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Abstract

Dehmer and Mowshowitz introduced a class of generalized graph
entropies by using known information-theoretic measures. These mea-
sures rely on assigning a probability distribution to a graph. In this
article, we prove some extremal properties of such generalized graph
entropies by employing the graph energy and the spectral moments.
Moreover, we study the relationships between the generalized graph
entropies and compute the values of the generalized graph entropies
for special graph classes.
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1 Introduction

The entropy of a graph is an information-theoretic quantity that has been
introduced by Mowshowitz [33]. This quantity expressing the complexity of
a graph is based on the well-known Shannon entropy [8, 40]. Importantly,
Mowshowitz interpreted his graph entropy measure as the structural infor-
mation content (of a graph) and proved several important properties thereof,
see, e.g., [33, 34, 35, 36]. Later, Körner developed a different measure also
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called graph entropy in the context of information theory [29]. An up-to-date
review on graph entropy measures has recently been published by Dehmer
and Mowshowitz [14]. Historically, the research on the information content
of graphs started in the fifties when investigating chemical and biological
systems [32, 37, 41]. A central problem in this area relates to determine the
structural complexity of chemical and biological systems representing com-
plex networks. For instance, various information-theoretic measures (and
also non-information-theoretic measures) and other techniques have been
developed to determine the structural complexity of molecular structures
and complex networks [4, 3, 11, 17, 15, 18]. But those studies revealed that
there is no unique measure/method to determine the structural complex-
ity of graphs as it depends on various factors such as the number of edges,
vertices, paths, cycles etc. As a result, Bonchev and his co-workers out-
lined some concepts of topological complexity and stated rules that such
a meaningful concept should fulfill [5]. In [25, 39], the authors introduced
the concept of “set-complexity”, based on a context-dependent measure of
information, and used this concept to describe the complexity of gene in-
teraction networks. The binary graphs and edge-colored graphs are studied
and the relation between complexity and structure of these graphs is exam-
ined in detail. In contrast, we put the emphasis on analyzing properties of
spectra-based entropies and study interrelations thereof.

We emphasize that various graph entropy measures have been devel-
oped [4, 14, 33]. For example, partitions by using several graph invariants
such as vertices, edges, distances and so forth have been used to assign
a probability distribution to a graph. Prominent examples thereof are the
magnitude-based information indices due to Bonchev [4] and the topological
information content developed by Rashewsky [37]. For the latter measure,
see also the seminal work of Mowshowitz [33]. Another class of graph en-
tropy measures has been developed by Dehmer [11]. Here a probability
value is assigned to each indiviual vertex by using so-called information
functionals [11] (see Section 3). Recently, Dehmer et al. also developed a
graph entropy measure by using the moduli of the eigenvalues of a graph
by employing several graph theoretical matrices [16]. They proved that this
measure (among others) has high discrimination power by using chemical
structures and exhaustively generated graphs. Also, so-called generalized
graph entropies have been investigated due to Dehmer and Mowshowitz by
applying generalized entropy measures, see [13].

In this paper, we use the mentioned generalized graph entropy mea-
sures and express those quantity by using the energy and spectral moments
of graphs [20]. The paper is organized as follows: in Section 2, we intro-
duce the definition and some elementary results on spectra of graphs and
graph energy. In Section 3, we state the definitions of the generalized graph
entropies, which was introduced by Dehmer and Mowshowitz in [13]. In
Section 4, we prove some extremal properties of such generalized graph en-
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tropies by employing the graph energy and the spectral moments. Moreover,
we give some inequalities between the generalized graph entropies. In Sec-
tion 5, we compute the values of the generalized graph entropies for special
graph classes. The paper finishes in Section 6 with a summary and conclu-
sion.

2 Spectra of graphs and graph energy

Let G = (V, E) be a graph with n vertices and m edges. Let A(G) be the
adjacency matrix of G. The eigenvalues λ1, λ2, . . . , λn of the the matrix
A(G) are said to be the eigenvalues of graph G and to form its spectrum.

The k-th spectral moment of graph G is defined as Mk(G) =
n∑

i=1
λk

i . Observe

that for odd k, Mk(G) = 0 if G is a bipartite graph. In order to overcome this
limitation, the authors in [43] defined the moment-like quantities, M∗

k (G) =
n∑

i=1
|λi|k. Details of the spectral theory of graphs can be found in the seminal

monograph [9].
One of the most remarkable chemical application of graph theory is based

on the close correspondence between the graph eigenvalues and the molec-
ular orbital energy levels of π-electrons in conjugated hydrocarbons. In the
seventies, Gutman [20] introduced the following definition of graph energy.

Definition 2.1 If G is a graph on n vertices and λ1, λ2, . . . , λn are its eigen-

values, then the energy of G is E(G) =
n∑

i=1
|λi|.

In the theory of graph energy the so-called Coulson integral formula plays
an important role. This formula was obtained by Charles Coulson as early
as in 1940 [7], and reads:

E(G) =
1
π

+∞∫

−∞

[
n− ix φ′(G, ix)

φ(G, ix)

]
dx =

1
π

+∞∫

−∞

[
n− x

d

dx
lnφ(G, ix)

]
dx,

where G is a graph, φ(G, x) is the characteristic polynomial of G, φ′(G, x) =
(d/dx)φ(G, x) its first derivative, and i =

√−1. For more details on this
useful equality, we refer to [7, 30].

There are two important classes of mathematical problems on graph
energy. One class is to find the upper and lower bounds of graph energy.
Another relates to determine the extremal values of the energy for a given
class of graphs, and also characterize the corresponding extremal graphs.
Some of these results are as follows:

For a graph G with m edges, we have 2
√

m ≤ E(G) ≤ 2m [31]. Let G
be a graph with n vertices and m edges. Then E(G) ≤ √

2mn [31]. Koolen

3



and Moulton [26, 28] obtained the following result: If 2m ≥ n, then

E(G) ≤ 2m

n
+

√√√√(n− 1)

[
2m−

(
2m

n

)2
]

.

If, in addition, G is bipartite, then [27, 28]

E(G) ≤ 4m

n
+

√√√√(n− 2)

[
2m− 2

(
2m

n

)2
]

.

Let T be a tree of order n. A basic result is E(Sn) ≤ E(T ) ≤ E(Pn), see
[19]; Sn and Pn denote the star graph and path graph of order n, respectively.
The unicyclic graphs with maximum energy are finally determined in [24]
and [2], independently. Huo et al. [23] determined the maximal energy
among all bipartite bicyclic graphs. Recently, Wagner [42] showed that
the maximum value of the graph energy within the set of all graphs with
cyclomatic number k (which includes, for instance, trees or unicyclic graphs
as special cases) is at most 4n/π+ck for some constant ck that only depends
on k.

For more results on graph energy, we refer to the two surveys [20, 22]
and one book [30].

3 Generalized graph entropies

Most of the classical graph entropy measures [4, 33] are based on an equiva-
lence relation τ by using a graph invariant X applied to a finite graph. The
relation τ partitions the graph into equivalence classes Xi and thus allows
defining a probability distribution by using the fact that [4, 6, 33]

|X1|+ |X2|+ · · ·+ |Xk|
|X| = 1, (1)

where k is the number of equivalence classes.
Dehmer [11, 14] introduced another class of graph entropies that is not

based on determining partitions induced by equivalence relations using an
invariant X. To define these measures, a probability value to each vertex
vi ∈ V is assigned, we obtain the following probability distribution

(pf (v1), pf (v2), . . . , pf (vn)), |V | := n,

where
pf (vi) :=

f(vi)∑n
j=1 f(vj)
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and f is an information function mapping graph elements to the non-negative
reals, see [11]. The entropy of the underlying graph is

If (G) := −
n∑

i=1

f(vi)∑n
j=1 f(vj)

log

(
f(vi)∑n

j=1 f(vj)

)
.

Actually, following the seminal paper of Shannon [40], many generaliza-
tions of the entropy measure have been proposed [1, 10, 38]. An important
example of such a measure is called the Rényi entropy [38] and is defined by

Ir
α(P ) :=

1
1− α

log

(
n∑

i=1

(pi)α

)
, α 6= 1,

where P := (p(v1), p(v2), . . . , p(vn)). The limiting value for α → 1 yields
Shannon entropy as a special case.

In [13], Dehmer and Mowshowitz introduced a new class of measures
(called here generalized measures) that derive from functions such as those
defined by Rényi’s entropy [38] and Daròczy’s entropy [10].

Definition 3.1 Let G be a graph of order n. Then

(i). I1(G) :=
n∑

i=1

f(vi)∑n
j=1 f(vj)

[
1− f(vi)∑n

j=1 f(vj)

]
,

(ii). I2
α(G) :=

1
1− α

log

(
n∑

i=1

(
f(vi)∑n

j=1 f(vj)

)α)
, α 6= 1,

(iii). I3
α(G) :=

∑n
i=1

(
f(vi)∑n

j=1 f(vj)

)α
− 1

21−α − 1
, α 6= 1.

Let G be an undirected graph of order n and A its adjacency matrix.
Denote by λ1, λ2, . . . , λn the eigenvalues of G. If f := |λi|, then [16]

pf (vi) =
|λi|∑n

j=1 |λi| .

Therefore, the generalized graph entropies are as follows:

(i). I1(G) :=
n∑

i=1

|λi|∑n
j=1 |λi|

[
1− |λi|∑n

j=1 |λi|

]
, (2)

(ii). I2
α(G) :=

1
1− α

log

(
n∑

i=1

(
|λi|∑n

j=1 |λi|

)α)
, α 6= 1, (3)

(iii). I3
α(G) :=

∑n
i=1

( |λi|∑n
j=1 |λi|

)α
− 1

21−α − 1
, α 6= 1. (4)
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4 Extremal properties of the generalized graph
entropies

In [12], Dehmer and Kraus emphasized that there is a lack of analytical
results in the scientific literature when proving extremal results for entropy-
based graph measures. In this section, we will examine the extremal values
of the above stated entropies in terms of graph energy and the spectral
moments.

Theorem 4.1 Let G be a graph with n vertices and m edges. Then for
α 6= 1, we have

(i). I1(G) = 1− 2m

E2
, (5)

(ii). I2
α(G) =

1
1− α

log
M∗

α

Eα
, (6)

(iii). I3
α(G) =

1
21−α − 1

(
M∗

α

Eα
− 1

)
, (7)

where E denotes the energy of graph G.

Proof. By substituting E =
n∑

i=1
|λi| into equality (2), we have

I1(G) =
n∑

i=1

|λi|∑n
j=1 |λi|

[
1− |λi|∑n

j=1 |λi|

]
,

=
n∑

i=1

|λi|
E

(
1− |λi|

E
)

=
1
E2

n∑

i=1

|λi|(E − |λi|)

=
1
E2

(
E2 −

n∑

i=1

|λi|2
)

= 1− 2m

E2
.

The last equality holds since
∑n

i=1 λ2
i = 2m.

The other two equalities can be obtained by substituting E =
n∑

i=1
|λi| and

M∗
α =

n∑
i=1

|λi|α into equalities (3) and (4), respectively.

From equality (5), we can easily infer the relation of I1(G) and the energy
E(G). Therefore, we have the following two corollaries on I1(G).

Corollary 4.2 For a graph G, each upper (lower) bound of energy E(G)
can deduce an upper (a lower) bound of I1(G).
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Corollary 4.3 (i). For a graph G with m edges, we have

1
2
≤ I1(G) ≤ 1− 1

2m
.

(ii). Let G be a graph with n vertices and m edges. Then

I1(G) ≤ 1− 1
n

.

(iii). Let T be a tree of order n. We have

I1(Sn) ≤ I1(T ) ≤ I1(Pn) ,

where Sn and Pn denote the star graph and path graph of order n, respec-
tively.
(iv). Let G be a unicyclic graph of order n, then we have

I1(G) ≤ I1(P 6
n) ,

where P 6
n denotes the unicyclic graph obtained by connecting a vertex of C6

with a leaf of Pn−6 (e.g., P 6
14 is shown in Figure 1).

(v). Let G be a graph with cyclomatic number k, then we have

I1(G) ≤ 1− 2m

(4n/π + ck)2
,

where ck is a constant which only depends on k.

Figure 1: The graph P 6
14.

In the following part of this section, we present our main results on
implicit information inequalities.

Theorem 4.4 (i). When 0 < α < 1, we have I2
α < I3

α · ln 2; and when
α > 1, we have I2

α > (1−21−α) ln 2
α−1 I3

α.

(ii). When α ≥ 2 and 0 < α < 1, we have I3
α > I1; when 1 < α < 2, we

have I1 > (1− 21−α)I3
α.
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(iii). When α ≥ 2 and 0 < α < 1, we have

I2
α >

(1− 21−α) ln 2
α− 1

I1;

when 1 < α < 2, we have

I2
α >

(1− 21−α)2 ln 2
α− 1

I1;

when 0 < α < 1, we have I2
α > I1.

Proof. Now we define a new function on α > 0 as follows,

f(α) = log
M∗

α

Eα
= log

|λ1|α + · · ·+ |λn|α
(|λ1|+ · · ·+ |λn|)α .

We claim that f(α) is a monotonously decreasing function on α, since

f ′ =
1

ln 2
· |λ1|α ln |λ1|+ · · ·+ |λn|α ln |λn|

|λ1|α + · · ·+ |λn|α − log (|λ1|+ · · ·+ |λn|)

<
ln |λmax|

ln 2
· |λ1|α + · · ·+ |λn|α
|λ1|α + · · ·+ |λn|α − log (|λ1|+ · · ·+ |λn|)

= log |λmax| − log (|λ1|+ · · ·+ |λn|) < 0,

where |λmax| = max{|λ1|, . . . , |λn|}. Therefore, the function M∗
α

Eα is also a
monotonously decreasing function on α > 0.

(i). Observe that α > 0 and α 6= 1, we have

M∗
α

Eα
=

∑n
i=1 |λi|α

(
∑n

i=1 |λi|)α

{
> 1, 0 < α < 1;

< 1, α > 1,

and

log
M∗

α

Eα
<

(
M∗

α

Eα
− 1

)
ln 2.

By some calculations, we have 1
1−α < 1

21−α−1
for 0 < α < 1 and 1

1−α >
1

21−α−1
for α > 1.

Therefore, for 0 < α < 1, we have

1
1− α

log
M∗

α

Eα
<

ln 2
21−α − 1

(
M∗

α

Eα
− 1

)
.

For α > 1, we have

I2
α

I3
α

=
1

1−α log M∗
α

Eα

1
21−α−1

(
M∗

α
Eα − 1

) >

ln 2
1−α

(
M∗

α
Eα − 1

)

1
21−α−1

(
M∗

α
Eα − 1

) =
(1− 21−α) ln 2

α− 1
.
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(ii). For α ≥ 2, we want to show the following inequality

1− 2m

E2
<

1
21−α − 1

(
M∗

α

Eα
− 1

)
=

1
1− 21−α

(
1− M∗

α

Eα

)
,

i.e.,
1

1− 21−α

M∗
α

Eα
− M∗

2

E2
<

1
1− 21−α

− 1.

Since M∗
α

Eα is decreasing on α and then for α ≥ 2, we have

1
1− 21−α

M∗
α

Eα
−M∗

2

E2
≤ 1

1− 21−α

M∗
2

E2
−M∗

2

E2
=

(
1

1− 21−α
− 1

)
M∗

2

E2
<

1
1− 21−α

−1.

Therefore, the required inequality holds. Similarly, we can prove that for
0 < α < 1, we have I3

α > I1.
Now suppose 1 < α < 2, we have M∗

α
Eα >

M∗
2

E2 and then

I3
α − I1 =

1
1− 21−α

(
1− M∗

α

Eα

)
−

(
1− M∗

2

E2

)

<
1

1− 21−α

(
1− M∗

2

E2

)
−

(
1− M∗

2

E2

)

=
(

1
1− 21−α

− 1
)(

1− M∗
2

E2

)
.

This implies that I3
α − I1 <

(
1

1−21−α − 1
)

I1, i.e., I1 > (1− 21−α)I3
α.

(iii). From (i) and (ii), we can easily obtain the following results: when
α ≥ 2, we have

I2
α >

(1− 21−α) ln 2
α− 1

I1;

when 1 < α < 2, we have

I2
α >

(1− 21−α)2 ln 2
α− 1

I1.

By some elementary analysis, we can prove that for 0 < α < 1, we have
I2
α > I1.

5 Numerical results

In this section, as an example, we compute the exact values of I1, I2
α and I3

α

for the graph P 6
14 as shown in Figure 1. By some calculations, on can obtain

the spectrum of the given graph as follows:

{±2.15830, ±1.86755, ±1.57475, ±1.25341, ±1.00000, ±0.84541, ±0.29735}.
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Therefore, the value of the energy is 17.99354. Thus, we get

I1 = 1− 2m

E2
= 1− 2× 13

17.993542
= 0.919695,

I2
α =

1
1− α

log
2(1 + 2.15830α + 1.86755α + 1.57475α + 1.25341 + 0.84541α + 0.29735α)

17.99354α

and

I3
α =

1
21−α − 1

·
(

2(1 + 2.15830α + 1.86755α + 1.57475α + 1.25341 + 0.84541α + 0.29735α)
17.99354α

− 1
)

.

Figure 2: I2
α (blue) and I3

α (red) vs. α (with a pole at α = 1).

From Figure 2, we can see the plotted values of the entropy measures
relative to α (with a pole at α = 1).

Now, we will interpret the numerical results, as shown in Figure 2. First
we observe that there exists one point α0 satisfying that, the value of I2

α(P 6
14)

is always less than that of I3
α(P 6

14) for 0 < α < α0, while the value of I2
α(P 6

14)
is always larger than that of I3

α(P 6
14) for 0 < α > α0. From Figure 2, we can

see that the value of α0 is about 1.4667. For I1(P 6
14) and I2

α(P 6
14), we can

see that the value of I2
α(P 6

14) is always larger than that of I1(P 6
14) for any

α > 0. On the other hand, observe that the value of I3
α(P 6

14) is a decreasing
function on α. Actually, some elementary calculations show that the value
of I3

α(P 6
14) tends to 1 when α tends to +∞. Therefore, we can also obtain

that the value of I3
α(P 6

14) is always larger than that of I1(P 6
14) for any α > 0.

These observations verify our inequalities in Theorem 4.4.
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6 Summary and conclusion

In this paper, we studied the generalized graph entropies, which was intro-
duced by Dehmer and Mowshowitz in [13] and derive from functions such
as those defined by Rényi’s entropy [38] and Daròczy’s entropy [10]. As re-
ported in [12], there is a lack of analytical results in the scientific literature
when proving extremal results for entropy-based graph measures. We ex-
amined the extremal values of the above stated entropies in terms of graph
energy and the spectral moments. We also proved some inequalities between
these generalized graph entropies. As a future work, we want to explore gen-
eral methods to show the extremal values of other graph entropy measures
for characterizing the structural complexity of graphs.

7 Acknowledgments

Matthias Dehmer thanks the Austrian Science Funds for supporting this
work (project P26142). Xueliang Li and Yongtang Shi are supported by the
National Science Foundation of China.

References
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