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Abstract

Let G = (V(G), E(G)) be a nontrivial connected graph of order n with an edge-
coloring ¢ : E(G) — {1,2,...,q}, ¢ € N, where adjacent edges may be colored the
same. A tree T in G is a rainbow tree if no two edges of T receive the same color.
For a vertex set S C V(G), a tree connecting S in G is called an S-tree. The
minimum number of colors that are needed in an edge-coloring of G such that there
is a rainbow S-tree for each k-subset S of V(G) is called the k-rainbow index of G,
denoted by rxy(G), where k is an integer such that 2 < k < n. Chartrand et al. got
that the k-rainbow index of a tree is n — 1 and the k-rainbow index of a unicyclic
graph is n — 1 or n — 2. So there is an intriguing problem: Characterize graphs
with the k-rainbow index n — 1 and n — 2. In this paper, we focus on k = 3, and
characterize the graphs whose 3-rainbow index is n — 1 and n — 2, respectively.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. We follow the
terminology and notation of Bondy and Murty [1]. Let G = (V(G), E(G)) be a nontrivial
connected graph of order n with an edge-coloring ¢ : E(G) — {1,2,...,q}, ¢ € N, where
adjacent edges may be colored the same. A path of G is a rainbow path if every two edges
of the path have distinct colors. The graph G is rainbow connected if for every two vertices
u and v of GG, there is a rainbow path connecting v and v. The minimum number of colors
for which there is an edge coloring of G such that G is rainbow connected is called the
rainbow connection number, denoted by rc(G). Results on the rainbow connectivity can
be found in [2, 5, 6, 7, 8, 9]. In the sequel we will simply denote the order of a graph G
by |G|, i.e., |G| = |[V(G)|.

These concepts were introduced by Chartrand et al. in [2]. In [3], they generalized
the concept of rainbow path to rainbow tree. A tree T in G is a rainbow tree if no two
edges of T receive the same color. For S C V(G), a rainbow S-tree is a rainbow tree
connecting S. Given a fixed integer k£ with 2 < k < n, the edge-coloring ¢ of G is called
a k-rainbow coloring of G if for every k-subset S of V(G), there exists a rainbow S-tree.
In this case, G is called k-rainbow connected. The minimum number of colors that are
needed in a k-rainbow coloring of G is called the k-rainbow index of GG, denoted by
rz,(G). Clearly, when k = 2, rz5(G) is the rainbow connection number r¢(G) of G. For
every connected graph G of order n, it is easy to see that rxs(G) < ra3(G) < --- < rx,(G).

The Steiner distance dg(S) of a set S of vertices in G is the minimum size of a tree
in G connecting S. The k-Steiner diameter sdiami(G) of G is the maximum Steiner
distance of S among all sets S with k vertices in G. Then there is a simple upper bound
and lower bound for rz(G).

Observation 1 ([3]). For every connected graph G of order n > 3 and each integer k
with 3 <k <n, k —1 < sdiamy(G) < rzi(G) <n — 1.

They showed that the k-rainbow index of trees attains the upper bound.

Proposition 1 ([3]). Let T" be a tree of order n > 3. For each integer k with 3 < k < n,
reg(T) =n — 1.

They also showed that the k-rainbow index of a unicyclic graph isn — 1 or n — 2.
Theorem 1 ([3]). If G is a unicyclic graph of order n > 3 and girth g > 3, then

n—2, k=3andg >4

reg(G) = { (1)

n—1, g=3o0rd<k<n.

A natural thought is that which graph of order n has the k-rainbow index n — 1 except
for a tree and a unicyclic graph of girth 37 Furthermore, which graph of order n has the
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k-rainbow index n — 2 except for a unicyclic graph of girth at least 47 In this paper, we
focus on k£ = 3. In addition, some known results are mentioned.

Observation 2 ([3]). Let G be a connected graph of order n containing two bridges e
and f. For each integer k with 2 < k < n, every k-rainbow coloring of G must assign
distinct colors to e and f.

Lemma 1 ([4]). Let G be a connected graph and {V1,Va, -, Vi} a partition of V(G). If
each V; induces a connected subgraph H; of G, then rxs(G) <k — 1+ 3% ras(H;).

Theorem 2 ([4]). Let G be a connected graph of order n. Then rxzs(G) = 2 if and only
if G = K5 or G is a 2-connected graph of order 4 or G is of order 3.

Observation 3 ([4]). Let G be a connected graph of order n, and H be a connected
spanning subgraph of G. Then rx3(G) < ras(H).

Let GG be a connected graph with n vertices and m edges. Define the cyclomatic number
of G as ¢(G) =m—n+1. A graph G with ¢(G) = k is called k-cyclic. According to this
definition, if a graph G meets ¢(G) = 0, 1, 2 or 3, then the graph G is called acyclic (or
a tree), unicyclic, bicyclic, or tricyclic, respectively.

This paper is organized as follows. In Section 2, some basic results and notation are
presented. In Section 3, we characterize the graphs whose 3-rainbow index is n — 1 and
n — 2, respectively. For the latter case, we take two steps to finish our proof: we deal with
it for bicyclic graphs first, and then for tricyclic graphs.

2 Some basic results

First of all, we need some more terminology and notation.

Definition 1. For a subgraph H of G and v € V(G), let d(v, H) = min{dg(v,x) : z €
V(H)}.

Next we define some new notations.

Definition 2. Let G be a connected graph of order n with V(G) = {vy,vq, -+ ,v,}. For
any edge e of G with end-vertices vy and v,, if k& < r then we will write e = vv,. It is
clear that in this way any edge has a unique expression. Then, we define a lexicographic
ordering between any two edges of G by v;v; < vsv, if and only if i < sori=s, j <t.

Note that, the lexicographic ordering of a connected graph is unique. Given a coloring
¢ of a connected graph G, denote by ¢,(G) a sequence of colors of the edges which are
ordered by the lexicographic ordering.

For a connected graph G, to contract an edge e = xy is to delete e and replace its ends
by a single vertex incident to all the edges which were incident to either x or y. Let G'
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be the graph obtained by contracting some edges of G. Given a rainbow coloring of G,
when it comes back to G, we keep the colors of corresponding edges of G’ in G and assign
a new color to a new edge, which makes G 3-rainbow connected. Hence, the following
lemma holds.

Lemma 2. Let G be a connected graph, and G be a connected graph by contracting some
edges of G. Then rxs(G) < ras(G') + |G| — |G

Definition 3. Let GGy be the graph obtained by contracting all the cut edges of G. Then
G is called the basic graph of G.

3 Main results

3.1 Characterize the graphs with rz3(G)=n—1

Theorem 3. Let G be a connected graph of order n. Then ras(G) =n — 1 if and only if
G is a tree or G is a unicyclic graph with girth 3.

Proof. If GG is a tree or a unicyclic graph with girth 3, by Proposition 1 and Theorem 1,
ra3(G) = n — 1. Conversely, suppose G is a graph with rz3(G) = n — 1 but not a tree.
Then G must contain cycles. Let {Hy, Ho, - -+ , H} be a partition of V(G) into connected
subgraphs. If G contains a cycle of length r at least 4, then let H; be the r-cycle, and
each other subgraph a single vertex. We color H; with r — 2 dedicated colors, then by
Lemma 1, rz3(G) < n —r + raxs(H;) = n — 2. Suppose then G contains at least two
triangles C7 and Cs. If C] and Cy have a vertex in common, then let H; be the union
of C' and (5, and each other subgraph a single vertex. We color both ' and C5 with
the same three dedicated colors, thus ra3(G) < n — 5+ raxs(Hy) = n—2. If Cy and
Cy are vertex disjoint, then let Hy = (4, Hy = (5, and each other subgraph a single
vertex. We color H; with three new colors and Hy with the same three colors of H;, thus
ras(G) < n — 5+ ras(Hy) + res(Hy) = n — 2. Combining the above two cases, G is a
unicyclic graph with girth 3. Therefore, the result holds. O]

3.2 Characterize the graphs with rz3(G)=n — 2

Next, we characterize the graphs whose 3-rainbow index is n — 2. We begin with a
useful theorem from [4].

A 3-sun is a graph constructed from a cycle Cg = v1vy - - - v6v1 by adding three edges
Va4, VaUg and v vg.

Theorem 4 ([4]). Let G be a 2-edge-connected graph of order n (n > 4). Then ras(G) <
n — 2, with equality if and only if G = C,, or G is a spanning subgraph of one of the
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Figure 1. The basic graphs for Lemma 3.

following graphs: a 3-sun, K5 — e, K4, Gy, Go, Hy, Hy, Hz, where Gy, G5 are defined in
Figure 1 and Hy, Hy, Hs are defined in Figure 2.

Since all the 2-edge-connected graphs with the 3-rainbow index n — 2 have been char-
acterized in Theorem 4, it remains to characterize the graphs with 3-rainbow index n — 2
which have cut edges. Notice that the cut edges of a graph must be assigned with distinct
colors, our main purpose is to check out how the addition of cut edges to G affect the
3-rainbow index of a 2-connedted graph G when rz3(G) = n — 2. In other words, share
the colors of cut edges with the colors of the non-cut edges as many as possible.

Given a connected graph G of order n, and a coloring ¢ of GG, we always let A; be the
set of colors assigned to the non-cut edges of G and A, the set of colors assigned to the
cut edges of G. For each positive integer k, let N, = {1,2,--- ,k}. We always set that
Ay = N,, where s is the number of cut edges of G. Note that, A; and As; may intersect
and suppose |A; N Ay| = p. We can interchange the colors of cut edges suitably such that
AiNMAy={1,2,--- ,p}. Set A\ Ay ={a1, - ,a;}, t <m—sanda; € Ng.

For a connected graph G, a block is a maximal 2-connected subgraph. In this paper, we
regard K5 other than a block. An internal cut edge is a cut edge which is on the unique
path joining some two blocks. Denote the cut edges of G' by e; = z1y1, -+ , €, = 2y, and
the colors of these cut edges by 1,--- | p, respectively. Moreover, if x;y; is not an internal
cut edge, we always set d(z;, B) < d(y;, B) where B is an arbitrary block.

Let H be a connected subgraph of G. Denote by ¢ € H if the color ¢ appears in H.
Given a graph G, let GGy be its basic graph. Deleting the corresponding edges of Gy in
(G, we obtain a forest. Each component corresponds to a vertex v in G, denoted by
T'(v). Denote by U(v) the number of leaves of T'(v) in G and U(G) = ¢y U(v).
Let W(v) be the number of edges of T(v) whose colors are appeared in A;, that is,
W(v) = [e(T(v)) N Al
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Figure 2. The basic graphs for Lemma 4.
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3.2.1 Bicyclic graphs with rz3(G)=n — 2

First, we introduce some graph classes. Let GG; be the graphs shown in Figure 1. Define
by G the set of graphs whose basic graph is G;, where 1 <7 < 6. Set
G ={G € G{|U(v3) < 1},
Go ={G € G3|U(v3) + U(v3) <
Gs = {G € Gi|U(wy) + Uly) < 2, vy € B(Gy)},
G ={Geg;|U(v) <2 i=1
Gs = {G € Gi|U(v2) + Ulvy) <
Go = {G € G5|U(v2) = U(ve) =
and set G = G1JGUU---UGs.

Lemma 3. Let G be a connected bicyclic graph of order n. Then rx3(G) =n — 2 if and
only if G € G.

) U(U4) < 17 U(’U4) + U(Ul) < 27 L= 375}

Proof. Suppose that G is a graph with rz3(G) =n —2 but G ¢ G. Let G be the basic
graph of G. Then Gy is a 2-edge-connected bicyclic graph. If Gy # G;, by Theorem 4,
re3(Go) < |Go|—3. Moreover, by Lemma 2, we have rz3(G) < ras(Go)+|G|—|Go| < n—3.
Hence Gy = G;. Next we show that if G € G \ G;, then raz3(G) < n — 3, where
1 < i < 6. As pointed out before, all the cut edges of G' are colored with 1,2,---. We
only provide a coloring ¢, of G, namely, color the corresponding edges of G, with parts
of colors used in cut edges, and the position of cut edges will be determined as following;:
{1,2,--- ,q} € T'(v) means to assign colors {1,2,--- ,q} to g leaves of T'(v) arbitrarily. If
G € Gy \ Gy, then U(vs) > 2, set ¢(Gy) = lajasasa;2 and {1,2} C T'(v3). If G € G5 \ Go,
then U(vs) + U(vs) > 2 or U(vs) + U(vg) > 2. By contracting vsvy or vsvg, we obtain a
graph G’ belonging to G7 \ G;. Then the coloring of G can be obtained easily from G’ by
Lemma 2. If G € G;\ Gs, then there is an edge v;v; € E(G3) such that U(v;) 4+ U(v;) > 3.
By symmetry, there exist four cases for G: (1) U(vy) > 3; (2) U(v1) > 2, U(vz) > 1; (3)
U(vy) > 1, U(ve) > 2; (4) U(ve) > 3. Set ¢(G3) = ajagas123 and set {1,2,3} C T'(vy)
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for (1); {1} C T(ve), {2,3} C T(vy) for (2); {1} C T(v1), {2,3} C T(vg) for (3);
{1,2,3} C T'(vq) for (4). If G € G5 \ Gy, then U(vy) > 3 or U(vs) > 3. By symmetry,
suppose U(vy) > 3 and set ¢,(G4) = 123a1a; and {1,2,3} C T'(vy). If G € G \ G, then
by contracting vavs or vyvs, we obtain a graph G’ belonging to G \ G4. Now consider
G € Gi\ Gs. Then U(vy) > 1, or U(vg) > 1, or U(vy) > 2, or U(vy) + U(vs) > 3, or
U(vs) + U(vs) > 3. For the last two cases, it belongs to G \ G5 by contracting vsv,
or vyws. If U(ve) > 1, set ¢o(Gg) = azasasagasazl and {1} C T'(vq). If U(vy) > 2, set
co(Gs) = aglas2aiaza; and {1,2} C T'(vy). It is not hard to check that the colorings
above make G rainbow connected with n — 3 colors, thus rz3(G) < n — 3.

Conversely, let G be a bicyclic graph such that G € G. Assume, to the contrary, that
rz3(G) < n — 3. Then there exists a rainbow coloring ¢ such that A; U Ay = N,,_3. By
Theorem 4, we focus on the graphs with cut edges and |4;NAy| > 1. We write dg, (u, v, w)
to mean that the number of edges of a {u, v, w}-tree in G which correspond to the edges
of G;, the basic graph of G. We divide into three cases.

Case 1. G € G, UQG,.

First assume that G € G, and we give the following claims. If there is a nontrivial path
P, connecting By and Bs in G, then denote its ends by v4(€ By) and v (€ Bs).

Claim 1. Each block B; has at most one edge use the color from A,, where i € {1, 2}.
Moreover, if a color of Ay appears in B;, then the other edges of B; must be assigned with
different colors in A; \ As.

Proof. Suppose two edges of By are colored with 1, 2, respectively. We also set
d(x;, B1) < d(y;, B1), where z;y; belongs to P,. Since the cut edges colored with 1 and
2 should be contained in the rainbow tree whose vertices contain y; and y,, by deleting
the edges assigned with 1 and 2 in B, G is disconnected. Let w be a vertex in the
component that does not contain y;, then there is no rainbow tree connecting {yi, y2, w},
a contradiction. We can take the similar argument for the other cases when two edges of
By (By) are colored with 1 or two edges of Bs are colored with 1, 2, respectively.

Now suppose 1 € B; N Ay and two edges of B; have the same color a;. Let wy, wsy be
the end vertices of the edge assigned with 1, then {y;,w;, ws} has no rainbow tree. [

Claim 2 The colors of the path P, can not appear in A;.

Proof. Assume e is the edge of P, colored with 1. The color 1 can not appear in
B;. Otherwise suppose the three edges of B; are assigned with 1, a; and as, respectively.
Consider {vy, v, v}, then c(vzvy), c(vavs) € {2, a3} or c(vsve), c(vsvg) € {2,as}. Without
loss of generality, suppose c(vsvy), c(v4vs) € {2, a3}, then by Claim 1, c(vyvs), c(vsvg) €
{a1, as}, thus {v1, vs,v6} has no rainbow tree. On the other hand, 1 can not be in Bs.
It is easy to see that neither c(vsvy) nor c(vzvg) can be 1 by considering {vy, va, vg}. If
c(vsvg) = 1, consider {vy, vs,v6}, {ve,vs,v6}, then c(vlv;),c(vgvé) € A,, a contradiction
to Claim 1. [J

By Claim 1, we have 1 < |A; N A3 < 2 and only color 1 and 2 can exist in Aj.



We should discuss all the situations according to which cut edges are colored with 1, 2.
By the definition of G, U(vs) = 1 or U(v3) = 0. By similarity, we only deal with the
former case. First assume [A; N Ay| = 1, then A; = {1,a,a2,a3}. We consider the
subcase when 1 € T'(v3). In this case we claim that the color 1 appears in neither B;
nor B,. Indeed, if ¢(vfvg) = 1, since every tree whose vertices contain y; must contain
the cut edge colored with 1, dg,(y1,v1,v6) = 4. Thus {yi,v1,v6} has no rainbow tree.
If now c(vsvg) = 1, then consider {yi,vs,v6}, {y1,vs5,v1}, {y1,vs,v2} successively, we
have c(v1v}) = c(v9vh) = c(vivg), leading to a contradiction when considering {vy, va, vg}.
Else if ¢(v1v5) = 1, then {y1,v1,v5} has no rainbow tree. The last possibility is that
c(vivg) = 1, we may set c(viv3) = ay, c(vavs) = ag. Consider {yi,v1,v4}, {y1,v2, 04},
{y1,v1,v6}, {y1, v2, V6 } successively, we have c¢(vivs) = c(vivs) = az and 1 can not appear
in By, hence {v;,v4,v6} has no rainbow tree. The other subcases are similar.

Thus |A; N Ag| = 2, Ay = {1,2,a1,a9,a3}. By Claim 1, set 1 € By, 2 € By, and the
other edges in each block have distinct colors. If 1,2 € T'(v3), assume that d(yi, T (v3)) >
d(y2, T (v3)), there always exist two vertices which come from different blocks such that
there is no rainbow tree connecting them and y;. If 1 € T'(v3), 2 € T'(v1), the most difficult
case is that c(viv9) = 1, ¢(vsvg) = 2. In this case, consider {ys,vs, vg}, forcing that one
of vvh, vivy, vivg, vavs is colored with 1, contradicting Claim 1. With an analogous
argument, we would get a contradiction if 1, 2 are in other cut edges of G.

For G € G, it can be obtained by contracting an edge of a graph in G,. Then by
Lemma 2, rz3(G) > n — 2.

Case 2. G € Gs.

First note that each path from v; to vs in GGz can have at most one color in As.
Thus |A; N As| < 3. On the other hand, noticing that dg,(vs,vs,v4) = 3 > 2, all the
cases satisfying W(vy;) = W(vs) = 0 and W(vy), W(vs3), W(vs) < 1 are easy to get a
contradiction, so we omit them here.

First assume |A; N Ay] = 1, then A; = {1,a4,a2}. If 1 € T(vy), consider {y;,va,v3},
{y1,v2,v4} and {y;,v3,v4} successively, vive, v1v3, v1v4 must be colored with distinct
colors from A; \ {1}, which is impossible.

Assume now |A; N As| = 2, then Ay = {1,2,a1,a2}. If 1,2 € T(vy), then consider
{y1, Y2, v5}, without loss of generality, set c(viv9) = aq, c(vavs) = as. Thus c(viv3) can
be neither 1 nor 2, otherwise there is no rainbow {yi, ¥, vs3}-tree. On the other hand,
c(viv3) cannot be ay, otherwise c(vsvs) = i(i = 1,2), then {y;, v2,v3} has no rainbow tree.
Meanwhile, v;v3 cannot be colored with ay, otherwise c(vsvs) = i(i = 1,2), then {y;, vs, vs}
has no rainbow tree. If 1 € T'(vq), 2 € T'(v5), then every path from v; to vs must color
{a1, a2}, a contradiction to |A; N Ay] = 3. If 1,2 € T'(vq), then by the same reason, we
conclude that c(vjvs), c(vovs) ¢ {1,2} and we may set c(vyv3) = 1. But now {y;, vy, vs}
has no rainbow tree. If 1 € T'(vq), 2 € T(v9). By considering {y1, v, v3}, {1, Y2, 04},
{y1, 2,05}, we may set c(v1vs3) = c(vivg) = c(vaus) = aq, this force c(vsvs) = i(i = 1,2).
However, there is no rainbow tree connecting {y;, vs, vs}.



Thus |A; N As| =3, A1 = {1,2,3,a4,a2}. If 1,2,3 € T(vq), since U(vy) < 2, we may
assume that y, is on the unique path from 1; to v;. Thus one path from v; to vs must
be colored with {aj, as}, a contradiction to |A; N Ay| = 3. If 1,2 € T'(vq), 3 € T'(v5), and
without loss of generality, y is on the unique path from y; to vy. Considering {y1, v3,ys}
and {y1,vs,y3}, we may set c(v1v9) = a1, c(v1v3) = ¢(v1v4) = az. But there is no rainbow
{y1,v3,v4}-tree. Each other case is similar or easier.

Case 3. G € G4UG5U Gg.

First let G € Gg. Similarly, each path from v, to vg in Gg can have at most one color
in Ay. Thus we have 1 < |A; N Ay| < 3. Assume first |41 N Ay =1, Ay = {1, a4, a2,a3}.

We only focus on the case that 1 € T(vy). To make sure there are rainbow trees
connecting {y1, vy, v3} and {y;,v1,v5}, only ¢(vavg) can be 1, but now {y;, ve,v6} has no
rainbow tree.

Assume then [A;NAy| =2, Ay = {1,2,a1,a9,a3}. If 1,2 € T'(vy), we may set c(vivy) =
ay, c(vaus) = ag, c(vsvy) = az by considering {yi,ya2,v4}. ¢(vsvg) can be neither 1 nor
2, otherwise {y1,y2,v5} has no rainbow tree. Moreover, ¢(v4vs) can be neither 1 nor 2,
otherwise when c(v4v5) = i(i = 1,2), there is no rainbow {y;, v4,vs}-tree. Thus vyvg,
vovg must use colors {1,2}, but now {yi,y2,v6} has no rainbow tree. If 1,2 € T'(v3),
first we claim that at most one edge of the triangle vivovs uses a color from {1,2}.
Otherwise if ¢(v1v2), c(vevg) € {1,2}, then {yi,yq,v1} has no rainbow tree. If ¢(vjvg),
c(vavg) € {1,2}, the rest non-cut edges must color {ai,as,as}. It is easy to verify that
either {y1,v1,vs5} or {y;,v1,v4} has no rainbow tree. So the longest path from vy to g
has an edge colored with 1 or 2. However, we will show that it is impossible. It is easy
to check that c(vevs), c(vsvy) & {1,2}. If c(vsvg) € {1,2}, then we may set c(vsvg) = 1.
Consider {y1,v1,vs5} and {y1,vs,v6}, then c(v1v9) = c(vovg) = 2, a contradiction. It is
similar to check that ¢(v4v5) can not be 1 or 2, a contradiction.

Now assume that |A; N As| = 3, Ay = {1,2,3,a1,a9,a3}. If 1 € T'(v1), 2,3 € T(v3).
Again, we may set c(viv2) = ai, c¢(vavs) = as. Thus c(vivg), c(vav) € {1,2,3}. If
c(v1vg), c(vavg) € {1,1}, then there is a contradiction by considering {y1, y;, v6} (i = 2, 3).
Thus we may set that c(vyvg) = 2, c(vevg) = 3. By considering {y1, ys,v4} and {y1, ys, vs},
we get that c(vsvy) = c(vsvg) = as, c(vqvs) = 1, but now {y;,vy,v5} has no rainbow tree.
If 1 € T(v3), 2,3 € T(vs), then we set v3vy, = ay, v4vs = ag. If c(vavg) = 1, c(vsv6) = 7,
i,j € {1,2,3}, then {y;,y;,v6} has no rainbow tree. The only possibility is c(vevs) = 2,
c(vavg) = 3, c(vsv) = a3. However, {y1,y2,v1} has no rainbow tree.

For G € Gs, notice that |A; N Ay < 3. If U(vy) = 0 or U(vs) = 0, then G can be
obtained by contracting an edge of a graph in Gg. Then by Lemma 2, rz3(G) > n — 2.
Thus we need to consider the case when W(vy) > 1 and W (vs) > 1. If |[A; N As| = 2, then
suppose 1 € T'(vg), 2 € T(vs). Consider {y1,ya,v3}, {¥1, Y2, v4}, we have c(vqvs), c(vavs),
c(vgvs) € {ay, a2} and c(vavs) = c(v4vs). But now c(vsvy) = i (i = 1,2), then there is
no rainbow {y;, vs,vy}-tree. If |[A; N Ag| = 3, then Ay = {1,2,3,a1,a2}. If 1 € T'(vy),
2 € T(vq), 3 € T'(vs), then consider {y1,ys,y3}, we have that two of vyvy, V105, V905 have



colors outside As, contradicting to |A; N Ag| = 3. If 1 € T(v), 2 € T(vs), 3 € T(v2) and
we may assume that ys is on the unique path from y; to ve. Then consider {y;, vs,ys}
and {yi1,v4,ys3}, we have c(vavs) = ¢(v4vs5), thus c(vsvy) can not be in As, contradicting
to |[AyN Ay =3. If 1 € T(vq), 2 € T(vs), 3 € T(v;) (i = 3,4), then consider {yi,y2,ys},
we have that c(vqvs) is in A; \ Ag, contradicting to |A; N Ay| = 3.

Finally, for a graph G belonging to Gy, it can be obtained by contracting an edge of a
graph in G U Gg. Then by Lemma 2, ra3(G) > n — 2.

Combining all the cases above, we have rz3(G) > n — 2 for G € G. By Theorem 3, it
follows that rz3(G) =n — 2. O

3.2.2 Tricyclic graphs with rz3(G)=n — 2

Define by H; the set of graphs whose basic graph is H;, where H; is shown in Figure 2
and 1 <1 < 8.

Now, we introduce another graph class H. Set H = Hi |JH2J - - - | Hs, where
Hi = {G € Hi|U(G) = 0},
={G e H3|U(v;) <1, U(vy) =0, i=5,6, j=1,3,4},
Hs ={G € H;|U(v2) <1, U(vs) + U(vg) <1, Uv;) =0, i =1,3,4},
(

={G e H}|U(v;) <1, Uvy) <2, U(vy) +U(v;) <1, U(v;) + U(vy) < 3,
i=1,5, j,k =234},
H5—{G€H5|U(Uz)§1 U(vj)) =0, i=1,3,5, j =2,4,6},
={G e H|U(vs) =0, U(v;) <1, U(vy) +U(vs) <1, i=1,2,4,5},
— {G € H3|U(02) + Ule) < 1, Ulvg) + Ules) < 1, Ulw) +Ulen) < 1,
Ulvj) + Uvj41) <1, j =1,2,4},
Hs ={G € H{|U(v;) <2, U(v;) +U(v;) + U(vg) <3, 4,5,k =1,2,3,4}.

Lemma 4. Let G be a connected tricyclic graph of order n. Then rxs(G) =n — 2 if and
only if G € H.

Proof. Suppose that rx3(G) = n — 2 but G ¢ H. Let Gy be the basic graph of G.
Similar to Lemma 3, we have Gy = H; and we can rainbow color G with n — 3 colors for
GeH \H;,i=1,---,8.

If G € Hi \ Hy, then if U(vy) > 1, set ¢,(Hy) = aqlajasasagaszazay and {1} C T'(vy); if
U(vs) > 1, set ¢o(Hy) = agaia1lazagasasay and {1} C T'(vg); if U(vy) > 1, set ¢(Hy) =
asasasas lagagasa; and {1} C T'(vy).

If G € H}\ Ha, then if U(vs) > 1 (U(vy) > 1 is similar), set ¢,(Hy) = agaslasazaiaias
and {1} C T(vg); if U(vy) > 1, set co(Hs) = ajazaslasazaza; and {1} C T'(vy); if
U(ve) > 2 (U(vs) > 2 is similar), set ¢,(Hz) = azlas2asazail and {1,2} C T'(vs).

If G € Hj\ Hs, then if U(vy) > 2, set ¢/(Hs) = aj12asa32a2a11 and {1,2} C T'(vy);
if U(vs) > 2, set ¢i(Hs) = 2asa3lasailas and {1,2} C T'(vs); if U(vs) + U(ve) > 2, set
co(Hs) = laj2asasaiaza3 and {1} C T'(ve), {2} C T'(vs); if U(vs) > 1, set ¢o(H;) =
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ajasazlajagazas and {1} C T'(v3); if U(vy) > 1, set ¢o(Hs) = asailajasasagas and {1} C
T'(vy).

If G € Hj \ Ha, then there are four cases for the graph G: (1) U(v;) > 3 (i = 2,3,4);
(2) Uvy) > 2 (i = 1,5); (3) Ulvy) + Ulv;) > 2 (i € {1,5}, j € {2,3,4}); (4) U(v;) > 2
and U(v;) > 2, 4,5 € {2,3,4}. If G is a graph in case (1), then there exists a graph
in Gi \ G3 which is a subgraph of G. Thus the result is obvious. If U(vy) > 2, set
co(Hy) = asasayai2lag and {1,2} C T(vy); if U(v1)+U(va) > 2, set ¢(Hy) = ajasas2aslay
and {1} C T'(vy), {2} C T(vq); if U(va) > 2 and U(vy) > 2, set ¢,(Hy) = 3421azasa; and
{1,2} C T(vy), {3,4} C T(vy).

If G € HE\ Hs, then U(v;) > 1 (i =2,4,6) or U(v;) > 2 (i =1,3,5). If G is a graph in
the former case, there exists a graph in G \ Gg which is a subgraph of G. If U(v3) > 2, set
co(Hs) = as2ayaza3lagas and {1,2} C T'(v3); if U(vs) > 2, set ¢(Hs) = las2ayazazasa;
and {1,2} C T'(vs);

If G € H{\ He, then U(vs) > 1 or U(v;) > 2 (i = 1,2,4,5) or U(vy) + U(vs) > 2.
If U(vs) > 1, set co(Hg) = asailajasasa; and {1} C T'(vs); if U(vy) > 2, set co(Hg)
asayarlagl2 and {1,2} C T(vy); if U(ve) > 2, set ¢/(Hg) = aslajajasl2 and {1,2}
T(ve); if U(vy) + Ulvs) > 2, set co(Hg) = arajasas2lay and {1} C T'(vy), {2} C T'(vs);

If G € HE\H7, then U(v;) > 2 (i = 1,2,3,4,5) or U(vy)+U(v2) > 2 0r U(vy)+U(v3) > 2
or U(vy) + U(vs) > 2 or U(vy) + U(vy) > 2 or U(vz) + U(vs) > 2 or U(vy) + Ul(vs) > 2.
If U(vy) > 2, set ¢o(H7) = arasa212a1a; and {1,2} C T'(vs); if U(ve) > 2, set ¢(H7) =
asaiarajasl2 and {1,2} C T'(vy); if U(vs) > 2, set ¢o(H7) = asaiai2aiasl and {1,2} C
T(v3); if U(vy) + U(va) > 2, set ¢o(H7) = asaaia1a921 and {1} C T'(v1), {2} C T'(vs);
if U(ve) + U(vz) > 2, set ¢o(H7) = agaja12asazl and {1} C T(vq), {2} C T(v3); if
U(ve) + Ulvy) > 2, set co(Hy) = agl2ajasaras and {1} C T'(vy), {2} C T'(v4);

If G € H{\ Hs, then U(v;) > 3 (1 =1,2,3,4) or U(v;) + U(v;) + U(vg) > 4, 1,5,k =
1,2,3,4. If G is a graph in the former case, then a graph belonging to G; \ G, is a
subgraph of G. If U(vy) + U(v2) + U(vs) > 4, set ¢,(Hg) = laja1423 and {1,2} C T'(vy),
{3} C T(vq), {4} C T(v4);if U(vg)+U(v3) > 4, set ¢;(Hg) = 12a1a134 and {1,2} C T'(vy),
{374} - T(US)'

It is not hard to check that the colorings above make GG rainbow connected with n — 3
colors, thus rz3(G) <n — 3.

Conversely, let G be a tricyclic graph such that G € ‘H. Similar to Lemma 3, we only
need to consider the case that G has cut edges and |A;NAy| > 1. Assume, to the contrary,

Nl

that rz3(G) < n — 3. Then there exists a rainbow coloring ¢ of G using colors in N,,_3.
For G € Hi, if there is a nontrivial path P’ connecting By and B, in G, then denote
its ends by v4(€ Bjy) and v5(€ By) and if there is a nontrivial path P” connecting Bs
and Bj in G, then denote its ends by vi(€ Bs) and vy(€ Bj). Similar to Claim 2
in Lemma 3, the colors in the path P* and P” can not appear in A;, which implies
|A; N Ay| = 0, contradicting to |A; N Ay| > 1. For G € Hs, notice that dy, (v1,vs3,v5) = 4
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and |A; \ Az| = 3, the result holds. The same argument applies to the case when G' € Hg.
Thus, we mainly discuss the rest cases for G as follows.

Case 1. G € Hy. we have 1 < |A; N Ay <4 and |A; \ Ay = 3. If there is a nontrivial
path P’ connecting By and B, in G, then denote its ends by v)(€ B;) and v} (€ Bs). We
can also claim that ¢(P’) N A; = (. Noticing that dg,(ve, vs,v6) = 4 > 3, we only check
the case when W (vy) > 2. Since the case of |A;NAy| = 1 or |A; N Ay| = 4 is easy to check,
we consider the remaining two cases. Assume |A; N Ay = 2, Ay = {1,2,a;,a9,a3} and
1,2 € T(vg), consider {yi, y2,v5} and we may set c(vav3) = a1, c(v3v)) = ag, c(vjvs) = as.
If 1 and 2 are in By, and 1 appears in v1v; or v1v, then we have ¢(v]vg) = ag by considering
{y1,y2,v6}, and thus c(vsvg) ¢ Az, but now {y,vs,v6} has no rainbow tree. So one of 1,
2, say 1, isin By and ¢(vsv6) = 1. Now we have c(vjvg) # as and c(vivy), c(v1v}), c(v)ve) €
{a1,a2,a3} by considering {y1, ya, v6}. Then every {y1,vs, vg}-tree of size 5 can not have
the color 2. Thus there is no rainbow {y;, vs, vg }-tree.

Assume then |[A; N Ay] = 3 and A; = {1,2,a1,a2,a3}. If 1,2,3 € T(vy), first we
claim that vovs, v3v) can not use colors from A, both. Otherwise assume c(vovs) = 1,
c(vzvg) = 2, c(v1v9) = aq, c(v1v)) = ag, and by considering {y1, y2, vs} and {y1, Y, v}, we
have c(vjvs) = c(vjvg) = as, and c(vsvg) can be ay or ay. However, there is no rainbow
{y1, vs5, v }-tree or {ys, vs, v }-tree. With the same reason, we conclude that exactly one
edge of the unique 4-cycle of Hy can be colored with a color from A,. Thus there are two
cases by symmetry. If c(viv) = 1, c(v1v3) = 2, c(vsv6) = 3. Consider y; and ys, together
with vs, vg respectively, we have c(vjvs) = c(vjvg), which is impossible. If ¢(vv)) = 1,
c(vivg) = 2, c¢(vsvg) = 3. Consider y; and ys, together with vs, vg respectively. suppose
c(vijvs) = a1, c(v]vg) = ag and c(vzv)) = ag, c(vive), c(vevs) € {ay,as}, but now there
is no rainbow {ys,vs, vg}-tree. If 1,2 € T'(vq), 3 € T(vg), similarly set c(vive) = ay,
c(v1v)) = ag, c(vjvs) = az. First we can easily claim that the color 3 can not appear
in By. Thus there are three possibilities for the color 3. If ¢(vsv)) = 3, then consider
{y1,ys3,v3} and {ys, y3,v3}, we have c(v1v3), c(vaus) € {1,2}. Consider {y, y2, vs}, one of
c(vijvs) and c(vsvg) is as, but now there is no rainbow {ys,ys, vs }-tree. The case when
c(vivs) = 3 is similar to the case of c(vsv)) = 3. If c¢(vous) = 3, then similarly we get
c(v1vs), c(vavs) € {1,2} and one of c(vjvs) and c(vsvg) is ag. Consider {y1,ys,vs}, this
forces one of c¢(vjvs) and c(vsvg) is 2, it is impossible.

Case 2. G € Hz. Then 1 < |A; N Ay| < 4 and |A; \ Ay| = 3. If there is a nontrivial
path P’ connecting By and B, in G, then denote its ends by vj(€ B;) and v}(€ Bs).
Similarly, it is easy to check that ¢(P') N A; = @. We only focus on the case that
|A;1 N As| = 1, where A; = {1,a1,a9,a3}. If 1 € T'(vg), consider {y;,v1,v3}, set c(vjvg) =
ai, c(viv)) = ag, c(vzv)) = az. Then c(vsvg) # 1, otherwise there is no rainbow tree
connecting {y1,v1,vs} or {yi,vs,v5} depending on ¢(vjvs). Similarly, c(v)vs) # 1. Next
c(vav)) # 1 by considering {y;,v2,v5}. Suppose c(vivy) = 1, to make sure there is a
rainbow {y1, vy, vg }-tree and {y;, va, v3}-tree, we have c¢(vyv)) = az and c(vav3) = as. But
now {wvy, v, vs5} has no rainbow tree. If 1 € T'(vq), then consider {yi,vs,v6}, {y1,v1,05},
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{y1,v1,v6}, {y1,vs3, 05}, {y1,v3, 06} successively. Set c(vav))) = ay, then c(vivs), c(viv)),
c(vaus), c(vsvy)), c(vivs) and c¢(v)vg) can only be as or as. It is easy to check that {vy, v3, vs}
has no rainbow tree.

Case 3. G € Hy. 1 <|A1NAs| <4 and |A;\ Ay| = 2. First notice that dg, (ve, v3,v4) =
3, the case that W(vy) = W(vs) = 0, W(vy), W(vs), W(vy) < 1 is evident. Assume
|A; N Ag| =1, then 1 € T'(vy), the case is similar with the case that G € G3 in Lemma 3.
Assume now |A; N Aq| =2,if 1 € T'(v1), 2 € T'(vs), by considering all the trees containing
y1 and yo, without loss of generality, set c(vivs) = aq, c(vi1v9) = 1(2), c(vavs) = as.
Moreover, by considering {y;(y2), ve,v3} and {yi(y2),ve, v4}, the remaining two paths of
length 2 from v; to vs must be colored with 2(1), as, respectively. However, there is no
rainbow {ys(y1), v3, v4 }-tree. If 1,2 € T'(vy), by considering {y1, ya, v4}, set c(vovs) = ay,
c(v4v5) = ag. Since the two possible rainbow trees connecting {y1, vs, v4} and {ya, v, v4}
are the same, we may set c(vsvs) = 1. It is easy to see that c¢(vivs), ¢(v1v3) cannot use
colors from As by considering {1, y2, v3}, and ¢(viv4) = 2 by considering {y;, vs3,v4}. But
now if ¢(v1vs5) = 1 or ¢(vyvs) = 2, there is no rainbow {y;, ve, vs}-tree or {ya, vy, vy }-tree,
respectively.

Assume |A; N Ay| = 3, then 1,2 € T'(vg), 3 € T'(vy4). Similarly as above, we may set
c(vgus) = ay, c(vgvs) = ag, c(vsvs) = 1, c(v1vs) = 3, one of c(v1v7), c(vivy) is 2. However,
there is no rainbow {ys, y3, v1 }-tree.

Finally assume |A;NAy| =4 and 1,2 € T'(vq), 3 € T(v3), 4 € T'(v4), consider {y1,ys, ya }
and {y2,vs,ys}, at least four of the non-cut edges must be colored with {a;,as}. This
contradicts to |[A; N Ag| = 4.

Case 4. G € H;. Since dg,(v1,v3,v4) = 3, we only focus on the case 1 € T(vq).
Consider all the three vertices containing ¥, it is not hard to obtain a contradiction.

Case 5. G € Hg. First notice dg, (v, v2,v3) = 2, the case that W (vy), W(vq), W(vs),
W(vy) < 1is evident. Assume |A; N Ay| = 2, then 1,2 € T'(v;). Consider {y1,y2,v2},
{y1,y2,v3}, {y1,y2,v4} successively, we have c(v1v;) = ¢(viv3) = ¢(vivy) = a;. However,
there is no rainbow tree connecting {y,ve, v3} or {ys, v2,v3}, a contradiction. Now focus
on |[AjNAy| =3,then 1,2 € T'(v1), 3 € T'(vy). Consider {y1,ys, vs}, {y1,ys, va}, {¥2, ys, v3}
and {ys, Y3, v4} successively, c(vivs), c(vivy), c(vavs), c(vovy) must be 1 or 2. Again, there
is no rainbow {1, y2, v3 }-tree.

By the detailed analysis above, we have rz3(G) > n — 2 for G € H. By Theorem 3, it
follows that rz3(G) =n — 2. O

3.2.3 Characterize the graphs with rz3(G)=n — 2
We begin with a lemma about a connected 5-cyclic graph.

Lemma 5. Let G be a connected 5-cyclic graph of order n. Then rx3(G) =n — 2 if and
only if G = K5 — e.
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Proof. Let G # K5 —e and rz3(G) = n—2, by Lemma 2 and Theorem 4, rz3(G) < n—3,
a contradiction. Conversely, suppose G = K5 — e, by Theorem 2, rx3(G) > 3, on the
other hand, rz3(G) < rz3(Cs) = 3. Thus ra3(G) =n — 2. O

For n > 3, the wheel W, is a graph constructed by joining a vertex vy to every vertex
of a cycle C), : v1,va, - ,Up, Uy = V1.

A third graph class is defined as follows. Let [J; be a class of graphs such that every
graph is obtained from a graph in Hs by adding an edge v4vg. Let J5 be a class of graphs
such that every graph is obtained from a graph in H; where U(vy) = 0 and U(vs) = 0 by
adding an edge vovs. Set J = {J1, Jo, W4}

Now we are ready to show our second main theorem of this paper.

Theorem 5. Let G be a connected graph of order n (n > 6). Then ras(G) =n—2 if and
only if G is unicyclic with the girth of G at least 4 or G € GUHUJ or G = K5 —e.

Proof. Let G be a t-cyclic graph with rz3(G) = n — 2, but not a graph listed in the
theorem. By Proposition 1, Theorem 1, Lemma 3 and Lemma 4, we need to consider the
cases t > 4. If t = 4, by Theorem 4, the basic graph of G should be a 3-sun or the basic
graph of 7, or Wy. If G ¢ J; or G ¢ J5, then by the similar arguments with Lemma 3,
we have rz3(G) < n—3, a contradiction. If the basic graph of G is W, and there are some
cut edges in G. If U(vg) > 1, then a graph belonging to G§ \ Gg and satisfying U(vs) > 1is
a subgraph of G. If U(vy) > 1(other cases are similar), then set ¢,(W,) = aslaja;aiasasa;
and {1} C T'(vy). If ¢ > 5, by Theorem 4, the basic graph of G should be K5 — e, since
n > 6, by the similar argument with ¢t = 4, we have rz3(G) < n — 3, a contradiction.

Conversely, by Theorem 1, Theorem 2, Lemma 3, Lemma 4 and Lemma 5, suppose G is
a graph such that G € J; or G € J,. Assume, to the contrary, that rz3(G) < n—3. Then
there exists a rainbow coloring ¢ of GG using n — 3 colors. Both cases can be considered
similar to the case that G € Hs or G € H7 in Lemma 4, a contradiction. O
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