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Abstract

For S C V(G) and |S| > 2, A(S) is the maximum number of edge-
disjoint trees connecting S in G. For an integer k£ with 2 < k£ < n, the
generalized k-edge-connectivity \i,(G) of G is then defined as A\x(G) =
min{A(S) : S C V(G) and |S| = k}. Itis also clear that when |S| = 2,
A2(G) is nothing new but the standard edge-connectivity A(G) of G. In
this paper, graphs of order n such that A\3(G) = n — 3 are characterized.
Furthermore, we determine the minimal number of edges of a graph G of
order n with A3(G) = 1,n — 3,n — 2 and give a sharp lower bound for
2<A3(G) <n—4.

Keywords: edge-connectivity, Steiner tree, edge-disjoint trees, generalized
edge-connectivity.

AMS subject classification 2010: 05C40, 05C05, 05C75.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer
to the book [1] for graph theoretical notation and terminology not described here.
For a graph G, let V(G) and E(G) denote the set of vertices and the set of edges
of G, respectively. As usual, the union of two graphs G and H is the graph,
denoted by G U H, with vertex set V(G) U V(H) and edge set E(G) U E(H).
Let mH be the disjoint union of m copies of a graph H. For X, Y C V(G), let
E¢[X,Y] denote the set of edges of G with one end in X and the otherendin Y.

The generalized connectivity of a graph G, introduced by Chartrand et al. in
[2], is a natural and nice generalization of the concept of (vertex-)connectivity. For
agraph G = (V, E) andaset S C V(G) of at least two vertices, an S-Steiner tree
or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T' = (V' E’)
of G that is a tree with S C V’. Two Steiner trees T and 7’ connecting S are
said to be internally disjoint if E(T) N E(T') = @ and V(T)NV(T') = S. For
S CV(G) and |S| > 2, the generalized local connectivity k(S) is the maximum
number of internally disjoint Steiner trees connecting S in GG. For an integer
k with 2 < k < n, the generalized k-connectivity ki(G) of G is defined as
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kr(G) = min{x(S) : S C V(G) and |S| = k}. Clearly, when |S| = 2, k2(G)
is nothing new but the connectivity x(G) of G, that is, k2(G) = k(G), which is
the reason why one addresses «x(G) as the generalized k-connectivity of G. By
convention, for a connected graph G with less than & vertices, we set ki (G) = 1.
Set ki (G) = 0 when G is disconnected. Results on the generalized connectivity
can be found in [2, 3, 4,5,6,7, 8,9, 11, 10, 12].

As a natural counterpart of the generalized connectivity, we introduced the
concept of generalized edge-connectivity in [11]. For S C V(G) and |S| > 2,
the generalized local edge-connectivity A(S) is the maximum number of edge-
disjoint Steiner trees connecting S in G. For an integer k£ with 2 < k < n, the gen-
eralized k-edge-connectivity \i,(G) of G is then defined as A\, (G) = min{A(S) :
S C V(G) and |S| = k}. Itis also clear that when |S| = 2, A2(G) is nothing
new but the standard edge-connectivity A(G) of G, that is, A2(G) = A\(G), which
is the reason why we address A\, (G) as the generalized edge-connectivity of G.
Also set A\, (G) = 0 when G is disconnected.

In addition to being a natural combinatorial measure, the generalized con-
nectivity and generalized edge-connectivity can be motivated by its interesting
interpretation in practice. Suppose that G represents a network. If one considers
to connect a pair of vertices of GG, then a path is used to connect them. However,
if one wants to connect a set .S of vertices of G with |.S| > 3, then a tree has to be
used to connect them unless the vertices of S lie on a common path. This kind of
tree with minimum order for connecting a set of vertices is usually called a Steiner
tree, and popularly used in the physical design of Very Large Scale Integration
(see [13]). For a set S of vertices, usually the number of totally independent ways
to connect .S is a local measure for the reliability of a network. Then the general-
ized k-connectivity and generalized k-edge-connectivity can serve for measuring
the global capability of a network G to connect any k vertices in G.

The following two observations are easily seen.

Observation 1. If G is a connected graph, then k,(G) < A\,(G) < 0(G).

Observation 2. If H is a spanning subgraph of G, then ki(H) < ki(G) and
Ne(H) < (),

In [11], we obtained some results on the generalized edge-connectivity. The
following results are restated, which will be used later.

Lemma 1. [11] For every two integers n and k with 2 < k < n, A\ (K,) =
n— [k/2].

Lemma 2. [11] For any connected graph G, A\,(G) < X(G). Moreover, the
upper bound is sharp.

Lemma 3. [11] Let k, n be two integers with 2 < k < n. For a connected graph
G of order n, 1 < ki(G) < A\ (G) < n — [k/2]. Moreover, the upper and lower
bounds are sharp.

In [11], we characterized the graphs attaining the above upper bound, namely,

the graphs with (G) = n — [£] and A\, (G) = n — [£].

Lemma 4. [11] Let k, n be two integers with 2 < k < n. For a connected graph

G of order n, ki (G) = n—[5] or \e(G) = n— [E] ifand only if G = K, for k

even; G = K,, \ M for k odd, where M is an edge set such that 0 < |M| < %



But it is not easy to characterize the graphs with x5 (G) = n — fg] —1lor

Me(G) = n — f%} — 1. In [5], we focus on the case k = 3 and characterize
the graphs with x3(G) = n — 3. Like [5], here we will consider the generalized
3-edge-connectivity. In Section 2, graphs of order n such that A3(G) = n — 3 are
characterized.

Let g(n, k, ¢) be the minimal number of edges of a graph G of order n with
Ai(G) =€ (1 < €< n—[%]). From Lemma 4, we know that g(n, k,n— [£]) =

(%) for k even; g(n,k,n — [£]) = (3) — %5 for k odd. It is not easy to
determine the exact value of the parameter g(n, k, £) for a general k (3 < k < n)
and a general £ (1 < ¢ < n — [£7). So we put our attention to the case k = 3.
The exact value of g(n, 3, ¢) for £ = n — 2,n — 3,1 is obtained in Section 3. We

also give a sharp lower bound of g(n, 3, ¢) for general £ (2 < ¢ < n —4).

2 Graphs with \3(G) =n —3
For the generalized 3-connectivity, we got the following result in [5].

Theorem 1. [5] Let G be a connected graph of order n (n > 3). Then k3(G) =
— 3 ifand only if G is a graph satisfying one of the following conditions.
eG =P U(n—-4)Ky;
eG=PaUrP,U(n—2r—3)K; (
eG=C3UrP,U(n—2r—3)K; (r =
eG=5P,U(n—2s)K; (2<s<[2]).

But, for the edge case, we will show that the statement is different. Before
giving our main result, we need some preparations. Choose S C V(G). Then
let 7 be a maximum set of edge-disjoint trees connecting S in G. Let Z; be
the set of trees in .7 whose edges belong to E(G[S]), and let 7 be the set of

trees containing at least one edge of Eg[S,S], where S = V(G) \ S. Thus,
T =7 U D,
In [11], we obtained the following useful lemma.

Lemma5. [11]Letr S C V(G), = kandT be a tree connecting S. If T € 7,
then T uses k — 1 edges of E(G[S]) U Eg[S, S]; If T € J5, then T uses at least
k edges of E(G[S]) U E¢[S, S].

By Lemma 5, we can derive the following result.

Lemma 6. Let G be a connected graph of order n (n > 3), and ¢ be a positive
integer. If we can find a vertex subset S C V(Q) with |S| = 3 satisfying one of
the following conditions, then A3(G) < n — £:

(1) G[S] = 3K and |E5[S, S]UGIS]| > 3¢ — 7;

(2) G[S] = P, UK, and |E5[S, S|UG[S]| > 30 —7;
(3) G[S] = Ps and |EZ[S, S] U é[sn >30—8;
(4) G[S] = K3 and | E5[S, S| UG[S]| > 3¢ — 8.



Proof. We only show that (1) and (3) hold, (2) and (4) can be proved similarly.
(1) Since |Eg[S, S] U G[S]| > 3¢ — 7, we have |E(G[S]) U E¢[S, S]] <

3+3(n—3)—(3(—7) = 3n—30+1. Since G[S] = 3K;, we have G[S] = K.

Therefore, |E(G[S])] = 3, and so there exists at most one tree belonging to

4 in G. If there exists one tree belonging to .77, namely |.7;| = 1, then the
other trees connecting S must belong to .Z>. From Lemma 3, each tree belongmg

to Z uses at least 3 edges in E(G[S]) U Eg[S,S]. So the remaining at most
(3n — 30+ 1) — 2 edges of E(G[S]) U E¢[S, S] can form at most 3"%‘%_1 trees.
Thus A\3(G) < A(S) = |.7| = | %] +|%| = 14|%| < n—{+ 2, which results
in A3(G) < n — £ since A3(G) is an integer. Suppose that all trees connecting
S belong to 5. Then A(S) = |7| = | %] < %, which implies that
A3(G) < A(S) <n -4

(3) Since |Ez[S, SJUG[S]| > 3¢—38, it follows that | E(G[S])UE¢[S, S]| <
3+3(n—3)— (3¢ —8) = 3n— 3¢+ 2. Since G[S] = P3, we have G[S] =
P, U K;. Clearly, |[E(G[S])| = 1 and hence there exists no tree belonging to 7.
So each tree connecting S must belong to . From Lemma 5, A\(S) < |7| =
| Z| < 32=352 which implies that A3(G) < A(S) < n — £ since A\3(G) is an
integer. 0

Lemma 7. Let G be a connected graph with minimum degree 0. If there are two
adjacent vertices of degree 0, then \,(G) < §(G) — 1.

Proof. From Observation 1, A (G) < §(G). Suppose that there are two adjacent
vertices of degree 4, say u; and uo. Besides w; and ug, we choose some ver-
tices in V(G \ {u1,uz2}) to get a k-subset S containing w1, us. Pick up a vertex
uz € S\ {uy,uz}. Suppose that T, Ty, - - - , Tj are § pairwise edge-disjoint trees
connecting S. Since G 1s 51mple graph, 0bV10usly the J edges incident to u; must
be contained in 17,15, - - - , Ts, respectively, and so are the § edges incident to us.
Without loss of generality, we may assume that the edge wu;us is contained in 77.
But, since 77 is a tree connecting S, it must contain another edge incident with u
or ug, a contradiction. Thus A\;(G) < 6(G) — 1. O

A subset M of E(QG) is called a matching of G if the edges of M satisfy
that no two of them are adjacent in G. A matching M saturates a vertex v, or
v is said to be M -saturated, if some edge of M is incident with v; otherwise,
v is M-unsaturated. M is a maximum matching if G has no matching M’ with
[M'| > |M].

Theorem 2. Let G be a connected graph of order n (n > 3). Then A\3(G) = n—3
if and only if G is a graph satisfying one of the following conditions.

oG =rPU(n—2r)K, (2<r<[3]);

eG=PUsP,U(n—2s—4)K; (0 <s<[2%2));

eG=P3UtP,U(n—2t—-3)K; (0<t< Ln2 s

eG=C5UtP,U(n—2t—3)Ky (0 <t < [252])

Proof. Necessity: Assume that A\3(G) = n — 3. From Lemma 4, for a connected
graph H, A\3(H) = n—2ifand only if 0 < |E(H)| < 1. Since A\3(G) = n—3, it



follows that |E(G)| > 2. We claim that 6(G) < 2. Assume, to the contrary, that

0(G) > 3. Then A3(G) < 6(G) =n—1—-(G) < n — 4, acontradiction. Since

0(G) < 2, it follows that each component of G is a path or a cycle (note that an

Lsollczlited vertex in G is a trivial path). We will show that the following two claims
old.

Claim 1. G has at most one component of order larger than 2.

Suppose, to the contrary, that G has two components of order larger than 2,
denoted by H; and Hy (see Figure 1 (a)).

Let z,y € V(H;) and z € V(H3) such that dg, (y) = dm,(2) = 2 and x is
adjacent to y in Hy. Thus dg(y) =n — 1 —dg(y) =n—1—dg, (y) =n — 3.
The same is true for z, that is, dg(z) = n — 3. Pick S = {z,y, z}. This implies
that 6(G) < dg(z) < n — 3. Since all other components of G are paths or cycles,
0(G) > n—3.S0d(G) =n —3and hence dg(y) = dg(z) = §(G) = n — 3.
Since yz € E(G), by Lemma 7 it follows that A\3(G) < §(G) =1 =n—4,a
contradiction. _

A (llllaim 2. If H is the component of G of order larger than 3, then H is a
-path.
P Assume, to the contrary, that H is a path or a cycle of order larger than 4, or
a cycle of order 4.

U3 o
U2 /‘ - U4 Ve TN Vs
o [} 27 U3
H,.- H>
«————o
Vi g o N o W8
] U1 Vs U1 Vs

(a) () (©)
Figure 1: Graphs for Claims 1 and 2.

First, we consider the former. We can pick a Ps in H. Without loss of
generality, let Ps = vy, v, v3,v4,v5. Choose S = {vq,v3,v4}. Then S =
G \ {v2,v3,v4} (see Figure 1 (b)). Clearly, |E(G[S]) U E5[S, S]] > 4. Since
vauz,v3vs € E(GIY)), it follows that G[S] = P;. From (3) of Lemma 6,
A3(G) < n — 4 (Note that if 3¢ — 8 = 4, then ¢ = 4). This contradicts to
/\3(G) =n-—3.

Now we consider the latter. Let H = wvy,vs,v3,v4 be a cycle. Choose
S = {va,v3,v4} (see Figure 1 (c)). Then |E(G[S]) U E5[S,S]| > 4. Since
vou3,v3v4 € E(G[S]), it follows that G[S] = P;. From (3) of Lemma 6,
A3(G) < n — 4 (Note that if 3¢ — 8 = 4, then ¢ = 4), which also contradicts
to A\3(G) =n — 3.

From the above two claims, we know that if G has a component Py, then it
is the only component of order larger than 3 and the other components must be
independent edges. Let s be the number of such independent edges. G can have
as many as such independent edges, which implies that s < L”T"LJ From Lemma
4,5>0.Thus 0 < s < [254].

By the similar analysis, we conclude that G = 7P, U (n — 2r)K; (2 <7 <



[2])orG = PyUsPaU(n—25—4)K; (0 < s < [252]) or G = PsUtPU(n—
20—-3)K, (0<t < [253])or G = C3UtP,U(n—2t—3)K, (0 <t < [253]).

Sufficiency: We will show that A\5(G) > n — 3 if G is a graph satisfying one
of the conditions of this theorem. We have the following cases to consider.

Case 1. é = P3UtP2U(n—2t—3)K1 oré = CgUtPQU(TL—Qt—s)Kl (O <
t<|25%)).

We only need to show that \3(G) > n — 3 for t = [252]. If \3(G) >
n—3for G = C3UtP, U (n— 2t — 3)Ky, then \3(G) > n — 3 for G =
P3 UtP, U (n — 2t — 3)K;. It suffices to check that A3(G) > n — 3 for G =
C3U [ 252 |P U (n—2[ 252 ] — 3)K;.

Let C35 = w1,v9,v3 and S = {x,y,z} be a 3-subset of G, and M =
| 253 |P,. It is clear that M is a maximum matching of G \ V(C3). Then

G \ V(C3) has at most one M -unsaturated vertex.
y(v2) ’ N x(v2) " (va) .
U L N (- T s
T ,
SV R o
P ANY 1/ N wj
O

(@) (®) (©)
Figure 2: Graphs for Case 1.

If S = V(C3), then there exist n — 3 pairwise edge-disjoint trees con-
necting S since each vertex in S is adjacent to every vertex in G \ S. Sup-
pose S # V(C3). If |S N V(Cs)] = 2, then one element of S belongs to
€ V(G) \ V(C3), denoted by z. Since dg(vi) = dg(ve) = dg(vs) = n — 3,

we can assume that x = wv1, y = wve. When z is M-unsaturated, the trees
T; = w;xUw;yUw; z together with T7 = xzUyz form n—3 pairwise edge-disjoint
trees connecting S, where {w1,wa, -+ ,wn—4} = V(G) \ {z,y, 2z,v3}. When

z is M -saturated, we let 2z’ be the adjacent vertex of z under M. Then the trees
T; = wizx Uw;yUw;z together with T} = x2Uyz and Th = 22’ Uyz' Uz v3Uzvs
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (a)), where
{wr,wa, - ywn—5} = V(G)\ {z,y,2,2,v3}. If |SNV(C3)| = 1, then
two elements of S belong to € V(G) \ V(Cs), denoted by y and z. Without
loss of generality, let = vy. When y and z are adjacent under M, the trees
T; = w;x Uw;yUw; z together with 77 = xyUyv; Uviz and Ts = zzUzvs3Uvsy
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (b)), where
{wy,wa, -+ ,wn—5} = V(G) \ {z,y, z,v1,v3}. When y and z are nonadjacent
under M, we consider whether y and z are M-saturated. If one of {y, z} is M-
unsaturated, without loss of generality, we assume that y is M -unsaturated. Since
G \ V(C5) has at most one M -unsaturated vertex, z is M-saturated. Let 2z’ be
the adjacent vertex of z under M. Then the trees T; = w;x U w;y U w; z together
with T} = zyUyzand Tp = viy Uviz U 2'v; U 2'z and Ty = 22 U zv3 U v3y
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (c)), where
{wi,wa, -+ ,wn—6} = V(G)\ {z,y,2,2",v1,v3}. If both y and z are M-
saturated, we let 3/, 2’ be the adjacent vertex of y, z under M, respectively. Then



the trees T; = w;x U w;y U w; 2 together with T) = zz U yz, To = 2y Uyz' U
2y Uy'z, Ts = yv3 U 2'vg U zvg Uxz’ and Ty = yv1 U y'vy U zoy U y'x
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 2 (d)), where
{wy,we, -+ ywp_r} = V(G)\ {x,y,2,y,2',v1,v3}. Otherwise, S C G \
V(C3). When one of {x,y, z} is M-unsaturated, without loss of generality, we
assume that = is M -unsaturated. Since G\ V' (C3) has at most one M -unsaturated
vertex, both y and 2z are M-saturated. Let ¢', 2’ be the adjacent vertex of y, z
under M, respectively. We pick a vertex =’ of V(G) \ {z,y,v’, 2, 2, v1,v2,v3}.
When z, 3, z are all M -saturated, we let ', 4, 2’ be the adjacent vertex of z,y, 2
under M, respectively. Then the trees T; = w;x U w;y U w; 2 together with T); =
zvjUyv;Uzv;(1 < j <3)and Ty = zyUyz'Uz'z and T = 2y’ Uzy' Uzy and
Ty = zxUzz' Uz'y form n— 3 pairwise edge-disjoint trees connecting S (see Fig-
ure 2 (e)), where {wy,wa, -+ ,wn—9} = V(G) \ {z,y,z,2',y, 2, v1, v, 03}

From the above discussion, we get that A(S) > n — 3 for S C V(G), which
implies A3(G) > n — 3. So A\3(G) =n — 3.

Case2. G =rP,U(n—2r)K, (2<r<|§])orG=PUsP,U(n—
2s —4)K1 (0 <s < |252]).

We only need to show that A3(G) > n — 3 forr = |2] and s = [252]. If
A3(G) > n—3for G = PyU| %52 |P,U(n—2| 5% | —4) K}, then \3(G) > n—3
for G = |5 |P, U (n —2[5])K;. So we only need to consider the former. Let
Py = vy1,v9,v3,04, S = {x,y,2} be a 3-subset of G, and M = G \ E(Py).
Clearly, M is a maximum matching of G\ V (P,). It is easy to see that G\ V (Py)
has at most one M -unsaturated vertex. For any S C V(G), we will show that
there exist n — 3 edge-disjoint trees connecting S in G.

If S C V(Py), then there exist n — 4 pairwise edge-disjoint trees connecting
S since each vertex in S is adjacent to every vertex in G\ V(Py). Since dg(v1) =
dg(vg) = n —2and dg(v2) = dg(vs) = n — 3, we only need to consider S =
{v1,va,v3} and S = {v1,v2,v4}. These trees together with T = yvg Uvgx Uvyz
for S = {v1,v9,v3}, or T = xzy U yz for S = {vy,vs,v3} form n — 3 pairwise
edge-disjoint trees connecting S. Suppose S NV (Py) # 3. If [SNV(Py)| = 2,
then one element of .S belongs to € V/(G)\ V (P,), denoted by z. Since dg(v1) =
dg(vg) = n —2and dg(ve) = dg(vs) = n — 3, we only need to consider z =
V1,Y = V2 OF T = Vo, Yy = v3 OF T = v,y = v4. When z is M-unsaturated, the
trees T; = w;x Uw;y Uw; 2z together with 17 = xzUyz, Th = zvgsUyvy U zvy for
T =1,y = Vg, 0r Ty = xvgUvgvy UvyUvyz for o = vg, y = vs, or T = xvsU
yvsUzvg for z = vy, y = vy form n—3 pairwise edge-disjoint trees connecting S,
where {wy,wa, -+ ,wp_5} = V(G)\ (V(Ps)U{z}). When z is M -unsaturated,
we let 2’ be the adjacent vertex of z under M. For x = v9,y = w3, the trees
T; = wix Uwzy Uw; 2z together with Ty = z2 Uyz, To = 22’ Uyz' Uz'vg U 2u4
and T, = yvi UvyvgUzvy Uzvy form n—3 pairwise edge-disjoint trees connecting
S (see Figure 3 (a)), where {wy,wa, -+ ,wn,_¢} = V(G) \ {z,y, 2z, 2', v1,v4}.
One can check that the same is true for x = v1,y = v and x = v1,y = vy
(see Figure 3 (b) and (¢)). If |S N V(P4)| = 1, then two elements of S belong
to € V(G) \ V(Py), denoted by y and z. We only need to consider © = v; or
r = vy. When y and z are adjacent under M, the trees T; = w;x U w;y U w;2
together with 77 = xyUzv1 Uyvy, To = xzUzvgUyvs and T3 = zvg UyvaU zuy
form n — 3 pairwise edge-disjoint trees connecting S for x = vy (see Figure 3



(d)), where {wy,ws, -+ ,wp—¢} = V(G) \ {z,v,2,v1,v3,v4}. The same is
true for x = vy (see Figure 3 (e)). When y and z are nonadjacent under M, we
consider whether y and z are M-saturated. If one of {y, 2} is M-unsaturated,
without loss of generality, we assume that y is M -unsaturated. Since G \ V' (Fy)
has at most one M -unsaturated vertex, z is M-saturated. Let z’ be the adjacent
vertex of z under M. For x = v, the trees T; = w;x U w;y U w; 2z together
with 77 = zzUyz, To = vux Uvgy Uz, Ts = vy U vz U ze and Ty =
Z'x Uvgy U 2'v3 U zvg form n — 3 pairwise edge-disjoint trees connecting S (see
Figure 3 (f)), where {wy,wa, -+ ,wp_7} = V(G)\ {x,y, 2, 2/, v1,vs,v4}. The
same is true for x = vy (see Figure 3 (g)). If both y and z are M-saturated, we
let 3/, 2’ be the adjacent vertex of y, z under M, respectively. For © = v, the
trees T; = w;x U w;y U w;z together with Th = xz U yz, Th = yvg U zu3 U zx,
T3 = zvaUyvgUzoyg, Ty = yva Uy'v1Uzvi Uzy’ and T = 22’ U2Z'yU 2"y Uy'2
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 3 (h)), where
{wy,wa, -+ ywn—s} = V(G)\ {=,y,2,y,2',v1,v3,v4}. The same is true for
x = vy (see Figure 3 (7)). If S C G \ V(P,), when one of {z,y,z} is M-
unsaturated, without loss of generality, we let x is M -unsaturated, then both y and
z are M-saturated. Let ¢/, 2’ be the adjacent vertex of y, z under M, respectively.
We pick a vertex 2’ of V(G) \ {z,v,y, 2, 2’,v1,v2,v3}. When x, y, z are all M-
saturated, we let ', 3/, 2’ be the adjacent vertex of x, y, 2 under M, respectively.
Then the trees T; = w;x U w;y U w; 2z together with T; = zv; U yv; U zv;(1 <
j<4)andTs = yzrUxy' Uy'z and Ty = yo' Uza' Uzz and Ty = zyUy2' U2z
form n — 3 pairwise edge-disjoint trees connecting S (see Figure 3 (j)), where
{w17 w2, - - 7wn—10} = V(G) \ {%, Y, z, J)/, y/a zla U1, V2, U3, U4}'

Vg U

Figure 3: Graphs for S in Case 2.

From the above arguments, we conclude that for any S C V(G) A(S) >
n — 3. From the arbitrariness of S, we have A3(G) > n — 3. The proof is now
complete.



3 The minimal size of a graph G with \3(G) = ¢

Recall that g(n, k, £) is the minimal number of edges of a graph G of order n
with Ay (G) = £ (1 < ¢ < n — [%]). Let us focus on the case k = 3 and derive
the following result.

Theorem 3. Let n be an integer with n > 3. Then

(1) g(n.3n-2)= (1) ~1;

(2) g(n,3,n = 3) = (3) — ["5°);

(3) g(n,3,1) =n—1;
(4) g(n,3,¢) > Végﬂ)n] forn > 11 and 2 < £ < n — 4. Moreover, the
bound is sharp.

Proof. (1) From Lemma 4, A\5(G) =n—2ifandonly if G = K, or G = K, \ e
where e € E(K,). So g(n,3,n —2) = (3) — L.

(2) From Theorem 2, \3(G) = n—3ifand only if G = r P,U(n—2r)K; (2 <
r<[Z))orG =P UsPaU(n—2s—4)K; (0 < s < [22])or G =
PsUtP,U(n—2t—3)K; (0 <t < [252])or G =C3UtP U (n— 2t —
3)K1 (0 <t < [252]). If nis even, then max{e(G)} = F2, which implies that

g(n,3,n—3) = (3) —max{e(G)} = (}) — Z2. If nis odd, then max{e(G)} =
243 which implies that g(n,3,n — 3) = (5) — max{e(G)} = () — 22. So
(n 3,n—3)=(3) — =]

(3) Tt is clear that the tree T, is the graph such that A\3(7},,) = 1 with the
minimal number of edges. So g(n,3,1) =n — 1.

(4) Since A\, (G) = £ (2 < £ <n —4), by Lemma 7, we know that §(G) > ¢
and any two vertices of degree ¢ are not adjacent. Denote by X the set of vertices
of degree ¢. We have that X is an independent set. Put Y = V(G) \ X and
obviously there are 2| X | edges joining X to Y. Assume that m/ is the number of
edges joining two vertices belonging to Y. It is clear that e = | X | + m/. Since
every vertex of Y has degree atleast /+1in G, then ) _y d(v) = €| X|+2m' >
(+1)|Y| = (£+1)(n—|X]), namely, (20+1)|X|+2m’ > ({+1)n. Combining
this with e = ¢|X| + m/, we have 2£2e(G) = (20 + 1)|X| + 22 m/ > (20 +

1)|X| + 2m' > (¢ + 1)n Therefore, e(G) > giﬂ) n. Since the number of edges

is an integer, it follows that e(G) > [%E) n].

To show that the upper bound is sharp, we consider the complete bipartite
graph G = Ky py1. Let U = {uq,ug, - ,ue} and W = {wy,we, -+, wey1}
be the two parts of Ky ¢11. Choose S C V(G). We will show that there are ¢
edge-disjoint trees connecting S.

If |SNU| = 3, without loss of generality, let S = {uy,u2,us}, then the
trees T; = ujw; U ugw; Uugw; (1 <4 < €4 1) are £ + 1 edge-disjoint trees
connecting S. If |[S N U| = 2, then |S N W| = 1. Without loss of generality, let
S = {Ul, Uz, wl}. Then the trees E = uiw; U u;w; U u;wy (4 S 7 S l + 1) and
T = wywy Uugws Uwugus and Ty = uswy U ugws U ujwy are £ edge-disjoint
trees connecting S. If [SNU| = 1, then |S N W| = 2. Without loss of generality,




let S = {uy,wy, wy}. Then the trees T; = uyv;41 U uw;11 Uuw; Uuzws (2 <
i < {)and 71 = uywy U ujws are £ edge-disjoint trees connecting S. Suppose
|S N W| = 3. Without loss of generality, let S = {w1, wo, w3}, then the trees
T; = wru; Uwau; Uwsu; (1 < i < ¢) are ¢ edge-disjoint trees connecting .S.
From the above arguments, we conclude that, for any S C V(G), A(S) > £.
So A3(G) > £. On the other hand, A3(G) < §(G) = ¢ and hence A\3(G) = /.

Clearly, |V (G)| = 20 + 1, e(G) = (¢ + 1) = [S5n].

So the lower bound is sharp fork =3 and 2 < ¢ < n — 4. O
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