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Abstract

The rainbow vertex-connection number, rvc(G), of a connected graph G is the

minimum number of colors needed to color its vertices such that every pair of vertices

is connected by at least one path whose internal vertices have distinct colors. In

this paper we prove that for a 2-connected graph G of order n,

rvc(G) ≤


⌈n/2⌉ − 2 if n = 3, 5, 9

⌈n/2⌉ − 1 if n = 4, 6, 7, 8, 10, 11, 12, 13 or 15

⌈n/2⌉ if n ≥ 16 or n = 14.

The upper bound is tight since the cycle Cn on n vertices has its rvc(Cn) equal to

this bound.

Keywords: rainbow vertex coloring, rainbow vertex-connection number, ear de-

composition, 2-connected graph.

AMS subject classification 2010: 05C40, 05C15.

1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the terminology

and notation of Bondy and Murty [1]. An edge coloring of a graph is a function from

its edge set to the set of natural numbers. A path in an edge-colored graph with no two

edges sharing the same color is called a rainbow path. An edge-colored graph is said to
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be rainbow connected if every pair of vertices is connected by at least one rainbow path.

Such a coloring is called a rainbow coloring of the graph. The minimum number of colors

required to rainbow color a connected graph is called its rainbow connection number,

denoted by rc(G). For example, the rainbow connection number of a complete graph is

1, and that of a tree is the number of edges in the tree. For a basic introduction to the

topic, see Chapter 11 in [4]. For more results, see [2, 3, 7, 9, 12, 13, 15, 16, 17, 18] and

[11, 14].

The above is an edge-version of the rainbow connection of a graph. A vertex-version of

it was introduced by Krivelevich and Yuster in [7]. Let G be a vertex-colored connected

graph. A path of G is a rainbow path if its internal vertices have distinct colors. The

vertex-colored graph G is called rainbow vertex-connected if any two vertices are connected

by at least one rainbow path and the vertex coloring is called a rainbow vertex coloring

of G. The rainbow vertex-connection number of a connected graph G, denoted by rvc(G),

is the smallest number of colors that are needed in order to make G rainbow vertex-

connected. If F is a subgraph of a graph with a vertex coloring c, we denote the set of all

colors appearing on F by c(F ). Note that an uncolored graph is also thought as a special

vertex-colored graph with 0 colors.

Some easy observations about the rainbow vertex-connection number include that if G

is a connected graph of order n, then diam(G) − 1 ≤ rvc(G) ≤ n − 2; rvc(G) = 0 if

and only if G is a complete graph; rvc(G) = 1 if and only if diam(G) = 2 and if G′ is

a connected spanning subgraph of G, then rvc(G) ≤ rvc(G′). Note that the parameters

rc(G) and rvc(G) are independent of each other. Indeed, rvc(G) may be much smaller

than rc(G) for some graphs G. For example, rvc(K1,n−1) = 1 while rc(K1,n−1) = n − 1.

Moreover, rvc(G) may also be much larger than rc(G) for some graphs G. For example,

take n vertex-disjoint triangles and, by designating a vertex from each of them, add a

complete graph on the designated vertices. This graph has n cut-vertices and hence

rvc(G) ≥ n. In fact, rvc(G) = n by coloring only the cut-vertices with distinct colors.

On the other hand, it is not difficult to see that rc(G) ≤ 4. Just color the edges of the

Kn with, say color 1, and color the edges of each triangles with the colors 2, 3, 4. In fact,

one can show that rc(G) = 4 when n ≥ 4.

Krivelevich and Yuster [7] showed that if a connected graph G has n vertices and

minimum degree δ, then rvc(G) ≤ 11n/δ. In [10], Li and Shi improved the bound. In

[6, 5], Chen et al. studied the computational complexity of rainbow vertex-connection

and proved that computing rvc(G) is NP-hard.

In [8], we obtained a tight upper bound of the rainbow connection number for 2-

connected graphs. This paper is to investigate the upper bound of its rainbow vertex-

connection number. The following notation and terminology are needed in the sequel.
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Let F be a subgraph of a graph G. An ear of F in G is a nontrivial path whose two ends

are in F but whose internal vertices are not. A nested sequence of graphs is a sequence

G0, G1, · · · , Gk of graphs such that Gi ⊂ Gi+1, 0 ≤ i ≤ k − 1. An ear decomposition of a

2-connected graph G is a nested sequence G0, G1, · · · , Gk of 2-connected subgraphs of G

satisfying the following conditions: (1) G0 is a cycle; (2) Gi = Gi−1

∪
Pi, where Pi is an

ear of Gi−1 in G, 1 ≤ i ≤ k; (3) Gk = G. Note that the two end vertices of Pi (1 ≤ i ≤ k)

are distinct and that if G is minimal 2-connected then its ear decompositions do not

contain any ears of length 1.

A maximal connected subgraph of a graph G without any cut vertex is called a block

of G. Thus, every block of a nontrivial connected graph is either a maximal 2-connected

subgraph or a K2. All the blocks of a graph G form a block decomposition of G. Given a

graph G, a set D ⊆ V (G) is called a k-step dominating set of G, if every vertex in G is

at a distance at most k from D. For two vertices vi and vj on a walk W , viWvj denotes

the segment of W from vi to vj. Let W1 = u0u1 · · ·uk and W2 = v0v1 · · · vℓ be two walks

such that uk = v0, and vi is a vertex on W2. Then W1(v0W2vi) denotes a walk obtained

by concatenating W1 and the segment v0W2vi of W2.

Since every 2-connected graph can be constructed from a cycle by adding ears in-

ductively, we first determine the rainbow vertex-connection number rvc(Cn) of a cycle

Cn (n ≥ 3). Based on it, we then prove that for any 2-connected graph G of order n ≥ 3,

rvc(G) ≤ rvc(Cn). Thus the bound is tight since Cn is 2-connected.

2 Main results

As an inductive basis, we first determine the rainbow vertex-connection number of a

cycle.

Theorem 2.1. Let Cn be a cycle of order n ≥ 3. Then

rvc(Cn) =


⌈n
2
⌉ − 2 if n = 3, 5, 9

⌈n
2
⌉ − 1 if n = 4, 6, 7, 8, 10, 11, 12, 13 or 15

⌈n
2
⌉ if n ≥ 16 or n = 14.

Proof. Assume that Cn = v1v2 · · · vnvn+1(= v1) (n ≥ 3). It is obvious that rvc(C3) = 0.

Since rvc(G) = 1 if and only if diam(G) = 2, we have rvc(C4) = rvc(C5) = 1.

It is easy to check that the vertex colorings of Cn shown in Figure 1 are rainbow vertex

colorings. So rvc(Cn) ≤ ⌈n
2
⌉ − 1 for 6 ≤ n ≤ 13 and n = 15 and rvc(C9) ≤ 3. Since

rvc(Cn) ≥ diam(Cn)− 1, rvc(Cn) = ⌈n
2
⌉− 1 for n = 6, 8, 10, 12 and rvc(C9) = 3. For any

vertex coloring c of C7 using 2 colors, there exist two adjacent vertices (say v1, v2) having
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Figure 1. Rainbow vertex colorings for small cycles.

the same color. Then neither P1 = v7v1v2v3 nor P2 = v7v6v5v4v3 on Cn is a rainbow path,

i.e., there is no rainbow path between v7 and v3. So c is not a rainbow vertex coloring of

G. Hence, rvc(C7) = 3.

Assume, to the contrary, that Cn (n = 11, 13, 15) has a rainbow vertex coloring c

with ⌈n
2
⌉ − 2 colors. Then some three vertices (say v1, vi, vj ∈ V (Cn), 1 < i < j ≤ n)

have the same color and one pair of vertices among them (say v1, vi) has distance no

more than ⌊n
3
⌋, i.e., dCn(v1, vi) ≤ ⌊n

3
⌋. Suppose that P = v1v2 · · · vi is the path on Cn

from v1 to vi with length dCn(v1, vi). Since c(v1) = c(vi), P1 = vnv1 · · · vivi+1 is not a

rainbow path. So Cn − P = vnvn−1 · · · vi+1 is the rainbow path on Cn from vn to vi+1.

Since ℓ(Cn − P ) = n − (ℓ(P ) + 2) ≥ n − ⌊n
3
⌋ − 2 = ⌈n

2
⌉ for n = 11, 13, 15, Cn − P has

⌈n
2
⌉ − 1 internal vertices. So Cn − P is not a rainbow path, a contradiction. Hence,

rvc(Cn) = ⌈n
2
⌉ − 1 for n = 11, 13, 15.

In the following, we consider the rainbow vertex-connection number of Cn for n ≥ 16 or

n = 14. Define a vertex coloring c of Cn by c(vi) = xi for 1 ≤ i ≤ ⌈n
2
⌉ and c(vi) = xi−⌈n

2
⌉

if ⌈n
2
⌉ + 1 ≤ i ≤ n. Since for any two vertices u, v of Cn, the path on Cn with length

dCn(u, v) is a rainbow path, c is a rainbow vertex coloring of Cn. Hence, rvc(Cn) ≤ ⌈n
2
⌉

for n ≥ 16 or n = 14.

Next, we show that rvc(Cn) ≥ ⌈n
2
⌉ for n ≥ 16 or n = 14. Assume, to the contrary, that

rvc(Cn) ≤ ⌈n
2
⌉−1. Then there exists a rainbow vertex coloring c of Cn with ⌈n

2
⌉−1 colors.

Obviously, there are three vertices (say v1, vi, vj, 1 < i < j ≤ n) of Cn having the same
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color. And one pair of vertices among {v1, vi, vj} (say v1, vi) satisfy that dCn(v1, vi) ≤ ⌊n
3
⌋.

Without loss of generality, assume that P = v1v2 · · · vi is the path on Cn with length

dCn(v1, vi). Now consider the vertices vn and vi+1. Since v1 and vi have the same color,

the rainbow path between vn and vi+1 on Cn must be Cn −P = vnvn−1 · · · vi+2vi+1. Since

ℓ(Cn − P ) = n− (ℓ(P ) + 2) ≥ n− ⌊n
3
⌋ − 2, the number of internal vertices of Cn − P is

at least n − ⌊n
3
⌋ − 3. For n ≥ 16 or n = 14, n − ⌊n

3
⌋ − 3 > ⌈n

2
⌉ − 1 which contradicts

that Cn − P is a rainbow path. Hence, rvc(Cn) ≥ ⌈n
2
⌉ for n ≥ 16 or n = 14. Therefore,

rvc(Cn) = ⌈n
2
⌉ for n ≥ 16 or n = 14.

Now, we need to introduce the concept of strict rainbow vertex coloring which will be

used in the following proofs.

Definition 2.1. Let G be a connected graph with a vertex coloring c. A path P of G is

called a strict rainbow path if it is a rainbow path and the colors of its end vertices do not

appear on its internal vertices. The vertex coloring c of G is called a strict rainbow vertex

coloring if any two vertices of G are connected by at least one strict rainbow path. The

strict rainbow vertex-connection number of a connected graph G, denoted by rvc∗(G), is

the smallest number of colors that are needed in order to make G strict rainbow vertex-

connected.

Since a strict rainbow path is also a rainbow path, rvc(G) ≤ rvc∗(G) for any connected

graph G.

Let G be a connected graph and a, b be two nonadjacent vertices of G. Assume that c

is a vertex coloring of G and x is a color of c satisfying that c(a) ̸= x and c(b) ̸= x. We

say that c has the property P (x, a, b), if for any vertex u of G, there exists a rainbow path

P from u to one of a and b such that all vertices of P have distinct colors and x /∈ c(P )

if c(u) ̸= x. The order of a graph G is denoted by |G| in the following. A rainbow vertex

coloring or a strict rainbow vertex coloring of a graph G with k colors is called equitable

if each color occurs on ⌊|G|/k⌋ or ⌈|G|/k⌉ vertices. In particular, in an equitable rainbow

vertex coloring with ⌈|G|/2⌉ colors each color appears at most twice.

Lemma 2.1. Let H be a connected graph and P = v1v2 · · · vs (s ≥ 6) be an ear of

H such that V (H)
∩

V (P ) = {v1, vs}. Suppose that H has an equitable strict rainbow

vertex coloring cH with ⌈|H|/2⌉ colors, and moreover, when |H| is odd, for the color

x0 that appears only once on H, cH(v1) ̸= x0 and cH(vs) ̸= x0, and cH has the property

P (x0, v1, vs). Then for any two nonadjacent vertices a, b ∈ V (G), we have a vertex coloring

cG of G := H
∪
P satisfying the following conditions:

(a) cG is an equitable strict rainbow vertex coloring with ⌈|G|/2⌉ colors.
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(b) When |G| is odd, for the color x that appears only once on G, cG(a) ̸= x and

cG(b) ̸= x, and cG has the property P (x, a, b).

Proof. We will prove the result by demonstrating a vertex coloring cG of G satisfying

the required conditions. Let x1, x2, · · · be new colors. We distinguish the following cases

according to the parities of |H| and s.

Case 1. |H| and s are even.

In this case, |G| is even. Define a vertex coloring cG of G as follows. cG(v) = cH(v)

for v ∈ V (H)\{v1, vs} and the last s/2 vertices of P , i.e., vs/2+1, · · · , vs are colored

by cH(vs), x1, · · · , xs/2−1 in order. If cH(v1) ̸= cH(vs), the first s/2 vertices of P , i.e.,

v1, · · · , vs/2 are colored by x1, · · · , xs/2−1, cH(v1) in order; otherwise, by cH(v1), x1, · · · ,
xs/2−1 in order. From the definition, the obtained vertex coloring cG of G uses |G|/2
colors such that every color appears twice.

Now we prove that G is strict rainbow vertex-connected. Let v′, v′′ be any two vertices

of G. If v′, v′′ ∈ V (H)\{v1, vs}, there exists a strict rainbow path P0 between v′ and v′′

in H with respect to cH . From the definition of cG and x1 ̸= xs/2−1, P0 is also a strict

rainbow path between v′ and v′′ with respect to cG. Let P ′ be a strict rainbow path in

H from v1 to vs with respect to cH . Then P ′ ∪P is a cycle. If v′, v′′ ∈ V (P ), then there

exists a strict rainbow path from v′ to v′′ on P ′ ∪P . Assume that v′ ∈ V (H)\{v1, vs}
and v′′ ∈ V (P ). Let P1 (resp. P2) be a strict rainbow path in H from v′ to v1 (resp.

vs). If v′′ ∈ V (v1Pvs/2), then P1(v1Pv′′) is a strict rainbow path from v′ to v′′. If

v′′ ∈ V (vsPvs/2+1), then P2(vsPv′′) is a strict rainbow path from v′ to v′′. Therefore, cG

is a required strict rainbow vertex coloring of G.

Case 2. |H| and s are odd.

In this case, |G| is even. For the color x0 that appears only once on H, cH(v1) ̸= x0

and cH(vs) ̸= x0, and cH has the property P (x0, v1, vs). Define a vertex coloring cG of G

as follows. cG(v) = cH(v) for v ∈ V (H)\{v1, vs} and the last ⌈s/2⌉ − 1 vertices of P , i.e.,

v⌈s/2⌉+1, · · · , vs are colored by cH(vs), x1, · · · , x⌈s/2⌉−2 in order. If cH(v1) ̸= cH(vs), the

first ⌈s/2⌉ vertices of P , i.e., v1, v2, · · · , v⌈s/2⌉ are colored by x1, · · · , x⌈s/2⌉−2, cH(v1), x0 in

order; otherwise, by cH(v1), x1, · · · , x⌈s/2⌉−2, x0 in order. From the definition, the vertex

coloring cG of G uses |G|/2 colors such that every color appears twice on G.

Now we show that cG is a strict rainbow vertex coloring of G. Since other cases can be

proved similar to Case 1, we just need to prove that v⌈s/2⌉ has a strict rainbow path to any

vertex v in V (H)\{v1, vs}. Since cH has the property P (x0, v1, vs), there exists a rainbow

path P0 in H from v to one of v1, vs (say v1) with respect to cH such that x0 /∈ cH(P0) if

cH(v) ̸= x0. Hence, P0(v1Pv⌈s/2⌉) is a strict rainbow path from v to v⌈s/2⌉. Therefore, G

is strict rainbow vertex-connected.
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Case 3. |H| is even and s is odd.

In this case, |G| is odd. We consider the following cases.

Subcase 3.1. a, b ∈ V (H)\{v1, vs}.
Define a vertex coloring cG of G as follows. cG(v) = cH(v) for v ∈ V (H)\{v1, vs} and

the last ⌈s/2⌉−1 vertices of P are colored by cH(vs), x1, · · · , x⌈s/2⌉−2 in order. If cH(v1) ̸=
cH(vs), the first ⌈s/2⌉ vertices of P are colored by x1, · · · , x⌈s/2⌉−2, cH(v1), x⌈s/2⌉−1 in order;

otherwise, by cH(v1), x1, · · · , x⌈s/2⌉−1 in order. Obviously, the vertex coloring cG of G uses

⌈|G|/2⌉ colors such that x⌈s/2⌉−1 appears once and every other color appears twice on G.

Similar to Case 1, G is strict rainbow vertex-connected. From the definition of cG, it is

obvious that cG(a) ̸= x⌈s/2⌉−1 and cG(b) ̸= x⌈s/2⌉−1.

Now we prove that cG has the property P (x⌈s/2⌉−1, a, b). Let u be any vertex of G. If

u = a or u = b, there exists a trivial rainbow path Pu from u to one of a and b such that

all vertices of P have distinct colors and x⌈s/2⌉−1 /∈ cG(Pu). Assume that u ̸= a and u ̸= b.

We distinguish the following three cases. (1) Assume that u ∈ V (H)\{v1, vs}. Since

every color appears at most twice, we have cG(u) ̸= cG(a) or cG(u) ̸= cG(b). Hence, there

exists a rainbow path Pu in H from u to one of a, b such that all its vertices have distinct

colors and x⌈s/2⌉−1 /∈ cG(Pu). (2) Assume that u ∈ V (v1Pv⌈s/2⌉). Since cH(v1) ̸= cH(a) or

cH(v1) ̸= cH(b), without loss of generality, assume cH(v1) ̸= cH(a). There exists a rainbow

path Pa from a to v1 in H whose vertices have distinct colors with respect to cH . Hence,

Pa(v1Pu) is a rainbow path from a to u such that all vertices of Pa(v1Pu) have distinct

colors and x⌈s/2⌉−1 /∈ cG(Pa(v1Pu)) if cG(u) ̸= x⌈s/2⌉−1. (3) If u ∈ V (vsPv⌈s/2⌉), we can

prove the result similarly.

Subcase 3.2. Exactly one of a, b belongs to V (H)\{v1, vs}.
Without loss of generality, assume that a ∈ V (H)\{v1, vs} and b ∈ V (v1Pv⌈s/2⌉). Define

a vertex coloring cG of G as follows. cG(v) = cH(v) for v ∈ V (H)\{v1, vs} and the last

⌈s/2⌉ − 1 vertices of P are colored by x⌈s/2⌉−1, x1, · · · , x⌈s/2⌉−2 in order. If cH(v1) ̸=
cH(vs), the first ⌈s/2⌉ vertices of P are colored by x1, · · · , x⌈s/2⌉−2, cH(v1), cH(vs) in order;

otherwise, by cH(v1), x1, · · · , x⌈s/2⌉−2, cH(vs) in order. Obviously, the vertex coloring cG of

G uses ⌈|G|/2⌉ colors such that x⌈s/2⌉−1 appears once and every other color appears twice

on G. Similar to Case 1, cG is a strict rainbow vertex coloring of G. From the definition

of cG, it is obvious that cG(a) ̸= x⌈s/2⌉−1 and cG(b) ̸= x⌈s/2⌉−1.

Now we show that cG has the property P (x⌈s/2⌉−1, a, b). Let u be any vertex of G. If

u = v1, then uPb is a rainbow path on P from u to b such that all its vertices have distinct

colors and x⌈s/2⌉−1 /∈ cG(v1Pb). If u = a, it holds trivially. Assume that u ̸= a and u ̸= v1.

We distinguish the following three cases.

(1) Assume that u ∈ V (H)\{v1, vs}. Since every color of cH appears at most twice onH,
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we have cH(u) ̸= cH(a) or cH(u) ̸= cH(v1). If cH(u) ̸= cH(a), there exists a rainbow path

Pu from u to a in H such that all vertices of Pu have distinct colors and x⌈s/2⌉−1 /∈ cG(Pu).

If cH(u) ̸= cH(v1), there exists a rainbow path Pu from u to v1 in H whose vertices have

distinct colors with respect to cH . So Pu(v1Pb) is a rainbow path from u to b such that

all vertices of Pu(v1Pb) have distinct colors and x⌈s/2⌉−1 /∈ cG(Pu(v1Pb)).

(2) If u ∈ V (v1Pv⌈s/2⌉+1), then uPb is a rainbow path from u to b such that all vertices

of P have distinct colors and x⌈s/2⌉−1 /∈ cG(uPb) if cG(u) ̸= x⌈s/2⌉−1.

(3) Assume that u ∈ V (vsPv⌈s/2⌉+2). Let Pa be a strict rainbow path from a to vs in

H. Then Pa(vsPu) is a rainbow path from a to u such that all vertices of Pa(vsPu) have

distinct colors and x⌈s/2⌉−1 /∈ cG(Pa(vsPu)).

Subcase 3.3. One of a, b belongs to V (v1Pv⌈s/2⌉−1) and the other belongs to V (vsP

v⌈s/2⌉+1).

Without loss of generality, assume that a ∈ V (v1Pv⌈s/2⌉−1) and b ∈ V (vsPv⌈s/2⌉+1).

Define a vertex coloring cG of G as follows. cG(v) = cH(v) for v ∈ V (H)\{v1, vs} and the

last ⌈s/2⌉ − 1 vertices of P are colored by cH(vs), x1, · · · , x⌈s/2⌉−2 in order. If cH(v1) ̸=
cH(vs), the first ⌈s/2⌉ vertices of P are colored by x1, · · · , x⌈s/2⌉−2, cH(v1), x⌈s/2⌉−1 in

order; otherwise, by cH(v1), x1, · · · , x⌈s/2⌉−1 in order. Similarly, cG is a strict rainbow

vertex coloring of G with ⌈|G|/2⌉ colors such that x⌈s/2⌉−1 appears once and every other

color appears twice on G. Obviously, cG(a) ̸= x⌈s/2⌉−1 and cG(b) ̸= x⌈s/2⌉−1.

Now we show that cG has the property P (x⌈s/2⌉−1, a, b). Let u be any vertex of G. If

u ∈ V (v1Pv⌈s/2⌉), then uPa is a rainbow path from u to a such that all vertices of uPa

have distinct colors and x⌈s/2⌉−1 /∈ cG(uPa) if cG(u) ̸= x⌈s/2⌉−1. If u ∈ V (vsPv⌈s/2⌉+1),

then uPb is a required rainbow path from u to b. Assume that u ∈ V (H)\{v1, vs}. Since
every color of cH appears at most twice in H, we have cH(u) ̸= cH(v1) or cH(u) ̸= cH(vs).

Let Pu be a rainbow path from u to v1 in H whose vertices have distinct colors. If

cH(u) ̸= cH(v1), then Pu(v1Pa) is a rainbow path from u to a such that all its vertices

have distinct colors and x⌈s/2⌉−1 /∈ cG(Pu(v1Pa)). If cH(u) ̸= cH(vs), then the required

rainbow path exists similarly.

Subcase 3.4. a, b ∈ V (v1Pv⌈s/2⌉) or a, b ∈ V (vsPv⌈s/2⌉).

Without loss of generality, assume that a, b ∈ V (v1Pv⌈s/2⌉) and a = vi, b = vj (1 ≤
i < j ≤ ⌈s/2⌉). Since a, b are nonadjacent, we have that i ≤ j + 2 ≤ ⌈s/2⌉, i.e.,

i ≤ ⌈s/2⌉ − 2. Define a vertex coloring cG of G as follows. cG(v) = cH(v) for v ∈
V (H)\{v1, vs}. If cH(v1) ̸= cH(vs), the first ⌈s/2⌉ − 1 vertices of P are colored by

x1, · · · , x⌈s/2⌉−2, cH(v1) in order; otherwise, by cH(v1), x1, · · · , x⌈s/2⌉−2 in order. If b =

vj with j ≤ ⌈s/2⌉ − 1 and cG(b) = xk, then color the last ⌈s/2⌉ vertices of P by

cH(vs), x1, · · · , xk−1, x⌈s/2⌉−1, xk, · · · , x⌈s/2⌉−2 in order; otherwise, by cH(vs), x1, · · · , x⌈s/2⌉−1
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in order. It can be checked that cG is a strict rainbow vertex coloring of G with ⌈|G|/2⌉
colors such that x⌈s/2⌉−1 appears once and every other color appears twice on G. Obvi-

ously, cG(a) ̸= x⌈s/2⌉−1 and cG(b) ̸= x⌈s/2⌉−1.

Now we show that cG has the property P (x⌈s/2⌉−1, a, b). Let u be any vertex of G. Let

P ′ be a strict rainbow path from v1 to vs in H. If u ∈ V (P ), then there exists a rainbow

path Pu on P ′ ∪P from u to one of a, b such that all vertices of Pu have distinct colors and

x⌈s/2⌉−1 /∈ cG(Pu) if cG(u) ̸= x⌈s/2⌉−1. If u ∈ V (H)\{v1, vs}, there exists a rainbow path Pu

through v1 from u to a such that all its vertices have distinct colors and x⌈s/2⌉−1 /∈ cG(Pu).

Case 4. |H| is odd and s is even.

In this case, |G| is odd. For the color x0 that appears only once on H, cH(v1) ̸= x0 and

cH(vs) ̸= x0, and cH has the property P (x0, v1, vs). We consider the following cases.

Subcase 4.1. a, b ∈ V (H)\{v1, vs}.
Since cH(a) ̸= x0 or cH(b) ̸= x0, without loss of generality, assume that cH(a) ̸= x0.

From the property P (x0, v1, vs) of cH , there exists a rainbow path Pa in H from a to

one of v1, vs, say v1, such that x0 /∈ cH(Pa). Define a vertex coloring cG of G as follows.

cG(v) = cH(v) for v ∈ V (H)\{v1, vs} and the last s/2 vertices of P are colored by

xs/2−1, cH(vs), x1, · · · , xs/2−2 in order. If cH(v1) ̸= cH(vs), the first s/2 vertices of P are

colored by x1, · · · , xs/2−2, cH(v1), x0 in order; otherwise, by cH(v1), x1, · · · , xs/2−2, x0 in

order.

Similarly, cG is a strict rainbow vertex coloring of G with ⌈|G|/2⌉ colors such that

xs/2−1 appears once and every other color appears twice on G. Note that Pa(v1Pvs/2) is

a rainbow path from a to vs/2 such that all its vertices have distinct colors and xs/2−1 /∈
cG(Pa(v1Pvs/2)). It can be checked that cG(a) ̸= xs/2−1 and cG(b) ̸= xs/2−1, and cG has

the property P (xs/2−1, a, b).

Subcase 4.2. Exactly one of a, b belongs to V (H)\{v1, vs}.
Without loss of generality, assume that a ∈ V (H)\{v1, vs} and b ∈ V (v1Pvs/2). Define

a vertex coloring cG of G as follows. cG(v) = cH(v) for v ∈ V (H)\{v1, vs} and the last

s/2 vertices of P are colored by cH(vs), xs/2−1, x1, · · · , xs/2−2 in order. If cH(v1) ̸= cH(vs),

the first s/2 vertices of P are colored by x1, · · · , xs/2−2, cH(v1), x0 in order; otherwise, by

cH(v1), x1, · · · , xs/2−2, x0 in order. Similar to the above cases, it can be checked that the

vertex coloring cG of G satisfies the conditions (a) and (b).

If a, b ∈ V (P ), we can prove the results similar to the above cases.

An ear decomposition G0, G1, · · · , Gk of a 2-connected graph G is a non-increasing

ear decomposition if each Pi (1 ≤ i ≤ k) is a longest ear of Gi−1 in G, and ℓ(P1) ≥
ℓ(P2) ≥ · · · ≥ ℓ(Pk). In the following, suppose that Gi−1

∩
Pi = {ai, bi} (1 ≤ i ≤ k) and
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|Gi| = ni (0 ≤ i ≤ k). The following lemma shows that we may restrict our attention to

non-increasing ear decompositions.

Lemma 2.2. If G is a 2-connected graph, then G admits a non-increasing ear decompo-

sition G0, G1, · · · , Gk.

Proof. Since G is 2-connected, there is a cycle G0 in G, and there are ears of G0 in G if

G0 ̸= G. We can chose a longest ear P1 of G0 in G, then G1 = G0

∪
P1 is a 2-connected

subgraph of G. If G1 ̸= G, we can also chose a longest ear P2 of G1 in G, and G2 = G1

∪
P2

is a 2-connected subgraph of G. Continuing the process until Gk = G, we can get an ear

decomposition G0, G1, · · · , Gk of G. We claim that ℓ(P1) ≥ ℓ(P2) ≥ · · · ≥ ℓ(Pk). Suppose,

on the contrary, there is an i (1 ≤ i ≤ k − 1) such that ℓ(Pi) < ℓ(Pi+1). Since Pi+1 is

an ear, all of its internal vertices are outside Gi. If the two end vertices of Pi+1 are not

internal vertices of Pi, then Pi+1 is also an ear of Gi−1. So Pi is not a longest ear of Gi−1,

a contradiction. If at least one of the end vertices of Pi+1 is an internal vertex of Pi, then

we can find another ear P ′ of Gi−1 that consists of the entire Pi+1 and some segments of

Pi. Obviously, ℓ(P ′) > ℓ(Pi), a contradiction. Hence, ℓ(P1) ≥ ℓ(P2) ≥ · · · ≥ ℓ(Pk), i.e.,

G0, G1, · · · , Gk is a non-increasing ear decomposition of G.

Next, we give a property of the ear decomposition of minimal 2-connected graphs, which

will be used in the sequel.

Lemma 2.3. If G is a minimal 2-connected graph, then in any of its ear decompositions

the two ends of any ear are non-adjacent.

Proof. Suppose for a contradiction that the assertion is false. Let Pi be the first ear in

the decomposition whose two ends ai, bi are adjacent, and suppose that the edge e = aibi

belongs to ear Pj. Replacing Pi with e and Pj with (Pi ∪ Pj) − e we obtain an ear

decomposition in which e is an ear of length 1. This implies that G−e is also 2-connected,

contradicting the assumption that G is minimal.

Lemma 2.4. Let G be a minimal 2-connected graph of order n (n ≥ 16). If a non-

increasing ear decomposition G0, G1, · · · , Gt of G satisfies that ℓ(P1) ≥ · · · ≥ ℓ(Pt) ≥ 5,

then rvc(G) ≤ rvc∗(G) ≤ ⌈n/2⌉, moreover, G has an equitable rainbow vertex coloring

with ⌈n/2⌉ colors.

Proof. From Lemma 2.3, the end vertices ai, bi of Pi (1 ≤ i ≤ t) are nonadjacent. We will

apply induction on t to show that each Gi (0 ≤ i ≤ t) has a vertex coloring ci satisfying

the following conditions: (a) ci is an equitable strict rainbow vertex coloring of Gi with

⌈ni/2⌉ colors; (b) when ni is odd and i < t, for the color xi that appears only once on Gi,

ci(ai+1) ̸= xi and ci(bi+1) ̸= xi, and ci has the property P (xi, ai+1, bi+1).
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Consider the case i = 0, i.e., G0 = Cn0 = v1v2 · · · vn0vn0+1(= v1). If t > 0, without loss

of generality, assume that a1 = v1. Define a vertex coloring c0 of G0 by c0(vj) = yj for j

with 1 ≤ j ≤ ⌈n0/2⌉ and c(vj) = yj−⌈n0/2⌉ for j with ⌈n0/2⌉+1 ≤ j ≤ n0. Note that if n0

is odd, y⌈n0/2⌉ appears only once on G0. It can be checked that c0 satisfies the conditions

(a) and (b).

Assume that every graph Gi (0 ≤ i ≤ t−1) has a vertex coloring ci satisfying conditions

(a) and (b). Consider the graph Gi+1. It is obvious that ci satisfies the conditions of

Lemma 2.1. From Lemma 2.1, Gi+1 has a vertex coloring ci+1 satisfying conditions (a)

and (b).

Hence, ct is an equitable strict rainbow vertex coloring of G with ⌈n/2⌉ colors.

Theorem 2.2. Let G be a 2-connected graph of order n (n ≥ 3). Then

rvc(G) ≤


⌈n/2⌉ − 2 if n = 3, 5, 9

⌈n/2⌉ − 1 if n = 4, 6, 7, 8, 10, 11, 12, 13 or 15

⌈n/2⌉ if n ≥ 16 or n = 14,

and the upper bound is tight, which is achieved by the cycle Cn.

Proof. Without loss of generality, assume that G is a minimal 2-connected graph. So there

exists a non-increasing ear decomposition G0, G1, · · · , Gk of G satisfying that ℓ(P1) ≥
· · · ≥ ℓ(Pk) ≥ 2. First, we show that rvc(G) ≤ ⌈n/2⌉ for all n ≥ 3. If k = 0 or

ℓ(P1) ≥ · · · ≥ ℓ(Pk) ≥ 5, then G has a strict rainbow vertex coloring with ⌈n/2⌉ colors

from Lemma 2.4. Hence, rvc(G) ≤ rvc∗(G) ≤ ⌈n/2⌉.
Now assume that 5 ≤ ℓ(Pt) ≤ · · · ≤ ℓ(P1) and 2 ≤ ℓ(Pk) ≤ · · · ≤ ℓ(Pt+1) ≤ 4 with

0 ≤ t < k. From Lemma 2.4, Gt has an equitable strict rainbow vertex coloring ct with

⌈nt/2⌉ colors. Let x be a color of ct and y, xt+1, · · · , xk be new colors.

Gt

Figure 2. The structure of the graph G.

Figure 2 shows the structure of G, where Gt possibly has ears with lengths 2, 3 or 4.

Note that the end vertices of Pi (t+1 ≤ i ≤ k) with length 3 or 4 must belong to V (Gt) and

one end vertex of an ear with length 2 possible is the center vertex of some ear with length
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4. Define a vertex coloring c of G from ct as follows. For any v ∈ V (Gt)\{at+1, · · · , ak},
c(v) = ct(v). If there exists only one ear, say Pj = ajvj1vj2vj3bj (j = t + 1) with length

4, then c(aj) = c(vj3) = xj, c(vj1) = ct(aj) and c(vj2) = x. If there exist at least two ears

with length 4 and Pj = ajvj1vj2vj3bj (t + 1 ≤ j ≤ k) is such an ear with length 4, then

c(aj) = c(vj3) = xj, c(vj1) = ct(aj) and c(vj2) = y. Note that the center vertices of all

ears with length 4 are colored by the new color y. If Pj = ajvj1vj2bj (t+ 1 ≤ j ≤ k) with

length 3, then c(aj) = c(vj2) = xj and c(vj1) = ct(aj). If Pj = ajvj1bj (t+1 ≤ j ≤ k) with

length 2, then c(aj) = ct(aj) and c(vj1) = x. Note that if ℓ(Pj) = 2 with t + 1 ≤ j ≤ k,

then the color xj is not used in c. Hence, we obtain a vertex coloring c of G with at most

⌈n/2⌉ colors.

Now we show that G is rainbow vertex-connected. Let v′, v′′ be any two vertices of

G. We distinguish the following three cases. (1) Assume that v′, v′′ ∈ V (Gt). Since ct

is a strict rainbow vertex coloring of Gt, there exists a rainbow path from v′ to v′′ in Gt

with respect to ct. From the definition of c, this path is also a rainbow path with respect

to c. (2) Assume that v′ ∈ V (G)\V (Gt) and v′′ ∈ V (Gt), i.e., v
′ ∈ V (Pj)\V (Gt) with

t + 1 ≤ j ≤ k. Let P ′ (resp. P ′′) be a strict rainbow path from aj (resp. bj) to v′′ in Gt

with respect to ct. Then one of (v′Pjaj)P
′ and (v′Pjbj)P

′′ is a rainbow path from v′ to v′′.

(3) Assume that v′, v′′ ∈ V (G)\V (Gt). If dG(v
′, v′′) ≤ 2, then there is a rainbow path from

v′ to v′′ trivially. If dG(v
′, v′′) ≥ 3, without loss of generality, assume that v′ ∈ V (Pj1)

and v′′ ∈ V (Pj2) (t + 1 ≤ j1 < j2 ≤ k). Since ℓ(Pj2) ≤ 4, one of aj2Pj2v
′′ and bj2Pj2v

′′

(say aj2Pj2v
′′) has length no more than 2. Let P ′

j1
(resp. P ′′

j1
) be a strict rainbow path

from aj1(resp. bj1) to aj2 in Gt with respect to ct. Then one of (v′Pj1aj1)P
′
j1
(aj2Pj2v

′′)

and (v′Pj1bj1)P
′′
j1
(aj2Pj2v

′′) is a rainbow path from v′ to v′′. Hence, c is a rainbow vertex

coloring of G, i.e., rvc(G) ≤ ⌈n/2⌉ for n ≥ 3. Therefore, the result holds for n ≥ 16 or

n = 14. The upper bound is tight from Theorem 2.1.

In the following, we prove that rvc(G) ≤ rvc(Cn) for 3 ≤ n ≤ 13 or n = 15. It can be

checked that the result holds for n = 3, 4, 5. If G = Cn (6 ≤ n ≤ 13 or n = 15), the result

holds obviously. Now assume that G is a 2-connected graph with order n (6 ≤ n ≤ 13

or n = 15) and G ̸= Cn. Let G0, G1, · · · , Gk be an ear decomposition of G such that

G0 = Cn0 is a longest cycle of G. Note that 4 ≤ n0 ≤ 14 and the length of ears of G0 is at

most ⌊n0/2⌋. Define a standard vertex coloring c0 of G0 = Cn0 = v1 · · · vn0vn0+1(= v1) by

c0(vi) = xi for i with 1 ≤ i ≤ ⌈n0/2⌉ and c0(vi) = xi−⌈n0/2⌉ for i with ⌈n0/2⌉+1 ≤ i ≤ n0.

It is obvious that c0 is a strict rainbow vertex coloring of G0 with ⌈n0/2⌉ colors. There

are two simple claims.

Claim 1. If n ≥ n0 + 2 and V (G0) is a 1-step dominating set of G, then rvc(G) ≤
⌈n/2⌉− 1. In fact, define a standard vertex coloring c0 of G0 with ⌈n0/2⌉ colors and color

the vertices in V (G)\V (G0) by colors already used properly. Then we can get a rainbow
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vertex coloring of G with at most ⌈n/2⌉ − 1 colors.

Claim 2. If n = n0 + 1 with 6 ≤ n0 ≤ 12, then rvc(G) ≤ rvc(Cn). In fact, define

a vertex coloring c0 of G0 as shown in Figure 1 and color the vertex in V (G)\V (G0) by

color already used on G0. It can be checked that G is rainbow vertex-connected.

If n0 = 4 or 5, V (G0) must be a 1-step dominating set of G. Hence, from Claim 1 the

result holds for n0 = 4 or n0 = 5 and n ≥ 7. If n0 = 5 and n = 6, define a vertex coloring

c of G by c(vi) = x1 if i is odd, c(vi) = x2 if i is even and for v ∈ V (G)\V (G0), c(v) = x1.

The vertex coloring c of G is a rainbow vertex coloring with 2 colors, i.e., rvc(G) ≤ 2.

Therefore, the result holds for n0 = 4 or 5.

For n0 = 7 and n = 9, color G0 as shown in Figure 1 and color vertices in V (G)\V (G0)

by colors already used such that adjacent vertices of G are colored different. The obtained

vertex coloring of G is a rainbow vertex coloring with 3 colors, i.e., rvc(G) ≤ 3. For n0 = 6

or 7, V (G0) must be a 1-step dominating set of G. From Claims 1 and 2 and the above

case that n0 = 7 and n = 9, the result holds for n0 = 6 or 7.

1

2

3

4

1

2

3

4

1

2

3

4

51

2

3

4
5

4

3

5

5

3

(a) (b)

Figure 3. The vertex colorings for n0 = 8 and 9.

Consider the cases that n0 = 8 or 9. If V (G0) is a 1-step dominating set of G, the

result holds from Claims 1 and 2. Assume that V (G0) is a 2-step dominating of G.

If n0 = 8 (resp. 9), G1 is shown in Figure 3 (a) (resp. Figure 3 (b)) and the vertex

coloring is a rainbow vertex coloring of G1. If n0 = 8 and V (G1) is a 1-step dominating

set of G, then color all vertices in V (G)\V (G1) by color 1. If n0 = 9 and V (G1) is

a 1-step dominating set of G, then color all vertices in V (G)\V (G1) by a new color 6.

G is rainbow vertex-connected and the result holds. If G1 has an ear P2 = v′1v
′
2 · · · v′5

such that V (G1)
∩

V (P2) = {v′1, v′5}, define a vertex coloring of G as follows. Color

the vertices in V (G1) as shown in Figure 3, c(v′2) = c(v′4) = 6 and c(v′3) = 7. For

v ∈ V (G)\(V (G1)
∪

V (P2)), color v by color 7. It can be checked that G is rainbow

vertex-connected. Hence, the result holds for n0 = 8 or 9.

Consider the case that n0 = 10. If V (G0) is a 1-step dominating set of G, the result

holds from Claims 1 and 2. If V (G0) is a 2-step dominating set of G, then n = 13 or 15.

First, we give G0 a standard vertex coloring c0 with colors x1, · · · , x5. If P1 = v′1v
′
2 · · · v′5
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such that V (G0)
∩
V (P1) = {v′1, v′5}, define the colors of vertices in V (G)\V (G0) as

follows. c(v′2) = c(v′4) = 6, c(v′3) = 1 and color the other uncolored vertices by color 1. If

P1 = v′1v
′
2 · · · v′6 such that V (G0)

∩
V (P1) = {v′1, v′6}, then n = 15 and define the colors

of vertices in V (G)\V (G0) as follows. c(v′2) = c(v′4) = 6, c(v′3) = c(v′5) = 7 and color the

other uncolored vertices by color 1. The obtained vertex coloring of G is a rainbow vertex

coloring with at most ⌈n
2
⌉ − 1 colors. Therefore, the result holds for n0 = 10.

Consider the case that n0 = 11. If V (G0) is a 1-step dominating set of G, the result

holds from Claims 1 and 2. If V (G0) is a 2-step dominating set of G, then n = 15.

First, we give G0 a standard vertex coloring c0 with colors x1, · · · , x6. If P1 = v′1v
′
2 · · · v′5

such that V (G0)
∩
V (P1) = {v′1, v′5}, then define the colors of vertices in V (G)\V (G0)

as follows. c(v′2) = c(v′4) = 7, c(v′3) = 1 and color the other uncolored vertices by color

1. If P1 = v′1v
′
2 · · · v′6 such that V (G0)

∩
V (P1) = {v′1, v′6}, define the colors of vertices in

V (G)\V (G0) by c(v′2) = c(v′5) = 7, c(v′3) = 1 and c(v′4) = 2. It can be checked that the

obtained vertex coloring of G is a rainbow vertex coloring with 7 colors. Therefore, the

result holds for n0 = 11.

Consider the case that n0 = 12. From Claims 1 and 2, the result holds if V (G0) is

a 1-step dominating set of G. If V (G0) is a 2-step dominating set of G, then n = 15

and G = G0

∪
P1, where P1 = v′1v

′
2 · · · v′5 such that V (G1)

∩
V (P1) = {v′1, v′5}. We give

G0 a standard vertex coloring with colors x1, · · · , x6. Define the colors of the vertices in

V (G)\V (G0) as c(v
′
2) = c(v′4) = 7 and c(v′3) = 1. The vertex coloring c of G is a rainbow

vertex coloring with 7 colors. Therefore, the result holds for n0 = 12.

Consider the cases that n0 = 13, 14. We give G0 a standard vertex coloring with

colors x1, · · · , x7 and the other vertices are colored by color 1. Then G is rainbow vertex-

connected. Therefore, the result holds for n0 = 13 or 14.

The proof is now complete.

Because the proof methods above are constructive, one can obtain a concrete rainbow

vertex coloring from the proofs for any given 2-connected graph, using at most ⌈n
2
⌉ colors.
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