skew energy. Then throughout this paper we can consider digraphs with arbitrary

directions. Since a2k(D) = m(D, k), we get the next result.
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Lemma 2.4. Let D1 and D2 be two vertex-disjoint digraphs. Then

a2k(D1 ∪ D2) =

i=k
∑

i=0

a2i(D1) · a2k−2i(D2).

The next property is given in [9].

Lemma 2.5. Let D be a digraph, and let e = (u, v) be an edge of D that is not on any even cycles of

D. Then

a2k(D) = a2k(D − e) + a2k−2(D − u − v).

Furthermore, if e = (u, v) is a pendant edge with the pendant vertex v. Then

a2k(D) = a2k(D − v) + a2k−2(D − u − v).

In [10], Hou et al. obtained the following integral formula for the skew energy.

Lemma 2.6. Let D be a digraph in On. Then

Es(D) =
1

π

∫ +∞

−∞

1

x2
log(1 +

⌊n
2
⌋

∑

i=1

a2ix
2i)dx.

From Lemma 2.6, Es(D) is an increasing function in a2i(D), 0 ≤ i ≤ ⌊n
2 ⌋. Consequently, for two

digraphs D1,D2 ∈ On, if a2i(D1) ≥ a2i(D2) for all 0 ≤ i ≤ ⌊n
2 ⌋, then Es(D1) ≥ Es(D2). If at least one

of the inequalities a2i(D1) ≥ a2i(D2) is strict, then we have Es(D1) > Es(D2).

By Corollary 2.2, Lemma 2.6 and Eq. (2.1), we have

(2.2) Es(D) =
2

π

∫ +∞

0

1

x2
log m+(D,x)dx.

Now we list some useful properties of the signless matching polynomial m+(D,x), which is valid for

digraphs as well as undirected graphs, and already appeared in [12].

Lemma 2.7. Let D1 and D2 be two vertex-disjoint graphs. Then

m+(D1 ∪ D2, x) = m+(D1, x) · m+(D2, x).

Lemma 2.8. Let e = uv be an edge of a graph D. Then we have

m+(D,x) = m+(D − e, x) + x2m+(D − u − v, x).

Lemma 2.9. Let Pt denote a path on t vertices. Then

m+(Pt, x) = m+(Pt−1, x) + x2m+(Pt−2, x), for any t ≥ 1.

The initials are m+(P0, x) = m+(P1, x) = 1, and we define m+(P−1, x) = 0.

We end this section with some notations. Denote by Pn, Cn, Sn the directed path, cycle, star of

order n with arbitrary directions, P ℓ
n the unicyclic digraph obtained by connecting a vertex of Cℓ with

a leaf of Pn−ℓ, and P ℓ,s
n the digraph obtained from two cycles Cℓ and Cs joined by a path Pn−ℓ−s+2.

Let Sn,m ∈ On,m, n− 1 ≤ m ≤ n− 1 + ⌊n−1
2 ⌋, be the digraph obtained from Sn by attaching m−n + 1
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edges to different pairs of pendant vertices, such that the pendant vertices of Sn is of degree no more

than 2 in the digraph Sn,m. Clearly, Sn,n−1
∼= Sn. We give the following underlying undirected graph

of Sn,n+2 for example.

Sn,n+2

n− 9

Figure 1. The underlying undirected graph of Sn,n+2.

3. Minimal skew energy digraphs with no even cycles

For directed trees, the skew energy has the following property [1].

Lemma 3.1. The skew energy of a directed tree is the same as the energy of its underlying tree.

Corollary 3.2. For all trees in On,n−1, the directed star Sn has the minimal skew energy.

Now we can get the next two theorems.

Theorem 3.3. Let D be a connected digraph in On. If D ≇ Sn, then Es(D) > Es(Sn).

Proof. By Lemma 2.5,

a2k(D,x) = a2k(D − e, x) + a2k−2(D − u − v, x) ≥ a2k(D − e, x).

Thus Es(D) ≥ Es(T ), where T is the connected tree obtained from D by deleting some edges. Then by

Corollary 3.2, Es(T ) ≥ Es(Sn), and the equality holds if and only if D ∼= Sn. �

Theorem 3.4. Let D be a connected digraph in On,m, n − 1 ≤ m ≤ 3
2(n − 1). If D ≇ Sn,m, then

Es(D) > Es(Sn,m).

Proof. We prove it by induction on m. If m = n − 1, by Corollary3.2, the result holds. Suppose that

the result holds for digraphs D0 ∈ On,m−1. We now consider D ∈ On,m, n ≤ m ≤ 3
2 (n − 1).

Case 1. There are no pendant vertices in D. Then there must be a cycle C ⊆ D which has only

one vertex of degree more than 2. So there is an edge uv in C with d(u) = d(v) = 2. By Lemma 2.5,

a2k(D) = a2k(D − uv) + a2k−2(D − u − v).

Since m ≥ n, there exists a triangle u′v′x on Sn,m such that u′ and v′ have degree 2. Then

a2k(Sn,m) = a2k(Sn,m−1) + a2k−2(Sn−2,m−3).
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Clearly, D − uv, D − u − v are connected, and D − uv ∈ On,m−1, and D − u − v ∈ On−2,m−3. By the

induction hypothesis, a2k(D − uv) ≥ a2k(Sn,m−1), a2k−2(D − u − v) ≥ a2k−2(Sn−2,m−3). Thus we get

that a2k(D) ≥ a2k(Sn,m). Then Es(D) ≥ Es(Sn,m), with equality if and only if D ∼= Sn,m.

Case 2. There is a pendant edge uv in D with pendant vertex v. Then by Lemma 2.5,

a2k(D) = a2k(D − v) + a2k−2(D − u − v).

If Sn,m has no pendant edges, then m must be 3
2 (n − 1), but any digraph D ∈ On, 3

2
(n−1) has no

pendant edges, a contradiction. So there must be a pendant edge u′v′ in Sn,m with pendant vertex v′.

Then

a2k(Sn,m) = a2k(Sn,m − v′) + a2k(Sn,m − u′ − v′)

= a2k(Sn−1,m−1) + a2k−2((m − n + 1)P2).

First we consider the digraph D − u − v. Clearly, there are m − n + 1 cycles in D. For the x cycles

which contain the vertex u with 1 ≤ x ≤ m − n + 1, there are at least one edge left for each cycle

in D − u − v, and the edges belonging to different cycles in D are now in different components. For

the other m − n + 1 − x cycles, there are at least three edges in each cycle. So D − u − v contains

(m − n + 1)P2 as a subgraph. Then a2k−2(D − u − v) ≥ a2k−2((m − n + 1)P2).

Since D − v ∈ On−1,m−1, if D − v contains no pendant vertex, then by the proof of Case 1, we have

a2k(D − v) ≥ a2k(Sn−1,m−1). Thus we get that a2k(D) ≥ a2k(Sn,m). Then Es(D) ≥ Es(Sn,m), with

equality if and only if D ∼= Sn,m. If D − v contains a pendant vertex, then the problem is changed

into comparing a2k(D − v) with a2k(Sn−1,m−1). We repeat the above analysis until we get a digraph

D′ which contains no pendant vertex. Since m ≥ n, the digraph D′ exists. Then we know from the

procedure that a2k(D) ≥ a2k(Sn,m), that means Es(D) ≥ Es(Sn,m).

The theorem is thus proved. �

4. Maximal skew energy unicyclic digraphs with no even cycles

For undirected paths, Gutman and Polansky in [8] gave the following partial order relation:

Lemma 4.1. Let n = 4k, 4k + 1, 4k + 2, or 4k + 3. Then

Pn ≻ P2 ∪ Pn−2 ≻ P4 ∪ Pn−4 ≻ · · · ≻ P2k ∪ Pn−2k ≻ P2k+1 ∪ Pn−2k−1

≻ P2k−1 ∪ Pn−2k+1 ≻ · · · ≻ P3 ∪ Pn−3 ≻ P1 ∪ Pn−1,

where the graphs G1 ≻ G2 means the energy of G1 is more than or equal to that of G2. By Lemma

3.1, the skew energy of digraphs have the same partial order relation, which is useful in our proof.

By the definition of On,m, On,n is the class of connected digraphs with n vertices that contain an

odd cycle Cℓ as a subgraph, 3 ≤ ℓ ≤ n.
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Theorem 4.2. If n is odd, the digraph with maximal skew energy in On,n is Cn. If n ≡ 0 (mod 4),

the digraph with maximal skew energy in On,n is P ℓ0
n , ℓ0 = n/2 + 1. If n ≡ 2 (mod 4), the digraph with

maximal skew energy in On,n is P ℓ1
n , ℓ1 = n/2 or n/2 + 2.

Proof. Let D be a digraph in On,n that contains the odd cycle Cℓ. We first prove that Es(D) ≤ Es(P
ℓ
n)

by induction on n.

It is trivial that the result holds for n − ℓ = 0 and n − ℓ = 1. For n − ℓ = 2, if D ≇ P ℓ
n,

D must have a pendant edge uv with pendant vertex v. Clearly, D − v ∼= P ℓ
ℓ+1. By Lemma 2.5,

a2k(D) = a2k(D − v) + a2k−2(D − u − v), a2k(P
ℓ
n) = a2k(P

ℓ
ℓ+1) + a2k−2(Cℓ). Since D − u − v is acyclic

with ℓ vertices, a2k−2(D − u − v) = m(D − u − v, k − 1) ≤ m(Pℓ, k − 1) < m(Cℓ, k − 1) = a2k−2(Cℓ).

Thus the result holds for n − ℓ = 2.

Let p ≥ 3 and suppose that the result is true for n − ℓ < p. Now we consider n − ℓ = p. Since D is

unicyclic but not a cycle, D must have a pendant edge uv with pendant vertex v. By Lemma 2.5,

a2k(D) = a2k(D − v) + a2k−2(D − u − v).

a2k(P
ℓ
n) = a2k(P

ℓ
n−1) + a2k−2(P

ℓ
n−2)

By the induction hypothesis, a2k(D − v) ≤ a2k(P
ℓ
n−1). If D − u − v contains the cycle Cℓ, then by the

induction hypothesis, we have a2k−2(D−u− v) ≤ a2k−2(P
ℓ
n−2). If D−u− v does not contain the cycle

Cℓ, then it is acyclic, a2k−2(D − u − v) = m(D − u − v, k − 1) ≤ m(Pn−2, k − 1) < m(P ℓ
n−2, k − 1) =

a2k−2(P
ℓ
n−2). Therefore, we get that Es(D) ≤ Es(P

ℓ
n).

Now we prove that if n is odd, Es(P
ℓ
n) ≤ Es(Cn). Let the vertex of degree 3 in Cℓ be v, and one of

its neighbors in Cℓ be u. Choose any edge u′v′ in Cn. Then we have

a2k(P
ℓ
n) = a2k(Pn) + a2k−2(Pℓ−2 ∪ Pn−ℓ).

a2k(Cn) = a2k(Pn) + a2k−2(Pn−2).

By Lemma 4.1, a2k−2(Pℓ−2 ∪ Pn−ℓ) ≤ a2k−2(Pn−2). Then a2k(P
ℓ
n) ≤ a2k(Cn). Thus Es(D) ≤ Es(P

ℓ
n) ≤

Es(Cn).

If n is even, Cn /∈ On,n, and ℓ − 2, n − ℓ are both odd, then we compare a2k(P
ℓ
n) for different ℓ. By

Lemma 4.1, if n ≡ 0 (mod 4), 3 ≤ ℓ ≤ n, a2k−2(Pℓ−2∪Pn−ℓ) is maximal if and only if ℓ−2 = n− ℓ, that

is ℓ = n
2 +1. If n ≡ 2 (mod 4), 3 ≤ ℓ ≤ n, a2k−2(Pℓ−2 ∪Pn−ℓ) is maximal if and only if ℓ−2 = n− ℓ±2,

that is ℓ = n
2 + 2 or n

2 .

The proof is thus complete. �

5. Maximal skew energy bicyclic digraphs of even order with no even cycles

By the definition of On,m, On,n+1 is the class of connected digraphs with n vertices that contain

exact two odd cycles Cℓ, Cs as subgraphs, 3 ≤ ℓ, s ≤ n. We first compare the skew energy of a digraph

D with that of P ℓ,s
n .
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Lemma 5.1. Let D be a digraph in On,n+1 with exact two odd cycles Cℓ, Cs, where n is even and

3 ≤ ℓ, s ≤ n. Then Es(D) ≤ Es(P
ℓ,s
n ).

Proof. We consider the following two cases.

Case 1. If Cℓ and Cs have no common vertices, then Cℓ and Cs are connected by a path P . We

choose an edge uv on P satisfying that u is the vertex joining P with Cℓ, and v is the neighbor of u

on P , such that D− uv contains two components that are unicyclic digraphs. Then we choose an edge

u′v′ of Pn−ℓ−s+2 on P ℓ,s
n such that P ℓ,s

n −u′v′ contains two components with the same valencies of those

of D − uv. By the proof of Theorem 4.2, we thus have

a2k(D) = a2k(D − uv) + a2k−2(D − u − v)

≤ a2k(P
ℓ,s
n − u′v′) + a2k−2(P

ℓ,s
n − u′ − v′) = a2k(P

ℓ,s
n ).

Then Es(D) ≤ Es(P
ℓ,s
n ).

Case 2. If Cℓ and Cs have a common vertex, since n is even and ℓ, s are odd, there is at least a tree

planted on the cycles, without loss of generality, we suppose that at least one tree is planted on Cs.

Denote by D − u the digraph obtained from D by deleting the vertex u together with all the edges

incident with it. Then D − u contains at least two components. Let the component containing Cℓ − u

be A1, and the other components be A2. Then we denote the digraph D[A1∪u] by B1, and the digraph

D[A2 ∪ u] by B2. If v(B2) = n2, then n2 ≥ s + 1. Let D′ be the digraph obtained by joining the vertex

u on B1 with the leaf of P s
n2−1. Then we give an example of the underlying undirected graphs of the

above digraphs.

Cl Cs

D

Cl

D
′

Cs

A1

u

v1

v2

v1

v2

v1

v2

u

A2

Cl
u

v1

v2

B1

Cs
u

B2

Figure 2. An example of the underlying undirected graphs of D,D′, A1, A2, B1, B2.
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Let the neighbors of u on Cℓ be v1 and v2. Then by Lemma 2.5,

a2k(D) = a2k(D − uv1) + a2k−2(D − u − v1),

a2k(D
′) = a2k(D

′ − uv1) + a2k−2(D
′ − u − v1).

Clearly, D − u − v1 = (A1 − v1) ∪ A2, and D′ − u − v1 = (A1 − v1) ∪ P s
n2−1. Since A2 is a forest with

n2−1 vertices, we have a2k−2(A2) ≤ a2k−2(Pn2−1) < a2k−2(P
s
n2−1), by Lemma 2.4, a2k−2(D−u−v1) <

a2k−2(D
′ − u − v1). Furthermore,

a2k(D − uv1) = a2k(D − uv1 − uv2) + a2k−2(D − uv1 − u − v2),

= a2k(A1 ∪ B2) + a2k−2((A1 − v2) ∪ A2).

a2k(D
′ − uv1) = a2k(A1 ∪ P s

n2
) + a2k−2((A1 − v2) ∪ P s

n2−1).

Since B2 is a unicyclic digraph with the cycle Cs, a2k(B2) ≤ a2k(P
s
n2

). And a2k−2(A2)

≤ a2k−2(Pn2−1) < a2k−2(P
s
n2−1). Then by Lemma 2.4, we have a2k(D − uv1) < a2k(D

′ − uv1).

Thus we know that a2k(D) < a2k(D
′), which means that Es(D) < Es(D

′). Then by the proof of Case

1, we have Es(D) < Es(D
′) ≤ Es(P

ℓ,s
n ).

The lemma is thus proved. �

Then we compare the skew energy of P ℓ,s
n for different ℓ, s.

Lemma 5.2. Let s, ℓ be odd integers with s ≥ ℓ ≥ 3, where n is even and n ≥ s + ℓ + 2. Then

Es(P
s,ℓ
n ) < Es(P

s,ℓ+2
n ).

Proof. By Lemma 2.5, we can easily get that

a2k(P
s,ℓ
n ) = a2k(P

s
n) + a2k−2(Pℓ−2 ∪ Pn−ℓ) + a2k−4(Pℓ−2 ∪ Ps−2 ∪ Pn−s−ℓ),

a2k(P
s,ℓ+2
n ) = a2k(P

s
n) + a2k−2(Pℓ ∪ Pn−ℓ−2) + a2k−4(Pℓ ∪ Ps−2 ∪ Pn−s−ℓ−2).

Since n is even, s, ℓ are odd, we have ℓ− 2, s− 2, n− ℓ, n− ℓ− 2 are odd and n− s− ℓ, n− s− ℓ− 2

are even. From Lemma 4.1, a2k−2(Pℓ−2∪Pn−ℓ) < a2k−2(Pℓ∪Pn−ℓ−2), for n−ℓ−2 ≥ s ≥ ℓ > ℓ−2. And

ℓ− 2 < ℓ, n− s− ℓ > n− s− ℓ− 2. Then a2k−4(Pℓ−2 ∪Ps−2 ∪Pn−s−ℓ) < a2k−4(Pℓ ∪Ps−2 ∪ Pn−s−ℓ−2).

Therefore, a2k(P
s,ℓ
n ) < a2k(P

s,ℓ+2
n ). Then we have Es(P

s,ℓ
n ) < Es(P

s,ℓ+2
n ). �
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For convenience, we introduce the following notations, which will be used in our next proof.

Y1 =
1 +

√
1 + 4x2

2
, Y2 =

1 −
√

1 + 4x2

2
,

A1 =
x2 + 1 − Y2

Y 2
1 + x2

, A2 =
x2 + 1 − Y1

Y 2
2 + x2

,

B1 = A1 + x2A2
1Y

−2
1 − x2ℓ−2A1A2Y

−2ℓ+2
1 ,

B2 = A2 + x2A2
2Y

−2
2 − x2ℓ−2A1A2Y

−2ℓ+2
2 ,

C1 = A1 + 2x2A2
1Y

−2
1 + x4A3

1Y
−4
1 − x2s−2A1A2Y

−2s+2
1 − x2ℓ−2A1A2Y

−2ℓ+2
1

−x2sA2
1A2Y

−2s
1 − x2ℓA2

1A2Y
−2ℓ
1 + x2s+2ℓ−4A1A

2
2Y

−2s−2ℓ+4
1 ,

C2 = A2 + 2x2A2
2Y

−2
2 + x4A3

2Y
−4
2 − x2s−2A1A2Y

−2s+2
2 − x2ℓ−2A1A2Y

−2ℓ+2
2

−x2sA1A
2
2Y

−2s
2 − x2ℓA1A

2
2Y

−2ℓ
2 + x2s+2ℓ−4A2

1A2Y
−2s−2ℓ+4
2 .

It is easy to verify that Y1 + Y2 = 1, Y1Y2 = −x2, A1A2 = x2

1+4x2 .

Lemma 5.3. For s, ℓ ≥ 3, n ≥ s + ℓ, the signless matching polynomial of Pn, P ℓ
n and P s,ℓ

n have the

following forms:

m+(Pn, x) = A1(x)(Y1(x))n + A2(x)(Y2(x))n,

m+(P ℓ
n, x) = B1(x)(Y1(x))n + B2(x)(Y2(x))n,

m+(P s,ℓ
n , x) = C1(x)(Y1(x))n + C2(x)(Y2(x))n.

Proof. By Lemma 2.9, we know that m+(Pn, x) satisfies the recursive formula f(n, x) = f(n − 1, x) +

x2f(n − 2, x). Therefore, the form of the general solution of the linear homogeneous recursive relation

is f(n, x) = F1(x)(Y1(x))n + F2(x)(Y2(x))n. By some elementary calculations, together with the initial

values

m+(P2, x) = 1 + x2, m+(P3, x) = 1 + 2x2,

we can easily obtain that Fi(x) = Ai(x), i = 1, 2. From Lemmas 2.7 and 2.8, we deduce that

m+(P ℓ
n, x) = m+(Pn, x) + x2m+(Pℓ−2, x)m+(Pn−ℓ, x),

m+(P s,ℓ
n , x) = m+(P ℓ

n, x) + x2m+(Ps−2, x)m+(P ℓ
n−s, x).

Then by means of some elementary calculations, we can get the above formulas for m+(P ℓ
n, x) and

m+(P s,ℓ
n , x). �

Before giving the following results, we state some knowledge on real analysis, for which we refer to

[17].

Lemma 5.4. For any real number X > −1, we have

X

1 + X
≤ log(1 + X) ≤ X.

Lemma 5.5. Let s, ℓ be odd integers with s ≥ ℓ ≥ 3, s ≥ ℓ + 4, where n is even and n ≥ s + ℓ. Then

Es(P
s,ℓ
n ) < Es(P

s−2,ℓ+2
n ).
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Proof. From Eq. (2.2), we get that

Es(P
s,ℓ
n ) − Es(P

s−2,ℓ+2
n )

=
2

π

∫ +∞

0

1

x2
log

m+(P s,ℓ
n , x)

m+(P s−2,ℓ+2
n , x)

dx

=
2

π

∫ +∞

0

1

x2
log

(

1 +
m+(P s,ℓ

n , x) − m+(P s−2,ℓ+2
n , x)

m+(P s−2,ℓ+2
n , x)

)

dx.

Since m+(P s,ℓ
n , x) > 0 and m+(P s−2,ℓ+2

n , x) > 0 for all x, we have

m+(P s,ℓ
n , x) − m+(P s−2,ℓ+2

n , x)

m+(P s−2,ℓ+2
n , x)

=
m+(P s,ℓ

n , x)

m+(P s−2,ℓ+2
n , x)

− 1 > −1.

Therefore, by Lemma 5.4

log

(

1 +
m+(P s,ℓ

n , x) − m+(P s−2,ℓ+2
n , x)

m+(P s−2,ℓ+2
n , x)

)

≤ m+(P s,ℓ
n , x) − m+(P s−2,ℓ+2

n , x)

m+(P s−2,ℓ+2
n , x)

.

We assume m+(P s−2,ℓ+2
n , x) = C ′

1(x)(Y1(x))n + C ′
2(x)(Y2(x))n. Then

C ′
1 = A1 + 2x2A2

1Y
−2
1 + x4A3

1Y
−4
1 − x2s−6A1A2Y

−2s+6
1 − x2ℓ+2A1A2Y

−2ℓ−2
1

−x2s−4A2
1A2Y

−2s+4
1 − x2ℓ+4A2

1A2Y
−2ℓ−4
1 + x2s+2ℓ−4A1A

2
2Y

−2s−2ℓ+4
1 ,

C ′
2 = A2 + 2x2A2

2Y
−2
2 + x4A3

2Y
−4
2 − x2s−6A1A2Y

−2s+6
2 − x2ℓ+2A1A2Y

−2ℓ−2
2

−x2s−4A1A
2
2Y

−2s+4
2 − x2ℓ+4A1A

2
2Y

−2ℓ−4
2 + x2s+2ℓ−4A2

1A2Y
−2s−2ℓ+4
2 .

Thus we get that

∆C1 = C1 − C ′
1

= −x2s−2A1A2Y
−2s+2
1 − x2ℓ−2A1A2Y

−2ℓ+2
1 − x2sA2

1A2Y
−2s
1 + x2s−6A1A2Y

−2s+6
1

−x2ℓA2
1A2Y

−2ℓ
1 + x2ℓ+2A1A2Y

−2ℓ−2
1 + x2s−4A2

1A2Y
−2s+4
1 + x2ℓ+4A2

1A2Y
−2ℓ−4
1

= (Y 4
1 − x4)(Y 2ℓ+4−2s

1 − x2ℓ+4−2s)(x2s−6A1A2Y
−2ℓ−2
1 + x2s−4A2

1A2Y
−2ℓ−4
1 ).

By our definition, we know that Y1 = 1+
√

1+4x2

2 > |x| ≥ 0, 2ℓ + 4 − 2s < 0. Therefore Y 4
1 − x4 >

0, Y 2ℓ+4−2s
1 − x2ℓ+4−2s < 0. And A1 = x2+1−Y2

Y 2
1

+x2 = 2x2+1+
√

1+4x2

2(Y 2
1

+x2)
> 0, A1A2 = x2

1+4x2 > 0, then

x2s−6A1A2Y
−2ℓ−2
1 + x2s−4A2

1A2Y
−2ℓ−4
1 > 0 for all x. From the above analysis, we finally get that

∆C1 < 0.

By a similar method, we can get that ∆C2 = C2 − C ′
2 < 0. Thus for any x and all even n,

m+(P s,ℓ
n , x) − m+(P s−2,ℓ+2

n , x) = ∆C1Y
n
1 + ∆C2Y

n
2 < 0.

Then

log

(

1 +
m+(P s,ℓ

n , x) − m+(P s−2,ℓ+2
n , x)

m+(P s−2,ℓ+2
n , x)

)

≤ m+(P s,ℓ
n , x) − m+(P s−2,ℓ+2

n , x)

m+(P s−2,ℓ+2
n , x)

< 0.
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Therefore,

Es(P
s,ℓ
n ) − Es(P

s−2,ℓ+2
n )

=
2

π

∫ +∞

0

1

x2
log

(

1 +
m+(P s,ℓ

n , x) − m+(P s−2,ℓ+2
n , x)

m+(P s−2,ℓ+2
n , x)

)

dx < 0.

The lemma is thus proved. �

So for any digraph D in On,n+1 with exact two odd cycles Cℓ, Cs, 3 ≤ ℓ, s ≤ n, n even, by Lemma

5.1, Es(D) ≤ Es(P
ℓ,s
n ). Then by using Lemma 5.2 repeatedly, Es(P

s,ℓ
n ) < Es(P

s′,ℓ′
n ), where s′, ℓ′ are odd,

s′ ≥ s, ℓ′ ≥ ℓ, s′ + ℓ′ = n. Finally, we use Lemma 5.5 repeatedly, and then deduce the following result.

Theorem 5.6. let n be an even integer, if n ≡ 0 (mod 4), the digraphs with maximal skew energy in

On,n+1 is P ℓ,ℓ−2
n , ℓ = n/2 + 1. If n ≡ 2 (mod 4), the digraphs with maximal skew energy in On,n+1 is

P ℓ′,ℓ′
n , ℓ′ = n/2.
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