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Abstract
For S ⊆ V (G) and |S| ≥ 2, λ(S) is the maximum number of edge-

disjoint trees connecting S in G. For an integer k with 2 ≤ k ≤ n, the
generalized k-edge-connectivity λk(G) of G is then defined as λk(G) =
min{λ(S) : S ⊆ V (G) and |S| = k}. It is also clear that when |S| = 2,
λ2(G) is nothing new but the standard edge-connectivity λ(G) of G. In
this paper, graphs of order n such that λ3(G) = n − 3 are characterized.
Furthermore, we determine the minimal number of edges of a graph G of
order n with λ3(G) = 1, n − 3, n − 2 and give a sharp lower bound for
2 ≤ λ3(G) ≤ n− 4.

Keywords: edge-connectivity, Steiner tree, edge-disjoint trees, generalized
edge-connectivity.
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1 Introduction
All graphs considered in this paper are undirected, finite and simple. We refer

to the book [1] for graph theoretical notation and terminology not described here.
For a graph G, let V (G) and E(G) denote the set of vertices and the set of edges
of G, respectively. As usual, the union of two graphs G and H is the graph,
denoted by G ∪ H , with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).
Let mH be the disjoint union of m copies of a graph H . For X, Y ⊆ V (G), let
EG[X, Y ] denote the set of edges of G with one end in X and the other end in Y .

The generalized connectivity of a graph G, introduced by Chartrand et al. in
[2], is a natural and nice generalization of the concept of (vertex-)connectivity. For
a graph G = (V, E) and a set S ⊆ V (G) of at least two vertices, an S-Steiner tree
or a Steiner tree connecting S (or simply, an S-tree) is a subgraph T = (V ′, E′)
of G that is a tree with S ⊆ V ′. Two Steiner trees T and T ′ connecting S are
said to be internally disjoint if E(T ) ∩ E(T ′) = ∅ and V (T ) ∩ V (T ′) = S. For
S ⊆ V (G) and |S| ≥ 2, the generalized local connectivity κ(S) is the maximum
number of internally disjoint Steiner trees connecting S in G. For an integer
k with 2 ≤ k ≤ n, the generalized k-connectivity κk(G) of G is defined as
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κk(G) = min{κ(S) : S ⊆ V (G) and |S| = k}. Clearly, when |S| = 2, κ2(G)
is nothing new but the connectivity κ(G) of G, that is, κ2(G) = κ(G), which is
the reason why one addresses κk(G) as the generalized k-connectivity of G. By
convention, for a connected graph G with less than k vertices, we set κk(G) = 1.
Set κk(G) = 0 when G is disconnected. Results on the generalized connectivity
can be found in [2, 3, 4, 5, 6, 7, 8, 9, 11, 10, 12].

As a natural counterpart of the generalized connectivity, we introduced the
concept of generalized edge-connectivity in [11]. For S ⊆ V (G) and |S| ≥ 2,
the generalized local edge-connectivity λ(S) is the maximum number of edge-
disjoint Steiner trees connecting S in G. For an integer k with 2 ≤ k ≤ n, the gen-
eralized k-edge-connectivity λk(G) of G is then defined as λk(G) = min{λ(S) :
S ⊆ V (G) and |S| = k}. It is also clear that when |S| = 2, λ2(G) is nothing
new but the standard edge-connectivity λ(G) of G, that is, λ2(G) = λ(G), which
is the reason why we address λk(G) as the generalized edge-connectivity of G.
Also set λk(G) = 0 when G is disconnected.

In addition to being a natural combinatorial measure, the generalized con-
nectivity and generalized edge-connectivity can be motivated by its interesting
interpretation in practice. Suppose that G represents a network. If one considers
to connect a pair of vertices of G, then a path is used to connect them. However,
if one wants to connect a set S of vertices of G with |S| ≥ 3, then a tree has to be
used to connect them unless the vertices of S lie on a common path. This kind of
tree with minimum order for connecting a set of vertices is usually called a Steiner
tree, and popularly used in the physical design of Very Large Scale Integration
(see [13]). For a set S of vertices, usually the number of totally independent ways
to connect S is a local measure for the reliability of a network. Then the general-
ized k-connectivity and generalized k-edge-connectivity can serve for measuring
the global capability of a network G to connect any k vertices in G.

The following two observations are easily seen.

Observation 1. If G is a connected graph, then κk(G) ≤ λk(G) ≤ δ(G).

Observation 2. If H is a spanning subgraph of G, then κk(H) ≤ κk(G) and
λk(H) ≤ λk(G).

In [11], we obtained some results on the generalized edge-connectivity. The
following results are restated, which will be used later.

Lemma 1. [11] For every two integers n and k with 2 ≤ k ≤ n, λk(Kn) =
n− dk/2e.
Lemma 2. [11] For any connected graph G, λk(G) ≤ λ(G). Moreover, the
upper bound is sharp.

Lemma 3. [11] Let k, n be two integers with 2 ≤ k ≤ n. For a connected graph
G of order n, 1 ≤ κk(G) ≤ λk(G) ≤ n− dk/2e. Moreover, the upper and lower
bounds are sharp.

In [11], we characterized the graphs attaining the above upper bound, namely,
the graphs with κk(G) = n− dk

2 e and λk(G) = n− dk
2 e.

Lemma 4. [11] Let k, n be two integers with 2 ≤ k ≤ n. For a connected graph
G of order n, κk(G) = n−dk

2 e or λk(G) = n−dk
2 e if and only if G = Kn for k

even; G = Kn \M for k odd, where M is an edge set such that 0 ≤ |M | ≤ k−1
2 .
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But it is not easy to characterize the graphs with κk(G) = n − dk
2 e − 1 or

λk(G) = n − dk
2 e − 1. In [5], we focus on the case k = 3 and characterize

the graphs with κ3(G) = n − 3. Like [5], here we will consider the generalized
3-edge-connectivity. In Section 2, graphs of order n such that λ3(G) = n− 3 are
characterized.

Let g(n, k, `) be the minimal number of edges of a graph G of order n with
λk(G) = ` (1 ≤ ` ≤ n−dk

2 e). From Lemma 4, we know that g(n, k, n−dk
2 e) =(

n
2

)
for k even; g(n, k, n − dk

2 e) =
(
n
2

) − k−1
2 for k odd. It is not easy to

determine the exact value of the parameter g(n, k, `) for a general k (3 ≤ k ≤ n)
and a general ` (1 ≤ ` ≤ n − dk

2 e). So we put our attention to the case k = 3.
The exact value of g(n, 3, `) for ` = n− 2, n− 3, 1 is obtained in Section 3. We
also give a sharp lower bound of g(n, 3, `) for general ` (2 ≤ ` ≤ n− 4).

2 Graphs with λ3(G) = n− 3

For the generalized 3-connectivity, we got the following result in [5].

Theorem 1. [5] Let G be a connected graph of order n (n ≥ 3). Then κ3(G) =
n− 3 if and only if G is a graph satisfying one of the following conditions.

• G = P4 ∪ (n− 4)K1;
• G = P3 ∪ rP2 ∪ (n− 2r − 3)K1 (r = 0, 1);
• G = C3 ∪ rP2 ∪ (n− 2r − 3)K1 (r = 0, 1);
• G = sP2 ∪ (n− 2s)K1 (2 ≤ s ≤ bn

2 c).
But, for the edge case, we will show that the statement is different. Before

giving our main result, we need some preparations. Choose S ⊆ V (G). Then
let T be a maximum set of edge-disjoint trees connecting S in G. Let T1 be
the set of trees in T whose edges belong to E(G[S]), and let T2 be the set of
trees containing at least one edge of EG[S, S̄], where S̄ = V (G) \ S. Thus,
T = T1 ∪T2.

In [11], we obtained the following useful lemma.

Lemma 5. [11] Let S ⊆ V (G), |S| = k and T be a tree connecting S. If T ∈ T1,
then T uses k − 1 edges of E(G[S]) ∪ EG[S, S̄]; If T ∈ T2, then T uses at least
k edges of E(G[S]) ∪ EG[S, S̄].

By Lemma 5, we can derive the following result.

Lemma 6. Let G be a connected graph of order n (n ≥ 3), and ` be a positive
integer. If we can find a vertex subset S ⊆ V (G) with |S| = 3 satisfying one of
the following conditions, then λ3(G) ≤ n− `:

(1) G[S] = 3K1 and |EG[S, S̄] ∪G[S]| ≥ 3`− 7;
(2) G[S] = P2 ∪K1 and |EG[S, S̄] ∪G[S]| ≥ 3`− 7;
(3) G[S] = P3 and |EG[S, S̄] ∪G[S]| ≥ 3`− 8;
(4) G[S] = K3 and |EG[S, S̄] ∪G[S]| ≥ 3`− 8.
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Proof. We only show that (1) and (3) hold, (2) and (4) can be proved similarly.
(1) Since |EG[S, S̄] ∪ G[S]| ≥ 3` − 7, we have |E(G[S]) ∪ EG[S, S̄]| ≤

3+3(n− 3)− (3`− 7) = 3n− 3`+1. Since G[S] = 3K1, we have G[S] = K3.
Therefore, |E(G[S])| = 3, and so there exists at most one tree belonging to
T1 in G. If there exists one tree belonging to T1, namely |T1| = 1, then the
other trees connecting S must belong to T2. From Lemma 5, each tree belonging
to T2 uses at least 3 edges in E(G[S]) ∪ EG[S, S̄]. So the remaining at most
(3n− 3` + 1)− 2 edges of E(G[S])∪EG[S, S̄] can form at most 3n−3`−1

3 trees.
Thus λ3(G) ≤ λ(S) = |T | = |T1|+ |T2| = 1+ |T2| ≤ n− `+ 2

3 , which results
in λ3(G) ≤ n − ` since λ3(G) is an integer. Suppose that all trees connecting
S belong to T2. Then λ(S) = |T | = |T2| ≤ 3n−3`+1

3 , which implies that
λ3(G) ≤ λ(S) ≤ n− `.

(3) Since |EG[S, S̄]∪G[S]| ≥ 3`−8, it follows that |E(G[S])∪EG[S, S̄]| ≤
3 + 3(n − 3) − (3` − 8) = 3n − 3` + 2. Since G[S] = P3, we have G[S] =
P2 ∪K1. Clearly, |E(G[S])| = 1 and hence there exists no tree belonging to T1.
So each tree connecting S must belong to T2. From Lemma 5, λ(S) ≤ |T | =
|T2| ≤ 3n−3`+2

3 , which implies that λ3(G) ≤ λ(S) ≤ n − ` since λ3(G) is an
integer.

Lemma 7. Let G be a connected graph with minimum degree δ. If there are two
adjacent vertices of degree δ, then λk(G) ≤ δ(G)− 1.

Proof. From Observation 1, λk(G) ≤ δ(G). Suppose that there are two adjacent
vertices of degree δ, say u1 and u2. Besides u1 and u2, we choose some ver-
tices in V (G \ {u1, u2}) to get a k-subset S containing u1, u2. Pick up a vertex
u3 ∈ S \ {u1, u2}. Suppose that T1, T2, · · · , Tδ are δ pairwise edge-disjoint trees
connecting S. Since G is simple graph, obviously the δ edges incident to u1 must
be contained in T1, T2, · · · , Tδ , respectively, and so are the δ edges incident to u2.
Without loss of generality, we may assume that the edge u1u2 is contained in T1.
But, since T1 is a tree connecting S, it must contain another edge incident with u1

or u2, a contradiction. Thus λk(G) ≤ δ(G)− 1.

A subset M of E(G) is called a matching of G if the edges of M satisfy
that no two of them are adjacent in G. A matching M saturates a vertex v, or
v is said to be M -saturated, if some edge of M is incident with v; otherwise,
v is M -unsaturated. M is a maximum matching if G has no matching M ′ with
|M ′| > |M |.
Theorem 2. Let G be a connected graph of order n (n ≥ 3). Then λ3(G) = n−3
if and only if G is a graph satisfying one of the following conditions.

• G = rP2 ∪ (n− 2r)K1 (2 ≤ r ≤ bn
2 c);

• G = P4 ∪ sP2 ∪ (n− 2s− 4)K1 (0 ≤ s ≤ bn−4
2 c);

• G = P3 ∪ tP2 ∪ (n− 2t− 3)K1 (0 ≤ t ≤ bn−3
2 c);

• G = C3 ∪ tP2 ∪ (n− 2t− 3)K1 (0 ≤ t ≤ bn−3
2 c).

Proof. Necessity: Assume that λ3(G) = n− 3. From Lemma 4, for a connected
graph H , λ3(H) = n−2 if and only if 0 ≤ |E(H)| ≤ 1. Since λ3(G) = n−3, it
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follows that |E(G)| ≥ 2. We claim that δ(G) ≤ 2. Assume, to the contrary, that
δ(G) ≥ 3. Then λ3(G) ≤ δ(G) = n− 1− δ(G) ≤ n− 4, a contradiction. Since
δ(G) ≤ 2, it follows that each component of G is a path or a cycle (note that an
isolated vertex in G is a trivial path). We will show that the following two claims
hold.

Claim 1. G has at most one component of order larger than 2.
Suppose, to the contrary, that G has two components of order larger than 2,

denoted by H1 and H2 (see Figure 1 (a)).
Let x, y ∈ V (H1) and z ∈ V (H2) such that dH1(y) = dH2(z) = 2 and x is

adjacent to y in H1. Thus dG(y) = n− 1− dG(y) = n− 1− dH1(y) = n− 3.
The same is true for z, that is, dG(z) = n − 3. Pick S = {x, y, z}. This implies
that δ(G) ≤ dG(z) ≤ n− 3. Since all other components of G are paths or cycles,
δ(G) ≥ n − 3. So δ(G) = n − 3 and hence dG(y) = dG(z) = δ(G) = n − 3.
Since yz ∈ E(G), by Lemma 7 it follows that λ3(G) ≤ δ(G) − 1 = n − 4, a
contradiction.

Claim 2. If H is the component of G of order larger than 3, then H is a
4-path.

Assume, to the contrary, that H is a path or a cycle of order larger than 4, or
a cycle of order 4.

(b)

v2 v4

v1

v3

S̄

(c)

v2 v3

v1

v4

S̄v5 v5

x

y z

H1
H2

(a)

Figure 1: Graphs for Claims 1 and 2.

First, we consider the former. We can pick a P5 in H . Without loss of
generality, let P5 = v1, v2, v3, v4, v5. Choose S = {v2, v3, v4}. Then S̄ =
G \ {v2, v3, v4} (see Figure 1 (b)). Clearly, |E(G[S]) ∪ EG[S, S̄]| ≥ 4. Since
v2v3, v3v4 ∈ E(G[S]), it follows that G[S] = P3. From (3) of Lemma 6,
λ3(G) ≤ n − 4 (Note that if 3` − 8 = 4, then ` = 4). This contradicts to
λ3(G) = n− 3.

Now we consider the latter. Let H = v1, v2, v3, v4 be a cycle. Choose
S = {v2, v3, v4} (see Figure 1 (c)). Then |E(G[S]) ∪ EG[S, S̄]| ≥ 4. Since
v2v3, v3v4 ∈ E(G[S]), it follows that G[S] = P3. From (3) of Lemma 6,
λ3(G) ≤ n − 4 (Note that if 3` − 8 = 4, then ` = 4), which also contradicts
to λ3(G) = n− 3.

From the above two claims, we know that if G has a component P4, then it
is the only component of order larger than 3 and the other components must be
independent edges. Let s be the number of such independent edges. G can have
as many as such independent edges, which implies that s ≤ bn−4

2 c. From Lemma
4, s ≥ 0. Thus 0 ≤ s ≤ bn−4

2 c.
By the similar analysis, we conclude that G = rP2 ∪ (n − 2r)K1 (2 ≤ r ≤
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bn
2 c) or G = P4∪sP2∪(n−2s−4)K1 (0 ≤ s ≤ bn−4

2 c) or G = P3∪tP2∪(n−
2t−3)K1 (0 ≤ t ≤ bn−3

2 c) or G = C3∪tP2∪(n−2t−3)K1 (0 ≤ t ≤ bn−3
2 c).

Sufficiency: We will show that λ3(G) ≥ n− 3 if G is a graph satisfying one
of the conditions of this theorem. We have the following cases to consider.

Case 1. G = P3∪tP2∪(n−2t−3)K1 or G = C3∪tP2∪(n−2t−3)K1 (0 ≤
t ≤ bn−3

2 c).
We only need to show that λ3(G) ≥ n − 3 for t = bn−3

2 c. If λ3(G) ≥
n − 3 for G = C3 ∪ tP2 ∪ (n − 2t − 3)K1, then λ3(G) ≥ n − 3 for G =
P3 ∪ tP2 ∪ (n − 2t − 3)K1. It suffices to check that λ3(G) ≥ n − 3 for G =
C3 ∪ bn−3

2 cP2 ∪ (n− 2bn−3
2 c − 3)K1.

Let C3 = v1, v2, v3 and S = {x, y, z} be a 3-subset of G, and M =
bn−3

2 cP2. It is clear that M is a maximum matching of G \ V (C3). Then
G \ V (C3) has at most one M -unsaturated vertex.

(a) (d)(c)

z

v1

wi

v3

y

y
′

z
′

y

v1

v2

z

v3

x
′

y
′

wi

z
′

x

(b)

x(v2)

x(v1)
y(v2)

wi

v3

z
′

z

v1

x(v2)

zwiy

v1

z

wi

y

v3

x(v2)
v3

z
′

(e)

Figure 2: Graphs for Case 1.

If S = V (C3), then there exist n − 3 pairwise edge-disjoint trees con-
necting S since each vertex in S is adjacent to every vertex in G \ S. Sup-
pose S 6= V (C3). If |S ∩ V (C3)| = 2, then one element of S belongs to
∈ V (G) \ V (C3), denoted by z. Since dG(v1) = dG(v2) = dG(v3) = n − 3,
we can assume that x = v1, y = v2. When z is M -unsaturated, the trees
Ti = wix∪wiy∪wiz together with T1 = xz∪yz form n−3 pairwise edge-disjoint
trees connecting S, where {w1, w2, · · · , wn−4} = V (G) \ {x, y, z, v3}. When
z is M -saturated, we let z′ be the adjacent vertex of z under M . Then the trees
Ti = wix∪wiy∪wiz together with T1 = xz∪yz and T2 = xz′∪yz′∪z′v3∪zv3

form n − 3 pairwise edge-disjoint trees connecting S (see Figure 2 (a)), where
{w1, w2, · · · , wn−5} = V (G) \ {x, y, z, z′, v3}. If |S ∩ V (C3)| = 1, then
two elements of S belong to ∈ V (G) \ V (C3), denoted by y and z. Without
loss of generality, let x = v2. When y and z are adjacent under M , the trees
Ti = wix∪wiy∪wiz together with T1 = xy∪yv1∪v1z and T2 = xz∪zv3∪v3y
form n − 3 pairwise edge-disjoint trees connecting S (see Figure 2 (b)), where
{w1, w2, · · · , wn−5} = V (G) \ {x, y, z, v1, v3}. When y and z are nonadjacent
under M , we consider whether y and z are M -saturated. If one of {y, z} is M -
unsaturated, without loss of generality, we assume that y is M -unsaturated. Since
G \ V (C3) has at most one M -unsaturated vertex, z is M -saturated. Let z′ be
the adjacent vertex of z under M . Then the trees Ti = wix ∪ wiy ∪ wiz together
with T1 = xy ∪ yz and T2 = v1y ∪ v1z ∪ z′v1 ∪ z′x and T3 = xz ∪ zv3 ∪ v3y
form n − 3 pairwise edge-disjoint trees connecting S (see Figure 2 (c)), where
{w1, w2, · · · , wn−6} = V (G) \ {x, y, z, z′, v1, v3}. If both y and z are M -
saturated, we let y′, z′ be the adjacent vertex of y, z under M , respectively. Then
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the trees Ti = wix ∪ wiy ∪ wiz together with T1 = xz ∪ yz, T2 = xy ∪ yz′ ∪
z′y′ ∪ y′z, T3 = yv3 ∪ z′v3 ∪ zv3 ∪ xz′ and T4 = yv1 ∪ y′v1 ∪ zv1 ∪ y′x
form n − 3 pairwise edge-disjoint trees connecting S (see Figure 2 (d)), where
{w1, w2, · · · , wn−7} = V (G) \ {x, y, z, y′, z′, v1, v3}. Otherwise, S ⊆ G \
V (C3). When one of {x, y, z} is M -unsaturated, without loss of generality, we
assume that x is M -unsaturated. Since G\V (C3) has at most one M -unsaturated
vertex, both y and z are M -saturated. Let y′, z′ be the adjacent vertex of y, z
under M , respectively. We pick a vertex x′ of V (G) \ {x, y, y′, z, z′, v1, v2, v3}.
When x, y, z are all M -saturated, we let x′, y′, z′ be the adjacent vertex of x, y, z
under M , respectively. Then the trees Ti = wix ∪ wiy ∪ wiz together with Tj =
xvj ∪yvj ∪zvj(1 ≤ j ≤ 3) and T4 = xy∪yx′∪x′z and T5 = xy′∪zy′∪zy and
T6 = zx∪xz′∪z′y form n−3 pairwise edge-disjoint trees connecting S (see Fig-
ure 2 (e)), where {w1, w2, · · · , wn−9} = V (G) \ {x, y, z, x′, y′, z′, v1, v2, v3}.

From the above discussion, we get that λ(S) ≥ n− 3 for S ⊆ V (G), which
implies λ3(G) ≥ n− 3. So λ3(G) = n− 3.

Case 2. G = rP2 ∪ (n − 2r)K1 (2 ≤ r ≤ bn
2 c) or G = P4 ∪ sP2 ∪ (n −

2s− 4)K1 (0 ≤ s ≤ bn−4
2 c).

We only need to show that λ3(G) ≥ n − 3 for r = bn
2 c and s = bn−4

2 c. If
λ3(G) ≥ n−3 for G = P4∪bn−4

2 cP2∪(n−2bn−4
2 c−4)K1, then λ3(G) ≥ n−3

for G = bn
2 cP2 ∪ (n − 2bn

2 c)K1. So we only need to consider the former. Let
P4 = v1, v2, v3, v4, S = {x, y, z} be a 3-subset of G, and M = G \ E(P4).
Clearly, M is a maximum matching of G\V (P4). It is easy to see that G\V (P4)
has at most one M -unsaturated vertex. For any S ⊆ V (G), we will show that
there exist n− 3 edge-disjoint trees connecting S in G.

If S ⊆ V (P4), then there exist n− 4 pairwise edge-disjoint trees connecting
S since each vertex in S is adjacent to every vertex in G\V (P4). Since dG(v1) =
dG(v4) = n − 2 and dG(v2) = dG(v3) = n − 3, we only need to consider S =
{v1, v2, v3} and S = {v1, v2, v4}. These trees together with T = yv4∪v4x∪v4z
for S = {v1, v2, v3}, or T = xy ∪ yz for S = {v1, v2, v3} form n − 3 pairwise
edge-disjoint trees connecting S. Suppose S ∩ V (P4) 6= 3. If |S ∩ V (P4)| = 2,
then one element of S belongs to ∈ V (G)\V (P4), denoted by z. Since dG(v1) =
dG(v4) = n − 2 and dG(v2) = dG(v3) = n − 3, we only need to consider x =
v1, y = v2 or x = v2, y = v3 or x = v1, y = v4. When z is M -unsaturated, the
trees Ti = wix∪wiy∪wiz together with T1 = xz∪yz, T2 = xv4∪yv4∪zv4 for
x = v1, y = v2, or T2 = xv4∪v4v1∪v1y∪v4z for x = v2, y = v3, or T2 = xv3∪
yv3∪zv3 for x = v1, y = v4 form n−3 pairwise edge-disjoint trees connecting S,
where {w1, w2, · · · , wn−5} = V (G)\(V (P4)∪{z}). When z is M -unsaturated,
we let z′ be the adjacent vertex of z under M . For x = v2, y = v3, the trees
Ti = wix ∪wiy ∪wiz together with T1 = xz ∪ yz, T2 = xz′ ∪ yz′ ∪ z′v4 ∪ zv4
and T2 = yv1∪v1v4∪zv1∪xv4 form n−3 pairwise edge-disjoint trees connecting
S (see Figure 3 (a)), where {w1, w2, · · · , wn−6} = V (G) \ {x, y, z, z′, v1, v4}.
One can check that the same is true for x = v1, y = v2 and x = v1, y = v4
(see Figure 3 (b) and (c)). If |S ∩ V (P4)| = 1, then two elements of S belong
to ∈ V (G) \ V (P4), denoted by y and z. We only need to consider x = v1 or
x = v2. When y and z are adjacent under M , the trees Ti = wix ∪ wiy ∪ wiz
together with T1 = xy∪zv1∪yv1, T2 = xz∪zv3∪yv3 and T3 = xv4∪yv4∪zv4
form n − 3 pairwise edge-disjoint trees connecting S for x = v2 (see Figure 3
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(d)), where {w1, w2, · · · , wn−6} = V (G) \ {x, y, z, v1, v3, v4}. The same is
true for x = v1 (see Figure 3 (e)). When y and z are nonadjacent under M , we
consider whether y and z are M -saturated. If one of {y, z} is M -unsaturated,
without loss of generality, we assume that y is M -unsaturated. Since G \ V (P4)
has at most one M -unsaturated vertex, z is M -saturated. Let z′ be the adjacent
vertex of z under M . For x = v2, the trees Ti = wix ∪ wiy ∪ wiz together
with T1 = xz ∪ yz, T2 = v4x ∪ v4y ∪ v4z, T3 = v1y ∪ v1z ∪ zx and T4 =
z′x∪ v3y ∪ z′v3 ∪ zv3 form n− 3 pairwise edge-disjoint trees connecting S (see
Figure 3 (f)), where {w1, w2, · · · , wn−7} = V (G) \ {x, y, z, z′, v1, v3, v4}. The
same is true for x = v1 (see Figure 3 (g)). If both y and z are M -saturated, we
let y′, z′ be the adjacent vertex of y, z under M , respectively. For x = v2, the
trees Ti = wix ∪ wiy ∪ wiz together with T1 = xz ∪ yz, T2 = yv3 ∪ zv3 ∪ zx,
T3 = xv4∪yv4∪zv4, T4 = yv1∪y′v1∪zv1∪xy′ and T5 = xz′∪z′y∪z′y′∪y′z
form n − 3 pairwise edge-disjoint trees connecting S (see Figure 3 (h)), where
{w1, w2, · · · , wn−8} = V (G) \ {x, y, z, y′, z′, v1, v3, v4}. The same is true for
x = v1 (see Figure 3 (i)). If S ⊆ G \ V (P4), when one of {x, y, z} is M -
unsaturated, without loss of generality, we let x is M -unsaturated, then both y and
z are M -saturated. Let y′, z′ be the adjacent vertex of y, z under M , respectively.
We pick a vertex x′ of V (G) \ {x, y, y′, z, z′, v1, v2, v3}. When x, y, z are all M -
saturated, we let x′, y′, z′ be the adjacent vertex of x, y, z under M , respectively.
Then the trees Ti = wix ∪ wiy ∪ wiz together with Tj = xvj ∪ yvj ∪ zvj(1 ≤
j ≤ 4) and T5 = yx∪xy′∪y′z and T6 = yx′∪zx′∪zx and T7 = zy∪yz′∪z′x
form n − 3 pairwise edge-disjoint trees connecting S (see Figure 3 (j)), where
{w1, w2, · · · , wn−10} = V (G) \ {x, y, z, x′, y′, z′, v1, v2, v3, v4}.
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Figure 3: Graphs for S in Case 2.

From the above arguments, we conclude that for any S ⊆ V (G) λ(S) ≥
n − 3. From the arbitrariness of S, we have λ3(G) ≥ n − 3. The proof is now
complete.
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3 The minimal size of a graph G with λ3(G) = `

Recall that g(n, k, `) is the minimal number of edges of a graph G of order n
with λk(G) = ` (1 ≤ ` ≤ n − dk

2 e). Let us focus on the case k = 3 and derive
the following result.

Theorem 3. Let n be an integer with n ≥ 3. Then
(1) g(n, 3, n− 2) =

(
n
2

)− 1;
(2) g(n, 3, n− 3) =

(
n
2

)− bn+3
2 c;

(3) g(n, 3, 1) = n− 1;
(4) g(n, 3, `) ≥ ⌈ `(`+1)

2`+1 n
⌉

for n ≥ 11 and 2 ≤ ` ≤ n − 4. Moreover, the
bound is sharp.

Proof. (1) From Lemma 4, λ3(G) = n−2 if and only if G = Kn or G = Kn \ e
where e ∈ E(Kn). So g(n, 3, n− 2) =

(
n
2

)− 1.
(2) From Theorem 2, λ3(G) = n−3 if and only if G = rP2∪(n−2r)K1 (2 ≤

r ≤ bn
2 c) or G = P4 ∪ sP2 ∪ (n − 2s − 4)K1 (0 ≤ s ≤ bn−4

2 c) or G =
P3 ∪ tP2 ∪ (n − 2t − 3)K1 (0 ≤ t ≤ bn−3

2 c) or G = C3 ∪ tP2 ∪ (n − 2t −
3)K1 (0 ≤ t ≤ bn−3

2 c). If n is even, then max{e(G)} = n+2
2 , which implies that

g(n, 3, n−3) =
(
n
2

)−max{e(G)} =
(
n
2

)− n+2
2 . If n is odd, then max{e(G)} =

n+3
2 , which implies that g(n, 3, n − 3) =

(
n
2

) − max{e(G)} =
(
n
2

) − n+3
2 . So

g(n, 3, n− 3) =
(
n
2

)− bn+3
2 c.

(3) It is clear that the tree Tn is the graph such that λ3(Tn) = 1 with the
minimal number of edges. So g(n, 3, 1) = n− 1.

(4) Since λk(G) = ` (2 ≤ ` ≤ n− 4), by Lemma 7, we know that δ(G) ≥ `
and any two vertices of degree ` are not adjacent. Denote by X the set of vertices
of degree `. We have that X is an independent set. Put Y = V (G) \ X and
obviously there are 2|X| edges joining X to Y . Assume that m′ is the number of
edges joining two vertices belonging to Y . It is clear that e = `|X| + m′. Since
every vertex of Y has degree at least `+1 in G, then

∑
v∈Y d(v) = `|X|+2m′ ≥

(`+1)|Y | = (`+1)(n−|X|), namely, (2`+1)|X|+2m′ ≥ (`+1)n. Combining
this with e = `|X| + m′, we have 2`+1

` e(G) = (2` + 1)|X| + 2`+1
` m′ ≥ (2` +

1)|X|+ 2m′ ≥ (` + 1)n Therefore, e(G) ≥ `(`+1)
2`+1 n. Since the number of edges

is an integer, it follows that e(G) ≥ d `(`+1)
2`+1 ne.

To show that the upper bound is sharp, we consider the complete bipartite
graph G = K`,`+1. Let U = {u1, u2, · · · , u`} and W = {w1, w2, · · · , w`+1}
be the two parts of K`,`+1. Choose S ⊆ V (G). We will show that there are `
edge-disjoint trees connecting S.

If |S ∩ U | = 3, without loss of generality, let S = {u1, u2, u3}, then the
trees Ti = u1wi ∪ u2wi ∪ u3wi (1 ≤ i ≤ ` + 1) are ` + 1 edge-disjoint trees
connecting S. If |S ∩ U | = 2, then |S ∩W | = 1. Without loss of generality, let
S = {u1, u2, w1}. Then the trees Ti = u1wi ∪ uiwi ∪ uiw1 (4 ≤ i ≤ ` + 1) and
T1 = u1w1 ∪ u1w3 ∪ u2u3 and T2 = u2w1 ∪ u2w2 ∪ u1w2 are ` edge-disjoint
trees connecting S. If |S ∩U | = 1, then |S ∩W | = 2. Without loss of generality,
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let S = {u1, w1, w2}. Then the trees Ti = u1vi+1 ∪ uiwi+1 ∪ uiw1 ∪ uiw2 (2 ≤
i ≤ `) and T1 = u1w1 ∪ u1w2 are ` edge-disjoint trees connecting S. Suppose
|S ∩ W | = 3. Without loss of generality, let S = {w1, w2, w3}, then the trees
Ti = w1ui ∪ w2ui ∪ w3ui (1 ≤ i ≤ `) are ` edge-disjoint trees connecting S.

From the above arguments, we conclude that, for any S ⊆ V (G), λ(S) ≥ `.
So λ3(G) ≥ `. On the other hand, λ3(G) ≤ δ(G) = ` and hence λ3(G) = `.
Clearly, |V (G)| = 2` + 1, e(G) = `(` + 1) = d `(`+1)

2`+1 ne.
So the lower bound is sharp for k = 3 and 2 ≤ ` ≤ n− 4.
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