
On the q-log-convexity conjecture of Sun

Donna Q. J. Dou1 and Anne X. Y. Ren2

1School of Mathematics, Jilin University
Changchun, Jilin 130012, P. R. China

2Center for Combinatorics, LPMC-TJKLC, Nankai University
Tianjin 300071, P. R. China

Email: 1 qjdou@jlu.edu.cn, 2 renxy@nankai.edu.cn

Abstract. In the study of Ramanujan-Sato type series for 1/π, Sun introduced a
sequence of polynomials Sn(q) as given by

Sn(q) =

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)
n− k

)
qk,

and he conjectured that the polynomials Sn(q) are q-log-convex. Using the ap-
proach of Liu and Wang, we obtain a sufficient condition to ensure the q-log-
convexity of self-reciprocal polynomials. Based on this criterion, we give an af-
firmative answer to Sun’s conjecture.
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1 Introduction

The main objective of this paper is to prove a conjecture of Sun [12] on the
q-log-convexity of the polynomials

Sn(q) =

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)
n− k

)
qk, (1.1)

which arise in the study of Ramanujan-Sato type series for 1/π.
Let us recall some definitions. A nonnegative sequence {an}n≥0 is said to be

log-concave if, for any n ≥ 1,

a2n ≥ an−1an+1;

and is said to be log-convex if, for any n ≥ 1,

an−1an+1 ≥ a2n.
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Many sequences arising in combinatorics, algebra and geometry, turn out to be
log-concave or log-convex, see Brenti [1] or Stanley [11].

For a sequence of polynomials with real coefficients, Stanley introduced the
notion of q-log-concavity. A polynomial sequence {fn(q)}n≥0 is said to be q-
log-concave if, for any n ≥ 1, the difference

f2n(q)− fn+1(q)fn−1(q)

has nonnegative coefficients. The q-log-concavity of polynomial sequences has
been extensively studied, see Bulter [2], Krattenthaler [7], Leroux [8] and Sagan
[10]. Similarly, a polynomial sequence {fn(q)}n≥0 is said to be q-log-convex if,
for any n ≥ 1, the difference

fn+1(q)fn−1(q)− f2n(q)

has nonnegative coefficients. Liu and Wang [9] showed that many classical com-
binatorial polynomials are q-log-convex, see also [4, 5, 6]. It should be noted that
Butler and Flanigan [3] introduced a different kind of q-log-convexity.

Sun posed six conjectures on the expansions of 1/π in terms of Sn(q), one of
which reads

∞∑
n=0

140n+ 19

4624n

(
2n

n

)
Sn(64) =

289

3π
.

He also conjectured that the polynomials Sn(q) are q-log-convex. It is easy to see
that the coefficients of Sn(q) are symmetric. Such polynomials are also said to be
self-reciprocal. More precisely, a polynomial

f(q) = a0 + a1q + · · ·+ anq
n

is called a self-reciprocal polynomial of degree n if f(q) = qnf(1/q).
In this paper, we give a proof of the q-log-convexity of the polynomials Sn(q).

Our proof is closely related to an approach of Liu and Wang [9]. Assume that

fn(q) =

n∑
k=0

a(n, k)qk. (1.2)

Write the difference fn+1(q)fn−1(q)− f2n(q) as

2n∑
t=0

bt/2c∑
k=0

L̃t(a(n, k))

 qt,
where

L̃t(a(n, k)) =


a(n+ 1, k)a(n− 1, t− k) + a(n− 1, k)a(n+ 1, t− k)

−2a(n, k)a(n, t− k), if 0 ≤ k < t
2 ,

a(n+ 1, k)a(n− 1, k)− a2(n, k), if t is even and k = t
2 .

(1.3)

2



Liu and Wang gave the following construction of q-log-convex polynomials.

Theorem 1.1. Let {uk}k≥0 be a log-convex sequence of real numbers and let
{fn(q)}n≥0 be a q-log-convex sequence of polynomials with nonnegative real co-
efficients as given in (1.2). Let {gn(q)}n≥0 be a sequence of polynomials defined
by

gn(q) =

n∑
k=0

a(n, k)ukq
k. (1.4)

Assume that for any n ≥ 1 and 0 ≤ t ≤ 2n, there exists an integer k′ depending
on n and t such that

L̃t(a(n, k))

{
≥ 0, if 0 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 .

Then the polynomials gn(q) are q-log-convex.

We shall make use of the above theorem for the polynomials {Sn(q)}n≥0 by
taking

uk =

(
2k

k

)
, a(n, k) =

(
n

k

)(
2n− 2k

n− k

)
.

Numerical evidence indicates that L̃t(a(n, k)) satisfies the criterion in the above
theorem of Liu and Wang. Considering the symmetry of the coefficients of Sn(q),
we obtain an analogous criterion to Theorem 1.1 for the q-log-convexity of self-
reciprocal polynomials. By using this criterion, we confirm the conjecture of Sun.

2 q-Log-convexity of self-reciprocal polynomials

Analogous to the criterion of Liu and Wang as given in Theorem 1.1, we find
a sufficient condition for a sequence of self-reciprocal polynomials to be q-log-
convex. For 0 ≤ k ≤ t/2, we define

Lt(a(n, k)) =a(n+ 1, k)a(n− 1, t− k) + a(n− 1, k)a(n+ 1, t− k)

− 2a(n, k)a(n, t− k). (2.1)

We obtain the following criterion which can be directly applied to {Sn(q)}n≥0.

Theorem 2.1. Given a log-convex sequence {uk}k≥0 and a q-log-convex se-
quence {fn(q)}n≥0 as defined in (1.2), let {gn(q)}n≥0 be the polynomial se-
quence defined by (1.4). Assume that the following two conditions are satisfied:
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(C1) For any n ≥ 0, the polynomial gn(q) is a self-reciprocal polynomial of
degree n; and

(C2) For any n ≥ 1 and 0 ≤ t ≤ n, there exists an index k′ associated with n, t
such that

Lt(a(n, k))

{
≥ 0, if 0 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 .

Then the polynomial sequence {gn(q)}n≥0 is q-log-convex.

Proof. Under the assumption that each gn(q) is a self-reciprocal polynomial of de-
gree n, it is easily checked that both gn−1(q)gn+1(q) and g2n(q) are self-reciprocal
polynomials of degree 2n. Moreover, the difference gn−1(q)gn+1(q) − g2n(q) is
also of degree 2n and hence it is self-reciprocal. Write gn−1(q)gn+1(q) − g2n(q)
as

2n∑
t=0

B(n, t)qt.

To prove the q-log-convexity of {gn(q)}n≥0, it suffices to show that B(n, t) is
nonnegative for any 0 ≤ t ≤ n.

It can be verified that

B(n, t) =


∑s

k=0 Lt(a(n, k))ukut−k, if t = 2s+ 1,∑s−1
k=0 Lt(a(n, k))ukut−k + Lt(a(n,s))

2 u2s, if t = 2s.

Based on the log-convexity of {uk}k≥0 and the q-log-convexity of {fn(q)}n≥0,
we proceed to prove that B(n, t) is nonnegative.

On one hand, write

fn−1(q)fn+1(q)− f2n(q) =
2n∑
t=0

A(n, t)qt,

we have

A(n, t) =


∑s

k=0 Lt(a(n, k)), if t = 2s+ 1,∑s−1
k=0 Lt(a(n, k)) +

Lt(a(n,s))
2 , if t = 2s.

Since {fn(q)}n≥0 is q-log-convex, we deduce that A(n, t) ≥ 0 for any 0 ≤ t ≤
2n.

On the other hand, by the log-convexity of {uk}k≥0, we have

u0ut ≥ u1ut−1 ≥ · · · ≥ uk′ut−k′ ≥ · · · ≥ usus+1 ≥ 0, if t = 2s+ 1, (2.2)

u0ut ≥ u1ut−1 ≥ · · · ≥ uk′ut−k′ ≥ · · · ≥ u2s ≥ 0, if t = 2s. (2.3)
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To prove that B(n, t) ≥ 0 for 0 ≤ t ≤ n, we consider two cases.
If t = 2s+ 1, then by (2.2) and the condition (C2), we have

B(n, t) =

s∑
k=0

Lt(a(n, k))ukut−k ≥
s∑

k=0

Lt(a(n, k))uk′ut−k′ .

By the definition of A(n, t), we get

B(n, t) = A(n, t)uk′ut−k′ ,

which is nonnegative since A(n, t) ≥ 0.
Similarly, when t = 2s, we have

B(n, t) =

s−1∑
k=0

Lt(a(n, k))ukut−k +
Lt (a(n, s))

2
u2s

≥
s−1∑
k=0

Lt(a(n, k))uk′ut−k′ +
Lt (a(n, s))

2
uk′ut−k′ ,

which equals A(n, t)uk′ut−k′ , and hence B(n, t) is nonnegative. This completes
the proof.

3 The q-log-convexity of Sn(q)

In this section, we use Theorem 2.1 to prove Sun’s conjecture on the q-log-
convexity of Sn(q). To this end, we need to establish the following log-convex
property by using the technique of Liu and Wang as given in Theorem 1.1.

Theorem 3.1. For n ≥ 0, let

fn(q) =

n∑
k=0

(
n

k

)(
2n− 2k

n− k

)
qk,

then the sequence {fn(q)}n≥0 is q-log-convex.

Proof. Let hn(q) denote the polynomial qnfn(q−1), that is,

hn(q) =

n∑
k=0

(
n

k

)(
2k

k

)
qk.

Clearly, {fn(q)}n≥0 forms a q-log-convex sequence if and only if {hn(q)}n≥0
is q-log-convex. It is easily checked that {(1 + q)n}n≥0 is q-log-convex and
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{
(
2k
k

)
}k≥0 is log-convex. By Theorem 1.1, to prove the q-log-convexity of

{hn(q)}n≥0, it suffices to show that, for any n ≥ 1 and 0 ≤ t ≤ 2n, there exists
k′ such that

L̃t

((
n

k

)){ ≥ 0, if 0 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 ,

where L̃ is defined by (1.3).
Let us consider Lt(

(
n
k

)
) as defined by (2.1), which can be seen to have the

same sign as L̃t(
(
n
k

)
). For n ≥ 1, 0 ≤ t ≤ 2n and 0 ≤ k ≤ t/2, we have

Lt

((
n

k

))
=

(
n+ 1

k

)(
n− 1

t− k

)
+

(
n+ 1

t− k

)(
n− 1

k

)
− 2

(
n

t− k

)(
n

k

)

=
1

n(n+ 1)(n− k + 1)

(
n

k

)(
n+ 1

t− k

)
ϕ(n,t)(k), (3.1)

where

ϕ(n,t)(k) =(n+ 1)(n− k)(n− k + 1) + (n+ 1)(n− t+ k)(n− t+ k + 1)

− 2n(n− k + 1)(n− t+ k + 1).

To determine the sign of ϕ(n,t)(k) for 0 ≤ k ≤ t/2, we make use of the function
ϕ(n,t)(x) on interval [0, t/2]. Taking the derivative of ϕ(n,t)(x) with respect to x,
we obtain that

(ϕ(n,t)(x))′ = (4n+ 2)(2x− t) ≤ 0.

Thus ϕ(n,t)(x) is decreasing on the interval [0, t/2].
For any integers n ≥ 1 and 0 ≤ t ≤ 2n, we haveϕ(n,t)(0) = (n+1)(t2−t) ≥

0. Thus there is at most one sign change in the sequence {ϕ(n,t)(k)}0≤k≤ t
2

. It
follows that there exists an integer k′ such that

ϕ(n,t)(k)

{
≥ 0, if 0 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 .

It is possible that {ϕ(n,t)(k)}0≤k≤ t
2

are all nonnegative. In this case, we have that
k′ = t/2. So we get

Lt

((
n

k

)){ ≥ 0, if 0 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 .

By Theorem 1.1, we deduce that {hn(q)}n≥0 is q-log-convex, and hence the proof
is complete.

For 0 ≤ k ≤ n, let

a(n, k) =

(
n

k

)(
2n− 2k

n− k

)
. (3.2)
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Based on the above theorem and the log-convexity of {
(
2k
k

)
}k≥0, to prove the

q-log-convexity of {Sn(q)}n≥0, we only need to prove that the triangular array
{a(n, k)}0≤k≤n satisfies condition (C2) in Theorem 2.1.

Theorem 3.2. Let {a(n, k)}0≤k≤n be the triangular array defined by (3.2). For
any n ≥ 1 and 0 ≤ t ≤ n, there exists an integer k′ depending on n, t such that

Lt(a(n, k))

{
≥ 0, if 0 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 .

To prove the above theorem, we need three lemmas.

Lemma 3.3. For any n ≥ 1 and 0 ≤ t ≤ n, we have Lt(a(n, 0)) ≥ 0.

Proof. For 1 ≤ n ≤ 4, it can be verified that Lt(a(n, 0)) ≥ 0. So we may assume
that n ≥ 5. It can be checked that the sign of Lt(a(n, 0)) coincides with the sign
of (

2n
n

)(
n
t

)(
2n−2t
n−t

)
θ(t)

n(n+ 1)(2n− 1)(n− t+ 1)2(2n− 2t− 1)
,

where

θ(x) =(4n2 − 1)x4 − 2(2n− 1)(2n2 + 2n+ 1)x3 + (4n4 + 8n3 + 8n2 − 1)x2

− 2n(n+ 1)(2n2 + 4n− 1)x+ 2n(2n− 1)(n+ 1)2. (3.3)

To prove that Lt(a(n, 0)) ≥ 0, we consider two cases:
Case 1: t = n. In this case, it suffices to show that θ(n) ≤ 0. But this is obvious
for n ≥ 5, since θ(n) = −n(n− 1)(n− 2)(n+ 1).
Case 2: 0 ≤ t < n. In this case, we need to show that θ(t) ≥ 0. To this end, treat
θ(x) as a function of x over the interval [0, n− 1]. We have

θ′(x) = 2(n− x)θ1(x),

where

θ1(x) =2(1− 4n2)x2 + (2n− 1)(2n2 + 4n+ 3)x− (2n3 + 6n2 + 3n− 1).

Moreover,
θ′1(x) = (2n− 1)θ2(x),

where
θ2(x) = −4(2n+ 1)x+ (2n2 + 4n+ 3).

For n ≥ 5,

θ2(0) = 2n2 + 4n+ 3 > 0, θ2(n− 1) = −6n2 + 8n+ 7 < 0.
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Therefore, θ2(x) decreases from a positive value to a negative value as x increases
from 0 to n − 1. This implies that θ1(x) first increases and then decreases over
the interval [0, n− 1].

Observe that, for n ≥ 5,

θ1(0) = −2n3 − 6n2 − 3n+ 1 < 0,

θ1(1) = n(2(n− 2)2 − 9) > 0,

θ1(n− 1) = −4n4 + 16n3 − 16n2 − 12n+ 6 < 0.

It follows that there exist 0 < x1 < x2 < n− 1 such that

θ1(x)


< 0, if x ∈ [0, x1),

≥ 0, if x ∈ [x1, x2],

< 0, if x ∈ (x2, n− 1].

That is to say that θ(x) is decreasing on [0, x1), increasing on [x1, x2], and de-
creasing on (x2, n− 1].

It is easy to check that for n ≥ 5,

θ(0) = 2n(2n− 1)(n+ 1)2 > 0,

θ(1) = 2n2(2n− 1)(n− 1) > 0,

θ(2) = 2(n− 2)(6n3 − 13n2 + 1) > 0,

θ(n− 1) = −4 + 8n+ 3n4 − 10n3 + 11n2 > 0,

and
θ(0) > θ(1) < θ(2) > θ(n− 1).

So we see that x1 < 2. If x2 > 2, then θ(x) is increasing on [2, x2], and decreas-
ing on (x2, n−1]. If x2 ≤ 2, then θ(x) decreases on (2, n−1]. In either case, we
obtain that θ(x) > 0 for x ∈ [2, n− 1]. Since θ(0) > 0 and θ(1) > 0, we deduce
that θ(t) > 0 for any integer 0 ≤ t ≤ n− 1. This completes the proof.

Lemma 3.4. Given n ≥ 2 and 0 ≤ t ≤ n−1, there exists an integer k′ depending
on n and t such that

Lt(a(n, k))

{
≥ 0, if 1 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ t

2 .
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Proof. For n ≥ 2, 0 ≤ t ≤ n and 0 ≤ k ≤ t/2, we have

Lt(a(n, k)) =

(
n+ 1

k

)(
2n− 2k + 2

n− k + 1

)(
n− 1

t− k

)(
2n− 2t+ 2k − 2

n− t+ k − 1

)

+

(
n− 1

k

)(
2n− 2k − 2

n− k − 1

)(
n+ 1

t− k

)(
2n− 2t+ 2k + 2

n− t+ k + 1

)

− 2

(
n

k

)(
2n− 2k

n− k

)(
n

t− k

)(
2n− 2t+ 2k

n− t+ k

)
.

Write

Lt(a(n, k)) =
1

(n− k + 1)2(n− t+ k + 1)2(2n− 2k − 1)(2n− 2t+ 2k − 1)

× 1

n

(
n

k

)(
2n− 2k

n− k

)(
n

t− k

)(
2n− 2t+ 2k

n− t+ k

)
ψ(n,t)(k), (3.4)

where

ψ(n,t)(x) =(n+ 1)(n− x)2(n− x+ 1)2(2n− 2t+ 2x+ 1)(2n− 2t+ 2x− 1)

+ (n+ 1)(n− t+ x)2(n− t+ x+ 1)2(2n− 2x− 1)(2n− 2x+ 1)

− 2n(n− x+ 1)2(n− t+ x+ 1)2(2n− 2x− 1)(2n− 2t+ 2x− 1).
(3.5)

Clearly, for n ≥ 2, 0 ≤ t ≤ n − 1 and 1 ≤ k ≤ t/2, the sign of Lt(a(n, k))
coincides with that of ψ(n,t)(k). By (3.4) and Lemma 3.3, we see that ψ(n,t)(0) ≥
0 when 0 ≤ t ≤ n−1. Therefore, it suffices to show that there exists 0 ≤ t0 ≤ t/2
such that ψ(n,t)(x), regarded as a function of x, is increasing on the interval [0, t0)
and decreasing on the interval [t0, t/2].

The derivative of ψ(n,t)(x) can be expressed as

(ψ(n,t)(x))′ = 2(2x− t)ψ(n,t)
1 (x),

where

ψ
(n,t)
1 (x) =12(2n+ 1)x4 − 24t(2n+ 1)x3

− 2(16n3 − 8(2t− 1)n2 − 2(7t2 + 3t+ 1)n− (8t2 − 4t+ 3))x2

+ 2t(16n3 − 8(2t− 1)n2 − 2(t2 + 3t+ 1)n− (2t2 − 4t+ 3))x

+
(
8n5 − 4(4t− 1)n4 + 4(t2 − t− 3)n3 + 4(−t2 + 5t+ t3 − 2)n2

+(4t3 − 10t2 − 1 + 11t)n− (2t2 − 3t+ 1)
)
.
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Moreover, we have

(ψ
(n,t)
1 (x))′ = 2(2x− t)ψ(n,t)

2 (x), (3.6)

where

ψ
(n,t)
2 (x) =12(2n+ 1)x2 − 12t(2n+ 1)x− 16n3 + 8(2t− 1)n2

+ 2(t2 + 3t+ 1)n+ (2t2 − 4t+ 3).

Notice that the quadratic function ψ(n,t)
2 (x) is symmetric with respect to x = t/2.

It follows that ψ(n,t)
2 (x) decreases as x increases from 0 to t/2.

It is routine to check that, for n ≥ 1 and 0 ≤ t < n,

ψ
(n,t)
2 (−∞) > 0,

ψ
(n,t)
2

(
t

2

)
= −4n(2n− t)2 − (4n− t− 1)(2n− t)− 3(t− 1) < 0,

then there exists a real zero x0 of ψ(n,t)
2 (x) on the interval (−∞, t/2].

If x0 ≤ 0, then we see that for 0 ≤ x ≤ t/2, ψ(n,t)
2 (x) ≤ 0, that is to say,

ψ
(n,t)
1 (x) is increasing on [0, t/2].

If x0 > 0,

ψ
(n,t)
2 (x)

{
> 0, if 0 ≤ x < x0,

< 0, if x0 < x < t/2,

that is to say,

(ψ
(n,t)
1 (x))′

{
< 0, if 0 ≤ x < x0,

> 0, if x0 < x < t/2,

then ψ(n,t)
1 (x) is decreasing on [0, x0] and increasing on [x0, t/2].

Using Maple, we find that for n ≥ 4 and 0 ≤ t < n,

ψ
(n,t)
1

(
t

2

)
=8n5 − 16n4t+ 12n3t2 − 4n2t3 +

1

2
nt4 + 4n4 − 4n3t+ nt3 − 1

4
t4

− 12n3 + 20n2t− 11nt2 + 2t3 − 8n2 + 11nt− 7

2
t2 − n+ 3t− 1

=

(
1

2
n− 1

4

)
(2n− t)4 + (n− 2)(2n− t)3 +

(
n− 7

2

)
(2n− t)2

+ 3(n− 1)(2n− t) + 5n− 1 > 0,
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for n = 2, 3 and 0 ≤ t < n,

ψ
(2,t)
1

(
t

2

)
=

3

4

(
(4− t)2 − 1

)2
+ 3(4− t) + 33

4
> 0,

ψ
(3,t)
1

(
t

2

)
=

5

4
(6− t)4 +

(
11

2
− t
)
(6− t)2 + 6(6− t) + 14 > 0.

As can be seen, ψ(n,t)
1 (t/2) is positive. Considering the value of x0 and the sign

of ψ(n,t)
1 (0), there are three cases concerning the monotonicity of ψ(n,t)(x):

Case 1: x0 ≤ 0 and ψ(n,t)
1 (0) ≥ 0. In this case, ψ(n,t)

1 (x) increases from a non-
negative value to a positive value as x increases from 0 to t/2. Thus, (ψ(n,t)(x))′

takes only nonpositive values on [0, t/2]. That is to say, ψ(n,t)(x) is decreasing
on the interval [0, t/2].

Case 2: x0 ≤ 0 and ψ(n,t)
1 (0) < 0. In this case, ψ(n,t)

1 (x) increases from a
negative value to a positive value as x increases from 0 to t/2. Therefore, there
exists 0 < t0 < t/2 such that

ψ
(n,t)
1 (x)

{
≤ 0, if 0 ≤ x ≤ t0,
≥ 0, if t0 < x ≤ t/2.

Hence, we have

(ψ(n,t)(x))′

{
≥ 0, if 0 ≤ x ≤ t0,
≤ 0, if t0 < x ≤ t/2.

This implies that ψ(n,t)(x) is increasing on [0, t0] and decreasing on [t0, t/2].

Case 3: 0 < x0 < t/2. In this case, we claim that ψ(n,t)
1 (0) < 0. Based on this

claim, we can deduce the monotonicity of ψ(n,t)(x) on [0, t/2] by using the same
argument as in case 2. To prove the claim, we note that the condition 0 < x0 <

t/2 implies that ψ(n,t)
2 (0) > 0. So we proceed to prove that ψ(n,t)

1 (0) < 0 by
using the positivity of ψ(n,t)

2 (0). Using Maple, we find that

ψ
(n,t)
1 (0) =(n+ 1)

(
4nt3 + 2(2n2 − 4n− 1)t2 − (16n3 − 12n2 − 8n− 3)t

+(8n4 − 4n3 − 8n2 − 1)
)
,

ψ
(n,t)
2 (0) =2(n+ 1)t2 + 2(8n2 + 3n− 2)t− (2n− 1)(8n2 + 8n+ 3).

By the assumption 0 ≤ t ≤ n − 1, we may regard ψ(n,t)
1 (0)/(n + 1) as

a polynomial in t over [0, n − 1]. Denote this polynomial by ξ(t). Similarly,
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treat ψ(n,t)
2 (0) as a polynomial in t and denote it by η(t). We wish to show that

ξ(t) < 0 for any t satisfying η(t) > 0.
We claim that if η(t) > 0, then n ≥ 4 and t > 3n/4. In fact, it is routine to

check that η(t) < 0 (i.e., ψ(n,t)
2 (0) < 0) if

(n, t) ∈ {(2, 0), (2, 1), (3, 0), (3, 1), (3, 2)}.

So η(t) > 0 implies n 6= 2, 3.
Moreover, we prove that η(t) < 0 for any t ∈ [0, 3n/4].
The quadratic function η(t) is symmetric with respect to

t = −8n2 + 3n− 2

2(n+ 1)
< 0,

which means that η(t) is increasing on [0, 34n]. Since

η(0) = −16n3 − 8n2 + 2n+ 3 < 0,

η

(
3

4
n

)
= −23

8
n3 − 19

8
n2 − n+ 3 < 0,

we see that η(t) < 0 on [0, 3n/4], so η(t) > 0 implies n ≥ 4 and t > 3n/4.
Now we show that for any integer n ≥ 4, the polynomial ξ(t) takes only

negative values on the interval ( 34n, n− 1].
Consider the first order derivative and the second order derivative of ξ(t) with

respect to t,

ξ′(t) = 12nt2 + (8n2 − 16n− 4)t+ (12n2 − 16n3 + 8n+ 3),

ξ′′(t) = 24nt+ (8n2 − 16n− 4).

Since ξ′′( 34n) = 26n2 − 16n − 4 > 0, we have ξ′′(t) > 0 for any 3n/4 < t ≤
n− 1. Thus ξ′(t) is strictly increasing on ( 34n, n− 1]. Noting that

ξ′
(
3

4
n

)
= −13

4
n3 + 5n+ 3 < 0,

we deduce that there exists 3n/4 ≤ t1 ≤ n− 1 such that

ξ′(t)

{
≤ 0, if 3

4n ≤ t ≤ t1,
> 0, if t1 < t ≤ n− 1.

In view of

ξ

(
3

4
n

)
= − 1

64

(
4n2(n− 4)2 + 136

(
n− 9

17

)2

+
440

17

)
< 0,
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ξ(n− 1) = −(4n− 18)n2 − 13n− 6 < 0,

we obtain that ξ(t) < 0 for any t ∈ ( 34n, n− 1].
Combining Cases 1, 2 and 3, we complete the proof.
The above lemma is the key step in the proof of Theorem 3.2.

Lemma 3.5. Given n ≥ 2, there exists k′ depending on n such that

Ln(a(n, k))

{
≥ 0, if 1 ≤ k ≤ k′,
≤ 0, if k′ < k ≤ n

2 .

Proof. By (3.4) and (3.5), we obtain that for n ≥ 2 and 1 ≤ k ≤ n/2, the sign of
Ln(a(n, k)) coincides with that of

ψ(n,n)(k) =8(2n+ 1)k6 − 24n(2n+ 1)k5 + 2(26n3 − 2n+ 12n2 + 3)k4

− 4n(3 + 6n3 + 2n2 − 2n)k3 + 2(4n2 + 2n− 1− 4n3 + 2n5)k2

+ 2n(n− 1)(2n− 1)(n+ 1)k − n(n− 1)(n− 2)(n+ 1)2.

Since ψ(2,2)(1) = 8, the lemma holds for n = 2. We now assume that n ≥ 3.
To determine the sign of ψ(n,n)(k), let us consider the derivative of ψ(n,n)(x)
with respect to x. Using Maple, we get

(ψ(n,n)(x))′ = 2(2x− n)ψ(n,n)
1 (x),

where

ψ
(n,n)
1 (x) =12(1 + 2n)x4 − 24n(1 + 2n)x3 + 2(6n2 − 2n+ 3 + 14n3)x2

− 2n(2n3 + 3− 2n)x− (n− 1)(2n− 1)(n+ 1).

We also need to consider the derivative of ψ(n,n)
1 (x) with respect to x:

(ψ
(n,n)
1 (x))′ = 2(2x− n)ψ(n,n)

2 (x),

where

ψ
(n,n)
2 (x) = 12(1 + 2n)x2 − 12n(1 + 2n)x+ 2n3 + 3− 2n.

Note that the the quadratic function ψ(n,n)
2 (x) is symmetric with respect to x =

n/2. For n ≥ 3,

ψ
(n,n)
2 (0) = 2n3 − 2n+ 3 > 0,

13



ψ
(n,n)
2 (n/2) = −4n3 − 3n2 − 2n+ 3 < 0.

Thus, ψ(n,n)
2 (x) decreases from a positive value to a negative value as x increases

from 0 to n/2. Hence, there exists 0 < x0 < n/2 such that

(ψ
(n,n)
1 (x))′

{
≤ 0, if 0 ≤ x ≤ x0,
≥ 0, if x0 < x ≤ n/2.

Noting that

ψ
(n,n)
1 (0) = −n2(n− 1)− n(n2 − 2)− 1 < 0,

ψ
(n,n)
1 (n/2) =

1

4
(2n3(n2 − 2) + n2(3n2 − 2) + 4(2n− 1)) > 0,

there exists 0 < x1 < n/2 such that

ψ
(n,n)
1 (x)

{
≤ 0, if 0 ≤ x ≤ x1,
≥ 0, if x1 < x ≤ n/2.

Therefore,

(ψ(n,n)(x))′

{
≥ 0, if 0 ≤ x ≤ x1,
≤ 0, if x1 < x ≤ n/2,

and hence ψ(n,n)(x) is increasing on [0, x1] and decreasing on (x1, n/2].
Moreover, for n ≥ 3, we have

ψ(n,n)(1) = (n− 1)((3n− 16)n3 + (21n2 + 8n− 12)) > 0,

ψ(n,n)(n/2) = −1

8
n(n− 1)(n2 − n− 4)(n+ 2)2 < 0.

Thus there exists 1 < x2 < n/2 such that

ψ(n,n)(x)

{
≥ 0, if 1 ≤ x ≤ x2,
≤ 0, if x2 < x ≤ n/2.

Since for n ≥ 2 and 1 ≤ k ≤ n/2, Ln(a(n, k)) has the same sign as ψ(n,n)(k),
there exists k′ depending on n such that Ln(a(n, k)) ≥ 0 for 1 ≤ k ≤ k′ and
Ln(a(n, k)) ≤ 0 for k′ < k ≤ n/2. This completes the proof.

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. By Lemma 3.3, for any n ≥ 1 and 0 ≤ t ≤ n, we have
Lt(a(n, 0)) ≥ 0. It remains to prove that, for any n ≥ 2 and 0 ≤ t ≤ n, there
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exists k′ such that Lt(a(n, k)) ≥ 0 for 1 ≤ k ≤ k′ and Lt(a(n, k)) ≤ 0 for
k′ < k ≤ t/2. In Lemma 3.4, we have considered the case 0 ≤ t ≤ n − 1,
whereas the case t = n has been dealt with in Lemma 3.5, and hence the proof is
complete.

Combining Theorems 2.1, 3.1 and 3.2, we reach the following conclusion.

Theorem 3.6. The polynomial sequence {Sn(q)}n≥0 is q-log-convex.

Acknowledgments. We wish to thank the referees for valuable suggestions. This
work was supported by the 973 Project, the PCSIRT Project of the Ministry of
Education, the National Science Foundation of China, and the Research Funds
for the Central Universities of China.

References

[1] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics,
and geometry: an update, in: Contemp. Math., 178 (1994), 71–89.

[2] L.M. Butler, The q-log-concavity of q-binomial coefficients, J. Combin.
Theory Ser. A 54 (1990), 54–63.

[3] L.M. Butler and W.P. Flanigan, A note on log-convexity of q-Catalan num-
bers, Ann. Combin. 11 (2007), 369–373.

[4] W.Y.C. Chen, R.L. Tang, L.X.W. Wang and A.L.B. Yang, The q-log-
convexity of the Narayana polynomials of type B, Adv. Appl. Math. 44
(2010), 85–110.

[5] W.Y.C. Chen, L.X.W. Wang and A.L.B. Yang, Schur positivity and the q-
log-convexity of the Narayana polynomials, J. Alegbraic Combin. 32 (2010),
303–338.

[6] W.Y.C. Chen, L.X.W. Wang and A.L.B. Yang, Recurrence relations for
strongly q-log-convex polynomials, Canad. Math. Bull. 54 (2011), 217–229.

[7] C. Krattenthaler, On the q-log-concavity of Gaussian binomial coefficients,
Monatsh. Math. 107 (1989), 333–339.

[8] P. Leroux, Reduced matrices and q-log-concavity properties of q-Stirling
numbers, J. Combin. Theory Ser. A 54 (1990), 64–84.

[9] L.L. Liu and Y. Wang, On the log-convexity of combinatorial sequences,
Adv. Appl. Math. 39 (2007), 453–476.

15



[10] B.E. Sagan, Inductive proofs of q-log concavity, Discrete Math. 99 (1992),
289–306.

[11] R.P. Stanley, Log-concave and unimodal sequences in algebra, combina-
torics, and geometry, Ann. New York Acad. Sci. 576 (1989), 500–535.

[12] Z.W. Sun, List of conjectural series for powers of π and other constants,
arXiv:1102.5649.

16


