The minimal size of a graph with given generalized 3-edge-connectivity*

Xueliang Li, Yaping Mao
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
lx1@nankai.edu.cn; maoyaping@ymail.com

Abstract

For $S \subseteq V(G)$ and $|S| \geq 2, \lambda(S)$ is the maximum number of edgedisjoint trees connecting S in G. For an integer k with $2 \leq k \leq n$, the generalized k-edge-connectivity $\lambda_{k}(G)$ of G is then defined as $\lambda_{k}(G)=$ $\min \{\lambda(S): S \subseteq V(G)$ and $|S|=k\}$. It is also clear that when $|S|=2$, $\lambda_{2}(G)$ is nothing new but the standard edge-connectivity $\lambda(G)$ of G. In this paper, graphs of order n such that $\lambda_{3}(G)=n-3$ are characterized. Furthermore, we determine the minimal number of edges of a graph G of order n with $\lambda_{3}(G)=1, n-3, n-2$ and give a sharp lower bound for $2 \leq \lambda_{3}(G) \leq n-4$.

Keywords: edge-connectivity, Steiner tree, edge-disjoint trees, generalized edge-connectivity.

AMS subject classification 2010: 05C40, 05C05, 05C75.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to the book [1] for graph theoretical notation and terminology not described here. For a graph G, let $V(G)$ and $E(G)$ denote the set of vertices and the set of edges of G, respectively. As usual, the union of two graphs G and H is the graph, denoted by $G \cup H$, with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Let $m H$ be the disjoint union of m copies of a graph H. For $X, Y \subseteq V(G)$, let $E_{G}[X, Y]$ denote the set of edges of G with one end in X and the other end in Y.

The generalized connectivity of a graph G, introduced by Chartrand et al. in [2], is a natural and nice generalization of the concept of (vertex-)connectivity. For a graph $G=(V, E)$ and a set $S \subseteq V(G)$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph $T=\left(V^{\prime}, E^{\prime}\right)$ of G that is a tree with $S \subseteq V^{\prime}$. Two Steiner trees T and T^{\prime} connecting S are said to be internally disjoint if $E(T) \cap E\left(T^{\prime}\right)=\varnothing$ and $V(T) \cap V\left(T^{\prime}\right)=S$. For $S \subseteq V(G)$ and $|S| \geq 2$, the generalized local connectivity $\kappa(S)$ is the maximum number of internally disjoint Steiner trees connecting S in G. For an integer k with $2 \leq k \leq n$, the generalized k-connectivity $\kappa_{k}(G)$ of G is defined as

[^0]$\kappa_{k}(G)=\min \{\kappa(S): S \subseteq V(G)$ and $|S|=k\}$. Clearly, when $|S|=2, \kappa_{2}(G)$ is nothing new but the connectivity $\kappa(G)$ of G, that is, $\kappa_{2}(G)=\kappa(G)$, which is the reason why one addresses $\kappa_{k}(G)$ as the generalized k-connectivity of G. By convention, for a connected graph G with less than k vertices, we set $\kappa_{k}(G)=1$. Set $\kappa_{k}(G)=0$ when G is disconnected. Results on the generalized connectivity can be found in $[2,3,4,5,6,7,8,9,11,10,12]$.

As a natural counterpart of the generalized connectivity, we introduced the concept of generalized edge-connectivity in [11]. For $S \subseteq V(G)$ and $|S| \geq 2$, the generalized local edge-connectivity $\lambda(S)$ is the maximum number of edgedisjoint Steiner trees connecting S in G. For an integer k with $2 \leq k \leq n$, the generalized k-edge-connectivity $\lambda_{k}(G)$ of G is then defined as $\lambda_{k}(\bar{G})=\min \{\lambda(S)$: $S \subseteq V(G)$ and $|S|=k\}$. It is also clear that when $|S|=2, \lambda_{2}(G)$ is nothing new but the standard edge-connectivity $\lambda(G)$ of G, that is, $\lambda_{2}(G)=\lambda(G)$, which is the reason why we address $\lambda_{k}(G)$ as the generalized edge-connectivity of G. Also set $\lambda_{k}(G)=0$ when G is disconnected.

In addition to being a natural combinatorial measure, the generalized connectivity and generalized edge-connectivity can be motivated by its interesting interpretation in practice. Suppose that G represents a network. If one considers to connect a pair of vertices of G, then a path is used to connect them. However, if one wants to connect a set S of vertices of G with $|S| \geq 3$, then a tree has to be used to connect them unless the vertices of S lie on a common path. This kind of tree with minimum order for connecting a set of vertices is usually called a Steiner tree, and popularly used in the physical design of Very Large Scale Integration (see [13]). For a set S of vertices, usually the number of totally independent ways to connect S is a local measure for the reliability of a network. Then the generalized k-connectivity and generalized k-edge-connectivity can serve for measuring the global capability of a network G to connect any k vertices in G.

The following two observations are easily seen.
Observation 1. If G is a connected graph, then $\kappa_{k}(G) \leq \lambda_{k}(G) \leq \delta(G)$.
Observation 2. If H is a spanning subgraph of G, then $\kappa_{k}(H) \leq \kappa_{k}(G)$ and $\lambda_{k}(H) \leq \lambda_{k}(G)$.

In [11], we obtained some results on the generalized edge-connectivity. The following results are restated, which will be used later.
Lemma 1. [11] For every two integers n and k with $2 \leq k \leq n, \lambda_{k}\left(K_{n}\right)=$ $n-\lceil k / 2\rceil$.
Lemma 2. [11] For any connected graph $G, \lambda_{k}(G) \leq \lambda(G)$. Moreover, the upper bound is sharp.
Lemma 3. [11] Let k, n be two integers with $2 \leq k \leq n$. For a connected graph G of order $n, 1 \leq \kappa_{k}(G) \leq \lambda_{k}(G) \leq n-\lceil k / 2\rceil$. Moreover, the upper and lower bounds are sharp.

In [11], we characterized the graphs attaining the above upper bound, namely, the graphs with $\kappa_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil$ and $\lambda_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil$.
Lemma 4. [11] Let k, n be two integers with $2 \leq k \leq n$. For a connected graph G of order $n, \kappa_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil$ or $\lambda_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil$ if and only if $G=K_{n}$ for k even; $G=K_{n} \backslash M$ for k odd, where M is an edge set such that $0 \leq|M| \leq \frac{k-1}{2}$.

But it is not easy to characterize the graphs with $\kappa_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil-1$ or $\lambda_{k}(G)=n-\left\lceil\frac{k}{2}\right\rceil-1$. In [5], we focus on the case $k=3$ and characterize the graphs with $\kappa_{3}(G)=n-3$. Like [5], here we will consider the generalized 3-edge-connectivity. In Section 2, graphs of order n such that $\lambda_{3}(G)=n-3$ are characterized.

Let $g(n, k, \ell)$ be the minimal number of edges of a graph G of order n with $\lambda_{k}(G)=\ell\left(1 \leq \ell \leq n-\left\lceil\frac{k}{2}\right\rceil\right)$. From Lemma 4, we know that $g\left(n, k, n-\left\lceil\frac{k}{2}\right\rceil\right)=$ $\binom{n}{2}$ for k even; $g\left(n, k, n-\left\lceil\frac{k}{2}\right\rceil\right)=\binom{n}{2}-\frac{k-1}{2}$ for k odd. It is not easy to determine the exact value of the parameter $g(n, k, \ell)$ for a general $k(3 \leq k \leq n)$ and a general $\ell\left(1 \leq \ell \leq n-\left\lceil\frac{k}{2}\right\rceil\right)$. So we put our attention to the case $k=3$. The exact value of $g(n, 3, \ell)$ for $\ell=n-2, n-3,1$ is obtained in Section 3. We also give a sharp lower bound of $g(n, 3, \ell)$ for general $\ell(2 \leq \ell \leq n-4)$.

2 Graphs with $\lambda_{3}(G)=n-3$

For the generalized 3-connectivity, we got the following result in [5].
Theorem 1. [5] Let G be a connected graph of order $n(n \geq 3)$. Then $\kappa_{3}(G)=$ $n-3$ if and only if G is a graph satisfying one of the following conditions.

- $\bar{G}=P_{4} \cup(n-4) K_{1}$;
- $\bar{G}=P_{3} \cup r P_{2} \cup(n-2 r-3) K_{1}(r=0,1)$;
- $\bar{G}=C_{3} \cup r P_{2} \cup(n-2 r-3) K_{1}(r=0,1)$;
- $\bar{G}=s P_{2} \cup(n-2 s) K_{1}\left(2 \leq s \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$.

But, for the edge case, we will show that the statement is different. Before giving our main result, we need some preparations. Choose $S \subseteq V(G)$. Then let \mathscr{T} be a maximum set of edge-disjoint trees connecting S in G. Let \mathscr{T}_{1} be the set of trees in \mathscr{T} whose edges belong to $E(G[S])$, and let \mathscr{T}_{2} be the set of trees containing at least one edge of $E_{G}[S, \bar{S}]$, where $\bar{S}=V(G) \backslash S$. Thus, $\mathscr{T}=\mathscr{T}_{1} \cup \mathscr{T}_{2}$.

In [11], we obtained the following useful lemma.
Lemma 5. [11] Let $S \subseteq V(G),|S|=k$ and T be a tree connecting S. If $T \in \mathscr{T}_{1}$, then T uses $k-1$ edges of $E(G[S]) \cup E_{G}[S, \bar{S}]$; If $T \in \mathscr{T}_{2}$, then T uses at least k edges of $E(G[S]) \cup E_{G}[S, \bar{S}]$.

By Lemma 5, we can derive the following result.
Lemma 6. Let G be a connected graph of order $n(n \geq 3)$, and ℓ be a positive integer. If we can find a vertex subset $S \subseteq V(G)$ with $|S|=3$ satisfying one of the following conditions, then $\lambda_{3}(G) \leq n-\ell$:
(1) $\bar{G}[S]=3 K_{1}$ and $\left|E_{\bar{G}}[S, \bar{S}] \cup \bar{G}[S]\right| \geq 3 \ell-7$;
(2) $\bar{G}[S]=P_{2} \cup K_{1}$ and $\left|E_{\bar{G}}[S, \bar{S}] \cup \bar{G}[S]\right| \geq 3 \ell-7$;
(3) $\bar{G}[S]=P_{3}$ and $\left|E_{\bar{G}}[S, \bar{S}] \cup \bar{G}[S]\right| \geq 3 \ell-8$;
(4) $\bar{G}[S]=K_{3}$ and $\left|E_{\bar{G}}[S, \bar{S}] \cup \bar{G}[S]\right| \geq 3 \ell-8$.

Proof. We only show that (1) and (3) hold, (2) and (4) can be proved similarly.
(1) Since $\left|E_{\bar{G}}[S, \bar{S}] \cup \bar{G}[S]\right| \geq 3 \ell-7$, we have $\left|E(G[S]) \cup E_{G}[S, \bar{S}]\right| \leq$ $3+3(n-3)-(3 \ell-7)=3 n-3 \ell+1$. Since $\bar{G}[S]=3 K_{1}$, we have $G[S]=K_{3}$. Therefore, $|E(G[S])|=3$, and so there exists at most one tree belonging to \mathscr{T}_{1} in G. If there exists one tree belonging to \mathscr{T}_{1}, namely $\left|\mathscr{T}_{1}\right|=1$, then the other trees connecting S must belong to \mathscr{T}_{2}. From Lemma 5, each tree belonging to \mathscr{T}_{2} uses at least 3 edges in $E(G[S]) \cup E_{G}[S, \bar{S}]$. So the remaining at most $(3 n-3 \ell+1)-2$ edges of $E(G[S]) \cup E_{G}[S, \bar{S}]$ can form at most $\frac{3 n-3 \ell-1}{3}$ trees. Thus $\lambda_{3}(G) \leq \lambda(S)=|\mathscr{T}|=\left|\mathscr{T}_{1}\right|+\left|\mathscr{T}_{2}\right|=1+\left|\mathscr{T}_{2}\right| \leq n-\ell+\frac{2}{3}$, which results in $\lambda_{3}(G) \leq n-\ell$ since $\lambda_{3}(G)$ is an integer. Suppose that all trees connecting S belong to \mathscr{T}_{2}. Then $\lambda(S)=|\mathscr{T}|=\left|\mathscr{T}_{2}\right| \leq \frac{3 n-3 \ell+1}{3}$, which implies that $\lambda_{3}(G) \leq \lambda(S) \leq n-\ell$.
(3) Since $\left|E_{\bar{G}}[S, \bar{S}] \cup \bar{G}[S]\right| \geq 3 \ell-8$, it follows that $\left|E(G[S]) \cup E_{G}[S, \bar{S}]\right| \leq$ $3+3(n-3)-(3 \ell-8)=3 n-3 \ell+2$. Since $\bar{G}[S]=P_{3}$, we have $G[S]=$ $P_{2} \cup K_{1}$. Clearly, $|E(G[S])|=1$ and hence there exists no tree belonging to \mathscr{T}_{1}. So each tree connecting S must belong to \mathscr{T}_{2}. From Lemma 5, $\lambda(S) \leq|\mathscr{T}|=$ $\left|\mathscr{T}_{2}\right| \leq \frac{3 n-3 \ell+2}{3}$, which implies that $\lambda_{3}(G) \leq \lambda(S) \leq n-\ell$ since $\lambda_{3}(G)$ is an integer.
Lemma 7. Let G be a connected graph with minimum degree δ. If there are two adjacent vertices of degree δ, then $\lambda_{k}(G) \leq \delta(G)-1$.

Proof. From Observation 1, $\lambda_{k}(G) \leq \delta(G)$. Suppose that there are two adjacent vertices of degree δ, say u_{1} and u_{2}. Besides u_{1} and u_{2}, we choose some vertices in $V\left(G \backslash\left\{u_{1}, u_{2}\right\}\right)$ to get a k-subset S containing u_{1}, u_{2}. Pick up a vertex $u_{3} \in S \backslash\left\{u_{1}, u_{2}\right\}$. Suppose that $T_{1}, T_{2}, \cdots, T_{\delta}$ are δ pairwise edge-disjoint trees connecting S. Since G is simple graph, obviously the δ edges incident to u_{1} must be contained in $T_{1}, T_{2}, \cdots, T_{\delta}$, respectively, and so are the δ edges incident to u_{2}. Without loss of generality, we may assume that the edge $u_{1} u_{2}$ is contained in T_{1}. But, since T_{1} is a tree connecting S, it must contain another edge incident with u_{1} or u_{2}, a contradiction. Thus $\lambda_{k}(G) \leq \delta(G)-1$.

A subset M of $E(G)$ is called a matching of G if the edges of M satisfy that no two of them are adjacent in G. A matching M saturates a vertex v, or v is said to be M-saturated, if some edge of M is incident with v; otherwise, v is M-unsaturated. M is a maximum matching if G has no matching M^{\prime} with $\left|M^{\prime}\right|>|M|$.

Theorem 2. Let G be a connected graph of order $n(n \geq 3)$. Then $\lambda_{3}(G)=n-3$ if and only if G is a graph satisfying one of the following conditions.

- $\bar{G}=r P_{2} \cup(n-2 r) K_{1}\left(2 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$;
- $\bar{G}=P_{4} \cup s P_{2} \cup(n-2 s-4) K_{1}\left(0 \leq s \leq\left\lfloor\frac{n-4}{2}\right\rfloor\right)$;
- $\bar{G}=P_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}\left(0 \leq t \leq\left\lfloor\frac{n-3}{2}\right\rfloor\right)$;
- $\bar{G}=C_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}\left(0 \leq t \leq\left\lfloor\frac{n-3}{2}\right\rfloor\right)$.

Proof. Necessity: Assume that $\lambda_{3}(G)=n-3$. From Lemma 4, for a connected graph $H, \lambda_{3}(H)=n-2$ if and only if $0 \leq|E(\bar{H})| \leq 1$. Since $\lambda_{3}(G)=n-3$, it
follows that $|E(\bar{G})| \geq 2$. We claim that $\delta(\bar{G}) \leq 2$. Assume, to the contrary, that $\delta(\bar{G}) \geq 3$. Then $\lambda_{3}(G) \leq \delta(G)=n-1-\delta(\bar{G}) \leq n-4$, a contradiction. Since $\delta(\bar{G}) \leq 2$, it follows that each component of \bar{G} is a path or a cycle (note that an isolated vertex in \bar{G} is a trivial path). We will show that the following two claims hold.

Claim 1. \bar{G} has at most one component of order larger than 2.
Suppose, to the contrary, that \bar{G} has two components of order larger than 2, denoted by H_{1} and H_{2} (see Figure $1(a)$).

Let $x, y \in V\left(H_{1}\right)$ and $z \in V\left(H_{2}\right)$ such that $d_{H_{1}}(y)=d_{H_{2}}(z)=2$ and x is adjacent to y in H_{1}. Thus $d_{G}(y)=n-1-d_{\bar{G}}(y)=n-1-d_{H_{1}}(y)=n-3$. The same is true for z, that is, $d_{G}(z)=n-3$. Pick $S=\{x, y, z\}$. This implies that $\delta(G) \leq d_{G}(z) \leq n-3$. Since all other components of \bar{G} are paths or cycles, $\delta(G) \geq n-3$. So $\delta(G)=n-3$ and hence $d_{G}(y)=d_{G}(z)=\delta(G)=n-3$. Since $y z \in E(G)$, by Lemma 7 it follows that $\lambda_{3}(G) \leq \delta(G)-1=n-4$, a contradiction.

Claim 2. If H is the component of \bar{G} of order larger than 3, then H is a 4 -path.

Assume, to the contrary, that H is a path or a cycle of order larger than 4 , or a cycle of order 4.

Figure 1: Graphs for Claims 1 and 2.

First, we consider the former. We can pick a P_{5} in H. Without loss of generality, let $P_{5}=v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$. Choose $S=\left\{v_{2}, v_{3}, v_{4}\right\}$. Then $\bar{S}=$ $G \backslash\left\{v_{2}, v_{3}, v_{4}\right\}$ (see Figure $1(b)$). Clearly, $\left|E(\bar{G}[S]) \cup E_{\bar{G}}[S, \bar{S}]\right| \geq 4$. Since $v_{2} v_{3}, v_{3} v_{4} \in E(\bar{G}[S])$, it follows that $\bar{G}[S]=P_{3}$. From (3) of Lemma 6, $\lambda_{3}(G) \leq n-4$ (Note that if $3 \ell-8=4$, then $\ell=4$). This contradicts to $\lambda_{3}(G)=n-3$.

Now we consider the latter. Let $H=v_{1}, v_{2}, v_{3}, v_{4}$ be a cycle. Choose $S=\left\{v_{2}, v_{3}, v_{4}\right\}$ (see Figure $1(c)$). Then $\left|E(\bar{G}[S]) \cup E_{\bar{G}}[S, \bar{S}]\right| \geq 4$. Since $v_{2} v_{3}, v_{3} v_{4} \in E(\bar{G}[S])$, it follows that $\bar{G}[S]=P_{3}$. From (3) of Lemma 6, $\lambda_{3}(G) \leq n-4$ (Note that if $3 \ell-8=4$, then $\ell=4$), which also contradicts to $\lambda_{3}(G)=n-3$.

From the above two claims, we know that if \bar{G} has a component P_{4}, then it is the only component of order larger than 3 and the other components must be independent edges. Let s be the number of such independent edges. \bar{G} can have as many as such independent edges, which implies that $s \leq\left\lfloor\frac{n-4}{2}\right\rfloor$. From Lemma $4, s \geq 0$. Thus $0 \leq s \leq\left\lfloor\frac{n-4}{2}\right\rfloor$.

By the similar analysis, we conclude that $\bar{G}=r P_{2} \cup(n-2 r) K_{1}(2 \leq r \leq$
$\left.\left\lfloor\frac{n}{2}\right\rfloor\right)$ or $\bar{G}=P_{4} \cup s P_{2} \cup(n-2 s-4) K_{1}\left(0 \leq s \leq\left\lfloor\frac{n-4}{2}\right\rfloor\right)$ or $\bar{G}=P_{3} \cup t P_{2} \cup(n-$ $2 t-3) K_{1}\left(0 \leq t \leq\left\lfloor\frac{n-3}{2}\right\rfloor\right)$ or $\bar{G}=C_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}\left(0 \leq t \leq\left\lfloor\frac{n-3}{2}\right\rfloor\right)$.

Sufficiency: We will show that $\lambda_{3}(G) \geq n-3$ if G is a graph satisfying one of the conditions of this theorem. We have the following cases to consider.

Case 1. $\bar{G}=P_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}$ or $\bar{G}=C_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}(0 \leq$ $t \leq\left\lfloor\frac{n-3}{2}\right\rfloor$).

We only need to show that $\lambda_{3}(G) \geq n-3$ for $t=\left\lfloor\frac{n-3}{2}\right\rfloor$. If $\lambda_{3}(G) \geq$ $n-3$ for $\bar{G}=C_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}$, then $\lambda_{3}(G) \geq n-3$ for $\bar{G}=$ $P_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}$. It suffices to check that $\lambda_{3}(G) \geq n-3$ for $\bar{G}=$ $C_{3} \cup\left\lfloor\frac{n-3}{2}\right\rfloor P_{2} \cup\left(n-2\left\lfloor\frac{n-3}{2}\right\rfloor-3\right) K_{1}$.

Let $C_{3}=v_{1}, v_{2}, v_{3}$ and $S=\{x, y, z\}$ be a 3 -subset of G, and $M=$ $\left\lfloor\frac{n-3}{2}\right\rfloor P_{2}$. It is clear that M is a maximum matching of $\bar{G} \backslash V\left(C_{3}\right)$. Then $\bar{G} \backslash V\left(C_{3}\right)$ has at most one M-unsaturated vertex.

Figure 2: Graphs for Case 1.

If $S=V\left(C_{3}\right)$, then there exist $n-3$ pairwise edge-disjoint trees connecting S since each vertex in S is adjacent to every vertex in $G \backslash S$. Suppose $S \neq V\left(C_{3}\right)$. If $\left|S \cap V\left(C_{3}\right)\right|=2$, then one element of S belongs to $\in V(G) \backslash V\left(C_{3}\right)$, denoted by z. Since $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=n-3$, we can assume that $x=v_{1}, y=v_{2}$. When z is M-unsaturated, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z$ form $n-3$ pairwise edge-disjoint trees connecting S, where $\left\{w_{1}, w_{2}, \cdots, w_{n-4}\right\}=V(G) \backslash\left\{x, y, z, v_{3}\right\}$. When z is M-saturated, we let z^{\prime} be the adjacent vertex of z under M. Then the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z$ and $T_{2}=x z^{\prime} \cup y z^{\prime} \cup z^{\prime} v_{3} \cup z v_{3}$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $2(a)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-5}\right\}=V(G) \backslash\left\{x, y, z, z^{\prime}, v_{3}\right\}$. If $\left|S \cap V\left(C_{3}\right)\right|=1$, then two elements of S belong to $\in V(G) \backslash V\left(C_{3}\right)$, denoted by y and z. Without loss of generality, let $x=v_{2}$. When y and z are adjacent under M, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x y \cup y v_{1} \cup v_{1} z$ and $T_{2}=x z \cup z v_{3} \cup v_{3} y$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $2(b)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-5}\right\}=V(G) \backslash\left\{x, y, z, v_{1}, v_{3}\right\}$. When y and z are nonadjacent under M, we consider whether y and z are M-saturated. If one of $\{y, z\}$ is M unsaturated, without loss of generality, we assume that y is M-unsaturated. Since $G \backslash V\left(C_{3}\right)$ has at most one M-unsaturated vertex, z is M-saturated. Let z^{\prime} be the adjacent vertex of z under M. Then the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x y \cup y z$ and $T_{2}=v_{1} y \cup v_{1} z \cup z^{\prime} v_{1} \cup z^{\prime} x$ and $T_{3}=x z \cup z v_{3} \cup v_{3} y$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $2(c)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-6}\right\}=V(G) \backslash\left\{x, y, z, z^{\prime}, v_{1}, v_{3}\right\}$. If both y and z are M saturated, we let y^{\prime}, z^{\prime} be the adjacent vertex of y, z under M, respectively. Then
the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z, T_{2}=x y \cup y z^{\prime} \cup$ $z^{\prime} y^{\prime} \cup y^{\prime} z, T_{3}=y v_{3} \cup z^{\prime} v_{3} \cup z v_{3} \cup x z^{\prime}$ and $T_{4}=y v_{1} \cup y^{\prime} v_{1} \cup z v_{1} \cup y^{\prime} x$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $2(d)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-7}\right\}=V(G) \backslash\left\{x, y, z, y^{\prime}, z^{\prime}, v_{1}, v_{3}\right\}$. Otherwise, $S \subseteq G \backslash$ $V\left(C_{3}\right)$. When one of $\{x, y, z\}$ is M-unsaturated, without loss of generality, we assume that x is M-unsaturated. Since $G \backslash V\left(C_{3}\right)$ has at most one M-unsaturated vertex, both y and z are M-saturated. Let y^{\prime}, z^{\prime} be the adjacent vertex of y, z under M, respectively. We pick a vertex x^{\prime} of $V(G) \backslash\left\{x, y, y^{\prime}, z, z^{\prime}, v_{1}, v_{2}, v_{3}\right\}$. When x, y, z are all M-saturated, we let $x^{\prime}, y^{\prime}, z^{\prime}$ be the adjacent vertex of x, y, z under M, respectively. Then the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{j}=$ $x v_{j} \cup y v_{j} \cup z v_{j}(1 \leq j \leq 3)$ and $T_{4}=x y \cup y x^{\prime} \cup x^{\prime} z$ and $T_{5}=x y^{\prime} \cup z y^{\prime} \cup z y$ and $T_{6}=z x \cup x z^{\prime} \cup z^{\prime} y$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $2(e)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-9}\right\}=V(G) \backslash\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, v_{1}, v_{2}, v_{3}\right\}$.

From the above discussion, we get that $\lambda(S) \geq n-3$ for $S \subseteq V(G)$, which implies $\lambda_{3}(G) \geq n-3$. So $\lambda_{3}(G)=n-3$.

Case 2. $\bar{G}=r P_{2} \cup(n-2 r) K_{1}\left(2 \leq r \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ or $\bar{G}=P_{4} \cup s P_{2} \cup(n-$ $2 s-4) K_{1}\left(0 \leq s \leq\left\lfloor\frac{n-4}{2}\right\rfloor\right)$.

We only need to show that $\lambda_{3}(G) \geq n-3$ for $r=\left\lfloor\frac{n}{2}\right\rfloor$ and $s=\left\lfloor\frac{n-4}{2}\right\rfloor$. If $\lambda_{3}(G) \geq n-3$ for $\bar{G}=P_{4} \cup\left\lfloor\frac{n-4}{2}\right\rfloor P_{2} \cup\left(n-2\left\lfloor\frac{n-4}{2}\right\rfloor-4\right) K_{1}$, then $\lambda_{3}(G) \geq n-3$ for $\bar{G}=\left\lfloor\frac{n}{2}\right\rfloor P_{2} \cup\left(n-2\left\lfloor\frac{n}{2}\right\rfloor\right) K_{1}$. So we only need to consider the former. Let $P_{4}=v_{1}, v_{2}, v_{3}, v_{4}, S=\{x, y, z\}$ be a 3 -subset of G, and $M=\bar{G} \backslash E\left(P_{4}\right)$. Clearly, M is a maximum matching of $\bar{G} \backslash V\left(P_{4}\right)$. It is easy to see that $\bar{G} \backslash V\left(P_{4}\right)$ has at most one M-unsaturated vertex. For any $S \subseteq V(G)$, we will show that there exist $n-3$ edge-disjoint trees connecting S in G.

If $S \subseteq V\left(P_{4}\right)$, then there exist $n-4$ pairwise edge-disjoint trees connecting S since each vertex in S is adjacent to every vertex in $G \backslash V\left(P_{4}\right)$. Since $d_{G}\left(v_{1}\right)=$ $d_{G}\left(v_{4}\right)=n-2$ and $d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=n-3$, we only need to consider $S=$ $\left\{v_{1}, v_{2}, v_{3}\right\}$ and $S=\left\{v_{1}, v_{2}, v_{4}\right\}$. These trees together with $T=y v_{4} \cup v_{4} x \cup v_{4} z$ for $S=\left\{v_{1}, v_{2}, v_{3}\right\}$, or $T=x y \cup y z$ for $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ form $n-3$ pairwise edge-disjoint trees connecting S. Suppose $S \cap V\left(P_{4}\right) \neq 3$. If $\left|S \cap V\left(P_{4}\right)\right|=2$, then one element of S belongs to $\in V(G) \backslash V\left(P_{4}\right)$, denoted by z. Since $d_{G}\left(v_{1}\right)=$ $d_{G}\left(v_{4}\right)=n-2$ and $d_{G}\left(v_{2}\right)=d_{G}\left(v_{3}\right)=n-3$, we only need to consider $x=$ $v_{1}, y=v_{2}$ or $x=v_{2}, y=v_{3}$ or $x=v_{1}, y=v_{4}$. When z is M-unsaturated, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z, T_{2}=x v_{4} \cup y v_{4} \cup z v_{4}$ for $x=v_{1}, y=v_{2}$, or $T_{2}=x v_{4} \cup v_{4} v_{1} \cup v_{1} y \cup v_{4} z$ for $x=v_{2}, y=v_{3}$, or $T_{2}=x v_{3} \cup$ $y v_{3} \cup z v_{3}$ for $x=v_{1}, y=v_{4}$ form $n-3$ pairwise edge-disjoint trees connecting S, where $\left\{w_{1}, w_{2}, \cdots, w_{n-5}\right\}=V(G) \backslash\left(V\left(P_{4}\right) \cup\{z\}\right)$. When z is M-unsaturated, we let z^{\prime} be the adjacent vertex of z under M. For $x=v_{2}, y=v_{3}$, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z, T_{2}=x z^{\prime} \cup y z^{\prime} \cup z^{\prime} v_{4} \cup z v_{4}$ and $T_{2}=y v_{1} \cup v_{1} v_{4} \cup z v_{1} \cup x v_{4}$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $3(a)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-6}\right\}=V(G) \backslash\left\{x, y, z, z^{\prime}, v_{1}, v_{4}\right\}$. One can check that the same is true for $x=v_{1}, y=v_{2}$ and $x=v_{1}, y=v_{4}$ (see Figure $3(b)$ and (c)). If $\left|S \cap V\left(P_{4}\right)\right|=1$, then two elements of S belong to $\in V(G) \backslash V\left(P_{4}\right)$, denoted by y and z. We only need to consider $x=v_{1}$ or $x=v_{2}$. When y and z are adjacent under M, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x y \cup z v_{1} \cup y v_{1}, T_{2}=x z \cup z v_{3} \cup y v_{3}$ and $T_{3}=x v_{4} \cup y v_{4} \cup z v_{4}$ form $n-3$ pairwise edge-disjoint trees connecting S for $x=v_{2}$ (see Figure 3
(d)), where $\left\{w_{1}, w_{2}, \cdots, w_{n-6}\right\}=V(G) \backslash\left\{x, y, z, v_{1}, v_{3}, v_{4}\right\}$. The same is true for $x=v_{1}$ (see Figure $3(e)$). When y and z are nonadjacent under M, we consider whether y and z are M-saturated. If one of $\{y, z\}$ is M-unsaturated, without loss of generality, we assume that y is M-unsaturated. Since $G \backslash V\left(P_{4}\right)$ has at most one M-unsaturated vertex, z is M-saturated. Let z^{\prime} be the adjacent vertex of z under M. For $x=v_{2}$, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z, T_{2}=v_{4} x \cup v_{4} y \cup v_{4} z, T_{3}=v_{1} y \cup v_{1} z \cup z x$ and $T_{4}=$ $z^{\prime} x \cup v_{3} y \cup z^{\prime} v_{3} \cup z v_{3}$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $3(f)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-7}\right\}=V(G) \backslash\left\{x, y, z, z^{\prime}, v_{1}, v_{3}, v_{4}\right\}$. The same is true for $x=v_{1}$ (see Figure $3(g)$). If both y and z are M-saturated, we let y^{\prime}, z^{\prime} be the adjacent vertex of y, z under M, respectively. For $x=v_{2}$, the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{1}=x z \cup y z, T_{2}=y v_{3} \cup z v_{3} \cup z x$, $T_{3}=x v_{4} \cup y v_{4} \cup z v_{4}, T_{4}=y v_{1} \cup y^{\prime} v_{1} \cup z v_{1} \cup x y^{\prime}$ and $T_{5}=x z^{\prime} \cup z^{\prime} y \cup z^{\prime} y^{\prime} \cup y^{\prime} z$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $3(h)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-8}\right\}=V(G) \backslash\left\{x, y, z, y^{\prime}, z^{\prime}, v_{1}, v_{3}, v_{4}\right\}$. The same is true for $x=v_{1}$ (see Figure $3(i)$). If $S \subseteq G \backslash V\left(P_{4}\right)$, when one of $\{x, y, z\}$ is M unsaturated, without loss of generality, we let x is M-unsaturated, then both y and z are M-saturated. Let y^{\prime}, z^{\prime} be the adjacent vertex of y, z under M, respectively. We pick a vertex x^{\prime} of $V(G) \backslash\left\{x, y, y^{\prime}, z, z^{\prime}, v_{1}, v_{2}, v_{3}\right\}$. When x, y, z are all M saturated, we let $x^{\prime}, y^{\prime}, z^{\prime}$ be the adjacent vertex of x, y, z under M, respectively. Then the trees $T_{i}=w_{i} x \cup w_{i} y \cup w_{i} z$ together with $T_{j}=x v_{j} \cup y v_{j} \cup z v_{j}(1 \leq$ $j \leq 4)$ and $T_{5}=y x \cup x y^{\prime} \cup y^{\prime} z$ and $T_{6}=y x^{\prime} \cup z x^{\prime} \cup z x$ and $T_{7}=z y \cup y z^{\prime} \cup z^{\prime} x$ form $n-3$ pairwise edge-disjoint trees connecting S (see Figure $3(j)$), where $\left\{w_{1}, w_{2}, \cdots, w_{n-10}\right\}=V(G) \backslash\left\{x, y, z, x^{\prime}, y^{\prime}, z^{\prime}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

Figure 3: Graphs for S in Case 2.

From the above arguments, we conclude that for any $S \subseteq V(G) \lambda(S) \geq$ $n-3$. From the arbitrariness of S, we have $\lambda_{3}(G) \geq n-3$. The proof is now complete.

3 The minimal size of a graph G with $\lambda_{3}(G)=\ell$

Recall that $g(n, k, \ell)$ is the minimal number of edges of a graph G of order n with $\lambda_{k}(G)=\ell\left(1 \leq \ell \leq n-\left\lceil\frac{k}{2}\right\rceil\right)$. Let us focus on the case $k=3$ and derive the following result.

Theorem 3. Let n be an integer with $n \geq 3$. Then
(1) $g(n, 3, n-2)=\binom{n}{2}-1$;
(2) $g(n, 3, n-3)=\binom{n}{2}-\left\lfloor\frac{n+3}{2}\right\rfloor$;
(3) $g(n, 3,1)=n-1$;
(4) $g(n, 3, \ell) \geq\left\lceil\frac{\ell(\ell+1)}{2 \ell+1} n\right\rceil$ for $n \geq 11$ and $2 \leq \ell \leq n-4$. Moreover, the bound is sharp.

Proof. (1) From Lemma 4, $\lambda_{3}(G)=n-2$ if and only if $G=K_{n}$ or $G=K_{n} \backslash e$ where $e \in E\left(K_{n}\right)$. So $g(n, 3, n-2)=\binom{n}{2}-1$.
(2) From Theorem 2, $\lambda_{3}(G)=n-3$ if and only if $\bar{G}=r P_{2} \cup(n-2 r) K_{1}(2 \leq$ $\left.r \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ or $\bar{G}=P_{4} \cup s P_{2} \cup(n-2 s-4) K_{1}\left(0 \leq s \leq\left\lfloor\frac{n-4}{2}\right\rfloor\right)$ or $\bar{G}=$ $P_{3} \cup t P_{2} \cup(n-2 t-3) K_{1}\left(0 \leq t \leq\left\lfloor\frac{n-3}{2}\right\rfloor\right)$ or $\bar{G}=C_{3} \cup t P_{2} \cup(n-2 t-$ 3) $K_{1}\left(0 \leq t \leq\left\lfloor\frac{n-3}{2}\right\rfloor\right)$. If n is even, then $\max \{e(\bar{G})\}=\frac{n+2}{2}$, which implies that $g(n, 3, n-3)=\binom{n}{2}-\max \{e(\bar{G})\}=\binom{n}{2}-\frac{n+2}{2}$. If n is odd, then $\max \{e(\bar{G})\}=$ $\frac{n+3}{2}$, which implies that $g(n, 3, n-3)=\binom{n}{2}-\max \{e(\bar{G})\}=\binom{n}{2}-\frac{n+3}{2}$. So $g(n, 3, n-3)=\binom{n}{2}-\left\lfloor\frac{n+3}{2}\right\rfloor$.
(3) It is clear that the tree T_{n} is the graph such that $\lambda_{3}\left(T_{n}\right)=1$ with the minimal number of edges. So $g(n, 3,1)=n-1$.
(4) Since $\lambda_{k}(G)=\ell(2 \leq \ell \leq n-4)$, by Lemma 7, we know that $\delta(G) \geq \ell$ and any two vertices of degree ℓ are not adjacent. Denote by X the set of vertices of degree ℓ. We have that X is an independent set. Put $Y=V(G) \backslash X$ and obviously there are $2|X|$ edges joining X to Y. Assume that m^{\prime} is the number of edges joining two vertices belonging to Y. It is clear that $e=\ell|X|+m^{\prime}$. Since every vertex of Y has degree at least $\ell+1$ in G, then $\sum_{v \in Y} d(v)=\ell|X|+2 m^{\prime} \geq$ $(\ell+1)|Y|=(\ell+1)(n-|X|)$, namely, $(2 \ell+1)|X|+2 m^{\prime} \geq(\ell+1) n$. Combining this with $e=\ell|X|+m^{\prime}$, we have $\frac{2 \ell+1}{\ell} e(G)=(2 \ell+1)|X|+\frac{2 \ell+1}{\ell} m^{\prime} \geq(2 \ell+$ $1)|X|+2 m^{\prime} \geq(\ell+1) n$ Therefore, $e(G) \geq \frac{\ell(\ell+1)}{2 \ell+1} n$. Since the number of edges is an integer, it follows that $e(G) \geq\left\lceil\frac{\ell(\ell+1)}{2 \ell+1} n\right\rceil$.

To show that the upper bound is sharp, we consider the complete bipartite graph $G=K_{\ell, \ell+1}$. Let $U=\left\{u_{1}, u_{2}, \cdots, u_{\ell}\right\}$ and $W=\left\{w_{1}, w_{2}, \cdots, w_{\ell+1}\right\}$ be the two parts of $K_{\ell, \ell+1}$. Choose $S \subseteq V(G)$. We will show that there are ℓ edge-disjoint trees connecting S.

If $|S \cap U|=3$, without loss of generality, let $S=\left\{u_{1}, u_{2}, u_{3}\right\}$, then the trees $T_{i}=u_{1} w_{i} \cup u_{2} w_{i} \cup u_{3} w_{i}(1 \leq i \leq \ell+1)$ are $\ell+1$ edge-disjoint trees connecting S. If $|S \cap U|=2$, then $|S \cap W|=1$. Without loss of generality, let $\underset{T}{S}=\left\{u_{1}, u_{2}, w_{1}\right\}$. Then the trees $T_{i}=u_{1} w_{i} \cup u_{i} w_{i} \cup u_{i} w_{1}(4 \leq i \leq \ell+1)$ and $T_{1}=u_{1} w_{1} \cup u_{1} w_{3} \cup u_{2} u_{3}$ and $T_{2}=u_{2} w_{1} \cup u_{2} w_{2} \cup u_{1} w_{2}$ are ℓ edge-disjoint trees connecting S. If $|S \cap U|=1$, then $|S \cap W|=2$. Without loss of generality,
let $S=\left\{u_{1}, w_{1}, w_{2}\right\}$. Then the trees $T_{i}=u_{1} v_{i+1} \cup u_{i} w_{i+1} \cup u_{i} w_{1} \cup u_{i} w_{2}(2 \leq$ $i \leq \ell)$ and $T_{1}=u_{1} w_{1} \cup u_{1} w_{2}$ are ℓ edge-disjoint trees connecting S. Suppose $|S \cap W|=3$. Without loss of generality, let $S=\left\{w_{1}, w_{2}, w_{3}\right\}$, then the trees $T_{i}=w_{1} u_{i} \cup w_{2} u_{i} \cup w_{3} u_{i}(1 \leq i \leq \ell)$ are ℓ edge-disjoint trees connecting S.

From the above arguments, we conclude that, for any $S \subseteq V(G), \lambda(S) \geq \ell$. So $\lambda_{3}(G) \geq \ell$. On the other hand, $\lambda_{3}(G) \leq \delta(G)=\ell$ and hence $\lambda_{3}(G)=\ell$. Clearly, $|V(G)|=2 \ell+1, e(G)=\ell(\ell+1)=\left\lceil\frac{\ell(\ell+1)}{2 \ell+1} n\right\rceil$.

So the lower bound is sharp for $k=3$ and $2 \leq \ell \leq n-4$.
Acknowledgement: The authors are very grateful to the referee's comments and suggestions, which helped us to improve this paper.

References

[1] J. A. Bondy, U. S. R. Murty, Graph Theory, GTM 244, Springer, 2008.
[2] G. Chartrand, S. F. Kappor, L. Lesniak, D. R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1-6.
[3] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
[4] H. Li, X. Li, Y. Sun, The generalied 3-connectivity of Cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14(1)(2012), 43-54.
[5] H. Li, X. Li, Y. Mao, Y. Sun, Note on the generalized connectivity, Ars Combin. 114(2014).
[6] S. Li, W. Li, X. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104(2012), 65-79.
[7] S. Li, W. Li, X. Li, The generalized connectivity of complete equipartition 3-partite graphs, Bull. Malays. Math. Sci. Soc.(2) 37(1)(2014), 103-121.
[8] S. Li, X. Li, Note on the hardness of generalized connectivity, J. Combin. Optimization 24(2012), 389-396.
[9] S. Li, X. Li, Y. Shi, The minimal size of a graph with generalized connectivity $\kappa_{3}(G)=2$, Australasian J. Combin. 51 (2011), 209-220.
[10] S. Li, X. Li, W. Zhou, Sharp bounds for the generalized connectivity $\kappa_{3}(G)$, Discrete Math. 310(2010), 2147-2163.
[11] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australasian J. Combin. 58(2)(2014), 304-319.
[12] F. Okamoto, P. Zhang, The tree connectivity of regular complete bipartite graphs, J. Combin. Math. Combin. Comput. 74(2010), 279-293.
[13] N.A. Sherwani, Algorithms for VLSI Physical Design Automation, 3rd Edition, Kluwer Acad. Pub., London, 1999.

[^0]: *Supported by NSFC No. 11071130 and 11371205.

