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1 Introduction

Graphs considered in this paper are connected, undirected and simple. A graph
Γ = (V, E), with vertex set V and edge set E , is called a metacirculant if AutΓ
has a metacyclic subgroup R which is transitive on V (Recall that a group is called
metacyclic if it is an extension of a cyclic group by a cyclic group). For convenience,we
sometimes call Γ a metacirculant of R. Thus, Cayley graphs of metacyclic groups are
metacirculants. We remark that metacirculants were first introduced by Alspach and
Parsons [2] in 1982, with more restricted conditions, refer to [19,31]. The class of
metacirculants provides a rich source of many interesting families of graphs, and has
been extensively studied, see for example [25] and [3,8,23,30,33]. In particular, the
following is a long-standing open problem in algebraic graph theory.

Problem A. Characterise edge-transitive metacirculants.
Some special classes of metacirculants have been well-characterised, see [1,12,14]

for edge-transitive circulants (that is, Cayley graphs of cyclic groups); [9,20,21] for
2-arc transitive dihedrants (that is, Cayley graphs of dihedral groups); [18,34] for
half-arc-transitive metacirculants of prime-power order; [24,35] for half-arc-transitive
metacirculants of valency 4.

This paper is one of a series of papers to attack Problem A. A graph Γ is called
vertex-primitive if AutΓ is a primitive permutation group on its vertex set. Primitive
permutation groups are divided into eight O’Nan-Scott types by O’Nan-Scott’s theo-
rem, refer to [27]. Five of the eight types can appear to contain a transitive metacyclic
subgroup, see [17]. The purpose of this paper is to give a classification of the vertex-
primitive edge-transitive metacirculants. As usual, Kn denotes a complete graph of
order n, and by Δ × Σ , Δ�Σ we mean the direct product, cartesian product of two
graphs Δ and Σ , respectively. Denote the line graph of a graph Σ by line(Σ). The
complement of a graph Γ is denoted by Γ . See Sect. 2 for the details and the definition
of other notation.

Theorem 1.1 Let Γ = (V, E) be a G-edge-transitive metacirculant of R such that
G is primitive on V , where R ≤ G ≤ AutΓ . Then, one of the following holds, where
p is a prime.

(i) Γ = Kn, Kn × Kn or Kn�Kn.
(ii) Γ = line(Kp) or line(Kp).

(iii) Γ = Cay(T, S), where T = PSL(2, p) and S = {gt | t ∈ Aut(T )} for some
non-identity element g ∈ T , and G is of diagonal type, and Γ is a Cayley graph
of a metacyclic group Zp(p+1)/2:Zp−1.

(iv) G = PSL(2, p) or PGL(2, p), and Γ is a metacirculant of Zp:Z(p−1)/2 or
Zp:Zp−1.

(v) G = P�L(2, 16), R = Z17:Z8, and Γ is of order 68, and valency 12, 15, or 40.
(vi) G = PSL(5, 2), and Γ is the Grassmann graph G2(5, 2) or its complement.

(vii) G = PSU(4, 2) or PSU(4, 2).2, and Γ is the Schläfli graph or its complement.
(viii) G = M23, Γ is a Cayley graph of Z23:Z11 of valency 112 or 140.

(ix) Γ is a normal Cayley graph of Z
d
p, where pd = p, p2, 33, 23 or 24.
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Most vertex-primitive edge-transitive metacirculants are Cayley graphs of meta-
cyclic groups.

Corollary 1.2 Let Γ be an edge-transitive and vertex-primitive metacirculant. Then,
Γ is not a Cayley graph if and only if one of the following appears, where p is a prime.

(i) Γ = line(Kp) or line(Kp), where p ≡ 1 (mod 4).
(ii) Γ is a metacirculant of Z17:Z8, and AutΓ = P�L(2, 16).

(iii) Γ is a metacirculant of Z19:Z9, and AutΓ = PSL(2, 19).
(iv) Γ is a metacirculant of Zp:Zp−1, and AutΓ = PGL(2, p), where p ≡ 1

(mod 4).

A graph Γ = (V, E) is called G-locally-primitive where G ≤ AutΓ if, for each
vertex v ∈ V , Gv acts primitively on Γ (v): = {w ∈ V | w is adjacent to v in Γ }. In
particular, 2-arc-transitive graphs are locally-primitive. Some special classes of 2-arc-
transitive metacirculants have been classified, see [1,9,20,21]. If a metacirculant is
locally-primitive, then it is arc-transitive. In subsequent work, we will classify locally-
primitive metacirculants, for which the following corollary plays an important role.

Corollary 1.3 Let Γ be a G-locally-primitive metacirculant of R such that G is
primitive on the vertex set, where R ≤ G ≤ AutΓ . Then, one of the following holds,
where p is a prime.

(i) Γ is Kn, Kn × Kn, line(Kp), G2(5, 2), or the Schläfli graph, or Cay(Z4
2, S).

(ii) Γ = Cay(T, S), where T = PSL(2, p) and S = gT with g ∈ T an involution.
(iii) G = PSL(2, p) or PGL(2, p), val(Γ ) = 4, 6, or p+1

2 with p+1
2 a prime, and Γ

is described in Examples 5.1–5.2 and Lemma 5.3.

This paper is organised as follows. After this introduction section, in Sect. 2–5, we
will construct and study examples of the edge-transitive metacirculants that appear in
Theorem 1.1. Then, in Sect. 6, we present proofs of Theorem 1.1 and Corollaries 1.2–
1.3.

2 Examples and constructions

We here construct and study some edge-transitive metacirculants that appear in the
main theorem. Many of the graphs are Cayley graphs, defined as following.

2.1 Cayley graphs

A graph Γ = (V, E) is a Cayley graph if there exists a group R and a subset S ⊂ R\{1}
with S = S−1: = {s−1 | s ∈ S} such that the vertex set V = R and x is adjacent to y
if and only if yx−1 ∈ S. This Cayley graph is denoted by Cay(R, S). A well-known
criterion for a graph to be a Cayley graph is as follows.

Lemma 2.1 ([4, Lemma 16.3]) A graph Γ = (V, E) is a Cayley graph of a group R
if and only if AutΓ contains a subgroup which is regular on V and isomorphic to R.
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For a Cayley graph Γ = Cay(R, S), if the regular subgroup R is normal in AutΓ ,
then Γ is called a normal Cayley graph of R.

We remark that a Cayley graph Γ may be expressed as a Cayley graph of different
groups. It can be a normal Cayley graph for one of them, but is not for another; it can
be a Cayley graph of a metacyclic group and of an insoluble group, see the graphs
constructed in the next section.

The right multiplication of a group of order n on its elements gives rise to a regular
permutation group of degree n. Hence each metacyclic group R of order n can be
embedded into Sn as a regular subgroup, and so

Sn = RSn−1.

For each positive integer n, there exists a metacyclic group R with order n, and the
Cayley graph Cay(R, R\{1}) ∼= Kn is a complete graph. Thus, all complete graphs
are metacirculants. Moreover, a subgroup G ≤ AutKn acts on Kn edge-transitively if
and only if G is 2-homogeneous on the vertex set.

Let R = Z
2
p, where p is a prime. Let Γ be a Cayley graph of R. Then, Γ is a

metacirculant. This gives rise to most examples of affine type, appeared in part (ix) of
Theorem 1.1, see Lemma 6.2.

2.2 The line graphs of complete graphs

For a graph Σ with edge set F , the line graph line(Σ) is defined as the graph with
vertex set F such that e, f ∈ F are adjacent in line(Σ) if and only if e and f are
incident in Σ .

Let Σ = Kn with vertex set Ω , a complete graph of order n. Assume that Γ =
line(Σ) is a metacirculant of a metacyclic group R. Then, R is transitive on the edges
of Γ , and so R is transitive on Ω{2}, the set of 2-subsets of Ω . Thus, R is 2-homogenous
on the vertex set Ω . By the classification of 2-homogeneous groups, see [7, Corollary
3.5B], we conclude that R is an affine primitive permutation group on Ω . Since R is
metacyclic, we have n = p is a prime, and Zp:Z(p−1)/2 ≤ R ≤ AGL(1, p). Moreover,
if R = Zp:Z(p−1)/2, then R is regular on Ω{2}, and so R has no involution, it follows
that p ≡ 3 (mod 4).

Conversely, for Γ = line(Kp), the metacyclic subgroup AGL(1, p) = Zp:Zp−1
of AutΓ = Sp is transitive on the vertex set of Γ , and thus Γ is a metacirculant. We
therefore have the following statement.

Lemma 2.2 The line graph line(Kn) is a metacirculant if and only if n = p is a
prime. Moreover, if line(Kp) is a metacirculant of R, then either R = Zp:Zp−1, or
R = Zp:Z(p−1)/2 with p ≡ 3 (mod 4).

Next, we study the line graph line(Kp).

Lemma 2.3 Let Γ = line(Kp) be a G-edge-transitive metacirculant, where p ≥ 5
is a prime and G ≤ AutΓ . Then, the following statements hold:

(1) Γ and Γ are G-vertex-primitive arc-transitive metacirculants;
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(2) Γ is a Cayley graph if and only if p ≡ 3 (mod 4), so is Γ ;
(3) Γ is not G-locally-primitive;
(4) Γ is G-locally-primitive if and only if G = Ap or Sp;
(5) if R ≤ G is a metacyclic subgroup which is vertex-transitive onΓ , then (G, R, Ge)

is listed in the following table, where e is a vertex of Γ .

G R Ge conditions

Ap p: p−1
2 Sp−2 p ≡ 3 (mod 4)

Sp p: p−1
2 Sp−2 × S2 p ≡ 3 (mod 4)

Sp p:(p − 1) Sp−2 × S2

M11 11:5 M9.2

M23 23:11 M21.2

Proof Let Γ has vertex set V and edge set E . Then, |V | = p(p−1)
2 , |E | = p(p−1)(p−2)

2 ,
and Γ has valency 2(p − 2). The complement Γ has valency |V | − 1 − 2(p − 2) =
(p−2)(p−3)

2 = (p−2
2

)
. Let Ω = {v1, v2, . . . , vp} be the vertex set of Kp. Then, V =

Ω{2} is the set of all unordered pairs of points of Ω .
Suppose G ≤ AutΓ acts transitively on E . Then, G is a 2-homogeneous permuta-

tion group on Ω . By the classification of 2-homogeneous permutation groups of prime
degree (see [7, Corollary 3.5B]), we have that either G is affine, or G is almost simple
and 2-transitive. If G is affine, then G ≤ AGL(1, p) and |G| divides p(p − 1), which
is not possible because |G| is not divisible by |E | = p(p−1)(p−2)

2 . Thus, G is almost
simple and 2-transitive of degree p.

If G = PSL(2, 11) and p = 11, then |E | = 11.10.9
2 does not divide |G|, not

possible. Suppose that soc(G) = PSL(d, q) and p = qd−1
q−1 . Then, |R| is divis-

ible by |V | = p(p−1)
2 = q(qd−1)(qd−1−1)

2(q−1)2 . However, P�L(d, q) does not contain
such a metacyclic subgroup by [17], which is a contradiction . It then follows from
[7, Corollary 3.5B] that either G = Ap or Sp, or (G, p) is (M11, 11) or (M23, 23).
Thus, in particular, G is 4-transitive on Ω .

Let e = {v,w} ∈ V . Then, Γ (e) = {{v, u}, {w, u} | u ∈ Ω\{v,w}}, and Γ (e) =
{{x, y} | x, y ∈ Ω\{v,w}}. Since G is 4-transitive on Ω , we conclude that Ge is
transitive on both Γ (e) and Γ (e). So Γ and Γ are G-arc-transitive. Clearly, {{v, u} |
u ∈ Ω\{v,w}} and {{w, u} | u ∈ Ω\{v,w}} are two blocks of Ge acting on Γ (e).
Hence, Ge is not primitive on Γ (e), and Γ is not G-locally-primitive.

By Lemma 2.2, either R = Zp:Zp−1, or R = Zp:Z(p−1)/2 with p ≡ 3 (mod 4).
We next determine the vertex stabiliser Ge.

Suppose first that G = Ap. Then, Ge = Sp−2, and G has no subgroup isomorphic
to Zp:Zp−1. Hence, R = Zp:Z(p−1)/2 with p ≡ 3 (mod 4). So R is regular on V ,
and both Γ and Γ are Cayley graphs of R. Note that Ge = Sp−2 is transitive on Γ (e)
of degree

(p−2
2

)
, and the only transitive permutation representation of Sp−2 of this

degree is primitive. So G is locally-primitive on Γ .
Next, let G = Sp. Then, Ge = Sp−2 × S2. It is easily shown that any subgroup S

of G of order p(p −1)/2 is isomorphic to Zp:Z p−1
2

< AGL(1, p). If p ≡ 3 (mod 4),

123

Author's personal copy



J Algebr Comb

then p−1
2 is odd, and S is regular on V , so Γ is a Cayley graph. On the other hand, for

p ≡ 1 (mod 4), a subgroup S of order p(p − 1)/2 is intransitive, and it follows that
none of Γ and Γ is a Cayley graph. Similarly to the previous case for Ge = Sp−2,
the action of Ge = Sp−2 × S2 in this case is also primitive on Γ (e). Hence, Γ is
G-locally-primitive.

Now, let G = M11 and p = 11. By the Atlas [6], Ge = M9.2 and R = Z11:Z5.
Then, R is regular on V , and Γ , Γ are Cayley graphs of R. The valency |Γ (e)| = (9

2

) =
36, and so Ge = M9.2 is not primitive on Γ (e), and Γ is not G-locally-primitive.

Finally, assume that G = M23 and p = 23. By the Atlas [6], we have R =
Z11:Z5, and noticing that Ge has a subgroup Gvw of index 2, we conclude that Ge =
PSL(3, 4).2 = M21.2. Then, R is regular on V , and Γ, Γ are Cayley graphs of R.
Moreover, |Γ (e)| = (21

2

) = 210, and Ge = M21.2 has no primitive representation of
degree 210 by the Atlas [6]. Thus Γ is not G-locally-primitive. �	

2.3 Geometric graphs

We introduce here some geometric graphs associated with groups of Lie type which
are metacirculants.

Let Ω be the set of 2-dimensional subspaces of the 5-dimensional space F
5
2. Define

Γ to be the graph with vertex set Ω such that two subspaces are adjacent if and only
if they meet in a 1-subspace. This graph is called a Grassmann graph and denoted by
G2(5, 2).

Lemma 2.4 The Grassmann graph G2(5, 2) and its complement G2(5, 2) are vertex-
primitive edge-transitive Cayley graphs of Z31:Z5, of valency 42 and 112, respectively.
None of them is locally-primitive.

Proof There are exactly (25 − 1)(25 − 2) ordered pairs of vectors which are linearly
independent in F

5
2, and each 2-subspace has exactly 6 ordered bases. Hence, the order

|Ω| = (25 − 1)(25 − 2)/6 = 155. Let ω = 〈x, y〉 = F
2
2 be a vertex in Ω . Then, a

neighbour of ω has the form 〈x, z〉, or 〈y, z〉, or 〈x + y, z〉, where z ∈ F
5
2\〈x, y〉. Thus

the valency |Γ (ω)| = 3 25−22

2 = 42, and the valency of the complement Γ = G2(5, 2)

is equal to 155 − 1 − 42 = 112.
Let G = GL(5, 2). Then, G ≤ AutΓ is vertex-primitive and edge-transitive on

Γ . The stabiliser Gω is isomorphic to 26:(S3 × GL(3, 2)). The neighbourhood Γ (ω)

equals

{〈x, z〉 | z ∈ F
5
2\ω} ∪ {〈y, z〉 | z ∈ F

5
2\ω} ∪ {〈x + y, z〉 | z ∈ F

5
2\ω},

and it forms a Gω-invariant partition of Γ (ω). So Γ is not G-locally-primitive.
A vertex ω′ = 〈x ′, y′〉 ∈ Ω is adjacent to ω if and only if x, y, x ′, y′ are linearly

independent. Since G = GL(5, 2) is transitive on ordered bases of F
5
2, we conclude that

Gω is transitive on Γ (ω). Thus, the complement Γ is G-edge-transitive. The stabiliser
Gω = 26:(S3 × GL(3, 2)) does not have a primitive permutation representation of
degree 112. So Gω is not primitive on Γ (ω), and Γ is not G-locally-primitive.
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By the Atlas [6], the group G = GL(5, 2) = PSL(5, 2) contains a subgroup
R = A�L(1, 25) ∼= Z31:Z5. Since |G| = |Gω||R| and (|Gω|, |R|) = 1, we have
G = Gω R, and R is regular on the vertex set Ω . In particular, Γ is a Cayley graph of
Z31:Z5. �	

The Schläfli graph is a graph arising from the U(4, 2)-geometry.
Let Ω be the set of isotropic lines in the unitary space of dimension 4 over F4.

Define Γ to be the graph with vertex set Ω such that two lines in Ω are adjacent in Γ

if and only if they are disjoint. This graph is called the Schläfli graph, refer to [5] or
“http://www.win.tue.nl/~aeb/graphs/Schlaefli.html”.

Lemma 2.5 The Schläfli graph and its complement are vertex-primitive edge-
transitive Cayley graph of Z9:Z3, of valency 16 and 10, respectively. Only the Schläfli
graph is locally-primitive.

Proof Let Γ be the Schläfli graph. Then, AutΓ = AutΓ = PSU(4, 2).2 by [5]. Let
G = PSU(4, 2) ≤ AutΓ and let ω ∈ Ω be a vertex. Then, the stabiliser Gω = 24:A5,
refer to the Atlas [6], which is a maximal subgroup of G. Thus, G is primitive on the
vertex set Ω .

The index |G : Gω| = 27, and hence a Sylow 3-subgroup G3 of G is transitive on Ω .
Moreover, G3 has a subgroup which is isomorphic to Z9:Z3 and regular on the vertex
set Ω . By [7, p. 317], G has rank 3, and so the graph Γ and its complement Γ are G-
edge-transitive. The valency of Γ equals 16, and the valency of Γ equals 27−1−16 =
10. Furthermore, Γ is G-locally-primitive but Γ is not, see [16, Lemma 2.6]. �	

We remark that the Schläfli graph Γ is a strongly regular graph, and the complement
Γ is the collinearity graph of the unique generalised quadrangle GQ(2, 4), see [5].

2.4 Orbital graphs

For a transitive permutation group G ≤ Sym(Ω), an orbital graph is a graph with
vertex set Ω and arc set (α, β)G with α, β ∈ Ω . The least interesting orbital graphs
are in the case where α = β. For convenience, by an orbital graph in the following, we
always mean that α �= β. A fused-orbital graph is a graph with vertex set Ω and arc
set (α, β)G ∪ (β, α)G . We remark that if (α, β)G = (β, α)G , then the corresponding
orbital graph is called self-paired, which is G-arc-transitive; on the other hand, if
(α, β)G �= (β, α)G , then the corresponding fused-orbital graph is the union of two
orbital graphs and is G-half-transitive. Here are some examples of graphs appeared in
the main theorem.

Lemma 2.6 Let G = P�L(2, 16), and let H < G be isomorphic to (A5 ×2).2. Then,
G acting on [G : H ] is primitive of degree 68 and rank 4. Let Γ be a non-trivial
fused-orbital graph. Then, AutΓ = G, and the following statements hold.

(1) Γ is self-paired, and has valency 12, 15 or 40;
(2) Γ is a metacirculant of Z17:Z8, but not a Cayley graph;
(3) Γ is not G-locally-primitive.
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Proof Let Ω = [G : H ]. Then, |Ω| = 68. By [7, p. 310], G is primitive and of rank 4
on Ω with suborbits of length 1, 12, 15 or 40. So each orbital graph of G is self-paired
and has valency 12, 15 or 40.

Let Γ be one of the orbital graphs. By the Atlas [6], G has a metacyclic subgroup
R = Z17:Z8 such that G = RH . Thus, R is transitive on Ω , and Γ is a metacirculant.
Since AutΓ ≥ P�L(2, 16) is primitive on Ω of degree 68, by [7, Appendix B], we
conclude that AutΓ = G.

By the Atlas [6], each subgroup A of G of order 68 is conjugate to a subgroup of
R ∼= Z17:Z8 of index 2. Hence Av = Z2 where v ∈ Ω , and A is intransitive on Ω . So
G has no subgroup which is regular on the vertex set Ω , and Γ is not a Cayley graph.

Finally, for adjacent vertices v,w, we have Gvw
∼= (Z5:Z2).Z2, (Z2

2 × 2).2 or
Z3:Z2, none of which is a maximal subgroup of Gv

∼= H . Therefore, Γ is not G-
locally-primitive. �	

By Lemma 2.3, there are two Cayley graphs of the metacyclic group Z23:Z11 which
are M23-vertex-primitive and M23-edge-transitive. These two graphs are the line graph
line(K23) and the complement. The final example in this section shows that there are
two more Cayley graphs of Z23:Z11, which are M23-vertex-primitive and M23-edge-
transitive.

Example 2.7 Let G = M23. By the Atlas [6], G has a maximal subgroup H ∼= 24:A7,
so G is a primitive permutation group on Ω: = [G : H ] with degree 253, induced
by the coset action. Further, by [7, p. 322], G is of rank 3, and it is easy to show
that the two non-trivial orbitals are of length 112 and 140. Thus, the two graphs are
G-arc-transitive. Moreover, by the Atlas [6], G has subgroup R ∼= Z23:Z11. Since
|G| = |R||H | and (|R|, |H |) = 1, we have G = RH . So R is regular on Ω , and the
graphs are metacirculants and Cayley graphs. Further, as H = 24:A7 has no primitive
representation of degree 112 or 140, none of the graphs is G-locally-primitive. �	

3 Examples of diagonal type

In this section, we study examples associated with primitive groups of diagonal type.
Let Γ be a Cayley graph of a group R. Then, the right multiplications of elements

of R induce automorphisms of Γ , that is,

ĝ : x �→ xg, for all g, x ∈ R.

Further, R ∼= R̂ = {ĝ | g ∈ R}, and R̂ ≤ AutΓ . On the other hand, the left
multiplication of an element g:

ǧ : x �→ g−1x, x ∈ R

is generally not an automorphism of Γ , and hence Ř = {ǧ | g ∈ R} is not necessarily
a subgroup of AutΓ . As subgroups of Sym(R), R̂ centralises Ř, namely, the central
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product R̂◦ Ř = 〈R̂, Ř〉 < Sym(R), see [7, Sect. 4.2]. We observe that, for an element
g ∈ R,

ǧĝ : x �→ g−1xg,

is the inner automorphism of R induced by g, denoted by g̃. Let R̃ = {g̃ | g ∈ R}.
For a subgroup H of a group G, denote by NG(H) and CG(H) the normalizer

and the centralizer of H in G, respectively. It is easily shown that CSym(R)(R̂) =
Ř, and R̂CSym(R)(R̂) = R̂ Ř = R̂:Inn(R), where Inn(R) ∼= R̃ denotes the inner
automorphism group of R. Moreover, for Cayley graphs, the following statements hold.

Lemma 3.1 ([10] and [15, Lemma 2.1]) For a Cayley graph Γ = Cay(R, S), we
have the following property:

NAutΓ (R̂) = R̂:Aut(R, S), R̂CAutΓ (R̂) = R̂:Inn(R, S),

where Aut(R, S) = {σ ∈ Aut(G) | sσ ∈ S for each s ∈ S}, and Inn(R, S) =
Aut(R, S) ∩ Inn(R).

For the case where S consists of full conjugate classes of elements of R, there are
more properties of Cayley graph Cay(R, S).

Theorem 3.2 Let Γ = Cay(R, S), where R is a group with centre Z(R) = 1, and
S = {gx , (g−1)x | x ∈ R} or {gx , (g−1)x | x ∈ Aut(R)} for some non-identity
element g ∈ R. Then, the following statements are true:

(i) ([15, Lemma 2.4]) The map π : x �→ x−1, for all x ∈ R, is an automorphism
of Γ , and π−1 R̂π = Ř.

(ii) ([15, Lemma 2.4]) AutΓ ≥ (R̂ × Ř):〈π〉 ∼= R � Z2 = R2:Z2.
(iii) If R is a nonabelian simple group, then N := R̂:Aut(R, S) ≥ R̂ × Ř acting

primitively on the vertex set V of Γ , and AutΓ = N .Z2.

Proof Since Z(R) = 1, 〈R̂, Ř〉 = R̂ × Ř. For each h ∈ R, since h̃ ∈ Aut(R, S) and
ȟ = h̃(ĥ)−1 ∈ R̂:Aut(R, S), we have N = R̂:Aut(R, S) ≥ R̂ × Ř. Let G = AutΓ .
Then, G is an overgroup of N on the vertex set V of Γ as Aut(R, S) ≤ AutΓ . Noting
that, as R is nonabelian simple, N is a primitive permutation group of holomorph
simple type on V , and as S �= R\{1}, Γ is not a complete graph and so AutΓ is
not 2-transitive on V , then, by [26, Proposition 8.1], we have soc(G) = soc(N ),
and either G is of holomorph simple or of simple diagonal type. It follows that G ≤
(R̂ × Ř).(Out(R)×〈π〉). Let X = (R̂ × Ř).Out(R). Then, R̂� X , and by Lemma 3.1,
G ∩ X = N , and hence G/N ∼= G X/X = G/X ≤ 〈π〉. Now, as π ∈ G\N by part (i),
we conclude that AutΓ = N .〈π〉 ∼= N .Z2, as in part (iii). �	

In the rest of this section, we always fix T = PSL(2, p) with p ≥ 5 prime. We
quote some properties of the group T below.

Proposition 3.3 (refer to [32, p. 419])

(1) All cyclic subgroups of T of the same order are conjugate in T .
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(2) Elements of T of order p form two conjugate classes of T , and are conjugate in
Aut(T ).

(3) For an element g ∈ T , we have
(a) o(g) = p, or o(g)

∣
∣ (p − 1), or o(g)

∣
∣ (p + 1);

(b) if o(g) �= p, then g, g−1 are conjugate in T , and further, g is not conjugate in
Aut(T ) to gi unless gi = g−1;

(c) if o(g) = p, then g is conjugate to g−1 in T if and only if 4
∣∣ (p − 1).

Now we construct a class of Cayley graphs of T = PSL(2, p), which will be shown
to be Cayley graphs of a metacyclic group Zp(p+1)/2:Zp−1.

Construction 3.4 Let g be a non-identity element of T , and Sg = {gt | t ∈ Aut(T )}.
Let

Γg = Cay(T, Sg).

Lemma 3.5 Using the notation defined above, we have the following:

(i) Aut(T, Sg) = Aut(T ) = PGL(2, p);
(ii) Γ is connected, undirected, and arc-transitive;

(iii) AutΓg = (T̂ × Ť ).22 is primitive on the vertex set of simple diagonal type;
(iv) Γg is a Cayley graph of a metacyclic group Zp(p+1)/2:Zp−1; in particular, Γg is

a metacirculant.

Proof By definition, Sg is a full conjugacy class of g under Aut(T ), and hence
Aut(T, Sg) = Aut(T ) = PGL(2, p), as in part (i).

Since T is simple, 〈Sg〉 = T and Γg is connected. By Proposition 3.3 (2) and (3)(b),
g and g−1 are conjugate in Aut(T ). Thus, Γg is undirected. By definition, Aut(T, Sg)

is transitive on Sg . It follows that the Cayley graph Γg is arc-transitive. This proves
part (ii).

Let X = AutΓg , and let α be the vertex of Γg corresponding to the identity of T .
Then, the stabiliser Xα ≥ Aut(T, Sg) = Aut(T ), and so X contains the holomorph of
T , namely, X ≥ T̂ :Aut(T ) = (T̂ × Ť ).2. Furthermore, since every element of T is
conjugate to its inverse in Aut(T ), by Theorem 3.2 (ii), we have π : x �→ x−1 is an
automorphism of Γg . Then, by Theorem 3.2 (iii), we conclude that

X = (T̂ × Ť ).22,

as in part (iii).
Finally, by [17], the automorphism group AutΓg ∼= (T̂ × Ť ).22 contains a meta-

cyclic subgroup isomorphic to Zp(p+1)/2:Zp−1. Thus, Γg is a Cayley graph of this
group, as in part (iv). �	

The next lemma enumerates the graphs Γg where g ∈ T .

Lemma 3.6 Given T = PSL(2, p), there are exactly p+1
2 graphs Γg which satisfy

the following statements, where ε = 1 or −1 is such that 4
∣∣ (p − ε).
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(i) one has valency p(p + ε)/2;
(ii) one has valency p2 − 1;

(iii) p−3
2 have valency p(p + 1) or (p(p − 1).

Among these graphs, the only locally-primitive one has valency p(p + ε)/2.

Proof To count the graphs Γg as in Construction 3.4, we need to compute the number
of the full conjugacy classes of T under Aut(T ).

Suppose that g is an involution. Then, S consists of all involutions of T , and the
centraliser CT (g) = Dp−1 or Dp+1, depending on 4

∣∣ (p−1)or 4
∣∣ (p+1), respectively.

Since T is transitive on S, the valency of Γ is equal to |S| = |T |/|CT (g)|, which equals
p(p+1)

2 , or p(p−1)
2 , respectively. Since S contains all involutions, Γ is unique, as in

part (i).
Next, assume that g is of order p. Since all elements of T of order p are conjugate in

Aut(T ) = PGL(2, p), we have that S consists of all elements of T of order p and hence
Γ is unique. Further, Aut(T ) acts on S transitively, and so Aut(T, S) = Aut(T ) =
PGL(2, p). The element g is self-centralising in Aut(T ), namely CAut(T )(g) = 〈g〉,
and so |S| = |Aut(T )|/p = p2 − 1, as in part (ii).

Now, assume that g is an element of T of order not equal to 2 or p. Then, g and g−1

are conjugate, and Aut(T, S) = PGL(2, p). Further, the centralizer CT (g) ∼= Z p−1
2

or Z p+1
2

, for o(g) dividing p − 1 or p + 1, respectively. Since T is transitive on S, the

valency |S| = |T |/|CT (g)|, which equals p(p + 1) or p(p − 1), respectively.
We next compute the number of conjugacy classes of elements of order neither

2 nor p. It is known that NAut(T )(〈g〉) ∼= D2(p+ε), and all cyclic subgroups of T of
the same order are conjugate, see Proposition 3.3. For p ≡ 1 (mod 4), cyclic groups
Z p−1

2
and Z p+1

2
have exactly p−1

2 − 2 and p+1
2 − 1 elements of order greater than

2, respectively. Thus, the number of pairs {g, g−1} in T with o(g) �= 2 or p is equal
to 1

2

( p−1
2 − 2

) + 1
2

( p+1
2 − 1

) = p−3
2 , as in part (iii). For p ≡ 3 (mod 4), cyclic

groups Z p−1
2

and Z p+1
2

have exactly p−1
2 − 1 and p+1

2 − 2 elements of order greater

than 2, respectively. Thus, the number of pairs {g, g−1} in T with o(g) �= 2 or p is
also equal to 1

2

( p−1
2 − 1

) + 1
2

( p+1
2 − 2

) = p−3
2 , as in part (iii). So there are exactly

p−3
2 + 2 = p+1

2 graphs Γg for a given group T .

Finally, suppose Γ = Γg is locally-primitive. By Lemma 3.5, AutΓg = (T̂ × Ť ).22,
we have that Aut(T ):〈π〉 is primitive on Sg , where π : x �→ x−1 is an automorphism
of Γg . If follows that elements in Sg are involutions, then the final statement of the
lemma is true by part (i). �	

Conversely, the next lemma shows that fused-orbital graphs of a primitive group of
diagonal type with socle T 2 are the graphs in Construction 3.4.

Lemma 3.7 Let G be a primitive group on V of diagonal type with soc(G) = T 2.
Let Γ be a G-edge-transitive metacirculant with vertex set V . Then, Γ is a graph Γg

in Construction 3.4, and AutΓ = (T :Aut(T )).2.

Proof Let M = soc(G) = T1 × T2, where Ti ∼= T ∼= PSL(2, p). Then, T1 is regular
on V , and Mα = {(t, t) | t ∈ T } ∼= T , where α ∈ V corresponds to the identity
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element of T1. Thus, Γ = Cay(T, S), where S is a subset of T \{1} with S = S−1.
Let X = AutΓ . Since S = S−1, by [15, Lemma 2.4], the map π : x �→ x−1, for all
x ∈ R, is an automorphism of Γ , so X ≥ M :〈π〉 = M.2, and Γ is arc-transitive.
If X is 2-transitive on V , then Γ is a complete graph, so G is 2-homogeneous on
V and hence either affine or almost simple, which contradicts the assumption. Thus,
X is not 2-transitive on V . Since T is nonabelian simple, M is a primitive group
of holomorph simple type, by [26, Proposition 8.1], X is primitive of diagonal type.
Therefore, M.2 = M :〈π〉 ≤ X ≤ M.22.

Assume X = M :〈π〉 ∼= M.2. Then, Xα = T :〈π〉 and S = {gt , (g−1)t | t ∈ T }.
If o(g) �= p, by part (c) of Proposition 3.3, S = {gt | t ∈ T }. Since CAut(T )(g) =
CT (g).2, we have {gt | t ∈ T } = {gt | t ∈ Aut(T )} by comparing their sizes, that is,
S = {gt | t ∈ Aut(T )}. It follows that Xα ≥ Aut(T ):〈π〉, which is a contradiction.
Assume that o(g) = p. We claim that p ≡ 3(mod 4). Suppose that p ≡ 1 (mod 4).
Since Γ is a metacirculant, X has a metacyclic vertex-transitive subgroup R. Then, R
has order divisible by p(p2 −1)/2. Let P be a Sylow p-subgroup of R. Then, P ∼= Zp

or Z
2
p. Since p is the largest prime divisor of |G|, it is easily shown that P is normal in

R. If P ∼= Z
2
p, then R ≤ NG(P) ∼= (Z2

p:(Z p−1
2

×Z p−1
2

)).2, which contradicts that |R|
is divisible by p+1

2 . Thus, P ∼= Zp. Let H be a Hall π -subgroup of R, where π is the

set of prime divisors of p+1
2 . Then, H ≤ T̂ × Ť . Since T has no subgroups of order

pq for any prime divisor q of p+1
2 , it implies that either P ≤ T̂ and H ≤ Ť , or P ≤ Ť

and H ≤ T̂ . Then, H ∼= Z p+1
2

. Without loss of generality, assume that P ≤ T̂ . Then,

H ≤ CR(P) ≤ CG(P) = P×Ť , and it follows that CR(P) = P×H or P×(H :2).
Thus, R has a normal subgroup P H , so R ≤ NG(P H) ∼= (Zp:Z p−1

2
)×Dp+1. As

|R| ≥ p(p2 − 1)/2, we further have R ∼= (Zp:Z p−1
2

)×Dp+1, which is not metacyclic

as 4
∣∣ p −1, yielding a contradiction. Hence, p ≡ 3(mod 4). Now, by Proposition 3.3,

we have S = {gt , (g−1)t | t ∈ T } = {gt | t ∈ Aut(T )}, implying Xα ≥ Aut(T ):〈π〉,
which is also a contradiction.

We therefore have X = M.22. Then, Xα = Aut(T ):〈π〉. Noting that Γ is arc-
transitive and each element is conjugate to its inverse in Aut(T ) by Proposition 3.3,
we conclude that S = gXα = {gt | t ∈ Aut(T )}, Γ = Γg , and AutΓ = (T :Aut(T )).2,
where g is a non-identity element of T . �	

4 Products

For graphs Δ = (U, E) and Σ = (W, F), we define direct product Δ×Σ and Carte-
sian product Δ�Σ as follows. They both have vertex set V : = U × W = {(u, w) |
u ∈ U, w ∈ W }, and given two vertices v1 = (u1, w1) and v2 = (u2, w2) in V ,

(a) for Δ×Σ , (v1, v2) is an arc of Δ×Σ if and only if (u1, u2) ∈ E and (w1, w2) ∈ F ;
(b) for Δ�Σ , (v1, v2) is an arc of Δ�Σ if and only if u1 = u2 and (w1, w2) ∈ F ,

or (u1, u2) ∈ E and w1 = w2.
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Then, for Γ = Kn ×Kn or Kn�Kn , we have AutΓ = Sn �S2. It is easily shown that
AutΓ has metacyclic transitive subgroups, and Γ is an arc-transitive metacirculant.
Generally, we have the following result, the proof of which is easy and omitted.

Lemma 4.1 LetΣ be a circulant, and let X ≤ AutΣ contain a cyclic regular subgroup
R. Then, both Σ�Σ and Σ×Σ are metacirculants, and have an automorphism group
X � S2 which contains a metacyclic regular subgroup R × R.

Moreover, if X is primitive but not regular on Δ, then G is primitive on Δ×Δ, see
[7, Lemma 2.7].

The next construction produces a metacyclic transitive subgroup which is not of
the form R × R for certain degrees.

Construction 4.2 Let n = 2m with m odd, and let P be a transitive permutation
group on Δ of degree n. Assume that P contains a cyclic regular subgroup C = 〈c〉.
Let X = P � 〈π〉, where π : (x1, x2) �→ (x2, x1) for all elements (x1, x2) ∈ P × P .
Suppose that X acts on Ω := Δ × Δ in product action. Then, the point stabiliser
Xω = Pδ � 〈π〉, where ω = (δ, δ) ∈ Ω .

Let a = c2 and t = cm . Suppose that P has a transitive subgroup Q such that
P = Q:〈t〉 and Pδ = Qδ:〈t〉. Let σ = (t, 1)π ∈ X . Then, σ 2 = (t, t) and σ has order
4. Let

G = 〈Q × Q, σ 〉 = (Q × Q):〈σ 〉,
R = 〈(a, 1), (1, a), σ 〉.

�	
Some basic properties of the groups in Construction 4.2 are presented below.

Lemma 4.3 Using the notation defined in Construction 4.2, we have that

[i) R = Zm :Z4m is a metacyclic subgroup of G and regular on Ω , and
(ii) G is primitive on Ω if and only if P is primitive on Δ.

Proof It is easy to check that R = 〈(a, a−1), (a, a)σ 〉, and 〈(a, a−1)〉 is normal in R.
Further, 〈(a, a−1)〉 ∩ 〈(a, a)σ 〉 = {1}, and (a, a)σ has order 4m. Hence the order |R|
equals n2 = |Ω|, and R = 〈(a, a−1)〉:〈(a, a)σ 〉 ∼= Zm :Z4m , that is, R is metacyclic.

We claim that R is regular on Ω . Obviously, 〈c〉 × 〈c〉 is regular on Ω and the
subgroup 〈(a, 1), (1, a), (t, t)〉 is of index 2 in 〈c〉×〈c〉. If x ∈ R\〈(a, 1), (1, a), (t, t)〉,
then x is of order 4, and conjugate to σ . Since σ 2 = (t, t) fixes no point, so is σ . Hence
R is semiregular on Ω , and as |R| = |Ω|, R is regular on Ω , as in part (i).

By [7, Lemma 2.7], G is primitive on Ω if and only if P is primitive on Δ, as in
part (ii). �	

The following are a few examples.

Example 4.4 Let Δ = {1, 2, . . . , n} where n = 2m with m odd. Let P = Sym(Δ) =
Sn , and let Q = An . Applying Construction 4.2, we have a primitive permutation
group G = (An ×An):Z4, of product action type on Ω = Δ×Δ, and G has a regular
metacyclic subgroup R = Z

2
m :Z4 = Zm :Z4m .

123

Author's personal copy



J Algebr Comb

It is easily shown that G has rank 3, and each orbital graph of G is self-paired. This
gives rise to arc-transitive metacirculants: Kn × Kn , and Kn�Kn . Since G contains
a regular metacyclic subgroup R = (Zm × Zm):Z4, the two graphs are metacirculant
of R. �	
Example 4.5 Let q = p f , where p ≡ 1 (mod 4) is a prime and f is odd. Let
P = PGL(2, q), and Q = PSL(2, q). Let H = [q]:(q − 1) be a subgroup of P ,
and Δ = [P : H ], which is of size n = q + 1 = 2 · (q + 1)/2 with (q + 1)/2
odd. By Construction 4.2, we have a primitive permutation group G = (PSL(2, q) ×
PSL(2, q)):Z4 on Ω = Δ × Δ of product action type, which contains a regular
metacyclic subgroup R = (Z q+1

2
× Z q+1

2
):Z4. �	

Almost simple primitive permutation groups with socle T of degree n which contain
a regular cyclic subgroup are 2-transitive, as listed below, refer to [11].

T An PSL(d, q) PSL(2, 11) M11 M23

n n qd −1
q−1 11 11 23

Lemma 4.6 Let P be an almost simple primitive permutation group on Δ of degree
n = |Δ|, and let T = soc(P). Assume that P contains a regular cyclic subgroup.
Let G be primitive of product action type with socle N = T × T , as constructed
in Construction 4.2. Let Γ be a fused-orbital graph of G acting on Δ × Δ. Then,
Γ ∼= Kn�Kn or Kn × Kn, where n ≥ 5. Moreover, if Γ is G-locally-primitive, then
Γ = Kn × Kn, and T �= PSL(d, q) with d ≥ 3.

Proof By the assumption, T and n are as in the above table. Since G is primitive on
Ω = Δ×Δ, the socle N = soc(G) = T × T is transitive on Ω . Let ω = (δ, δ) ∈ Ω .
Then, Nω = Tδ × Tδ .

Since T is 2-transitive on Δ, Tδ is transitive on Δ\{δ}, we conclude that Nω is
transitive on

{(δ1, δ2) | δ1, δ2 ∈ Δ\{δ}},

which is of size (n − 1)× (n − 1) = (n − 1)2. Thus, the orbital graph of G containing
the edge {(δ, δ), (δ1, δ2)} is isomorphic to Kn × Kn , where δ1, δ2 ∈ Δ\{δ}.

Similarly, Nω is transitive on {(δ, δ′) | δ′ ∈ Δ\{δ}} and {(δ′, δ) | δ′ ∈ Δ\{δ}}.
Since G acting on Ω is of product action type, there exists an element x ∈ G\N
which interchanges (t1, t2) and (t2, t1) for all elements t1, t2 ∈ T , and so interchanges
points (δ1, δ2) and (δ2, δ1) for all δ1, δ2 ∈ Δ. The element x fixes ω = (δ, δ), and
fuses {(δ, δ′) | δ′ ∈ Δ\{δ}} and {(δ′, δ) | δ′ ∈ Δ\{δ}}. Therefore, the orbital graph of
G containing {(δ, δ), (δ, δ′)} is isomorphic to Kn�Kn , where δ′ ∈ Δ\{δ}.

Let Γ = Kn�Kn . Then, Γ (ω) = {(δ, δ′) | δ′ ∈ Δ\{δ}} ∪ {(δ′, δ) | δ′ ∈ Δ\{δ}},
and {(δ, δ′) | δ′ ∈ Δ\{δ}} and {(δ′, δ) | δ′ ∈ Δ\{δ}} are two blocks of Gω acting of
Γ (ω). Thus, Γ is not G-locally-primitive.
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On the other hand, assume that Γ = Kn × Kn . Then, Γ (ω) = {(δ1, δ2) | δ1, δ2 ∈
Δ\{δ}}. If T = PSL(d, q) with d ≥ 3, then by [16, Lemma 2.5], Γ is not G-
locally-primitive. Suppose that T �= PSL(d, q) with d ≥ 3. Then, T acting on Δ is
2-primitive. It follows that the arc-stabiliser G(ω,(δ1,δ2)) is a maximal subgroup of Gω.
So Γ is G-locally-primitive. �	

5 Graphs associated with PSL(2, p)

We study now examples associated with PSL(2, p) with p a prime.
Consider the case where p ∈ {11, 19, 29, 59} and G = PSL(2, p) first. Note that G

has a factorization G = RH , where R = Zp:Z p−1
2

, and H = A5. Let Ω = [G : H ].
Then G is a primitive permutation group on Ω of degree 11, or of degree pq, where
q is a prime divisor of p−1

2 . For the latter, each fused-orbital graph Γ of G on Ω

has order equal to a product of two primes. Such graphs Γ of G were classified in
[28,29] (with two graphs associated with M23 missed and pointed out on [22]), stated
as follows.

Example 5.1 Let G = PSL(2, p) with p = 11, 19, 29 or 59, and let H < G be
isomorphic to A5. If p �= 19, then each fused-orbital graph of G on Ω = [G : H ]
is a Cayley graph of a metacyclic group R, and moreover, we have the following
statements:

(i) For p = 11, then R = Z11 and G is 2-transitive on Ω , so Γ = K11 and
AutΓ = S11;

(ii) For p = 19, then there are three fused-orbital graphs, all of which are arc-
transitive of valency 6, 20 or 30, and have automorphism group G. The three
graphs are metacirculants of Z19:Z9 but not Cayley graphs.

(iii) For p = 29, then R = Z29:Z7 and there are seven fused-orbital graphs, all of
which are arc-transitive and have automorphism group equal to G, one of valency
12, two of valency 20, three of valency 30, and one of valency 60.

(iv) For p = 59, then R = Z59:Z29 and there are 33 fused-orbital graphs, which have
automorphism group equal to G. Four of them are half-transitive of valency 120,
and twenty-nine of them are arc-transitive: one of valency 6 or 10, two of valency
12, four of valency 20, five of valency 30, and sixteen of valency 60.

Example 5.2 Let G = PSL(2, 23), and S4 ∼= H < G. Let Ω = [G : H ], of size 253.
Then, G is a primitive permutation group on Ω , and contains a metacyclic subgroup
R = Z23:Z11 which is regular on Ω . By [29, Lemma 4.3], there are 13 fused-orbital
graphs, and all of which have automorphism group equal to G. Two of them are half-
transitive of valency 24 or 48, and the other eleven are arc-transitive graphs, one of
valency 4 or 8 or 12, two of valency 6, and six of valency 24. Moreover, among the
graphs, the graph of valency 4 is the unique G-locally-primitive graph.

Praeger and Xu in [29, Lemma 4.4] also determined edge-transitive graphs admit-
ting PSL(2, p) and PGL(2, p) with stabiliser Dp+1 and D2(p+1), respectively.
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Table 1 The almost simple primitive groups with a transitive metacyclic subgroup

row G A B conditions

1 Sp p:(p − 1) Sp−2, Sp−2 × S2

Ap .o p: p−1
2 Sp−2 × o o ≤ 2

2 PSL(d, q).o G(qd ).o1 P1.o, parabolic whereq = p f , and

PSL(d, q).o.2 G(qd ).o1.2 P1.o o1 ≤ o ≤ f.(d, q − 1)

3 PGL(2, p) p:(p − 1) D2(p+1)

PSL(2, p).o p: p−1
2 .o1 D(p+1)o o1 ≤ o ≤ 2, p ≡ 3 (mod 4)

4 PSL(2, 11) 11, 11:5 A5

5 PSL(2, 29) 29:7 A5

6 PSL(2, p) p: p−1
2 A5 p = 11, 19, 29, 59

PGL(2, p) p:(p − 1) A5

7 PSL(2, 23) 23:11 S4

PGL(2, 23) 23:22 S4

8 P�L(2, 16) 17:8 PSL(2, 4).4

9 PSL(5, 2).o 31:(5 × o) 26:(S3 × PSL(3, 2)) o ≤ 2

10 PSU(3, 8).32.o (3 × 19:9).o1 (23+6:63:3).o o1 ≤ o ≤ 2

11 PSU(4, 2).o 9:3.o1 24:A5.o o1 ≤ 2, o ≤ 4

12 M11 11, 11:5 M10, M9.2

13 M12 6 × 2 M11

M12.2 D24 M11

14 M22.2 D22 PSL(3, 4).2

15 M23 23, 23:11 M22, M21.2, 24.A7

16 M24 D24 M23

Lemma 5.3 (1) For p ≡ 3 (mod 4), the simple group T = PSL(2, p) is a product
of subgroups R ∼= Zp:Z p−1

2
and H ∼= Dp+1, each fused-orbital graph of T acting

on [T : H ] is a vertex-primitive metacirculant Cayley graph of R.
(2) The group G = PGL(2, p) is a product of subgroups R ∼= Zp:Zp−1 and H ∼=

D2(p+1), each fused-orbital graph of G acting on [G : H ] is a vertex-primitive
metacirculant graph of R.

Moreover, such a graph is a Cayley graph if and only if p ≡ 3 (mod 4), and is
G-locally-primitive if and only if its valency equals to p+1

2 with p+1
2 prime.

6 Proofs of Theorem 1.1 and the Corollaries

Let Γ = (V, E) be a connected metacirculant, and assume further that G ≤ AutΓ is
primitive on V and transitive on E , and contains a transitive metacyclic subgroup R.
In particular, G is a primitive permutation group on V .
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The proof of Theorem 1.1 depends on the classification of primitive permutation
groups which contain a transitive metacyclic subgroup, obtained in [17], as stated in
the following theorem.

Theorem 6.1 Let G be a finite primitive permutation group on Ω , and let R be a
transitive metacyclic subgroup of G. Then, one of the following holds:

(1) G is an almost simple group, and either (G, Gω) = (An, An−1) or (Sn, Sn−1), or
(G, R, Gω) = (G, A, B) such that R = A and Gω = B as in Table 1;

(2) G is of diagonal type with socle T 2 = PSL(2, p)2, R is regular, and either
(i) p ≡ 3 (mod 4), R ∼= Z p(p+1)

2
:Zp−1 ∼= (Zp:Z p−1

2
) × Dp+1, or

(ii) p ≡ 1 (mod 4), G ≥ T :Aut(T ), and R ∼= Z p(p+1)
2

:Zp−1 ∼= (Zp:Zp−1) ×
Z p+1

2
;

(3) G is of product action type of degree n2 with socle T 2, and R = Z
2
n or Z

2
m :Z4

with m = n
2 odd, and T = An, or PSL(d, q) with n = qd−1

q−1 , or (T, n) =
(PSL(2, 11), 11), (M11, 11) or (M23, 23).

(4) G is an affine group, and either G is 2-transitive, or pd = p, p2, 33, 23 or 24.

We first treat the affine groups.

Lemma 6.2 Let G be an affine primitive permutation group with socle Z
d
p, where

pd = p, p2, 33, 23 or 24. Then, one of the following holds:

(1) G is 2-homogeneous, and Γ = Kpd ;
(2) Γ = Kp�Kp, or Kp × Kp;
(3) Γ is a normal Cayley graph of Z

d
p.

Proof Let X = AutΓ . If X is affine, then, the socle of X is Z
d
p and regular on V ,

and hence Γ is a normal Cayley graph, as in part (3). Suppose that X is not affine.
Since the degree is pd , either X is almost simple or of product action type. If X is
almost simple, then by [13], X is 2-transitive, so Γ = Kpd is a complete graph and
G is 2-homogeneous, as in part (1). If X is of product action, then by Theorem 6.1,
X satisfies part (3) of Theorem 6.1, and in particular soc(X) = T 2 and d is even. It
follows that d = 2, and Γ = Kp�Kp or Kp × Kp by Lemma 4.6, as in part (2). �	

It would be interesting to give a classification of edge-transitive metacirculants
associated with a primitive affine automorphism group. Here, we only mention a
special case. Let G = Z

2
p:Q8 < AGL(2, p) with p an odd prime, and let H = Q8.

Then, H acts semiregularly on Z
2
p\{0}, and hence there are p2−1

8 different G-edge-
transitive graphs, which are of valency 8.

We observe that the edge-transitive group G is 2-homogeneous on the vertex set V
if and only if Γ is a complete graph. Many of the almost simple primitive groups G
listed in TABLE 1 are 2-homogeneous, which correspond to complete graphs.

Lemma 6.3 Assume that G ≤ AutΓ is 2-homogeneous on V and contains a meta-
cyclic subgroup R which is transitive on V . Then, Γ = (V, E) is a complete graph of
order n, and one of the following holds.
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(1) G = An or Sn, and Gω = An−1 or Sn−1, respectively;

(2) G � PSL(d, q), n = qd−1
q−1 , and R ≤ �L(1, qd);

(3) G = PSU(3, 8).32.o, R = (57:9).o1, and Gω = (23+6:63:3).o, where o1 ≤ o ≤
2;

(4) (G, Gω, n) = (PSL(2, 11), A5, 11), or (M22.2, PSL(3, 4).2, 22);
(5) G = Mn, where n = 11, 12, 23, or 24;
(6) G is an affine 2-homogeneous group of degree n, where n = p, p2, 33, 23 or 24.

Moreover, if Γ = Kn is G-locally-primitive, then G is 2-primitive, and soc(G) = An,
PSL(2, q) with n = q + 1, or Mn with n ∈ {11, 12, 22, 23, 24}.
Proof Since G is 2-homogeneous on V , then graph Γ = Kn , and G is almost simple or
affine. By Theorem 6.1, if G is almost simple, then G satisfies part (1) of Theorem 6.1;
if G is affine, then G satisfies part (4) of Theorem 6.1. Analyzing these candidates,
we obtain that G satisfies one of parts (1)–(6).

It is easily shown that Γ = Kn is G-locally-primitive if and only if G is 2-primitive,
so soc(G) = An , PSL(2, q) with n = q + 1, or Mn with n ∈ {11, 12, 23, 24}. �	

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 By assumption, for a vertex v ∈ V , the triple (G, R, Gv) satis-
fies Theorem 6.1.

If G is affine, then G satisfies Theorem 6.1 (4), and then by Lemma 6.2, Γ satisfies
part (i) or part (ix) of Theorem 1.1.

If G is of product action type, as in Theorem 6.1 (3), then by Lemma 4.6, the graph
Γ satisfies part (i) of Theorem 1.1.

If G is of diagonal type, then G satisfies Theorem 6.1 (2). By Lemma 3.7, Γ satisfies
part (iii) of Theorem 1.1.

Finally, we consider the almost simple case. In this case, G satisfies Theorem 6.1 (1).
If G is 2-homogeneous on V , then Γ is a complete graph, as in part (i) of Theorem 1.1.
We thus assume that G is not 2-homogeneous.

Assume that G = Ap or Sp as in row 1 of Table 1. Then, the vertex set V is
the set of 2-subsets of a set Ω = {1, 2, . . . , p}, namely, V = Ω(2), and G is 4-
transitive on Ω . Let α = {1, 2} be a vertex of Γ . Then, Gα has exactly two orbits
on V \{α} = Ω(2)\{{1, 2}}, with representatives {1, 3} and {3, 4}. If {1, 3} is adjacent
to α = {1, 2} in Γ , then Γ is the line graph of Kp, while if {3, 4} lies in Γ (α), then
Γ is the complement of line(Kp), as stated in part (ii) of Theorem 1.1. Similarly, if
G = M11 with Gv

∼= M9.2 as in row 14 of Table 1, or G = M23 with Gv = M21.2
as in row 17 of Table 1, then Γ = line(K11), line(K11), line(K23) or line(K23), as in
part (ii) of Theorem 1.1.

If soc(G) = PSL(2, p), as in rows 3-7 of Table 1, then Γ is described in Exam-
ples 5.1–5.2 and Lemma 5.3. This is as claimed in Theorem 1.1 (iv).

For G = P�L(2, 16), the graph Γ is described in Lemma 2.6, as in part (v).
For soc(G) = PSL(5, 2), Lemma 2.4 shows that the graph Γ = G2(5, 2) is the

Grassmann graph or the complement Γ = G2(5, 2), as in part (vi).
For soc(G) = PSU(4, 2), by Lemma 2.5, the graph Γ is the Schläfli graph or its

complement, as in part (vii).
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Finally, for G = M23 and Gv = 24:A7, by Example 2.7, the graph Γ is of valency
112 or 140, as in part (viii). �	
Proof of Corollary 1.2 The graphs in parts (i), (iii), and (vi)-(ix) of Theorem 1.1 are
all Cayley graphs, by the corresponding lemmas or examples in Sect. 2–5 which define
or describe these graphs.

For the graphs in part (ii) of Theorem 1.1, by Lemma 2.3, a line graph line(Kp)

and its complement are Cayley graphs if and only if p ≡ 3 (mod 4).
For graphs in part (iv) of Theorem 1.1, if G acts on V with exceptional action, Γ is

a Cayley graph with the only exception that AutΓ = PSL(2, 19), see Examples 5.1–
5.2; for the other actions, Γ is not a Cayley graph if and only if G = PGL(2, p) and
p ≡ 1 (mod 4), see Lemma 5.3.

Finally, the three graphs associated with P�L(2, 16), stated in Theorem 1.1 (v), are
not Cayley graphs, see Lemma 2.6. �	
Proof of Corollary 1.3 The local-primitivity of each graph listed in Theorem 1.1 is
determined in the corresponding lemmas and examples in Sect. 2–5, from which the
proof of Corollary 1.3 follows. �	
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23. Marušič, D., Scapellato, R.: Classifying vertex-transitive graphs whose order is a product of two primes.

Combinatorica 14(2), 187–201 (1994)
24. Marušič, D., Šparl, P.: On quartic half-arc-transitive metacirculants. J. Algebraic Combin. 28, 365–395

(2008)
25. Morris, J., Šajna, M.: Brian Alspach and his work. Discrete Math. 299(1–3), 269–287 (2005)
26. Praeger, C.E.: The inclusion problem for finite primitive permutation groups. Proc. London Math. Soc.

(3) 60, 68–88 (1990)
27. Praeger, C.E.: An O’Nan-Scott theorem for finite primitive permutation groups and an application to

2-arctransitive graphs. J. London Math. Soc. 47, 227–239 (1992)
28. Praeger, C.E., Xu, M.: Symmetric graphs of order a product of two distinct primes. J. Combin. Theory

Ser. B 58, 299–318 (1993)
29. Praeger, C.E., Xu, M.: Vertex-primitive graphs of order a product of two distinct primes. J. Combin.

Theory Ser. B 59, 245–266 (1993)
30. Šajna, M.: Half-transitivity of some metacirculants. Discrete Math. 185(1–3), 117–136 (1998)
31. Šparl, P.: On the classification of quartic half-arc-transitive metacirculants. Discrete Math. 309, 2271–

2283 (2009)
32. Suzuki, M.: Group Theory I. New York, II, Springer, Berlin (1982)
33. Tan, N.D.: Non-Cayley tetravalent metacirculant graphs and their hamiltonicity. J. Graph Theory 23(3),

273–287 (1996)
34. Xu, M.Y.: Half-transitive graphs of prime-cube order. J. Algebraic Combin. 1, 275–282 (1992)
35. Zhou, Chuixiang, Feng, Yan-Quan: An infinite family of tetravalent half-arc-transitive graphs. Discrete

Math. 306, 2205–2211 (2006)

123

Author's personal copy


	Finite vertex-primitive edge-transitive metacirculants
	Abstract
	1 Introduction
	2 Examples and constructions
	2.1 Cayley graphs
	2.2 The line graphs of complete graphs
	2.3 Geometric graphs
	2.4 Orbital graphs

	3 Examples of diagonal type
	4 Products
	5 Graphs associated with PSL(2,p)
	6 Proofs of Theorem 1.1 and the Corollaries
	Acknowledgments
	References


